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Abstract

This study presents the High Order Prediction Environment (HOPE), an automatically differentiable, non-oscillatory
finite-volume dynamical core for shallow water equations on the cubed-sphere grid. HOPE integrates four key features: (1)
arbitrary high-order accuracy through genuine two-dimensional reconstruction schemes; (2) essential non-oscillation via
adaptive polynomial order reduction in discontinuous regions; (3) exact mass conservation inherited from finite-volume
discretization; (4) automatically differentiable and (5) GPU-native scalability through PyTorch-based implementation.

Another innovation is the intensive-panel-boundary-treatment-which-eliminates numeriealdevelopment of a two-way coupled

chost cell interpolation method. This approach incorporates information from adjacent panels on both sides of the boundary,

thereby overcoming the integration instability duringinherent in one-sided ghost cell interpolation approaches when using

high--order reconstruction-secheme;meanwhile;simplifies-the-interpolation-preecess-to-a-. Leveraging the linear operator nature

of this interpolation scheme, we optimized its computation: information exchange across the panel boundary is achieved

through a single matrix-vector multiplication instead of iterative coupling, without lesirg—accuracy_loss. Numerical

experiments demonstrates the capabilities of HOPE: The 11th-order scheme reduces errors to near double-precision round-
off levels in steady-state geostrophic flow tests on coarse +——<1"—-1° X 1° grids. Maintenance of Rossby-Haurwitz waves
over 100 simulation days without crashing. A cylindrical dam-break test case confirms the genuinely two-dimensional WENO

scheme exhibits significantly better isotropy compared to dimension-by-dimension approaches. Moreover, normalized

conservation errors in total energy, total potential enstrophy, and total zonal angular momentum significantly reduce with

increasing order of the reconstruction scheme. Two implementations are developed: a Fortran version for convergence analysis
1
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and a PyTorch version leveraging automatic differentiation and GPU acceleration. The PyTorch implementation maps
reconstruction and quadrature operation to 2D convolution and Einstein summation respectively, achieving about 2 X speedup
on single NVIDIA RTX3090 GPU versus Dual Intel E5-2699v4 CPUs execution. This design enables seamless coupling with
neural network parameterizations, positioning HOPE as a foundational tool for next-generation differentiable atmosphere

models.

1. Introduction

Recent years have witnessed a surge in research integrating numerical weather prediction (NWP) with artificial
intelligence (Al) techniques. A prominent advancement in this domain is the hybrid modeling paradigm, which synergizes the
complementary strengths of both approaches. This framework implements numerical dynamical cores within Al software
platforms such as TensorFlow or PyTorch, thereby enabling seamless integration of Al models into the numerical solution
process for atmospheric dynamical partial differential equations (PDEs). Unlike the fully surrogated methods, such as Pangu-
Weather (Bi et al., 2022), FengWu (Chen et al., 2023), GraphCast (Lam et al., 2023), NowcastNet (Zhang et al., 2023 )--Hybrid,
hybrid model integrates traditional PDE-based dynamical cores with neural network (NN)-based physical parameterizations.
The auto-differentiable nature of the dynamical core enables training losses to propagate through the entire model during
backpropagation, allowing the NN-based parameterization module to access more comprehensive residual information.

Neural GCM (Keehkev-etal52023)(Kochkov et al., 2024) exemplifies this hybrid approach by combining a spectral numerical

dynamical core with NN-based physical parameterizations. The governing equation-based dynamical core imposes rigorous
physical constraints within the framework, effectively mitigating the blurriness characteristic of purely data-driven models.
Furthermore, NeuralGCM demonstrates superior power spectra performance compared to conventional data-driven
meteorological models. While the implementation of a spectral dynamical core in NeuralGCM theoretically enables infinite-

order accuracy, the-

and-the global nature of spectral expansion alse-restricts the method’s scalability-ef-this-method. Furthermore, in contrast to

finite-volume algorithms which inherently ensure strict mass conservation, achieving strict mass conservation with

Neural GCM’s spectral dynamical core requires supplementary modifications.

To address these shortcomings, we present the High Order Prediction Environment (HOPE) dynamical core with
following contributions:
1) A new-generation shallow-water model architecture integrating:

(i) Arbitrary high-order accuracy (up to 13th-order verified) via tensor product polynomial (TPP).

(i) Eoealsteneil-based—operationsA finite-volume scheme requiring only information from a local stencil
2
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surrounding each cell to perform state updates, enabling massively parallel scalability.

(ii1) Inherent mass conservation from finite-volume discretization.

(iv) AdaptiveA WENO (Weighted Essentially Non-Oscillatory) based, adaptive polynomial order reduction for

essential non-oscillation.

2) A novel intensivetwo-way coupled ghost cell interpolation scheme achieving:

(i) Arbitrary odd-order convergence through central stencil interpolation.
(i) Single sparse matrix-vector operation replacing iterative procedures (Appendix Eq.(A.12)).
(ii1) Overcome numerical instability beyond 7th-order accuracy.
3) PyTorch-based high performance differentiable implementation featuring:
(i) GPU acceleration through convolution/einsum operator in PyTorch, 2x speedup on single RTX3090 GPU vs.
Dual Intel Xeon 2699v4 CPUs.

(i1) Automatic Jaeebianghost cell interpolation matrix generation via native auto-differentiation.

(ii1) Seamless integration with NN modules for hybrid modeling.

In the following part of the introduction, we introduce the relevant work on constructing the HOPE model, and from this,
we elaborate on the challenges and motivations for establishing the algorithm of the dynamical core. High-order accuracy is
an extremely appealing trait for the design of a dynamical core, particularly in high-resolution atmospheric simulations. A
dynamical core model with high-order accuracy produces significantly less simulation error in smooth regions compared to a
low-order model. Furthermore, even when the resolution is equivalent or coarser, a high-order model is capable of resolving
finer details than a low-order one.

A high-order finite volume model was developed on cubed sphere, named MCORE (Ullrich et al., 2010; Ullrich and

Jablonowski, 2012).

when-the-stenetl-size-is-9x9-ertargerHigh-order reconstruction requires information from cells external to panel boundaries

(commonly termed ghost cells). Due to coordinate discontinuities across the six panels of the cubed-sphere grid, MCORE

implements an interpolation scheme for ghost cells based on one-side information. This approach employs a two-dimensional

reconstruction stencil to interpolate prognostic variables onto Gaussian quadrature points within each cell, followed by

integration to obtain cell-averaged values. The authors assert that MCORE's convergence rate can theoretically be of arbitrary

order. However, during the design of the ghost cell interpolation for HOPE, we initially attempted to use a one-sided

reconstruction stencil similar to MCORE. While stable integration was achieved with the 3rd-, 5th-, and 7th-order schemes,

the model became unstable when schemes of 9th-order or higher were used. In other words, for HOPE, overcoming the 7th-
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order accuracy limitation necessitated the development of a new ghost cell interpolation scheme.

Therefore, we designed a bilateral interpolation algorithm. This algorithm employs an iterative procedure that

incorporates information from both adjacent panels of the cubed-sphere grid simultaneously. This enabled stable model

integration even with higher-order schemes. Though not detailed in the paper, our testing confirmed stable integration even

at 13th-order accuracy.

In this article, we devise the reconstruction based on tensor product polynomial (TPP). When the stencil width is k, our
method achieves k" order accuracy, surpassing MCORE by one order of accuracy with the same stencil width. In addition,
we have developed a new class of ghost interpolation schemes that abandon the use of one-sided stencils and instead adopt
central stencils. This new approach enables the scheme to overcome the non-physical oscillations arising from interpolation

at panel boundaries. Our method allows for arbitrary order of accuracy while the field is smooth enough, and we have verified

this by testing up to the 11% order.

EromNevertheless, higher-order reconstruction does not invariably vield superior simulation outcomes, as elucidated by

analyzing the properties of the Taylor series;we-note-thatits-effeetivenessin remainder term. The accuracy of approximating

a function depends-onvia a Taylor series requires two keyessential conditions: (1) the existence of higher-order derivatives_of

the function at the expansion point, and (2) theThe convergence of the series_within the relevant domain. When the field

exhibits poor continuity—where higher-order derivatives either do not exist or lead to increasing residuals with series order—
employing higher-order approximations can introduce significant errors. Therefore, for reconstruction schemes based on
polynomial functions, high-order accuracy should only be adopted when the field is sufficiently smooth. Conversely, for
discontinuous or poorly continuous fields, reducing the reconstruction order is necessary to maintain numerical stability and
effectiveness.

The Weighted Essentially Non-Oscillatory (WENQO) scheme is an adaptive limiter widely employed in computational
fluid dynamics (CFD) to address this challenge. Originally developed for one-dimensional problems (Liu et al., 1994), WENO
was later extended to two dimensions by Shi et al. (2002) using two distinct approaches: a genuinely two-dimensional
(WENO2D) scheme and a dimension-by-dimension reconstruction. In this work, we implement WENO2D scheme to enforce
the non-oscillatory property. This approach effectively suppresses non-physical oscillations near sharp discontinuities while
preserving high-order accuracy in smooth regions.

The remainder of this paper is organized as follows: Section 2 details the governing equations on the cubed-sphere grid.
Section 3 presents the numerical methods, including reconstruction schemes, panel boundary treatment method, and temporal

marching scheme. Section 4;-deseribes-the- GPU-eptimized focuses on HOPE's high-performance implementation leveraging

PyTorch's built-in operators for GPU acceleration. The adoption of PyTorch simultaneously enables automatic differentiation-

capabilities through its computational graph construction. Section -5 validates model performance through standard test cases,



121 followed by conclusions and future directions in Section 6.

122 2. Governing Equation on Cubed Sphere

123 The cubed-sphere grid partitions the spherical domain into six panels, each with a structured and rectangular
124 computational space. This configuration facilitates high-order spatial reconstruction and efficient massive-thread parallelism
125  (see Figure 1). Early work on solving the primitive equations on the cubed-sphere grid dates back to Sadourny (1972). In
126 recent decades, the cubed-sphere grid has been widely adopted in high-order-accuracy atmospheric models. For instance,
127  Chen and Xiao (2008) developed a shallow water model using the multi-moment constrained finite volume method on the
128  cubed sphere, achieving 3"~4"" order accuracy. Ullrich et al. (2010) designed a high-order finite volume dynamical core based
129 on this grid, Nair et al. (2005a, 2005b) implemented a discontinuous Galerkin model on the cubed sphere.

ISF In this study, we also employ the equiangular cubed-sphere grid. Although the mesh is non-orthogonal, the computational
131 space can still be treated as a rectangular grid by adopting a generalized curvilinear coordinate system. In this section, we

132 present the shallow water equations in generalized curvilinear coordinates and discuss specialized treatments for topography.

|

(a) (b)
133
134 Figure 1 Cubed sphere grid. (a) Physical space; (b) Computational space. Six panels are identified by indices from 1 to 6.
135 Shallow water equation set on gnomonic equiangular cubed sphere grid is written as
( WGp oVGpu WGov
P IGgu  HNEY _, (1)
at dx dy
1 112 1 122
<a\/gqbqua\/E(¢>uu+7c; ¢ )+6\/5(¢uv+76 $?) | \ ot
1 21,2 1 22,2
a\/ﬁ¢v+6\/5(¢uv+76 ¢ )+a\/E(¢>w+7c; $?) 0y
L at ax ay - IpM II)C II)B

13 The gnomonic equiangular coordinates are represented by @&y,—np—k(x, v,p). where (x,y) € [— %,%] are local equiangular

13 coordinate of each panel and #zp = 1,2,3, ..., n,, is panel index as shown in Figure 1(b); n,=6 is the number of panels. ¢ =

138  gh is geopotential height, h is fluid thickness, u,v is contravariant wind in x,y direction, g is gravity acceleration.
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Yu, Y, Py are the metric term, Coriolis term and bottom topography influence term

AN 2VG (—XY2puu + Y(1 + Y2)puv
m = <¢g> N 7( X(1+ X2)puv — XY pvv ) (2)

—VeVGrkx pu =G (6, 61 ng:j) 3)

095 095

(Gll i G12 ay (4)
- _\/_¢GU \/_d) 21 ad)s 22 ad)s
G =4 (22—

dx dy

where X =tanx,Y =tany,§ =V1+ X2 +Y?, f =2Qsind is Coriolis parameter, ¢, = gh, is surface geopotential

height, and hy is surface height.

f Y fo6—nze2:3:43 Y/5, pe{1234)} )
Sitl— 1//X! ﬂp =5 sinf = 1/6, P = 5
1/5; =D -1/6, p=©6

The contravariant metric on cubed-sphere is

i = 62 (1+Y2 XY ) ©)
r2(1+X2)1+ X))\ XY 1+X?
The covariant metric
r2(1+X3)(1+Y? 14+ X2 —Xy
= 5 ( —XY 1+ Y2> 7)

and the metric determinant is given by

2 2 2
VG = [aer(ey) = CEHOAETD )

The contravariant wind vector V = (u, v) can be convert to wind vector on spherical LAT/LON coordinate Vi = (us, v5)

r is radius of earth.

by the following formula
(:ﬁj) =74 (y) 9)

where £A4 is a 2 X 2 conversion matrix, the expressions are different in each panel

[ D na)
o o z _ sinZ 4 paneli~4 (10)
N N e .
cosf— cosO— \ 7 ? ees—,%/
_ dx dy _ . . .
J=r Gl 00 N g — Zar panel5
— — —stAsir=8-F  cosAsinm8F,
0x dy L cind T 1 o
r( : . ) penelb
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P ZE%Z@Z )P ’ 77 T tan29’ 277 " tan26 1D

where 4, 6 are longitude and latitude;-ane-ipamei5-the panelindex-as-shown-in-Figare Hb).. The relation between /A and G;;

is

discretize and solve the equation system, we first perform reconstruction on the prognostic variables to obtain their values at

the cell interfaces. These reconstructed values are then used within a Riemann solver to compute the numerical fluxes. During

the numerical experiments, we observed that reconstructing \/E(;b directly leads to non-physical oscillations. This occurs

because topography may induce discontinuities in the variable ¢, while high-order reconstruction fundamentally requires

smoothness of the field.

To address this, inspired by the approach mentioned by Ii and Xiao (2010), we instead reconstruct-v/G ¢,-instead-of /G-,

where ¢, = ¢ + ¢ is total geopotential height;-and. The detailed formulation of this reconstruction method is presented in

Section 3. Crucially, VG ¢, is used exclusively during the reconstruction method-is-introduced-in-the-next-seetion—step. The

prognostic variable remains vV G ¢ to ensure exact mass conservation.

The momentum equations need to be modified as follow

VG Go . VG Ggu NGov _
ot dox dy (13)
1
oVGou VG ((;buu + 7611¢>t2) NG ((l)uv -5 Glqulg)
< e dx + dy =Yy + ¥ + ¥
1 1
VG VG ¢U—U+—621¢2 oG ¢UU+—GZZ¢2
\ 6t¢v+ ( (')xz t)+ ( ayz t)=1/),%,,+1/)§+1/)123

and the bottom topography influence term is now expressed as

G\ — 99 + G2 — i (14)
¢B - \/—(Ps l] a7 \/—d)s aax aay
GZlﬂ " GZZ&
0x dy

The reconstruction variables are (\/5 b0, VGPu, VG (l)v).

We write the governing equation set to vector form
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dq O0F(q) 0G(q)
T Ty —S@ (15)

VGopu VGov
Vo 1112 1122 0
a = [Vapu| F = VG (duu+356102)| 6= VG (b +567262)| 5 i +wi +wh (16)
2 24 2
VGv \/E(d)uv +%621¢t2> \/E(qbvv +%GZZ¢§> Wi +WC + U

3. Numerical Discretization

The finite volume method computes the temporal tendency of cell-averaged quantities by evaluating the net flux across
cell interfaces. The interfacial flux is obtained through Gaussian quadrature, where the field values at quadrature points are
reconstructed spatially and then processed by a Riemann solver to determine the flux magnitude.

In this section, we present two distinct spatial reconstruction approaches: (1) a two-dimensional tensor product
polynomial (TPP) method, and (2) a two-dimensional weighted essentially non-oscillatory (WENO2D) scheme based on
tensor product polynomials. Each reconstruction yields two potential values at every Gaussian quadrature point (GQP). These
values are then resolved into a single flux value using the Low Mach number Approximate Riemann Solver (LMARS) (Chen

et al., 2013). or AUSM+-up (Liou, 2006; Ullrich et al., 2010). Even with an approximate Riemann solver like LMARS, the

scheme preserves high-order because it combines high-order reconstructions from both sides of the cell interface to determine

the flux. Finally, the total flux across each cell edge is computed by applying linear Gaussian quadrature integration along the

interface.

T

Panel 4 Panel 1

s’" c

R
.
_
.
v
.

[ /LSS )
/AN A AN

(a) S

Figure 2 (a) Adjacent area of panels 1,4 and 5. (b) 5 X 5 reconstruction stencil nearby panel corner is represented by shade. The

z

cell contains red dot is the target cell on panel 4;; the magenta points are overlapped GQPs shared by panel 1 and panel 5: red

solid lines are boundary of panel 4, red dash lines are extension line of panel 4 boundary line. A and C are points on dash line, B is
8
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the upper right corner point of panel 4.

According to the finite volume scheme, average Eq.(15) on cell i, j, we have

q,; N Ftj—Fid; N Gijrd ™ Cijl 5 (17)
ot Ax Ay -
aq, ; 1 a _ 1
']
— = — dx dy, S, = Sdxd 18
ot  AxAyot ffﬂuq xay Y AxAy JLU xay (18)
F ! Fd F Fd
, 1, =7 ) L1, =7
i=5J Ay e 1 y L+§,] Ay e 1 y (19)
=z i+3
G 1=— Gd G 1= ! Gd
i3 Ax), O Pug T, T (20)
i itz

where (); ; represents the region overlapped by cell (i, /), e;_1,€,,1, e, 1€, 1are left, right, bottom, top edges of cell (i, ).
2 2 2 2

Figure 3 Function points on cell. Red points are edge quadrature points (EQP) or called flux points, green points are inner cell

quadrature points (CQP).

The physical interpretation of equation Eq.(17) is that the average tendency of prognostic field q within cell (i, j) is
governed by the average net flux and average source. In this study, we calculate these averages using Gaussian quadrature,
the function points within each cell are illustrated in Figure 3, the EQPs are share by adjacent cells, and CQPs are exclusive
for each cell.

Average on edge by 1D scheme:

me

FH%J, ~ Z w,.F, = W—FTWF (21)

r=1

=M, is the number of quadrature points on

eachedge, w = (Wl, Wy, ..., Wme) is the 1D Gaussian quadrature coefficient vector. F = (F,,F,, .., F,)T is the vector of flux

9



1917 the elements of F represent the flux on EQPs.

198 Average in cell by 2D scheme:
e mc
S z%%%sr———wsfz W,S, = WS (22)
=1 r=1

19p where ¥m__is the number of quadrature points on each cell, W = (Wl, Ww,, ...,Wmc) is the 2D Gaussian quadrature

20p  coefficient matrix, mgg = (51,55, ...,5,)7 is the numbervector of guadrature pointssource term, the elements of S represent

201 the source value on GQPs, superscript T stands for transpose matrix.

20p HOPE employs an equiangular cubed-sphere grid, where each panel undergoes uniform angular discretization into n,

20B X n._cells. In the computational space (equiangular coordinates), each cell spans an angular interval of % therefore
(o

4

Ax=Rly =5 23)

204 This uniformity ensures that all cells are geometrically identical in the computational space, thereby avoiding the need for

206 cell-specific treatment during reconstruction studies. In the following part of this section, we set a new computational space

20p for reconstruction process. The local coordinate system (X, ) is established such that within each reconstruction stencil, the

2017 origin (0,0) is located at the stencil center, the central cell spans[—0.5,0.5] in both X and ¥ directions, as shown in Figure 4

20B (a). All of the cells have the same size in X, y directions:

AR=Ap=1 (24)

20D On the cubed-sphere grid, a fixed reconstruction scheme vields consistent stencils across all cells. This structural

21D homogeneity renders the reconstruction operation computationally equivalent to two-dimensional convolution, thereby

210 enabling efficient GPU acceleration through PyTorch's built-in conv2d function.

212 3.1 Tensor Product Polynomial (TPP) Reconstruction

21B TheHOPE employs genuinely two-dimensional reconstruction, simultaneously incorporating information in both spatial

214  dimensions to minimize dimensional splitting errors. For computational spaeeefficiency, reconstruction algorithms using

21p square stencils are computationally equivalent to convolution operations. This equivalence allows efficient implementation

21p via PyTorch's conv2d function for acceleration.

21y To construct genuinely 2D reconstructions, the functional form of eubed-sphere-isreetangular-and-stractared;—we-take

(a+1)@+2) terms. As

218 reconstruetion-onthe reconstruction basis must be selected. A bivariate polynomial of degree d contains

21p  illustrated in Figure 4 (b), the 6 terms of a bivariate quadratic polynomial (d = 2) are insufficient to cover a square stencil. A

220  two-dimensional-d-th-degree-polynomial-hasnumber-eftermsTo address this, we adopt Tensor Product Polynomials (TPP)

221l  as basis functions. We denote a TPP function containing n-=——————it-is-net-ableto-be—fullyfiled-byalk z,—th—efdef

10



N
[\
N

o O o0

—

T~

sgquareX n_terms as TPPn. Determining the coefficients of TPPn requires information from a n X n_block of cells. When using

a TPP reconstruction stencil <k—eels)—as—shewn—in—Figure—4—(a)—TFheof size n X n, HOPE achieves fifth-order

accuracy when simulating smooth flow fields. We therefore designate a TPP reconstruction stencil leeation-on-ctbed-sphere

grid-isof size n X n_as an n-th order TPP stencil, the 3" and 5™ order TPP stencils are shown in Figure 2(b)Figure 4 (c)(d).

AY
1.5
. 1 L4 ?2
0.5
EX I = [ s 1 1.5 E y xy
X
0.5
i 5 . 1 x %
(a) (b)
1.5
y: | %p* 2%y T Bl B e B
~3 f?s 323;3 235‘,3 3437.3
. PN ~2 PO P P
Yy Xy X"y yio|EvE (R |0 |EhE
] y | zv |22y |39 |32y
1 X x
1 x| =@ | at
(© @

Figure 4 PolynemialReconstruction coordinate and polynomial terms on stencils. (a): Local reconstruction coordinate (the red
points denote cell centers) (b): 2" degree polynomial stencil; (b):3"-order TPP-steneil{c)-5"-order TRP-): TPP3 stencil; (d) TPP5

stencil

We-makeuse-of the TPP-to-approximate-the-horizontal reconstruetion—A TPP-TPPn polynomial is expressed as

N

PER9) =D ety ) N g, 201901 = Y a2, 9) @3

i=1 j=1 i=1j=1 k=1

where n is width of stencil-{alse-called-n-th-steneib:. a, is the coefficient of each term, the term index k = i + n(j — 1), and
Clbey=x5E(2,9) = 2%9F,a = k — int (%)n - 1,8 =int (%), int is equivalent to Fortran's intrinsic function
int() that truncates to integer values. #N = n? is the cell number in stencil and also the term number of the TPP,-the 3"-and

11
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248

5% _order—steneils—are—shown—in—Figure—4-. We define column vectors cle3=Ffebe =123 NI (X, 9) =
{ci (&, 9)|k =1,2,3,...,N}and @ = {ay |k = 1,2,3, ..., N}, the point value on &&39(%, J) can be written as
pe (X, 9) = 3 (X,9) - a

The volume integration average (VIA) of prognostic field g on cell (; is represented by
_ 1 ” Cey el 1 ff (%, 9)dzdy
4= ; = o || P Y)axay Lo
' A%iéﬂn ' AxiAYi 5 '(

Ax;X;, Ay;y; are length of edges x,3%, ¥ of cell £2; in computational space. ln-oursettingallof The VIA value g; on each

cell is predicted by time integration, we wish to determine the eellscoefficient vector a by these VIA values. HOPE employs

an equiangular cubed-sphere grid, wherein each cell in the-computational space are-set-te—unitcan be considered a perfectly

identical square, thereforeaccording to Eq.(24), we may assume without loss of generality that Ax; = 1, Ay; = 1, and Eq.(27)

@ = ffreenasty—{fe-adsay [ p@9izas = [[ c-adrar = ;-a @6
2 2 2

02

becomes

f—erdxdy Iy s
o eaeixdy g0 — | W, c2d%dy

& : I’foiCdxdy_k @ .
o emexey

where ; =ff—edxdy=
\ a2 /

a; )1 combining N cells;—we. We have following

ﬂﬂi cydRdy

linear system

Aa=7q .
. 2hH
1»bl (71 -~

ac (¥ g=(® O
Ph qn

and polynomial coefficient a can be obtain by solving Eq.(29).
a=A"1q

The reconstruction values on M points can be obtained by following formula

p=Ca=CA'g=Rq

B
p(X1,91) CI
S5 T
p(xzz’yZ) ,C = 0:2 ,ch = cT%(ﬁj,ﬁj),j =1,2,..., M, superscript T stands for

p Xy, Im) ch
transpose matrix, (xj, yj) represents the function points on target cell. The reconstruction matrix

R=CA?

Fheln practical implementation, the reconstruction matrix R needs to be computed only once during model initialization

and stored in memory. Hn-practical-implementationCrucially, a fundamental advantage of our cubed-sphere grid dynamical

core implementation lies in employing a globally shared reconstruction matrix R. This unification signifies that a single

12
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instance of R applies identically to all grid cells, thereby significantly reducing memory/VRAM requirements, and enabling

straightforward utilization of PyTorch's conv2d for accelerated reconstruction. For example, the TPP reconstruction procedure

can be directly formulated as a two-dimensional convolutional operation using R as the convolution kernel.

3.2 Genuine Two-Dimensional WENO

Weighted Essentially Non-Oscillatory (WENO) represents an adaptive algorithm that dynamically preserves high-order
approximation accuracy in smooth flow regions while automatically degenerating to robust low-order reconstruction near
discontinuities for effective shock capturing. Shi et al. (2002) mentioned two different approaches for constructing a fifth-
order finite volume WENO scheme: the "Genuine 2D" method and the "Dimension by Dimension" method.

For HOPE, within the Genuine 2D framework, n-th order accuracy WENO scheme employs a n X n_master stencil

2
(n+1) distinct (nzﬁ X (HZLI) sub-stencils, for example:

partitioned into

a) WENO3: Third-order reconstruction utilizes a 3 X3 cell stencil that decomposes into four 2 X2 sub-stencils
b) WENOS: Fifth-order accuracy employs a 5 X 5 master stencil partitioned into nine distinct 3 X 3 sub-stencils
(Complete schematic representations of these decomposition strategies are provided in Figure 5 and Figure 6)

The scheme's theoretical order of accuracy fundamentally depends on the proper determination of optimal linear weights

for the multidimensional stencil combination. These weights, when correctly derived, enable the weighted superposition of
sub-stencils to recover full high-order accuracy in smooth solution regions. While (Shi et al., 2002) indicated the theoretical
possibility of computing these weights through Lagrange interpolation basis analysis, they omitted specific implementation
details. In this section, we present the methods for constructing genuine 2Btwo-dimensional WENO (WENO 2D) schemes

using least squares method.

Mlrl2|3|ol1]2]3

4|56 4156
D123 ]@®[1]2]3

Figure 5 Stencils of 3™ order WENO 2D. The high order stencil contains cells No.1~9, blue ones represent the cells in sub-
stencils (1) ~ (4).
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izz Figure 6 Stencils of 5" order WENO 2D. The high order stencil contains cells No.1~25, blue ones represent the cells in sub-
277 stencils (1) ~ (9).
278
279 We construct WENO 2D based on TPP and square stencil. As mentioned in previous section, a n-th order stencil contains

280D mN = n? cells, and the full stencil (also called high-order stencil) width is h = n. Decomposing the high-order stencil into

2
28] s = (nTH) sub-stencils, there are s, = s cells in each sub-stencil; (also called low-order stencil), and the sub-stencil width is

_ n+1

28pP l= - We define py_as the high- order reconstruction polynomial, and p; represents i-th sub-stencil reconstruction

28B polynomial, they share the same expression as Eq.(25) with different stencil width and coefficient a. For the reconstruction

28#  point Ge30)5(X, 9). suppose py e3> (X, V) is the reconstruction value of high-order stencil, the reconstruction values of sub-

285  stencils are stored in vector p ={p¥e&y9,—p¥9,ey9,—m,—p§@ey9ﬁ(pl(2,)?),pz(f,y),---,ps(p?,)“/))T. The intention of

286  constructing the optimal linear weights is to determine the unique weights y = (4, ¥4, ***, ¥s), such that

Py =Ryq =1vp 233

28  where the elements of vector § = {4471, q2, -+, qn) " represent VIA of each cell in high-order stencil. Ry =
14
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299
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301

(TH]-) ,j =1,2,...,mN is the reconstruction matrix of high-order stencil.

It should be noted that Eq.(34) appears overdetermined at first glance. However, subsequent analysis demonstrates that

the solution obtained via the least squares method satisfies Eq.(34)_exactly. Specifically, in the case of square stencils, the

rank of the system defined by Eq.(34) becomes s, resulting in a unique solution for the linear system. This finding aligns with

observations presented in Hu and Shu (1999) regarding their research on Triangular Meshes.

The computation of 3y requires the integration of both high-order and low-order reconstruction matrices into a unified

linear system. For each sub-stencil i we define the reconstruction matrix R; = (), k = 1,2, ..., s, (computed via Eq.(33)).

andR;; = (T‘L ; j) ,j =1,2,...,mN is the extension matrix of R;. The matrix relationship is expressed as

(Ri)lxsc(E)scxN = (RLi)lxN .(i)_

where the subscripts denote matrix dimensions. The correspondence matrix E = (el-j),i =12,..,5;]=12,..,mN
encodes the cell relationships between stencils: when the i-th cell in low-order stencil is the same as the j-th cell in high order
stencil, e;; = 1, otherwise, e;; = 0.

Substitute Eq.(32) into Eq.(34), yield

S
RyG =) Ry 833
i=1

We set R, = (RLl,RLZ, e RLS)T, Eq.(36) becomes
R.¥y = Ry
BHG
The unknown optimal sweight-matrixyweights vector y can be determined by following least square procedure
¥¥ = (R[R.) 'R Ry

B850

However, the elements of ¥y could be negative, which would cause unstable. A split technique mentioned by (Shi et al.,

2002) was adopted to solve this problem. The optimal weights can be split into two parts:

. Gy . L Olvl+y .
- 2 ) y _y

¥ y T ¥
2

¥y ~y 36)(3
where the constant @ = 3. ThereconstractionFor keeping the sum of weights to 1, % and new value en—peint-(e39-is

expressed-byof y* _can be rescaled as:
S

N
100y) = ) (@F =Pty ot = ) 7 BHU
i=1

i;}
T ’ ol is] ] o ] I andif L e di . _eoy-should i
valwe—and
7E
y;—rza—l+i:1,2,...,s (41)
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where ]7ii is the i-th element of T/J—r,_yii is the i-th element of yi;

The WENO scheme adaptively assigns nonlinear weights w;, (i = 1,2,...,5)_to each candidate stencil to suppress

unphysical oscillations during high-order reconstruction. Essentially, it gives greater weight to stencils identified as smooth

over the local cell, while suppressing the influence of those containing discontinuities by assigning them smaller weights.

Several nonlinear weighting schemes have been developed to meet these criteria, including WENO-JS (Jiang and Shu, 1996),
WENO-Z (Borges et al., 2008), WENO-Z+ (Acker et al., 2016), WENO-Z+M (Luo and Wu, 2021), among others.

In this work, we employ the WENO-Z formulation as our baseline scheme. While most existing WENO schemes were
originally developed for one-dimensional problems, we propose a two-dimensional extension of WENO-Z through
modification of 1, a crucial coefficient that governs the scheme's higher-order accuracy properties.

For stencil i the nonlinear weight is given as

+
(,l)ii =ﬁ %8}&

aii:yii(l-{_ﬂi+£) 94

t==e) 0 Bl “oy4

where £ = 10714 is introduced to prevent division by zero. The smooth indicators f; measure-how-smoothquantify the
smoothness of reconstruction functions are—inwithin the target cell:—we—use. We employ a similarseheme-asformulation

analogous to that described in Zhu and Shu (2019):

2

As mentioned in Eq.(24), all cells participating in reconstruction within HOPE's computational space can be treated as

identical unit squares with AX = Ay = 1. Thus, the smooth indicator for sub-stencil i is expressed as:

m a2 l N :
- i = EE—T Y A 4
W Az d ng'ﬁz ;.![f [656\{1651\(2 p,(x,y)] dxdy {4_1_}-(_

where {; + {, = {and { > 0, {;,{, € [0,n]-. and L is the sub-stencil width.

The reconstruction value on point (£, §) is expressed by:

a®9) = ) (@ of =5 0P (46)
i=1

3.3 Treatment of the Panel Boundaries

The cubed sphere grid comprises eight]12 panel boundaries, and the flux across the interface between any two panels

must be computed at the quadrature points situated on the edges of the boundary cells, as depicted in Figure 7 (a). However,
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a challenge arises because the coordinates across these panel boundaries are discontinuous. Given that the TPP reconstruction
necessitates a square stencil, the values of the cells outside the domain (referred to as ghost cells) must be computed through
interpolation within the adjacent panel, as illustrated in Figure 7 (b). While Ullrich et al. (2010) proposed a one-sidesided

interpolation scheme, butin-our test-we-foundtesting with the HOPE model revealed that using a similar one-sided ghost cell

interpolation approach around panel boundaries leads-teresulted in instability when the-scheme exceeded 7th order of accuracy

exeeeds. To address this limitation, we redesigned the 7th-orderghost cell interpolation scheme to incorporate information

from both panels adjacent to the boundary. This modified approach ensures stable integration even for very high-order

schemes, as validated in tests up to 13th-order accuracy.
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Figure 7 Points and cells close to panel boundary. (a) Flux points (red points) on the interface between Panel 1 and Panel 4, the
flux across each panel at these points are determined by Riemann solver, which merges the reconstruction outcomes from both
panels into a single flux value; (b) Ghost cells (shaded cells) out of Panel 4 boundary, with green points representing the GQPs in
these cells; (c) Cells requirement for 5™ order ghost cell interpolation stencil, red points represent the GQPs located in the ghost

cell on Panel 4, the blue shaded region represents the TPP reconstruction stencil (on Panel 1) to interpolate these red GQPs.

3.3.1 Ghost Cell Interpolation

To achieve arbitrary high-order accuracy, we propose a ghost cell interpolation scheme that incorporates information
from both sides of the panel boundary. Since the ghost cell values are inherently unknown prior to interpolation, our approach
involves an initial estimation through an iterative process. Specifically, the method iteratively performs ghost cell interpolation
until the increments of the cell values converge to within a specified tolerance.

Through mathematical analysis (detailed in the Appendix), we demonstrate that this iterative process can be expressed
as a linear mapping, thereby eliminating the need for actual iterations. However, direct computation of the mapping matrix
requires inversion of a large matrix, which poses significant computational and memory challenges. To address this, we
implement the iterative interpolation process using PyTorch and leverage its automatic differentiation capability to efficiently
obtain the interpolation matrix.

The complete methodology, as derived in the Appendix, proceeds as follows:
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1. Initialization: All ghost cell values are initialized to zero (denoted as ¢2g(® = 0, where the superscript indicates the
iteration number).
2. Interpolation: The Gaussian quadrature points (GQPs) in the ghost cells are interpolated using the Fasterpelynomial

preservingTensor Product Polynomial (TPP) stencil. For instance, considering two adjacent panels (Figure 7(a)), any

out-domain cell in Panel 4 (shaded cell in Figure 7(b)) contains GQPs that physically reside in Panel 1. These GQPs are
interpolated using the TPP stencil shown in Figure 7(c), which incorporates relevant ghost cells from Panel 1.
3. Update and convergence check: After interpolating all GQPs, the ghost cell values are updated via Gaussian quadrature

(Eq. (22)), yielding g'¥. The L2-norm residual r® = ||g*+1) — g(©) ||2 is then computed. Steps 2-3 repeat until ) <

€, where € = 1.e~'* for double precision and € = 1.e~> for single precision. In practice, convergence typically occurs
within 10 iterations, so we fix the iteration count at 10 for consistency.

This process establishes a linear mapping &G: q — g from known cell values to ghost cell values. As proven in Eq.(A.12)
(Appendix), the mapping's linearity implies that &G = g—‘z forms a matrix, which we efficiently compute using PyTorch's

autograd functionality. This approach avoids explicit matrix inversion while maintaining numerical precision.

It is important to note that overlapping GOPs occur at the corner positions of the cubed-sphere grid, as illustrated by the

magenta points in Figure 2(b). These points lie on the interface shared by adjacent panels (e.g., Panel 1 and Panel 5).

Consequently, during ghost value interpolation, two distinct interpolated values are obtained at these overlapping points — one

from each adjoining panel. The final interpolated value is computed as the average of these two values. Since the interpolation

performed on each individual panel is high-order, the approximation order is preserved when taking this average.

G is a sparse matrix containing many zero entries. To avoid unnecessary memory costs, we adopt the Compressed Sparse

Row (CSR) format for storing G . Furthermore, the size of G is extremely large, making direct application

of torch.autograd. functional. jacobian to generate G computationally infeasible. Our implementation for generating

ghost cell interpolation matrix achieves significant acceleration and substantially reduces VRAM demand compared to

PyTorch's native “torch. autograd. functional. jacobian’ function. The key optimizations are:

1. Parallel Multi-Row Computation: Utilizing “torch. vmap”” to_encapsulate “torch. func.vjp”, enabling simultaneous

computation of multiple matrix rows.

2. CSR Compression & Incremental Disk Storage:

a) Employing Compressed Sparse Row (CSR) format for matrix representation.

b) Implementing incremental disk storage, where computed data batches are immediately written to disk after

processing, avoiding prolonged VRAM retention.

3. Tunable Batch Processing: Adjusting the number of rows processed per iteration maximizes GPU utilization while

respecting VRAM constraints (e.g., 24GB on NVIDIA RTX 3090).
18
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It should be note that the model grid does not change during simulation, the ghost interpolation matrix G needs to be

calculated only once in initialization progress.

3.3.2 Fields Conversion Between Panels

Due to the differing coordinate systems across panels, field variables must be appropriately transformed when
transferring information between adjacent panels. To illustrate this process, we consider the interface between Panel 1 and
Panel 4, as depicted in Figure 2(a) and Figure 7(a). Although flux points are shared between the two panels, their coordinate
representations are discontinuous across the interface.

To ensure consistency, two key transformations are required:

1.  Metric reset for mass variables: The mass-related prognostic quantities must be recomputed in the target panel's

coordinate system to maintain metric consistency.

2. Wind vector transformation: Velocity components (or other vector quantities) must be converted from the source

panel's local coordinate frame to that of the target panel.

This coordinate conversion ensures proper continuity and physical consistency when interpolating or exchanging data

across panel boundaries.

Suppose q, = [(\/Eqb)l,(\/ﬁqbu)l, (\/Eqbv)l]T and q4 = [(\/E¢)4, (\/E¢u)4, (\/E¢U)4]T represent the fields on

panel 1 and 4. The mass field conversion from panel 4 to panel 1 is expressed by
1 \/64_
(VGo), = \/—71(\/@1))1 “H4

the subscript represents the target panel and the superscript stands for source panel.

The transformation of momentum vectors between panels is performed in two sequential steps to maintain proper tensor
consistency. The contravariant momentum components in Panel 1 are first projected onto the global spherical coordinate
system using the transformation matrix J, as defined in Eq.(10). The resulting spherical momentum components are then
transformed into the contravariant representation specific to Panel 4, ensuring compatibility with the target panel's local

coordinate system.

(VGouy) (VGou)
=y, ! “43H4

(VGovs), d (VGov),
(\/E¢u)4 R VG, (\/E¢u5)1 4
N B P e

where J; is the J matrix on panel 1, J; ! is the inverse matrix of J on panel 4;. (u,, vs) are zonal wind and meridional wind,

(u, v) are contravariant wind components. Since the vector conversion is linear process, Eq.(48) and Eq.(49) can be merged
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into following equation

(VGou), :C[(mu)ll
(VGov), (VGgv),

. VG, -
where matrix C = \/_Ti]4 .

The mass and vector are also need to be converted on GQPs in the same manner.

3.4 Riemann Solver

“9(5

Following spatial reconstruction, discontinuous solutions arise on either side of each flux point location;stee. Since

the majority of atmospheric flow speeds correspond to small Mach numbers, we adopt the Low Mach number Approximate

Riemann Solver (Chen et al., 2013) asRiemann-selverand AUSM -up (Liou, 2006 Ullrich et al., 2010) as Riemann solvers

to determine the flux at the edge quadrature points (EQPs).

3.4.1 Low Mach number Approximate Riemann Solver (LMARS)

Spatial reconstruction gives the left and right state vector,

(Veo), (Veo),
q. = (\/Eqbu)L , qr = (\/E(bu)R
(\/Eqbv)L (\/E qbv)R
First of all, we convert the contravariant wind u to physical speed u* that is perpendicular to the cell edge.
L u . {1, x direction
u= Nrek 2, y direction
For example, in x direction, ut = \/% and there’s no summation over i in Eq.(52).

The wind speed m* and geopotential height ¢ are calculated by
1 $r — ¢L>
c

m*=z(ui+u$—

1
¢=§[¢L+¢R_C(u$_uf)]

_Cptcp
)

cL =+ ®LCr =\/ﬁ

c is the phase speed of external gravity wave, the subscript L, R represent the left and right side of cell edge.

Once m* is determined, we convert it back to contravariant speed by
m=m*/GH

We define the pressure-driven flux as
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438

439

1
PZE\/E@Z (58)

The flux across the cell edge is then given by

1
F = S kg +am—stgnbmiar—apiml(q, + qr) — sign(m)(qz — qu)]1 + P 5335
546
_ {1, x direction '(_
2, y direction

For calculation of HG (the flux in v direction) the method is similar.

3.4.2 Advection Upstream Splitting Method for All Speeds (AUSM™*-up)

The differences between AUSM™-up and LMARS lie in the method of determining the wind speed m* and pressure-

driven flux P. In AUSM*-up

m* =cM
(61)
where c_denotes the gravity phase speed defined in Eq.(55). Mach number M is expressed as
+ - 7z gy LR~ Pl
M ZM(4)(ML)+M(4-)(MR)_KP maX(l—UM ,O) C2¢ 162)
1 1 12 1\2
where M, =Lk, Mp = =& % = (uz) +(uz) +£uR) , and
[ c 2c
1
-M+IM]D, [M=1 63
My (M) = X 2 h (63)
MG MD[1F 16BME (M), M| <1
1
Mgy (M) = £ (M +1)? (64)
The pressure-driven flux is expressed as
P = Py (M) Py + Py (Mg)Pr + —2K, Py (M) P 5y (Mg) e (ug — up) 65
where P, = %q.')f, Pp = %d),zg, and
1 .
Pt - 5(1 +sign(M)), M| =1 (66)
5

Mz (M[(+2 - M) F 16aMMG(M)], M| <1

The mathematical meaning of sign(M) (returning -1, 0, or 1 based on the sign of M) is standard. The coefficients take the

3 1 1
values: 0 = 1,0:-;,3 _E’Kp =

Once m* and P_are computed, the flux across the cell edge can be calculated using Egs.(57)_to (60).

3.5 Temporal Integration

We use the explicit Runge-Kutta (RK) as time marching scheme, Wicker and Skamarock (2002) described a 3" order
21



44}) RK with three stages;—for (achieves third-order accuracy exclusively when applied to linear problems). For the prognostic

441 fields q, the integration step from time slot n to n + 1:

=+ (5) =)
A

kK * + t(aq )
T =9 755 563(6
aq**
+1
7 _qn+At( at) SRl
44p where At is the time step, and temporal tendency terms % can be obtain by Eqgs.(15);_and (16)-. In our numerical

44B experiments, the choice of different time marching schemes influenced only the integration stability; it had no significant

444 impact on the simulation norm errors, non-oscillatory property, or conservation property.

445 4. High Performance Implementation and Automatic Differentiation

446 The spatial operator and temporal integration of HOPE can be easily implemented using PyTorch. Specifically, the spatial
4477 reconstruction given by Eq.(32) is analegeus-teimplemented as a convolution operation, while the Gaussian quadrature can

448  be efficiently expressed as a matrix-vector multiplication.

45|  gradient-ecomputation—Leveraging PyTorch's highly optimized built-in functions for both convolution and quadrature

45p operations ensures superior performance on GPUs.

45B Furthermore, PyTorch's role as a versatile Al development platform provides automatic differentiation capabilities across

454 the entire computation graph. This streamlines implementation and enables efficient gradient computation for all components.

455 For the reconstruction implementation. Suppose the cubed sphere grid comprises n. cells in x-direction within each
456  panel, including ghost cells. The panel number is n,, and the shallow water equation involves n, prognostic variables_per
457 cell, we write the cell state tensor q with the shape Qngnp—,l,—ne—,ng(nv, ny,, 1,n,, nc). The TPP reconstruction weight tensor
458 R has shape (npoc, 1, s, SW), where 1y, is the number of points required to be interpolated within each cell (including EQP

45p  and CQP), s,, denotes the stencil width- (same as the stencil width represented by n_in Section 3.1). The reconstruction can

460  be executed by a simple command (pseudo-code):

rec = torch.nn. Functional. conv2d{g-R)(q. view(n,n,, 1,n.,n.), R).view(n,, ny, myoc, e, ) 58)(7

46|l where the shape of g, is éngnp—,nwne—,ne—)(nv, M) Npocr N nc);

EorWe exclusively demonstrate the flux computation procedure at cell edges as an illustrative example, where Gaussian

N
o
T~

46B quadrature #mplementation—Suppese-the-is employed to obtain edge-averaged fluxes. The analogous procedure applies to

46t source term integration at CQPs. The edge state tensor qe—wﬁh—ﬂ%%s-haﬁ%(ny—,np—,ne—,ng—,nm},—w%ﬁ%, corresponding to the
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46p EQPs alongrgesis-the-number-of-quadrature-points-on each edge—Thecell edge-Gaussian-quadrature-weight-tensor-gghas

46p shaﬁ%{nm).—'[—h%qﬁaélﬁafufel is subsequently expressed byas:
g—torch-matmullqg)9. = qrec(..., pes:pee,:,:) 5ND(7

467 where subscript e represents edges on cell including L(left), R(right), B(bottom), T (top). pes, pee_are start and end point

468 indices on edge e. The shape of q, (including q;, qr,qg, qr) is (nv, np,npoe,nc,nc)._npae:w%ey%shap%eﬁqg—is

46D (rgrrm e

470 denotes the number of edge quadrature points (EQPs). This value is computed as n,,, = pee — pes_in PyTorch

471 implementations, whereas in Fortran it is calculated as n,,, = pee — pes + 1, reflecting the difference in array indexing

47p conventions between the two languages.

473 After spatial reconstruction, the resulting data is utilized in the Riemann solver for EQPs and for source term computation
474  on CQPs. Subsequently, integration is performed on both EQPs and CQPs to calculate the net flux and the cell-averaged

475  source term tendency. Hewever-thereThe cell-edge flux tensor F with dimensions (nv, N, Npoes Nes nc) is obtained after the

47p Riemann solver.

477 There is a dimensionality mismatch between the reconstructed-points; ety is-the first-dimensionflux tensor and

478 weight tensor during using matrix multiplication. For the Gaussian quadrature implementation, consider an edge Gaussian

47D quadrature weight tensor g, with shape (npoe), if an edge flux tensor F has shape (nv, Ny, Ne, N, npoe) the Gaussian

480D quadrature can be expressed by:

F, = torch.matmul(F, g,) (72)
48| where the shape of qm,—wh-ﬂenwF g (nv, np,nc,nc) is the average flux on edge. In this operation, Ny e Must occupy the

48D last dimension of qe—.i', to permit “torch. matmul” execution. We note, however, that in the flux tensor F obtained from

48B the Riemann solver, npoecorresponds to the third dimension, direct matrix multiplication is therefore not feasible.
484 To address this dimensionality issue, two methods are available. The first method involves rearranging the n,,.
485  dimension to the last position using the “terch-tenser-permutetorch. tensor. permute” operation in PyTorch, Fhisthis allows

48p  Gaussian integrations to be naturally implemented through the "tereh-matmultorch. matmul" operation. The second method,

487  which avoids the need for the "permute" operation, maintains the original dimension sequence. Instead, Gaussian integrations
488  are performed using the "toreh-einsumtorch. einsum" function. This function sums the product of the elements of the input

489  arrays along dimensions specified using a notation based on the Einstein summation convention.

agF g = torch. einsumCovnpifsp—vrifqe g (vnpij,p - vnij, F, g.) €60)(7
490 We have conducted performance tests comparing the two methods, and the results indicate that the second method is

491 approximately 5% faster than the first. Specifically, the first method took 649 seconds, while the second method took 616
492  seconds. The test was set as a one-day steady state geostrophic flow (with details provided in section 5.2) simulation at a

49)3 resolution of 8-15C900 (Ax = Ay = 0.1") , using 3™ order accuracy reconstruction stencil. The time step was 30 seconds,
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and the default data type used was “toreh-fleat32torch. float32” (single precision).

The Riemann solver implementation on flux points is way easier, only needs to call “tereh-sientorch. sign” for Eq.(59),
while all other operations can be executed using basic arithmetic: addition, subtraction, multiplication, and division. During
a Runge-Kutta sub-step, there are no dependencies, and neither "for" loops nor "if" statements are required in the HOPE

kernel code. This algorithm fully leverages the capabilities of the GPU.

5. Numerical Experiments

The HOPE dynamical core is evaluated using the standard test cases (Test 1, 2, 5, and 6) for the spherical shallow water
model as described in Williamson et al. (1992), along with the perturbed jet flow case proposed by Galewsky et al. (2004).
Additionally, a dam-break experiment is designed to demonstrate the HOPE model's capability in capturing shock waves.

In our experiments, the grid resolutions are denoted by the count of cells along one dimension on each panel of the cubed
sphere; for instance, C90 signifies that each panel is subdivided into a 90 X 90 grid, corresponding to a grid interval of Ax =
Ay =1°.

_ 1gm™M=1g(n°)

We measure the conservation errors by defining the normalized error €, of the variable n as €, = oy where 1°
g

and n" stand for n value at initial time and time slot n, respectively. The global integral is defined as:

Mp ne ne (74)

I(n) = Z Z Z VGyjpTijip

p=1j=1i=1

where 7; ; ., represents the average value of 7_in cell (i, j, p)

We use three kinds of norm errors to measure the simulation errors

_ 1[G jp) = Grer (i), P)]
! I[¢ref(i:j' p)]

(75)
(76)
(610 = bresGiim) | :

1[¢rzef(x’ Y p)]

_ max|¢(i,j, D) — Grep(i,], P)| 7D
max|dyer (i, j, )|

L2=

(o8]

the subscript ref represents reference state.

5.1 Cosine Bell Advection

The Solid Body Rotation Cosine Bell (Case 1 from Williamson (1992)) is commonly employed to assess noise generated

by panel boundaries, as noted by Chen and Xiao (2008), Ullrich et al. (2010). The wind field is given by
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ug = uy(cos O cosa + cos Asin 6 sin a) (78)

Vs = —Ugy sinAsina (79)

2ra m/s. The

where ug, v are zonal wind and meridional wind, earth radius is a = 6371220 m, basic flow speed u, = 580400

initial height is defined as

h0(1+cos%), r<R (80)

0, r=R

h(4,0) =

where 4, 6 are longitude and latitude. The basic height h, = 1000 m. The great circle distance between (4, 8) and the initial

center point of cosine bell (4., 60,.) = (3m/2,0)_is expressed by v = aacos[sin 8, sin 8 + cos 8, cos 6 cos(1 — A.)]. The

radius R = a/3.

Figure 8 presents the norm errors for a 12-day simulation at @ = 0; results for ¢ = /2 _are identical. The temporal

evolution of L; and L, norm errors does not exhibit a pronounced signature attributable to panel boundaries. In contrast, the

L.norm error evolution shows significant sensitivity to panel boundaries, varying considerably with grid resolution and

reconstruction order. When using low resolution and low reconstruction order (TPP3 with C30 grid), oscillations induced by

panel boundaries are relatively weak. However, as the model resolution or reconstruction order increases, the influence of

panel boundaries on the L., norm error manifests as a distinct four-peak pattern, corresponding to the four longitudinally

aligned panel boundaries of the cubed-sphere grid.
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Figure 8 The variation of norm errors during simulation days for the cosine bell advection test case, with direction

parameter @ = 0. The rows represent reconstruction schemes TPP3, TPPS and TPP7, the columns stand for grid C30, C45,
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Figure 9 shows the 12-day simulation norm errors for @ = /4. In this test configuration, the cosine bell initially moves

€90 and C180.

alone the interface between Panel 1 and Panel 5, and subsequently moves along the interface between Panel 3 and Panel 6.

The temporal evolution of L, and L, norm errors display two gentle peaks, corresponding to the errors generated as the cosine

bell crosses these panel interfaces. Similar to Figure 8, the L., norm error progressively exceeds the L; and L, norm errors as

orid resolution and reconstruction order increase.
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Figure 9 The variation of norm errors during simulation days for the cosine bell advection test case, with direction

parameter @ = /4 . The rows represent reconstruction schemes TPP3, TPPS and TPP7, the columns stand for grid C30,

Because the Cosine Bell field lacks infinite continuity, the convergence rate of the norm errors cannot exceed second

C45, C90 and C180.

order in our tests, regardless of the reconstruction order employed. This observation aligns with the key point emphasized in

our paper: high-order numerical methods achieve their design accuracy only when the flow field is sufficiently smooth.

Discontinuities in the flow field violate the fundamental premise of polynomial reconstruction (as discontinuities impair the

continuity of higher derivatives, leading to non-convergence of the Taylor series). This inherent sensitivity to smoothness is

precisely the factor causing norm errors to be influenced by cubed-sphere panel boundaries. When using low-order

reconstruction schemes at low resolutions, the Tensor Product Polynomial (TPP) reconstruction employs lower-degree

polynomials and is consequently less sensitive to the smoothness of the flow field. Conversely, high-order TPP reconstruction

requires the flow field to possess higher-order continuity to maintain accuracy; it is thus more sensitive to discontinuities.

Insufficiently smooth flow fields can introduce numerical oscillations with high-order schemes. Therefore, while TPP5 and
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TPP7 vyield lower L., norm error magnitudes than TPP3. they exhibit more pronounced oscillations caused by the cubed-

sphere panel boundaries.

5-45.2 Steady State Geostrophic Flow

Steady state geostrophic flow is the 2" case in Williamson et al. (1992), it provided an analytical solution for spherical
shallow water equations, it was wHdbrwidely used in accuracy test for shallow water models. The analytical solution is a

steady state, which means the initial filed is the exact solution. The initial wind field replicates the formulation given in

Eqgs.(78) and (79). while the initial geopotential height is expressed as

2

u (61)
¢ =¢o— <aﬂu0 + 7()) (= cos A cos B sina + sin 6 cos a)? (8

where A-8-are longitade-andlatitade; Q) = 7.292 X 107° s~ is geopotentialheight;thes
earth rotation angular velocity-0-=7.292-%10=° 5% _basic {low speed-wy—

i—m%s, basic geopotential height ¢, = 29400 m?/s?, a = 0_denotes the rotation angle transcribed between the

physical north pole and the center of the northern panel on the cubed-sphere grid, and gravity acceleration g = 9.80616 m/s?.

The conversion between the spherical wind (ug, v5) and contravariant wind is given by Eq.(9).

We simulated the steady state geostrophic flow over one period (12 days) to test the norm errors and corresponds

convergence rate. Since the norm error becomes too small to express by double precision number, all of the experiments were
based on the quadruple precision version of HOPE. Time steps were set to At = 600,400, 200,100, 50 s for C30, C45, C90,

C180 and C360, respectively.
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As shown in Figure 10, errors near the panel boundaries of the cubed-sphere grid are significantly higher than those in

the central regions, confirming the presence of grid imprinting. Furthermore, we implemented the AUSM-up+ Riemann solver

(consistent with the scheme described in Ullrich et al. (2010)) as an alternative to LMARS. While computationally more

complex, AUSM"-up substantially reduces simulation errors. Comparative analysis of Figure 10 (a) and (b) demonstrates that

the maximum absolute error decreases from 8.792x105 (LMARS) to 2.413x10°5 (AUSM"-up), while convergence rates

remain unchanged.
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Figure 10 Numerical errors (simulation result minus exact solution) of geopotential height for steady state flow with Riemann

solvers (a) LMARS and (b) AUSM*-up. The reconstruction scheme is TPP5.

Performance benchmarks using HOPE's Fortran implementation on a C90 grid show that simulating 12 days with a 200-

second integration time step requires 49.4 seconds for LMARS versus 57.34 seconds for AUSM*-up. This demonstrates that

Riemann solver selection critically impacts simulation outcomes, consistent with the discussions in Ullrich et al. (2010).

Table 1 Norm errors and convergence rates of steady state geostrophic flow at day 12.

TPP3 C30 C45 C90 C180 C360

L, error 1.8853E-03 5.6474E-04 7.0960E-05 8.8777E-06 1.1099E-06
L, rate 2.9731 2.9925 2.9988 2.9998

L, error 2.1484E-03 6.4171E-04 8.0500E-05 1.0069E-05 1.2588E-06
L, rate 2.9802 2.9949 2.9991 2.9998

L, error 4.3242E-03 1.2932E-03 1.6201E-04 2.0275E-05 2.5350E-06
L, rate 2.9770 2.9968 2.9983 2.9997
TPP5

L4 error 3.6122E-06 4.7493E-07 1.4827E-08 4.6322E-10 1.4474E-11
L, rate 5.0039 5.0014 5.0004 5.0002

L, error 5.2427E-06 6.9169E-07 2.1627E-08 6.7584E-10 2.1119E-11
L, rate 4.9954 4.9992 5.0000 5.0001

L, error 1.6810E-05 2.2451E-06 7.0534E-08 2.2070E-09 6.8985E-11
L, rate 4.9652 4.9923 4.9982 4.9996
TPP7

L4 error 8.1697E-08 4.7967E-09 3.7678E-11 2.9547E-13 2.3125E-15
L, rate 6.9922 6.9922 6.9946 6.9974

L, error 8.7991E-08 5.1644E-09 4.0507E-11 3.1728E-13 2.4823E-15
L, rate 6.9931 6.9943 6.9963 6.9979
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L, error 1.4741E-07 8.6376E-09 6.7814E-11 5.3387E-13 4.1901E-15
L, rate 6.9971 6.9929 6.9889 6.9934
TPP9

L, error 7.8909E-10 2.1780E-11 4.3925E-14 8.6359E-17
L, rate 8.8537 8.9538 8.9905

L, error 9.5638E-10 2.6409E-11 5.3341E-14 1.0494E-16
L, rate 8.8526 8.9516 8.9896

L, error 2.3946E-09 6.6773E-11 1.3547E-13 2.6644E-16
L, rate 8.8285 8.9452 8.9899
TPP11

L4 error 1.1908E-10 1.3799E-12 6.7696E-16 3.3197E-19
L, rate 10.9943 10.9932 10.9938

L, error 1.3084E-10 1.5186E-12 7.4489E-16 3.6500E-19
L, rate 10.9904 10.9934 10.9949
L, error 2.4204E-10 2.8579E-12 1.4147E-15 6.9567E-19
L, rate 10.9479 10.9803 10.9898
WENO3

L, error 2.6438E-03 7.2239E-04 7.7012E-05 8.9622E-06
L, rate 3.1998 3.2296 3.1032

L, error 4.0817E-03 9.7196E-04 9.5476E-05 1.0553E-05
L, rate 3.5390 3.3471 31775
L_error 2.5439E-02 7.7486E-03 9.6110E-04 1.0723E-04
Lo, rate 2.9319 3.0112 3.1640
WENOS

L, error 3.6191E-06 4.7551E-07 1.4829E-08 4.6322E-10
L, rate 5.0056 5.0030 5.0006

L, error 5.2659E-06 6.9252E-07 2.1630E-08 6.7585E-10
L, rate 5.0033 5.0008 5.0002
L,_error 1.6873E-05 2.2466E-06 7.0539E-08 2.2070E-09
Lo, rate 4.9727 4.9932 4.9983

In Table 1, we present the geopotential height simulation errors and convergence aceuraeyrate of different order accuracy
schemes at various resolutions. It is evident that HOPE is capable of achieving the designed accuracies in all tests. When the

resolution exceeds C180, the errors obtained from the 7th;-9th; TPP7, TPP9 and Hth-erderpreeision TPP11 schemes have

surpassed the limits expressible by double-precision numbers. This demonstrates HOPE's excellent error convergence for
simulating smooth flow fields. It should be noted that high-order accuracy schemes do consume more computational resources.
HOPE has proven the feasibility of ultra-high-order accuracy finite volume methods on cubed sphere grids. However, in
simulating the real atmosphere, a balance between computational efficiency and error must be considered. We believe that 3™
or 5™ order accuracy schemes will be more practical for subsequent developments in baroclinic atmosphere model.

At lower resolutions, the simulation error of WENO3 is significantly higher than that of TPP3. However, as the resolution

increases, the error of WENO3 progressively approaches that of TPP3. Comparing WENOS5 and TPP5 results reveals a

marginal increase in norm errors for WENOS, while maintaining 5th-order convergence rates. This confirms WENOS5's

capability to preserve high accuracy when simulating smooth flows.
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It should be noted that HOPE achieves extremely small errors in simulating smooth flow fields even on very coarse

resolutions. These errors can be so minute that they fall below the 16 significant digits representable in double precision.

Under these conditions, conducting precision tests using double precision alone fails to accurately capture the true

convergence rate. To obtain correct error measurements and convergence rate, we must employ FP128 (real(16) in Fortran).

However, PyTorch's underlying architecture is built on NVIDIA CUDA., which currently supports only up to FP64 (double

precision). Consequently, the PyTorch implementation cannot provide correct simulation errors when utilizing ultra-high-

order schemes.

5.25.3 Zonal Flow over an Isolated Mountain

Zonal flow over an isolated mountain is the 5" case mentioned in Williamson et al. (1992), this case was usually be
implemented to test the topography influence in shallow water models. The initial condition is defined by Eq.(81)~(79), but

hy = 5960 m, ¢y = hyg, uy = 20m/s. The mountain height is expressed as

hs = hso (1 - 7) €68)(8

where hyg = 2000m; R = g; r =/min[R%, (A — 2.)% + (6 — 0.)%]s. A= =,0, = % are the center longitude and

latitude of the mountain, respectively,w
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Figure 11-Simulation TPPS (with LMARS) simulation result of the isolated mountain wave on C90 grid. The rows stand for

variables: geopotential height, zonal wind, meridional wind and relative vorticity, respectively. The columns represent simulation

day 5, 10, 15. Geopotential height contour from 5050 to 5950 m with interval 50 m. Zonal wind contour from —30 to 50 m/s
with interval 10 m/s. Meridional wind contour from —30 to 30 m/s with interval 10 m/s. Relative vorticity contour from

—3x107°to4 x 1075 s~ with interval 1 x 1073 s~ 1.

HOPE is able to deal with the bottom topography correctly, as shown in Figure 11, all of the simulation result is consistent
with prior researches such as (Nair et al., 2005a; Ullrich et al., 2010; Chen and Xiao, 2008) and so on. Furthermore, as
discussed in Bao et al. (2014), some high order Discontinuous Galerkin (DG) method exhibit non-physical oscillation during
simulating the over mountain flow, the additional viscosity operators are necessary to alleviate this issue. However, HOPE
does not require any explicit viscosity operator to suppress vorticity oscillations, the vorticity fields are smooth all the time

as illustrated in Figure 11-G)-do-H- (1), (k). (1). We have tested other schemes as well, including TPP3, TPP7, WENO3, and

WENOS3, all of the schemes are able to achieve similar simulation results.
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Figure 12 Time series of normalized conservation errors for the zonal flow over isolated mountain simulation on the C90 grid

over days 0 to 100. (a) Normalized total energy error. (b) Normalized total potential enstrophy error. (¢) Normalized total zonal

angular momentum error.

In the 15-day simulation of zonal flow over an isolated mountain the total energy exhibited a gradual increase over the

integration time, while both the total potential enstrophy and the total zonal angular momentum showed gradual dissipation

as the simulation progressed. The AUSM'-up scheme demonstrated stronger energy dissipation compared to the LMARS

scheme, as illustrated in Figure 12,

535.4 Rossby-Haurwitz Wave with 4 Waves

Rossby-Haurwitz (RH) wave is the 6™ test case introduced by Williamson et al. (1992), the RH waves are analytic
solution of the spherical nonlinear barotropic vorticity equation, the reference solution is the zonal advection of RH wave

without pattern changing, the angular phase speed is given by
_R(R+3)w—20

c= 698
R+DR+2)

where R = 4 is the zonal wavenumber, w = 7.848 x 107° s71; the earth rotation angular speed Q = 7.292 X 1075 s~1,

Therefore, we have ¢ = 29.52 dayrdays. The initial condition expressed as

¢ = ¢+ a?[A(8) + B(0) cosRA + C(O) cos 2RA] (70)(8

(8

u = aw cos @ + ak cos®~1 0 (Rsin? § — cos? ) cos RA
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v = —aKR cos®~1 §sin 6 sin RA 2)(8

W 1 (73)
A(9) = E(ZQ + w) cos? 0 + ZKZ cos?RO[(R +1)cos?6 + 2R> —R — 2 — 2R?cos ™2 0] (8

2(Q+ w)K

R Dm DO O [R +2R+2— (R+1)? cos? 6] 748

B(9) =
C(G)=%K2c052R9[(R+1)c0529—R—2] 5)(8

where 4, 6 are longitude and latitude, K = w, ¢g = ghy, hy = 8000 m, and a = 6371220 m is the earth radius.
According to the study by Thuburn and Li (2000), the Rossby-Haurwitz (RH) wave with wavenumber 4 is inherently

dynamically unstable and prone to waveferm-collapse-due-to-facters. This instability can be triggered by minute perturbations,

such as those arising from grid structure (breaking initial symmetry;), initial condition perturbationandmodelimperfections,

or numerical errors-_(e.g., truncation or roundoff). Similar conclusions have been verified in subsequent research. In tests

conducted by Zhou et al. (2020), the TRiSK framework based on the SCVT grid could only sustain the RH wave pattern for
25 days without collapse. In contrast, (Li et al., 2020) successfully maintained the RH wave pattern for 89 days using a similar

algorithm on a latitude-longitude grid. Ullrich et al. (2010) developed the high-order accuracy finite volume model based on

a cubed-sphere grid, which was able to sustain the RH wave for up to 90 days. In the most of our experiments, the ability of
HOPE to maintain the Rossby-Haurwitz (RH) wave significantly improved with increased order of accuracy and grid

resolution. All of the simulation results are based on LMARS in this section.

In the 3" erder-aceuraeyPP3 simulation, we found that the duration for which the RH wave is maintained increases
with higher grid resolution, as exhibit in Figure 13. When the grid resolution is low (C45, C90), an obvious
dissipation phenomenon can be observed. When the resolution reaches C180, the dissipation is significantly reduced, but the
waveform has completely collapsed by day 90. When the resolution reaches C360, the simulation results are further improved,

with dissipation further reduced, and the RH wave waveform can still barely be maintained on day 90.
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Figure 13 Geopotential height of Rossby-Haurwitz wave simulated by 3™ erderspatial reconstruetionTPP3 scheme. The rows
represent grid C45, C90, C180 and C360, the columns stand for simulation day 14, 30, 60, 90. Contours from 8100 to 10500 m

with interval 200 m.

A 100-day simulation of the Rossby-Haurwitz wave was conducted using a C90 erid (1° resolution). The total energy

simulated with the TPP3, TPP5, TPP7, and TPP9 schemes underwent dissipation to varying degrees. By day 100. the

normalized total energy errors reached —1.49 x 1073, —1.33 X 107>, —1.71 x 1079, —4.20 x 1077, respectively, indicating

significantly stronger dissipation for the TPP3 scheme compared to the other higher-order schemes Figure 14 (a). Figure 14

(b) presents a scaled view of the energy evolution for TPP5, TPP7, and TPP9. clearly demonstrating that increasing the

reconstruction order progressively reduces energy dissipation. Furthermore, following the RH wave collapse, a significant

drop in total energy was observed for the TPP5 scheme (after approximately 90 days) and the TPP7 scheme (after

approximately 95 days).
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Figure 14 Time series of normalized conservation errors for the Rossby-Haurwitz wave simulation on the C90 grid over days 0 to

100, with LMARS scheme as Riemann solver. (a) Normalized total energy error for TPP3, TPP5, TPP7 and TPP9. (b) The total

energy normalized error for TPP5, TPP7 and TPP9. (¢) Normalized potential enstrophy error for TPP3, TPP5, TPP7 and TPP9. (d)

Normalized total zonal angular momentum error for TPP3, TPP5, TPP7 and TPP9.

Analysis of the normalized total potential enstrophy error (Figure 14 (c)) and the normalized zonal angular momentum

error (Figure 14 (d)) over time vields conclusions consistent with those for total energy. Specifically, the TPP3 scheme

exhibited substantially higher dissipation than the higher-order schemes, confirming that employing higher-order

reconstruction schemes effectively minimizes dissipation. Notably, significant dissipation surges occurred in these quantities

following the RH wave collapse.
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Figure 15 Geopotential height of Rossby-Haurwitz wave on C90 grid, the rows represent the spatial reconstruction scheme with
TPP3, TPP5, TPP7 and TPP9 the columns stand for simulation day 30, 60, 90 and 100. Contours from 8100 to 10500 m with

interval 200 m.

In Figure 15, we compare the impact of order-of-accuracy on the simulation capability of RH waves by fixing the
resolution. By comparing row by row, it can be observed that when the accuracy reaches 5th order or higher, the dissipation
is significantly reduced. Both the 5" —orderTPP5 and 7% —order—aceuracy[PP7 simulations show signs of
waveform distortion on day 90, and the waveform completely collapses by day 100. However, when using 9% —erder

aeeuraey | PP9 for the simulation, the waveform is well maintained even until day 100.
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FigureHFigure 16 presents the simulation results on the 80th day for different resolutions and aeeuwraey-reconstruction

schemes. The dissipation decreases as the resolution and aeeuraeyreconstruction order improve. At the C45 resolution, both

the 3" -orderTPP3 and 5" order-aceuraeyTPP5 simulations exhibit significant dissipation. Although the 7*-orderTPP7
simulation shows a notable improvement in dissipation, the waveform is severely distorted. The 9*-order-aceuracy TPP9
scheme produces the best simulation results. As the resolution increases, the simulation performance also improves

significantly. When using the C360 resolution, all aceuraeyTPP schemes yield good simulation results.
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691 Figure 16 Geopotential height of Rossby-Haurwitz wave at simulation day 80. The rows represent spatial reconstruction with 3%;
69p 5t _7%TPP3, TPPS5, TPP7 and 9" erderTPPY. The columns stand for grid C45, C90, C180 and C360. Contours from 8100 to
696 10500 m with interval 200 m.

698 Significant differences were observed between the 2D WENO scheme and the TPP schemes in this test. Regardless of

69p the specific WENO order employed (3, 5, 7, or 9), all WENO variants maintained the Rossby-Haurwitz (RH) wave pattern

700 for a shorter duration compared to their TPP counterparts of equivalent order. We infer that the nonlinear processes inherent

7001 within the WENO scheme introduce asymmetries that disrupt the computational stencil symmetry, leading to a premature

70R collapse of the RH wave.

703 545.5 Perturbed Jet Flow

704 The perturbed jet flow was introduced by Galewsky et al. (2004), this experiment was desired to test the model ability

705  of simulating the fast and slow motion. the initial field is defined as

1
Ymax =900 69

u(a) — e 0€ (90' 91)
0, otherwise
6 1
$0.0) = $o + 9 (1,0) - | au(®" [f 20 u(9')] a9 &na
2

,1)2_(92—9

¢'(1,0) = gh cosee_(a ) A€ (—m,7) 839
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708
709
710
711

712

where A, 8 represents longitude and latitude, a = 6371220 m is radius of earth, u,,,, = 80m/s, 8, = g, 0; = i_Z' 0, = %,
-4
e, = e®1-00% o = é, L= %, and h = 120 m. We adopt LMARS as Riemann solver in all of the simulation in this section.

As mentioned in Chen and Xiao (2008), the perturbed jet flow experiment poses a particular challenge for the cubed-
sphere grid model. Firstly, the jet stream is located at 45°N, which is very close to the boundaries of panel 5 of the cubed-
sphere grid, resulting in a large geopotential height gradient in the ghost interpolation region, which leads to larger
interpolation error. Furthermore, the location of the geopotential height perturbation ¢’ coincides with the boundary between

panel 1 and panel 5, which also leads to greater numerical computation errors.
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Figure 17 Relative vorticity of perturbed jet flow. (a)~(c) represent the results of 5"-erderTPP5 scheme with resolutions C45, C90,
C180. (d)~(f) represent the results of 7*-erderTPP7 scheme with resolutions C45, C90, C180. (g)~(i) represent the results of 9
orderTPPY scheme with resolutions C45, C90, C180. (j)~(1) represent the results of 1-*-erdeTPP11 scheme with resolutions C45,
€90, C180.

Figure 17 displays the HOPE simulation outcomes at day 6 for varying levels of aceuraey-reconstruction order and

resolutions. The four rows correspond to the 5%—7%-9%TPP5, TPP7, TPP9 and 1+*"TPP1l schemes in terms of

aeeuraeyreconstruction order. The three columns, meanwhile, represent the resolutions of C45, C90, and C180, respectively.

Upon comparing the different columns, it is evident that the perturbed jet flow test case converges as the resolution increases.

Figure 17 (a), (d), (g), and (j) illustrate that, with an increase in aeceuraeyreconstruction order, the vorticity field patterns

become increasingly similar to the high-resolution results shown in the second and third columns of Figure 17. Notably,

HOPE enhances the simulation results by utilizing both higher aeeuraeyreconstruction order and higher resolution.
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725  5.55.6 Dam-Break Shock Wave

726 In this section we introduce a dam-break case for testing the capability of HOPE to capture the shock wave and comparing
727  the difference between 1D and 2D WENO schemes. The initial condition is configured as a cylinder with a height of 30000

728  meters, as shown in Figure 18(a). The geopotential height is given by

$(r(1,0)) = {2"’0' NG 99

bo otherwise

729 wherer =\/(A—2)2+ (0 —0.)%,2. =1, 0, = 0,7, = %, ¢o = ghg, ho = 30000 m, and the earth rotation angular speed

73}) 0 = 0. We adopt LMARS as Riemann solver in all of the simulation in this section.

40 T T 40 40 T 6
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732 Figure 18 Geopotential height of dam-break test case on C90 grid at 2nd hour. (a) Initial condition, (b) WENO 1D, (c) WENO

733 2D. The horizontal resolution for both schemes is C90. Shaded and contour from 3.2 X 10* to 6 x 10* meters, with contour
734 interval 103 meters.

735

73}5 In this experiment, we compare 5% erderaceuracy WENOS (WENO scheme with reconstruction width 5) on both 1D

737  and 2D schemes, the WENO-Z (Borges et al., 2008) is adopted as WENO 1D scheme, and WENO 2D scheme is consist with
738  section 3.2. Due to the initial condition being a cylinder, the resulting shock wave should maintain a circular feature. In the
739  simulation results of WENO 1D, numerous radial textures appear, Figure 18(b). The simulation results using the WENO 2D
740  scheme exhibit a smoother circular shape, Figure 18(c). This outcome arises because the 1D reconstruction scheme suffers

741 from dimension split error, whereas the fitting function in the 2D reconstruction scheme incorporates cross terms;

ic. Therefore, when simulating fluid fields characterized by

74B isotropic features, the 1D scheme lacks the capability to accurately represent diagonal directional features. Conversely, the

744 2D scheme correctly captures the inherent isotropic characteristics.

745 6. Conclusions

746 This paper presents HOPE, an innovative finite-volume model capable of achieving arbitrary odd-order convergence
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aeenraeyrate. Through comprehensive numerical experiments, we demonstrate that HOPE exhibits excellent convergence
properties when applied to smooth flow fields, with simulation errors decreasing rapidly as the order of accuracy increases.
The model's performance has been rigorously evaluated across several benchmark cases:
1. In Rossby-Haurwitz wave simulations, HOPE demonstrates superior waveform preservation capabilities that scale
with both spatial resolution and accuracy order.
2. For perturbed jet flow scenarios, the model successfully resolves both fast and slow dynamical features, with
significant improvements in solution quality observed at higher orders and finer resolutions.
3. Mountain wave simulations confirm HOPE's ability to accurately represent orographically-forced gravity waves.
4. In the dam break test case featuring cylindrical shock fronts, the two-dimensional WENO reconstruction scheme
proves more effective than dimension-split approaches in maintaining circular symmetry.

In the case of steady geostrophic flow, Both WENO3 and WENOS3 achieve the expected 3rd-order and 5th-order

convergence rates, respectively. However, the computed norm errors for WENO schemes are marginally larger than those

obtained with the TPP3 and TPP5 schemes. This observation confirms that the 2D WENO scheme preserves the designed

convergence rate in smooth flow regions. Concurrently, in the Dam-Break Shock Wave case, the 2D WENO scheme

demonstrates its robust capability for handling discontinuous flow fields. These combined results align perfectly with the

primary motivation for introducing the WENO scheme: its adaptive oscillation suppression capability. Specifically, the

scheme preserves the high convergence rate in sufficiently smooth regions while automatically reducing the reconstruction

order near discontinuities to effectively suppress the development and propagation of non-physical oscillations.

A key innovation of HOPE lies in its computational architecture. The algorithm is specifically designed to harness GPU
acceleration through (1) Implementation of spatial reconstructions as convolutional operations, and (2) Formulation of
integration steps as matrix-vector products. These design choices leverage computational patterns widely adopted in machine
learning frameworks. By developing HOPE within PyTorch, we inherit automatic differentiation capabilities, enabling
straightforward coupling with neural network systems.

This integration facilitates the development of hybrid prediction models that combine a high-order, high-performance
dynamical core, and Neural network-based physical parameterizations. Current research efforts have successfully extended
this algorithmic framework to a two-dimensional baroclinic model (X-Z dimensions).

Future work will focus on developing a global, fully compressible baroclinic model using the HOPE algorithm, further
demonstrating its versatility and advantages for modeling complex atmospheric dynamics. The model's unique combination
of physical conservation, computational efficiency, and machine learning compatibility positions it as a powerful tool for

next-generation atmospheric modeling.
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7. Appendix

In this appendix, we introduce a novel boundary ghost cell interpolation scheme for cubed sphere, which is able to
support HOPE to reach the accuracy over 11" order or even higher.

There are two types of cells, in-domain and out-domain (also named ghost cell, as show in Figure 7(b)), we define the
set of in-domain cell values q45; = (g1, 72, ..., qq)7, the set of out-domain cell values g, = (g1, 92, -, ga)T, and the set
of Gaussian quadrature point values (green points in Figure 3) in out-domain cells is define as v,y = (vl, Uy, ...,vp). To
identify the shape of the arrays, we denote the array shape using subscripts (this convention will be followed throughout the
subsequent text). The purpose of ghost cell interpolation is using the known cell value q to interpolate the unknown g.

Define a new set includes the values of domain cell values and ghost cell values

q = U = ( ) ) ) ) ) ) ) )T
da+n)x1 = qUg 41,92 da, 91,92 In (A.l)

Similar to the describe in section 0, we can use a TPP to reconstruct the ghost quadrature points

Vpx1 = Apx(a+n)d@a+h)x1

(A.2)

where Apx(a+n) 18 the interpolation matrix that can be obtain by the similar method to Eq.(29). The ghost cell values are

calculated by Gaussian quadrature

Inx1 = thpvpxl

(A.3)
where Bj,x,, is the Gaussian quadrature matrix.
q(a+n)x1 can be decomposed as the linear combination of g4y and vy,
~ Igxa 0 qax1 = _
Qa+n)x1 = ( 0 Bth) ( vpxl) = Ba+nyx(a+p)d(a+p)x1 (A4)
where I;.4 1s an identity matrix, and
~ _ IdXd 0
Ba+myx(a+p) = ( 0 thp) (A5)
— _ (9ax1
Ga+p)x1 = (val) (A.6)
Substitute Eq.(30) into Eq.(26), we have
- _ ~ _ ~ 9ax1
Vpx1 = Apx(a+nBa+mx(@+p)A(a+p)x1 = Apx(a+p)d(a+p)x1 = Apx(a+p) (vpx1) (A.7)
We found that matrix /Ipx(dﬂ,) can be decomposed into two parts
Apx(a+p) = (“Tpxd Cva) (A.8)
Such that
Vpx1 = /Tpxdqul + Cpxpvpxl (Ag)
Therefore
(Ipxp = Coxp)Vpx1 = Apxabaxi (A.10)

We set Dy = Iyxp — Cpxp» then v, can be determined by
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Vpx1 = DpsipApxaaxi (A.11)
Substitute Eq.(A.11) into Eq.(A.3), we establish the relationship between ghost cell values and in-domain cell values
Inx1 = BuxpVpx1 = BuxpDpspApsalax1 = EmzaGnxalaxi (A12)
where GrszGnva = thpDZ}prpxd . It’s clear that Eq.(A.12) is linear, and only rely on the mesh and Gaussian
quadrature scheme. Therefore, we need to compute the projection matrix &42Gy <4 only once for a given mesh and accuracy,

this matrix can be computed by a preprocessing system and save it to the hard disk.
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