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Abstract 11 

This study presents the High Order Prediction Environment (HOPE), an automatically differentiable, non-oscillatory 12 

finite-volume dynamical core for shallow water equations on the cubed-sphere grid. HOPE integrates four key features: (1) 13 

arbitrary high-order accuracy through genuine two-dimensional reconstruction schemes; (2) essential non-oscillation via 14 

adaptive polynomial order reduction in discontinuous regions; (3) exact mass conservation inherited from finite-volume 15 

discretization; (4) automatically differentiable and (5) GPU-native scalability through PyTorch-based implementation. 16 

Another innovation is the intensive panel boundary treatment, which eliminates numericaldevelopment of a two-way coupled 17 

ghost cell interpolation method. This approach incorporates information from adjacent panels on both sides of the boundary, 18 

thereby overcoming the integration instability duringinherent in one-sided ghost cell interpolation approaches when using 19 

high -order reconstruction scheme, meanwhile, simplifies the interpolation process to a . Leveraging the linear operator nature 20 

of this interpolation scheme, we optimized its computation: information exchange across the panel boundary is achieved 21 

through a single matrix-vector multiplication instead of iterative coupling, without losing accuracy loss. Numerical 22 

experiments demonstrates the capabilities of HOPE: The 11th-order scheme reduces errors to near double-precision round-23 

off levels in steady-state geostrophic flow tests on coarse 1°×1°1° × 1° grids. Maintenance of Rossby-Haurwitz waves 24 

over 100 simulation days without crashing. A cylindrical dam-break test case confirms the genuinely two-dimensional WENO 25 

scheme exhibits significantly better isotropy compared to dimension-by-dimension approaches. Moreover, normalized 26 

conservation errors in total energy, total potential enstrophy, and total zonal angular momentum significantly reduce with 27 

increasing order of the reconstruction scheme. Two implementations are developed: a Fortran version for convergence analysis 28 
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and a PyTorch version leveraging automatic differentiation and GPU acceleration. The PyTorch implementation maps 29 

reconstruction and quadrature operation to 2D convolution and Einstein summation respectively, achieving about 2× speedup 30 

on single NVIDIA RTX3090 GPU versus Dual Intel E5-2699v4 CPUs execution. This design enables seamless coupling with 31 

neural network parameterizations, positioning HOPE as a foundational tool for next-generation differentiable atmosphere 32 

models. 33 

 34 

1. Introduction 35 

Recent years have witnessed a surge in research integrating numerical weather prediction (NWP) with artificial 36 

intelligence (AI) techniques. A prominent advancement in this domain is the hybrid modeling paradigm, which synergizes the 37 

complementary strengths of both approaches. This framework implements numerical dynamical cores within AI software 38 

platforms such as TensorFlow or PyTorch, thereby enabling seamless integration of AI models into the numerical solution 39 

process for atmospheric dynamical partial differential equations (PDEs). Unlike the fully surrogated methods, such as Pangu-40 

Weather (Bi et al., 2022), FengWu (Chen et al., 2023), GraphCast (Lam et al., 2023), NowcastNet (Zhang et al., 2023). Hybrid, 41 

hybrid model integrates traditional PDE-based dynamical cores with neural network (NN)-based physical parameterizations. 42 

The auto-differentiable nature of the dynamical core enables training losses to propagate through the entire model during 43 

backpropagation, allowing the NN-based parameterization module to access more comprehensive residual information. 44 

NeuralGCM (Kochkov et al., 2023)(Kochkov et al., 2024) exemplifies this hybrid approach by combining a spectral numerical 45 

dynamical core with NN-based physical parameterizations. The governing equation-based dynamical core imposes rigorous 46 

physical constraints within the framework, effectively mitigating the blurriness characteristic of purely data-driven models. 47 

Furthermore, NeuralGCM demonstrates superior power spectra performance compared to conventional data-driven 48 

meteorological models. While the implementation of a spectral dynamical core in NeuralGCM theoretically enables infinite-49 

order accuracy, the inherent shortcomings of the spectral model still persist. Specifically, it fails to preserve mass conservation, 50 

and the global nature of spectral expansion also restricts the method’s scalability of this method. Furthermore, in contrast to 51 

finite-volume algorithms which inherently ensure strict mass conservation, achieving strict mass conservation with 52 

NeuralGCM’s spectral dynamical core requires supplementary modifications. 53 

To address these shortcomings, we present the High Order Prediction Environment (HOPE) dynamical core with 54 

following contributions: 55 

1) A new-generation shallow-water model architecture integrating: 56 

(i) Arbitrary high-order accuracy (up to 13th-order verified) via tensor product polynomial (TPP). 57 

(ii) Local stencil-based operationsA finite-volume scheme requiring only information from a local stencil 58 
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surrounding each cell to perform state updates, enabling massively parallel scalability. 59 

(iii) Inherent mass conservation from finite-volume discretization. 60 

(iv) AdaptiveA WENO (Weighted Essentially Non-Oscillatory) based, adaptive polynomial order reduction for 61 

essential non-oscillation. 62 

2) A novel intensivetwo-way coupled ghost cell interpolation scheme achieving: 63 

(i) Arbitrary odd-order convergence through central stencil interpolation. 64 

(ii) Single sparse matrix-vector operation replacing iterative procedures (Appendix Eq.(A.12)). 65 

(iii) Overcome numerical instability beyond 7th-order accuracy. 66 

3) PyTorch-based high performance differentiable implementation featuring: 67 

(i) GPU acceleration through convolution/einsum operator in PyTorch, 2× speedup on single RTX3090 GPU vs. 68 

Dual Intel Xeon 2699v4 CPUs. 69 

(ii) Automatic Jacobianghost cell interpolation matrix generation via native auto-differentiation. 70 

(iii) Seamless integration with NN modules for hybrid modeling. 71 

In the following part of the introduction, we introduce the relevant work on constructing the HOPE model, and from this, 72 

we elaborate on the challenges and motivations for establishing the algorithm of the dynamical core. High-order accuracy is 73 

an extremely appealing trait for the design of a dynamical core, particularly in high-resolution atmospheric simulations. A 74 

dynamical core model with high-order accuracy produces significantly less simulation error in smooth regions compared to a 75 

low-order model. Furthermore, even when the resolution is equivalent or coarser, a high-order model is capable of resolving 76 

finer details than a low-order one. 77 

 A high-order finite volume model was developed on cubed sphere, named MCORE (Ullrich et al., 2010; Ullrich and 78 

Jablonowski, 2012). The authors assert that MCORE's convergence accuracy can theoretically be of arbitrary order. However, 79 

in the practical numerical tests, we found that the accuracy does not surpass the 7th order. This limitation arises when using a 80 

one-sided ghost interpolation scheme, which leads to numerical oscillations originating from the corner zones of the panels 81 

when the stencil size is 9×9 or largerHigh-order reconstruction requires information from cells external to panel boundaries 82 

(commonly termed ghost cells). Due to coordinate discontinuities across the six panels of the cubed-sphere grid, MCORE 83 

implements an interpolation scheme for ghost cells based on one-side information. This approach employs a two-dimensional 84 

reconstruction stencil to interpolate prognostic variables onto Gaussian quadrature points within each cell, followed by 85 

integration to obtain cell-averaged values. The authors assert that MCORE's convergence rate can theoretically be of arbitrary 86 

order. However, during the design of the ghost cell interpolation for HOPE, we initially attempted to use a one-sided 87 

reconstruction stencil similar to MCORE. While stable integration was achieved with the 3rd-, 5th-, and 7th-order schemes, 88 

the model became unstable when schemes of 9th-order or higher were used. In other words, for HOPE, overcoming the 7th-89 
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order accuracy limitation necessitated the development of a new ghost cell interpolation scheme. 90 

Therefore, we designed a bilateral interpolation algorithm. This algorithm employs an iterative procedure that 91 

incorporates information from both adjacent panels of the cubed-sphere grid simultaneously. This enabled stable model 92 

integration even with higher-order schemes. Though not detailed in the paper, our testing confirmed stable integration even 93 

at 13th-order accuracy. 94 

In this article, we devise the reconstruction based on tensor product polynomial (TPP). When the stencil width is 𝑘, our 95 

method achieves 𝑘𝑡ℎ  order accuracy, surpassing MCORE by one order of accuracy with the same stencil width. In addition, 96 

we have developed a new class of ghost interpolation schemes that abandon the use of one-sided stencils and instead adopt 97 

central stencils. This new approach enables the scheme to overcome the non-physical oscillations arising from interpolation 98 

at panel boundaries. Our method allows for arbitrary order of accuracy while the field is smooth enough, and we have verified 99 

this by testing up to the 11th order. 100 

FromNevertheless, higher-order reconstruction does not invariably yield superior simulation outcomes, as elucidated by 101 

analyzing the properties of the Taylor series, we note that its effectiveness in  remainder term. The accuracy of approximating 102 

a function depends onvia a Taylor series requires two keyessential conditions: (1) the existence of higher-order derivatives of 103 

the function at the expansion point, and (2) theThe convergence of the series within the relevant domain. When the field 104 

exhibits poor continuity—where higher-order derivatives either do not exist or lead to increasing residuals with series order—105 

employing higher-order approximations can introduce significant errors. Therefore, for reconstruction schemes based on 106 

polynomial functions, high-order accuracy should only be adopted when the field is sufficiently smooth. Conversely, for 107 

discontinuous or poorly continuous fields, reducing the reconstruction order is necessary to maintain numerical stability and 108 

effectiveness. 109 

The Weighted Essentially Non-Oscillatory (WENO) scheme is an adaptive limiter widely employed in computational 110 

fluid dynamics (CFD) to address this challenge. Originally developed for one-dimensional problems (Liu et al., 1994), WENO 111 

was later extended to two dimensions by Shi et al. (2002) using two distinct approaches: a genuinely two-dimensional 112 

(WENO2D) scheme and a dimension-by-dimension reconstruction. In this work, we implement WENO2D scheme to enforce 113 

the non-oscillatory property. This approach effectively suppresses non-physical oscillations near sharp discontinuities while 114 

preserving high-order accuracy in smooth regions. 115 

The remainder of this paper is organized as follows: Section 2 details the governing equations on the cubed-sphere grid. 116 

Section 3 presents the numerical methods, including reconstruction schemes, panel boundary treatment method, and temporal 117 

marching scheme. Section 4, describes the GPU-optimized focuses on HOPE's high-performance implementation leveraging 118 

PyTorch's built-in operators for GPU acceleration. The adoption of PyTorch simultaneously enables automatic differentiation. 119 

capabilities through its computational graph construction. Section  5 validates model performance through standard test cases, 120 
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followed by conclusions and future directions in Section 6. 121 

2. Governing Equation on Cubed Sphere 122 

The cubed-sphere grid partitions the spherical domain into six panels, each with a structured and rectangular 123 

computational space. This configuration facilitates high-order spatial reconstruction and efficient massive-thread parallelism 124 

(see Figure 1). Early work on solving the primitive equations on the cubed-sphere grid dates back to Sadourny (1972). In 125 

recent decades, the cubed-sphere grid has been widely adopted in high-order-accuracy atmospheric models. For instance, 126 

Chen and Xiao (2008) developed a shallow water model using the multi-moment constrained finite volume method on the 127 

cubed sphere, achieving 3rd~4th order accuracy. Ullrich et al. (2010) designed a high-order finite volume dynamical core based 128 

on this grid, Nair et al. (2005a, 2005b) implemented a discontinuous Galerkin model on the cubed sphere. 129 

In this study, we also employ the equiangular cubed-sphere grid. Although the mesh is non-orthogonal, the computational 130 

space can still be treated as a rectangular grid by adopting a generalized curvilinear coordinate system. In this section, we 131 

present the shallow water equations in generalized curvilinear coordinates and discuss specialized treatments for topography. 132 

 133 

Figure 1 Cubed sphere grid. (a) Physical space; (b) Computational space. Six panels are identified by indices from 1 to 6. 134 

Shallow water equation set on gnomonic equiangular cubed sphere grid is written as 135 
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2 +𝜓𝐶
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2

 

(1)   

The gnomonic equiangular coordinates are represented by (𝑥, 𝑦, 𝑛𝑝),(𝑥, 𝑦, 𝑝), where (𝑥, 𝑦) ∈ [−
𝜋

4
,
𝜋

4
] are local equiangular 136 

coordinate of each panel and 𝑛𝑝𝑝 = 1,2,3,… , 𝑛𝑝 is panel index as shown in Figure 1(b); 𝑛𝑝=6 is the number of panels. 𝜙 =137 

𝑔ℎ  is geopotential height, ℎ  is fluid thickness, 𝑢, 𝑣  is contravariant wind in 𝑥, 𝑦  direction, 𝑔  is gravity acceleration. 138 
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𝜓𝑀 , 𝜓𝐶 , 𝜓𝐵 are the metric term, Coriolis term and bottom topography influence term 139 

 
𝜓𝑀 = (

𝜓𝑀
1

𝜓𝑀
2 ) =

2√𝐺

𝛿2
(
−𝑋𝑌2𝜙𝑢𝑢 + 𝑌(1 + 𝑌2)𝜙𝑢𝑣

𝑋(1 + 𝑋2)𝜙𝑢𝑣 − 𝑋2𝑌𝜙𝑣𝑣
) (2)   

 140 

 
𝜓𝐶 = −√𝐺√𝐺𝑓𝒌 × 𝜙𝒖 = √𝐺𝑓 (

−𝐺12 𝐺11

−𝐺22 𝐺12
)(
√𝐺𝜙𝑢

√𝐺𝜙𝑣
) 

 

(3)   

 141 

 

𝜓𝐵 = −√𝐺𝜙𝐺
𝑖𝑗
𝜕𝜙𝑠
𝜕𝑥𝑗

= −√𝐺𝜙

(

 
 
𝐺11

𝜕𝜙𝑠
𝜕𝑥

+ 𝐺12
𝜕𝜙𝑠
𝜕𝑦

𝐺21
𝜕𝜙𝑠
𝜕𝑥

+ 𝐺22
𝜕𝜙𝑠
𝜕𝑦 )

 
 

 
(4)   

where 𝑋 = tan𝑥 , 𝑌 = tan𝑦 , 𝛿 = √1 + 𝑋2 + 𝑌2 , 𝑓 = 2Ω𝑠𝑖𝑛𝜃  is Coriolis parameter, 𝜙𝑠 = 𝑔ℎ𝑠  is surface geopotential 142 

height, and ℎ𝑠 is surface height. 143 

 
𝑠𝑖𝑛𝜃 = {

𝑌/𝛿, 𝑛𝑝 ∈ {1,2,3,4}

1/𝛿, 𝑛𝑝 = 5

−1/𝛿, 𝑛𝑝 = 6

𝑠𝑖𝑛𝜃 = {
𝑌/𝛿, 𝑝 ∈ {1,2,3,4}

1/𝛿, 𝑝 = 5
−1/𝛿, 𝑝 = 6

 
(5)   

The contravariant metric on cubed-sphere is 144 

 
𝐺𝑖𝑗 =

𝛿2

𝑟2(1 + 𝑋2)(1 + 𝑋2)
(1 + 𝑌

2 𝑋𝑌
𝑋𝑌 1 + 𝑋2

) (6)   

The covariant metric 145 

 
𝐺𝑖𝑗 =

𝑟2(1 + 𝑋2)(1 + 𝑌2)

𝛿4
(1 + 𝑋

2 −𝑋𝑌
−𝑋𝑌 1 + 𝑌2

) (7)   

and the metric determinant is given by 146 

 
√𝐺 = √det(𝐺𝑖𝑗) =

𝑟2(1 + 𝑋2)(1 + 𝑌2)

𝛿3
 (8)   

𝑟 is radius of earth. 147 

The contravariant wind vector 𝑽 = (𝑢, 𝑣) can be convert to wind vector on spherical LAT/LON coordinate 𝑽𝑠 = (𝑢𝑠, 𝑣𝑠) 148 

by the following formula 149 

 (
𝑢𝑠
𝑣𝑠
) = 𝐽𝐴 (

𝑢
𝑣
) (9)   

where 𝐽𝐴 is a 2 × 2 conversion matrix, the expressions are different in each panel 150 

 

𝐽 = 𝑟

(

 
 
cos𝜃

𝜕𝜆

𝜕𝑥
 cos 𝜃

𝜕𝜆

𝜕𝑦
𝜕𝜃

𝜕𝑥

𝜕𝜃

𝜕𝑦 )

 
 
=

{
 
 
 

 
 
 
𝑟(

cos𝜃 0

− sin 𝜃 cos𝜃 tan 𝜆𝑝 cos 𝜆𝑝 cos
2 𝜃 +

sin2 𝜃

cos 𝜆𝑝

) , 𝑝𝑎𝑛𝑒𝑙 1~4

𝑟 (
cos 𝜆 sin 𝜃 Γ1 sin 𝜆 sin 𝜃 Γ2
−sin 𝜆 sin2 𝜃 Γ1 cos 𝜆 sin2 𝜃 Γ2

) , 𝑝𝑎𝑛𝑒𝑙 5

𝑟 (
− cos 𝜆 sin 𝜃 Γ1 sin 𝜆 sin 𝜃 Γ2
sin 𝜆 sin2 𝜃  Γ1 cos 𝜆 sin2 𝜃 Γ2

) , 𝑝𝑎𝑛𝑒𝑙 6

 

(10)   
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{
 
 
 

 
 
 
𝑟(

cos𝜃 0

− sin 𝜃 cos𝜃 tan𝜆𝑝 cos 𝜆𝑝 cos
2 𝜃 +

sin2 𝜃

cos 𝜆𝑝

) , 𝑝 ∈ {1,2,3,4}

𝑟 (
cos 𝜆 sin 𝜃 Γ1 sin 𝜆 sin 𝜃 Γ2
−sin 𝜆 sin2 𝜃 Γ1 cos 𝜆 sin2 𝜃 Γ2

) , 𝑝 = 5

𝑟 (
− cos 𝜆 sin 𝜃 Γ1 sin 𝜆 sin 𝜃 Γ2
sin 𝜆 sin2 𝜃  Γ1 cos 𝜆 sin2 𝜃 Γ2

) , 𝑝 = 6

 

 
𝜆𝑝 = 𝜆 −

𝜋

2
(𝑖𝑝𝑎𝑛𝑒𝑙 − 1)(𝑝 − 1), Γ1 = 1 +

sin2 𝜆

tan2 𝜃
, Γ2 = 1 +

cos2 𝜆

tan2 𝜃
 (11)   

where 𝜆, 𝜃 are longitude and latitude, and 𝑖𝑝𝑎𝑛𝑒𝑙 is the panel index as shown in Figure 1(b).. The relation between 𝐽𝐴 and 𝐺𝑖𝑗 151 

is 152 

 𝐺𝑖𝑗 = 𝐽
𝑇𝐽𝐴𝑇𝐴 

(12)   

In our numerical experiments, topography causes non-physical oscillation while we using equation set Eq.(1) and 153 

reconstructing √𝐺𝜙 , as mentioned by Chen and Xiao (2008), so called “C-property” needs to be preserved. InspiredTo 154 

discretize and solve the equation system, we first perform reconstruction on the prognostic variables to obtain their values at 155 

the cell interfaces. These reconstructed values are then used within a Riemann solver to compute the numerical fluxes. During 156 

the numerical experiments, we observed that reconstructing √𝐺𝜙  directly leads to non-physical oscillations. This occurs 157 

because topography may induce discontinuities in the variable 𝜙, while high-order reconstruction fundamentally requires 158 

smoothness of the field. 159 

To address this, inspired by the approach mentioned by Ii and Xiao (2010), we instead reconstruct √𝐺𝜙𝑡 instead of √𝐺𝜙,, 160 

where 𝜙𝑡 = 𝜙 + 𝜙𝑠 is total geopotential height, and. The detailed formulation of this reconstruction method is presented in 161 

Section 3. Crucially, √𝐺𝜙𝑡 is used exclusively during the reconstruction method is introduced in the next section. step. The 162 

prognostic variable remains √𝐺𝜙 to ensure exact mass conservation. 163 

The momentum equations need to be modified as follow 164 
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(13)   

and the bottom topography influence term is now expressed as 165 

 

𝜓𝐵 = √𝐺𝜙𝑠𝐺
𝑖𝑗
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(14)   

The reconstruction variables are (√𝐺𝜙𝑡, √𝐺𝜙𝑢, √𝐺𝜙𝑣).  166 

We write the governing equation set to vector form 167 
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 𝜕𝒒

𝜕𝑡
+
𝜕𝑭(𝒒)

𝜕𝑥
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, 𝑺 = [
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1 + 𝜓𝐵
1

𝜓𝑀
2 + 𝜓𝐶

2 + 𝜓𝐵
2
] 

 

(16)   

3. Numerical Discretization 168 

The finite volume method computes the temporal tendency of cell-averaged quantities by evaluating the net flux across 169 

cell interfaces. The interfacial flux is obtained through Gaussian quadrature, where the field values at quadrature points are 170 

reconstructed spatially and then processed by a Riemann solver to determine the flux magnitude. 171 

In this section, we present two distinct spatial reconstruction approaches: (1) a two-dimensional tensor product 172 

polynomial (TPP) method, and (2) a two-dimensional weighted essentially non-oscillatory (WENO2D) scheme based on 173 

tensor product polynomials. Each reconstruction yields two potential values at every Gaussian quadrature point (GQP). These 174 

values are then resolved into a single flux value using the Low Mach number Approximate Riemann Solver (LMARS) (Chen 175 

et al., 2013). or AUSM+-up (Liou, 2006; Ullrich et al., 2010). Even with an approximate Riemann solver like LMARS, the 176 

scheme preserves high-order because it combines high-order reconstructions from both sides of the cell interface to determine 177 

the flux. Finally, the total flux across each cell edge is computed by applying linear Gaussian quadrature integration along the 178 

interface. 179 

Panel 4 Panel 1

Panel 5

(a) (b)

A

B

C

 180 

Figure 2 (a) Adjacent area of panels 1,4 and 5. (b) 5 × 5 reconstruction stencil nearby panel corner is represented by shade. The 181 

cell contains red dot is the target cell on panel 4,; the magenta points are overlapped GQPs shared by panel 1 and panel 5; red 182 

solid lines are boundary of panel 4, red dash lines are extension line of panel 4 boundary line. 𝐴 and 𝐶 are points on dash line, 𝐵 is 183 
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the upper right corner point of panel 4. 184 

According to the finite volume scheme, average Eq.(15) on cell 𝑖, 𝑗, we have 185 

 𝜕𝒒
𝑖,𝑗

𝜕𝑡
+

𝑭
𝑖+
1
2
,𝑗
− 𝑭

𝑖−
1
2
,𝑗

∆𝑥
+

𝑮
𝑖,𝑗+

1
2
−𝑮

𝑖,𝑗−
1
2

∆𝑦
= 𝑺𝑖,𝑗 

(17)   

 𝜕𝒒
𝑖,𝑗

𝜕𝑡
=

1

∆𝑥∆𝑦

𝜕

𝜕𝑡
∬ 𝒒 𝑑𝑥 𝑑𝑦

 

Ω𝑖,𝑗

, 𝑺𝑖,𝑗 =
1

∆𝑥∆𝑦
∬ 𝑺 𝑑𝑥 𝑑𝑦

 

Ω𝑖,𝑗

 

 

(18)   

 
𝑭
𝑖−
1
2
,𝑗
=
1

∆𝑦
∫ 𝑭
 

𝑒
𝑖−
1
2

𝑑𝑦, 𝑭
𝑖+
1
2
,𝑗
=
1

∆𝑦
∫ 𝑭
 

𝑒
𝑖+
1
2

𝑑𝑦 

 

(19)   

 
𝑮
𝑖,𝑗−

1
2
=
1

∆𝑥
∫ 𝑮
 

𝑒
𝑗−
1
2

𝑑𝑥, 𝑮
𝑖,𝑗+

1
2
=
1

∆𝑥
∫ 𝑮
 

𝑒
𝑗+
1
2

𝑑𝑥 (20)   

where Ω𝑖,𝑗 represents the region overlapped by cell (𝑖, 𝑗), 𝑒
𝑖−

1

2

, 𝑒
𝑖+

1

2

, 𝑒
𝑗−

1

2

, 𝑒
𝑗+

1

2

 are left, right, bottom, top edges of cell (𝑖, 𝑗).  186 

 187 

Figure 3 Function points on cell. Red points are edge quadrature points (EQP) or called flux points, green points are inner cell 188 

quadrature points (CQP). 189 

The physical interpretation of equation Eq.(17) is that the average tendency of prognostic field 𝒒  within cell (𝑖, 𝑗)  is 190 

governed by the average net flux and average source. In this study, we calculate these averages using Gaussian quadrature, 191 

the function points within each cell are illustrated in Figure 3, the EQPs are share by adjacent cells, and CQPs are exclusive 192 

for each cell. 193 

Average on edge by 1D scheme: 194 

 
𝑭
𝑖+
1
2
,𝑗
≈∑𝑤𝑟𝑭𝑟

𝑚𝑒

𝑟=1

= 𝑤𝑭𝑟𝒘𝑭⃗⃗  
(21)   

where 𝑤 = (𝑤1, 𝑤2, … ,𝑤𝑚𝑒
) is the 1D Gaussian quadrature coefficient matrix, 𝑚𝑒𝑚𝑒 is the number of quadrature points on 195 

each edge, 𝒘 = (𝑤1, 𝑤2, … ,𝑤𝑚𝑒
) is the 1D Gaussian quadrature coefficient vector. 𝑭⃗⃗ = (𝑭1, 𝑭2, … , 𝑭𝑟)

𝑇 is the vector of flux, 196 
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the elements of 𝑭⃗⃗  represent the flux on EQPs. 197 

Average in cell by 2D scheme: 198 

 
𝑺𝑖,𝑗 ≈∑𝑊𝑟𝑺𝑟

𝑚𝑐

𝑟=1

= 𝑊𝑺𝑟∑𝑾𝑟𝑺𝑟

𝑚𝑐

𝑟=1

= 𝑾𝑺⃗⃗  (22)   

where 𝑊𝑚𝑐  is the number of quadrature points on each cell, 𝑾 = (𝑊1,𝑊2, … ,𝑊𝑚𝑐
)  is the 2D Gaussian quadrature 199 

coefficient matrix, 𝑚𝑒𝑺⃗⃗ = (𝑺1, 𝑺2, … , 𝑺𝑟)
𝑇 is the numbervector of quadrature pointssource term, the elements of 𝑺⃗⃗  represent 200 

the source value on GQPs, superscript 𝑇 stands for transpose matrix. 201 

HOPE employs an equiangular cubed-sphere grid, where each panel undergoes uniform angular discretization into  𝑛𝑐202 

× 𝑛𝑐 cells. In the computational space (equiangular coordinates), each cell spans an angular interval of 
𝜋

2𝑛𝑐
, therefore 203 

 ∆𝑥 = ∆𝑦 =
𝜋

2𝑛𝑐
 (23)   

This uniformity ensures that all cells are geometrically identical in the computational space, thereby avoiding the need for 204 

cell-specific treatment during reconstruction studies. In the following part of this section, we set a new computational space 205 

for reconstruction process. The local coordinate system (𝑥̂, 𝑦̂) is established such that within each reconstruction stencil, the 206 

origin (0,0) is located at the stencil center, the central cell spans[−0.5,0.5] in both 𝑥̂ and 𝑦̂ directions, as shown in Figure 4 207 

(a). All of the cells have the same size in 𝑥̂, 𝑦̂ directions: 208 

 
∆𝑥̂ = ∆𝑦̂ = 1 (24)   

On the cubed-sphere grid, a fixed reconstruction scheme yields consistent stencils across all cells. This structural 209 

homogeneity renders the reconstruction operation computationally equivalent to two-dimensional convolution, thereby 210 

enabling efficient GPU acceleration through PyTorch's built-in conv2d function. 211 

3.1 Tensor Product Polynomial (TPP) Reconstruction 212 

TheHOPE employs genuinely two-dimensional reconstruction, simultaneously incorporating information in both spatial 213 

dimensions to minimize dimensional splitting errors. For computational spaceefficiency, reconstruction algorithms using 214 

square stencils are computationally equivalent to convolution operations. This equivalence allows efficient implementation 215 

via PyTorch's conv2d function for acceleration. 216 

To construct genuinely 2D reconstructions, the functional form of cubed sphere is rectangular and structured, we take 217 

reconstruction onthe reconstruction basis must be selected. A bivariate polynomial of degree 𝑑 contains 
(𝑑+1)(𝑑+2)

2
 terms. As 218 

illustrated in Figure 4 (b), the 6 terms of a bivariate quadratic polynomial (𝑑 = 2) are insufficient to cover a square stencil. A 219 

two-dimensional 𝑑-th degree polynomial has number of termsTo address this, we adopt Tensor Product Polynomials (TPP) 220 

as basis functions. We denote a TPP function containing 𝑛 =
(𝑑+1)(𝑑+2)

2
 , it is not able to be fully filled by a 𝑘 -th order 221 
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square× 𝑛 terms as TPPn. Determining the coefficients of TPPn requires information from a 𝑛 × 𝑛 block of cells. When using 222 

a TPP reconstruction stencil ( 𝑘 × 𝑘  cells), as shown in Figure 4 (a). Theof size 𝑛 × 𝑛 , HOPE achieves fifth-order 223 

accuracy when simulating smooth flow fields. We therefore designate a TPP reconstruction stencil location on cubed sphere 224 

grid isof size 𝑛 × 𝑛 as an n-th order TPP stencil, the 3rd and 5th order TPP stencils are shown in Figure 2(b)Figure 4 (c)(d). 225 

(a)

y2

xyy

x2x1

 (b)

y xy x2y

1 x x2

y2 xy2 x2y2

 (c) 

x2y3 x3y3 x4y3xy3y3

x2y2 x3y2 x4y2xy2y2

x2y x3y x4yxyy

x2 x3 x4x1

x2y4 x3y4 x4y4xy4y4

 226 

 227 

Figure 4 PolynomialReconstruction coordinate and polynomial terms on stencils. (a): Local reconstruction coordinate (the red 228 

points denote cell centers) (b): 2nd degree polynomial stencil; (b): 3rd order TPP stencil; (c) 5th order TPP ): TPP3 stencil; (d) TPP5 229 

stencil 230 

We make use of the TPP to approximate the horizontal reconstruction. A TPP TPPn polynomial is expressed as 231 

 
𝑝(𝑥, 𝑦)(𝑥̂, 𝑦̂) =∑∑𝑎𝑘𝑥

𝑖−1𝑦𝑗−1
𝑛

𝑗=1

𝑚

𝑖=1

∑∑𝑎𝑘𝑥̂
𝑖−1𝑦̂𝑗−1

𝑛

𝑗=1

𝑛

𝑖=1

=∑𝑎𝑘𝑐𝑘

𝑁

𝑘=1

(𝑥, 𝑦)(𝑥̂, 𝑦̂) (23)(25)   

where 𝑛 is width of stencil (also called 𝑛-th stencil).. 𝑎𝑘 is the coefficient of each term, the term index 𝑘 = 𝑖 + 𝑛(𝑗 − 1), and 232 

𝑐𝑘(𝑥, 𝑦) = 𝑥
𝛼𝑦𝛽(𝑥̂, 𝑦̂) = 𝑥̂𝛼𝑦̂𝛽, 𝛼 = 𝑘 − 𝑖𝑛𝑡 (

𝑘−1

𝑛
)𝑛 − 1, 𝛽 = 𝑖𝑛𝑡 (

𝑘−1

𝑛
) , 𝑖𝑛𝑡  is equivalent to Fortran's intrinsic function 233 

𝑖𝑛𝑡()  that truncates to integer values. 𝑚𝑁 = 𝑛2 is the cell number in stencil and also the term number of the TPP, the 3rd and 234 
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5th order stencils are shown in Figure 4.. We define column vectors 𝒄(𝑥, 𝑦) = {𝑐𝑘(𝑥, 𝑦)|𝑘 = 1,2,3,… , 𝑁}(𝑥̂, 𝑦̂) =235 

{𝑐𝑘(𝑥̂, 𝑦̂)|𝑘 = 1,2,3,… ,𝑁} and 𝒂 = {𝑎𝑘|𝑘 = 1,2,3,… , 𝑁}, the point value on (𝑥, 𝑦)(𝑥̂, 𝑦̂) can be written as 236 

 𝑝(𝑥, 𝑦)(𝑥̂, 𝑦̂) = 𝒄(𝑥, 𝑦)(𝑥̂, 𝑦̂) ∙ 𝒂 
(24)(26)  

The volume integration average (VIA) of prognostic field 𝑞 on cell 𝛺𝑖 is represented by 237 

 
𝑞̅𝑖 =

1

∆𝑥𝑖∆𝑦𝑖
∬𝑝(𝑥, 𝑦)𝑑𝑥𝑑𝑦

𝛺𝑖

1

∆𝑥̂𝑖∆𝑦̂𝑖
∬𝑝(𝑥̂, 𝑦̂)𝑑𝑥̂𝑑𝑦̂

𝛺𝑖

 (25)(27)   

∆𝑥𝑖𝑥̂𝑖 , ∆𝑦𝑖𝑦̂𝑖 are length of edges 𝑥, 𝑦𝑥̂, 𝑦̂ of cell 𝛺𝑖 in computational space. In our setting, all of The VIA value 𝑞̅𝑖 on each 238 

cell is predicted by time integration, we wish to determine the cellscoefficient vector 𝒂 by these VIA values. HOPE employs 239 

an equiangular cubed-sphere grid, wherein each cell in the computational space are set to unitcan be considered a perfectly 240 

identical square, thereforeaccording to Eq.(24), we may assume without loss of generality that ∆𝑥𝑖 = 1, ∆𝑦𝑖 = 1, and Eq.(27) 241 

becomes 242 

 𝑞̅𝑖 =∬𝑝(𝑥, 𝑦)𝑑𝑥𝑑𝑦

𝛺𝑖

=∬𝒄 ∙ 𝒂 𝑑𝑥𝑑𝑦

𝛺𝑖

∬𝑝(𝑥̂, 𝑦̂)𝑑𝑥̂𝑑𝑦̂

𝛺𝑖

=∬𝒄 ∙ 𝒂 𝑑𝑥̂𝑑𝑦̂

𝛺𝑖

= 𝝍𝑖 ∙ 𝒂 (26)(28)   

where 𝝍𝑖 = ∬ 𝒄𝑑𝑥𝑑𝑦
𝛺𝑖

=

(

 
 

∬ 𝑐1𝑑𝑥𝑑𝑦𝛺𝑖

∬ 𝑐2𝑑𝑥𝑑𝑦𝛺𝑖

⋮
∬ 𝑐𝑁𝑑𝑥𝑑𝑦𝛺𝑖 )

 
 

,∬ 𝒄𝑑𝑥̂𝑑𝑦̂
𝛺𝑖

=

(

 
 

∬ 𝑐1𝑑𝑥̂𝑑𝑦̂𝛺𝑖

∬ 𝑐2𝑑𝑥̂𝑑𝑦̂𝛺𝑖

⋮
∬ 𝑐𝑁𝑑𝑥̂𝑑𝑦̂𝛺𝑖 )

 
 

, combining 𝑁 cells, we. We have following 243 

linear system 244 

 𝐴𝒂 = 𝒒̅ 
(27)(29)   

 

 𝐴 =

(

 

𝝍1
𝑇

𝝍2
𝑇

⋮
𝝍𝑁
𝑇)

 , 𝒒̅ = (

𝑞̅1
𝑞̅2
⋮
𝑞̅𝑁

) 
(28)(30)   

and polynomial coefficient 𝒂 can be obtain by solving Eq.(29). 245 

  𝒂 = 𝐴−1𝒒̅ 
(29)(31)   

The reconstruction values on 𝑀 points can be obtained by following formula 246 

 𝒑 = 𝐶𝒂 = 𝐶𝐴−1𝒒̅ = 𝑅𝒒̅ 
(30)(32)   

where 𝒑 = (

𝑝(𝑥1, 𝑦1)

𝑝(𝑥2, 𝑦2)
⋮

𝑝(𝑥𝑀, 𝑦𝑀)

) , (

𝑝(𝑥̂1, 𝑦̂1)

𝑝(𝑥̂2, 𝑦̂2)
⋮

𝑝(𝑥̂𝑀, 𝑦̂𝑀)

) , 𝐶 =

(

 

𝒄1
𝑇

𝒄2
𝑇

⋮
𝒄𝑀
𝑇 )

 , 𝒄𝑗
𝑇 = 𝒄𝑇(𝑥𝑗 , 𝑦𝑗)(𝑥̂𝑗 , 𝑦̂𝑗), 𝑗 = 1,2,… ,𝑀 , superscript 𝑇  stands for 247 

transpose matrix, (𝑥𝑗 , 𝑦𝑗) represents the function points on target cell. The reconstruction matrix 248 

 𝑅 = 𝐶𝐴−1 
(31)(33)   

TheIn practical implementation, the reconstruction matrix 𝑅 needs to be computed only once during model initialization 249 

and stored in memory. In practical implementationCrucially, a fundamental advantage of our cubed-sphere grid dynamical 250 

core implementation lies in employing a globally shared reconstruction matrix 𝑅 . This unification signifies that a single 251 
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instance of 𝑅 applies identically to all grid cells, thereby significantly reducing memory/VRAM requirements, and enabling 252 

straightforward utilization of PyTorch's conv2d for accelerated reconstruction. For example, the TPP reconstruction procedure 253 

can be directly formulated as a two-dimensional convolutional operation using 𝑅 as the convolution kernel. 254 

3.2 Genuine Two-Dimensional WENO 255 

Weighted Essentially Non-Oscillatory (WENO) represents an adaptive algorithm that dynamically preserves high-order 256 

approximation accuracy in smooth flow regions while automatically degenerating to robust low-order reconstruction near 257 

discontinuities for effective shock capturing. Shi et al. (2002) mentioned two different approaches for constructing a fifth-258 

order finite volume WENO scheme: the "Genuine 2D" method and the "Dimension by Dimension" method. 259 

For HOPE, within the Genuine 2D framework, 𝑛 -th order accuracy WENO scheme employs a 𝑛 × 𝑛  master stencil 260 

partitioned into 
(𝑛+1)2

4
 distinct 

(𝑛+1)

2
×
(𝑛+1)

2
 sub-stencils, for example: 261 

a) WENO3: Third-order reconstruction utilizes a 3×3 cell stencil that decomposes into four 2×2 sub-stencils 262 

b) WENO5: Fifth-order accuracy employs a 5×5 master stencil partitioned into nine distinct 3×3 sub-stencils 263 

(Complete schematic representations of these decomposition strategies are provided in Figure 5 and Figure 6) 264 

The scheme's theoretical order of accuracy fundamentally depends on the proper determination of optimal linear weights 265 

for the multidimensional stencil combination. These weights, when correctly derived, enable the weighted superposition of 266 

sub-stencils to recover full high-order accuracy in smooth solution regions. While (Shi et al., 2002) indicated the theoretical 267 

possibility of computing these weights through Lagrange interpolation basis analysis, they omitted specific implementation 268 

details. In this section, we present the methods for constructing genuine 2Dtwo-dimensional WENO (WENO 2D) schemes 269 

using least squares method. 270 

987

654

321

987

654

321

987

654

321

987

654

321

(1) (2)

(3) (4)
 271 

Figure 5 Stencils of 3rd order WENO 2D. The high order stencil contains cells No.1~9, blue ones represent the cells in sub-272 

stencils (1) ~ (4). 273 

 274 



14 

 

18 19 201716

13 14 151211

8 9 1076

3 4 521

23 24 252221

18 19 201716

13 14 151211

8 9 1076

3 4 521

23 24 252221

18 19 201716

13 14 151211

8 9 1076

3 4 521

23 24 252221

18 19 201716

13 14 151211

8 9 1076

3 4 521

23 24 252221

18 19 201716

13 14 151211

8 9 1076

3 4 521

23 24 252221

18 19 201716

13 14 151211

8 9 1076
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 275 

Figure 6 Stencils of 5th order WENO 2D. The high order stencil contains cells No.1~25, blue ones represent the cells in sub-276 

stencils (1) ~ (9). 277 

 278 

We construct WENO 2D based on TPP and square stencil. As mentioned in previous section, a 𝑛-th order stencil contains 279 

𝑚𝑁 = 𝑛2 cells, and the full stencil (also called high-order stencil) width is ℎ = 𝑛. Decomposing the high-order stencil into 280 

𝑠 = (
𝑛+1

2
)
2
 sub-stencils, there are 𝑠𝑐 = 𝑠 cells in each sub-stencil, (also called low-order stencil), and the sub-stencil width is 281 

𝑙 =
𝑛+1

2
 . We define 𝑝𝐻  as the high- order reconstruction polynomial, and 𝑝𝑖  represents 𝑖 -th sub-stencil reconstruction 282 

polynomial, they share the same expression as Eq.(25) with different stencil width and coefficient 𝑎. For the reconstruction 283 

point (𝑥, 𝑦),(𝑥̂, 𝑦̂), suppose 𝑝𝐻(𝑥, 𝑦)(𝑥̂, 𝑦̂) is the reconstruction value of high-order stencil, the reconstruction values of sub-284 

stencils are stored in vector 𝒑 = (𝑝1(𝑥, 𝑦), 𝑝2(𝑥, 𝑦),⋯ , 𝑝𝑠(𝑥, 𝑦))
𝑇
(𝑝1(𝑥̂, 𝑦̂), 𝑝2(𝑥̂, 𝑦̂),⋯ , 𝑝𝑠(𝑥̂, 𝑦̂))

𝑇
 . The intention of 285 

constructing the optimal linear weights is to determine the unique weights 𝜸 = (𝛾1, 𝛾2,⋯ , 𝛾𝑠), such that 286 

 
𝑝𝐻 = 𝑅𝐻𝒒̅ = 𝜸𝒑 (32)(34)   

where the elements of vector 𝒒̅ = (𝑞1, 𝑞2,⋯ , 𝑞𝑚)
𝑇(𝑞1, 𝑞2, ⋯ , 𝑞𝑁)

𝑇 represent VIA of each cell in high-order stencil. 𝑅𝐻 =287 
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(𝑟𝐻𝑗) , 𝑗 = 1,2,… ,𝑚𝑁 is the reconstruction matrix of high-order stencil. 288 

It should be noted that Eq.(34) appears overdetermined at first glance. However, subsequent analysis demonstrates that 289 

the solution obtained via the least squares method satisfies Eq.(34) exactly. Specifically, in the case of square stencils, the 290 

rank of the system defined by Eq.(34) becomes 𝑠, resulting in a unique solution for the linear system. This finding aligns with 291 

observations presented in Hu and Shu (1999) regarding their research on Triangular Meshes. 292 

The computation of 𝛾𝜸 requires the integration of both high-order and low-order reconstruction matrices into a unified 293 

linear system. For each sub-stencil 𝑖 we define the reconstruction matrix 𝑅𝑖 = (𝑟𝑖𝑘), 𝑘 = 1,2,… , 𝑠𝑐 (computed via Eq.(33)). 294 

and 𝑅𝐿𝑖 = (𝑟𝐿𝑖𝑗) , 𝑗 = 1,2,… ,𝑚𝑁 is the extension matrix of 𝑅𝑖. The matrix relationship is expressed as 295 

(𝑅𝑖)1×𝑠𝑐(𝐸)𝑠𝑐×𝑚 = (𝑅𝐿𝑖)1×𝑚
 296 

 (𝑅𝑖)1×𝑠𝑐(𝐸)𝑠𝑐×𝑁 = (𝑅𝐿𝑖)1×𝑁
 (35)   

where the subscripts denote matrix dimensions. The correspondence matrix 𝐸 = (𝑒𝑖𝑗), 𝑖 = 1,2,… , 𝑠𝑐;  𝑗 = 1,2,… ,𝑚𝑁 297 

encodes the cell relationships between stencils: when the 𝑖-th cell in low-order stencil is the same as the 𝑗-th cell in high order 298 

stencil, 𝑒𝑖𝑗 = 1, otherwise, 𝑒𝑖𝑗 = 0. 299 

Substitute Eq.(32) into Eq.(34), yield 300 

 
𝑅𝐻𝒒̅ =∑𝑅𝐿𝑖𝛾𝑖𝒒̅

𝑠

𝑖=1

 (33)(36)   

We set 𝑅𝐿 = (𝑅𝐿1 , 𝑅𝐿2 , … , 𝑅𝐿𝑠)
𝑇
, Eq.(36) becomes 301 

 𝑅𝐿𝛾𝜸 = 𝑅𝐻 
(34)(37)   

The unknown optimal weight matrix 𝛾weights vector 𝜸 can be determined by following least square procedure 302 

 𝛾𝜸 = (𝑅𝐿
𝑇𝑅𝐿)

−1𝑅𝐿
𝑇𝑅𝐻 

(35)(38)   

However, the elements of 𝛾𝜸 could be negative, which would cause unstable. A split technique mentioned by (Shi et al., 303 

2002) was adopted to solve this problem. The optimal weights can be split into two parts: 304 

 
𝛾+ =

𝜃|𝛾| + 𝛾

2
, 𝛾− = 𝛾+ − 𝛾𝜸̃+ =

𝜃|𝜸| + 𝜸

2
, 𝜸̃− = 𝜸+ − 𝜸 (36)(39)   

where the constant 𝜃 = 3 . The reconstructionFor keeping the sum of weights to 1, 𝜸̃±  and new value on point (𝑥, 𝑦)  is 305 

expressed byof 𝜸± can be rescaled as: 306 

 
𝑞(𝑥, 𝑦) =∑(𝜔𝑖

+ −𝜔𝑖
−)𝑝𝑖(𝑥, 𝑦)

𝑠

𝑖=1

𝜎± =∑𝛾̃𝑖
±

𝑠

𝑖=1

 (37)(40)   

The nonlinear weights 𝜔𝑖 is large when stencil 𝑖 is smooth on target cell and if stencil 𝑖 is discontinuous, 𝜔𝑖 should be a small 307 

value.  and 308 

 
𝛾𝑖
± =

𝛾̃𝑖
±

𝜎±
 𝑖 = 1,2,… , 𝑠 (41)   
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where 𝛾̃𝑖
± is the i-th element of 𝜸̃±, 𝛾𝑖

± is the 𝑖-th element of 𝜸±. 309 

The WENO scheme adaptively assigns nonlinear weights 𝜔𝑖 , (𝑖 = 1,2,… , 𝑠)  to each candidate stencil to suppress 310 

unphysical oscillations during high-order reconstruction. Essentially, it gives greater weight to stencils identified as smooth 311 

over the local cell, while suppressing the influence of those containing discontinuities by assigning them smaller weights. 312 

Several nonlinear weighting schemes have been developed to meet these criteria, including WENO-JS (Jiang and Shu, 1996), 313 

WENO-Z (Borges et al., 2008), WENO-Z+ (Acker et al., 2016), WENO-Z+M (Luo and Wu, 2021), among others. 314 

In this work, we employ the WENO-Z formulation as our baseline scheme. While most existing WENO schemes were 315 

originally developed for one-dimensional problems, we propose a two-dimensional extension of WENO-Z through 316 

modification of τ, a crucial coefficient that governs the scheme's higher-order accuracy properties.  317 

For stencil 𝑖 the nonlinear weight is given as 318 

 
𝜔𝑖
± =

𝛼𝑖
±

∑ 𝛼𝑖
±𝑠

𝑖=1

 

 

(38)(42)   

 𝛼𝑖
± = 𝛾𝑖

± (1 +
𝜏

𝛽𝑖 + 𝜀
) 

 
(39)(43)   

 
𝜏 =

2

(𝑠 − 1)𝑠
∑ ∑ |𝛽𝜓 − 𝛽𝜂|

𝑠

𝜓=𝜂+1

𝑠−1

𝜂=1

 

 

(40)(44)   

where 𝜀 = 10−14 is introduced to prevent division by zero. The smooth indicators 𝛽𝑖 measure how smoothquantify the 319 

smoothness of reconstruction functions are inwithin the target cell; we use. We employ a similar scheme asformulation 320 

analogous to that described in Zhu and Shu (2019): 321 

,  322 

As mentioned in Eq.(24), all cells participating in reconstruction within HOPE's computational space can be treated as 323 

identical unit squares with ∆𝑥̂ = ∆𝑦̂ = 1. Thus, the smooth indicator for sub-stencil 𝑖 is expressed as: 324 

 
𝛽𝑗 =∑∬

𝜕𝜁

𝜕𝑥𝜁1𝜕𝑦𝜁2
𝑝𝑗(𝑥, 𝑦)𝑑𝑥𝑑𝑦

𝛺

𝑚

𝜁=1

𝛽𝑖 =∑∬[
𝜕𝜁

𝜕𝑥̂𝜁1𝜕𝑦̂𝜁2
𝑝𝑖(𝑥, 𝑦̂)]

2

𝑑𝑥̂𝑑𝑦̂

𝛺

𝑙

𝜁=1

 (41)(45)   

where 𝜁1 + 𝜁2 = 𝜁 and 𝜁 > 0, 𝜁1, 𝜁2 ∈ [0, 𝑛]., and 𝑙 is the sub-stencil width. 325 

The reconstruction value on point (𝑥̂, 𝑦̂) is expressed by: 326 

 
𝑞(𝑥̂, 𝑦̂) =∑(𝜎+𝜔𝑖

+ − 𝜎−𝜔𝑖
−)𝑝𝑖(𝑥̂, 𝑦̂)

𝑠

𝑖=1

 (46)   

3.3 Treatment of the Panel Boundaries 327 

The cubed sphere grid comprises eight12 panel boundaries, and the flux across the interface between any two panels 328 

must be computed at the quadrature points situated on the edges of the boundary cells, as depicted in Figure 7 (a). However, 329 
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a challenge arises because the coordinates across these panel boundaries are discontinuous. Given that the TPP reconstruction 330 

necessitates a square stencil, the values of the cells outside the domain (referred to as ghost cells) must be computed through 331 

interpolation within the adjacent panel, as illustrated in Figure 7 (b). While Ullrich et al. (2010) proposed a one-sidesided 332 

interpolation scheme, but in our test, we foundtesting with the HOPE model revealed that using a similar one-sided ghost cell 333 

interpolation approach around panel boundaries leads toresulted in instability when the scheme exceeded 7th order of accuracy 334 

exceeds. To address this limitation, we redesigned the 7th orderghost cell interpolation scheme to incorporate information 335 

from both panels adjacent to the boundary. This modified approach ensures stable integration even for very high-order 336 

schemes, as validated in tests up to 13th-order accuracy. 337 

(a) 

Panel 4 Panel 1

 (b)  (c)  338 

Figure 7 Points and cells close to panel boundary. (a) Flux points (red points) on the interface between Panel 1 and Panel 4, the 339 

flux across each panel at these points are determined by Riemann solver, which merges the reconstruction outcomes from both 340 

panels into a single flux value; (b) Ghost cells (shaded cells) out of Panel 4 boundary, with green points representing the GQPs in 341 

these cells; (c) Cells requirement for 5th order ghost cell interpolation stencil, red points represent the GQPs located in the ghost 342 

cell on Panel 4, the blue shaded region represents the TPP reconstruction stencil (on Panel 1) to interpolate these red GQPs. 343 

3.3.1 Ghost Cell Interpolation 344 

To achieve arbitrary high-order accuracy, we propose a ghost cell interpolation scheme that incorporates information 345 

from both sides of the panel boundary. Since the ghost cell values are inherently unknown prior to interpolation, our approach 346 

involves an initial estimation through an iterative process. Specifically, the method iteratively performs ghost cell interpolation 347 

until the increments of the cell values converge to within a specified tolerance. 348 

Through mathematical analysis (detailed in the Appendix), we demonstrate that this iterative process can be expressed 349 

as a linear mapping, thereby eliminating the need for actual iterations. However, direct computation of the mapping matrix 350 

requires inversion of a large matrix, which poses significant computational and memory challenges. To address this, we 351 

implement the iterative interpolation process using PyTorch and leverage its automatic differentiation capability to efficiently 352 

obtain the interpolation matrix. 353 

The complete methodology, as derived in the Appendix, proceeds as follows: 354 
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1. Initialization: All ghost cell values are initialized to zero (denoted as 𝑔(0)𝒈(0) =  0, where the superscript indicates the 355 

iteration number). 356 

2. Interpolation: The Gaussian quadrature points (GQPs) in the ghost cells are interpolated using the Taylor polynomial 357 

preservingTensor Product Polynomial (TPP) stencil. For instance, considering two adjacent panels (Figure 7(a)), any 358 

out-domain cell in Panel 4 (shaded cell in Figure 7(b)) contains GQPs that physically reside in Panel 1. These GQPs are 359 

interpolated using the TPP stencil shown in Figure 7(c), which incorporates relevant ghost cells from Panel 1. 360 

3. Update and convergence check: After interpolating all GQPs, the ghost cell values are updated via Gaussian quadrature 361 

(Eq. (22)), yielding 𝒈(1). The L2-norm residual 𝑟(𝑘) = ‖𝒈(𝑘+1) − 𝒈(𝑘)‖
2
 is then computed. Steps 2-3 repeat until 𝑟(𝑘) <362 

𝜖, where 𝜖 = 1. 𝑒−14 for double precision and 𝜖 = 1. 𝑒−5 for single precision. In practice, convergence typically occurs 363 

within 10 iterations, so we fix the iteration count at 10 for consistency. 364 

This process establishes a linear mapping 𝐺𝒢: 𝒒 → 𝒈 from known cell values to ghost cell values. As proven in Eq.(A.12) 365 

(Appendix), the mapping's linearity implies that 𝐺𝒢 =
𝜕𝒈

𝜕𝒒
  forms a matrix, which we efficiently compute using PyTorch's 366 

autograd functionality. This approach avoids explicit matrix inversion while maintaining numerical precision. 367 

It is important to note that overlapping GQPs occur at the corner positions of the cubed-sphere grid, as illustrated by the 368 

magenta points in Figure 2(b). These points lie on the interface shared by adjacent panels (e.g., Panel 1 and Panel 5). 369 

Consequently, during ghost value interpolation, two distinct interpolated values are obtained at these overlapping points – one 370 

from each adjoining panel. The final interpolated value is computed as the average of these two values. Since the interpolation 371 

performed on each individual panel is high-order, the approximation order is preserved when taking this average. 372 

𝒢 is a sparse matrix containing many zero entries. To avoid unnecessary memory costs, we adopt the Compressed Sparse 373 

Row (CSR) format for storing 𝒢 . Furthermore，the size of 𝒢  is extremely large，making direct application 374 

of 𝑡𝑜𝑟𝑐ℎ. 𝑎𝑢𝑡𝑜𝑔𝑟𝑎𝑑. 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙. 𝑗𝑎𝑐𝑜𝑏𝑖𝑎𝑛 to generate 𝒢 computationally infeasible. Our implementation for generating 375 

ghost cell interpolation matrix achieves significant acceleration and substantially reduces VRAM demand compared to 376 

PyTorch's native “𝑡𝑜𝑟𝑐ℎ. 𝑎𝑢𝑡𝑜𝑔𝑟𝑎𝑑. 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙. 𝑗𝑎𝑐𝑜𝑏𝑖𝑎𝑛” function. The key optimizations are: 377 

1. Parallel Multi-Row Computation: Utilizing “𝑡𝑜𝑟𝑐ℎ. 𝑣𝑚𝑎𝑝 ” to encapsulate “𝑡𝑜𝑟𝑐ℎ. 𝑓𝑢𝑛𝑐. 𝑣𝑗𝑝 ”, enabling simultaneous 378 

computation of multiple matrix rows. 379 

2. CSR Compression & Incremental Disk Storage: 380 

a) Employing Compressed Sparse Row (CSR) format for matrix representation. 381 

b) Implementing incremental disk storage, where computed data batches are immediately written to disk after 382 

processing, avoiding prolonged VRAM retention. 383 

3. Tunable Batch Processing: Adjusting the number of rows processed per iteration maximizes GPU utilization while 384 

respecting VRAM constraints (e.g., 24GB on NVIDIA RTX 3090). 385 
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It should be note that the model grid does not change during simulation, the ghost interpolation matrix 𝒢 needs to be 386 

calculated only once in initialization progress. 387 

3.3.2 Fields Conversion Between Panels 388 

Due to the differing coordinate systems across panels, field variables must be appropriately transformed when 389 

transferring information between adjacent panels. To illustrate this process, we consider the interface between Panel 1 and 390 

Panel 4, as depicted in Figure 2(a) and Figure 7(a). Although flux points are shared between the two panels, their coordinate 391 

representations are discontinuous across the interface. 392 

To ensure consistency, two key transformations are required: 393 

1. Metric reset for mass variables: The mass-related prognostic quantities must be recomputed in the target panel's 394 

coordinate system to maintain metric consistency. 395 

2. Wind vector transformation: Velocity components (or other vector quantities) must be converted from the source 396 

panel's local coordinate frame to that of the target panel. 397 

This coordinate conversion ensures proper continuity and physical consistency when interpolating or exchanging data 398 

across panel boundaries. 399 

Suppose 𝒒1 = [(√𝐺𝜙)1, (√𝐺𝜙𝑢)1, (√𝐺𝜙𝑣)1]
𝑇
  and 𝒒4 = [(√𝐺𝜙)4, (√𝐺𝜙𝑢)4, (√𝐺𝜙𝑣)4]

𝑇
   represent the fields on 400 

panel 1 and 4. The mass field conversion from panel 4 to panel 1 is expressed by 401 

 
(√𝐺𝜙)

4

1
=
√𝐺4

√𝐺1
(√𝐺𝜙)

1
 (42)(47)   

the subscript represents the target panel and the superscript stands for source panel. 402 

The transformation of momentum vectors between panels is performed in two sequential steps to maintain proper tensor 403 

consistency. The contravariant momentum components in Panel 1 are first projected onto the global spherical coordinate 404 

system using the transformation matrix 𝐽, as defined in Eq.(10). The resulting spherical momentum components are then 405 

transformed into the contravariant representation specific to Panel 4, ensuring compatibility with the target panel's local 406 

coordinate system. 407 

 
[
(√𝐺𝜙𝑢𝑠)1

(√𝐺𝜙𝑣𝑠)1

] = 𝐽1 [
(√𝐺𝜙𝑢)

1

(√𝐺𝜙𝑣)
1

] (43)(48)   

 
[
(√𝐺𝜙𝑢)

4

(√𝐺𝜙𝑣)
4

] = 𝐽4
−1√𝐺4

√𝐺1
[
(√𝐺𝜙𝑢𝑠)1

(√𝐺𝜙𝑣𝑠)1

] (44)(49)   

where 𝐽1 is the 𝐽 matrix on panel 1, 𝐽4
−1 is the inverse matrix of 𝐽 on panel 4,. (𝑢𝑠, 𝑣𝑠) are zonal wind and meridional wind, 408 

(𝑢, 𝑣) are contravariant wind components. Since the vector conversion is linear process, Eq.(48) and Eq.(49) can be merged 409 
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into following equation 410 

 
[
(√𝐺𝜙𝑢)

4

(√𝐺𝜙𝑣)
4

] = 𝐶 [
(√𝐺𝜙𝑢)

1

(√𝐺𝜙𝑣)
1

] (45)(50)   

where matrix 𝐶 =
√𝐺4

√𝐺1
𝐽4
−1𝐽1. 411 

The mass and vector are also need to be converted on GQPs in the same manner. 412 

3.4 Riemann Solver 413 

Following spatial reconstruction, discontinuous solutions arise on either side of each flux point location, since. Since 414 

the majority of atmospheric flow speeds correspond to small Mach numbers, we adopt the Low Mach number Approximate 415 

Riemann Solver (Chen et al., 2013) as Riemann solverand AUSM+-up (Liou, 2006; Ullrich et al., 2010) as Riemann solvers 416 

to determine the flux at the edge quadrature points (EQPs). 417 

3.4.1 Low Mach number Approximate Riemann Solver (LMARS) 418 

Spatial reconstruction gives the left and right state vector, 419 

 

𝒒𝐿 =

[
 
 
 (√𝐺𝜙)𝐿

(√𝐺𝜙𝑢)
𝐿

(√𝐺𝜙𝑣)
𝐿]
 
 
 

, 𝒒𝑅 =

[
 
 
 (√𝐺𝜙)𝑅

(√𝐺𝜙𝑢)
𝑅

(√𝐺𝜙𝑣)
𝑅]
 
 
 

 
(46)(51)   

First of all, we convert the contravariant wind 𝑢 to physical speed 𝑢⊥ that is perpendicular to the cell edge. 420 

 𝑢⊥ =
𝑢

√𝐺𝑖𝑖
, 𝑖 = {

1, 𝑥 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛
2, 𝑦 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛

 (47)(52)   

For example, in 𝑥 direction, 𝑢⊥ =
𝑢

√𝐺11
, and there’s no summation over 𝑖 in Eq.(52). 421 

The wind speed 𝑚∗ and geopotential height 𝜙 are calculated by 422 

 
𝑚∗ =

1

2
(𝑢𝐿

⊥ + 𝑢𝑅
⊥ −

𝜙𝑅 − 𝜙𝐿
𝑐

) (48)(53)   

 
𝜙 =

1

2
[𝜙𝐿 + 𝜙𝑅 − 𝑐(𝑢𝑅

⊥ − 𝑢𝐿
⊥)] (49)(54)   

 𝑐 =
𝑐𝐿 + 𝑐𝑅
2

 (50)(55)   

 𝑐𝐿 = √𝜙𝐿 , 𝑐𝑅 = √𝜙𝑅 
(51)(56)   

𝑐 is the phase speed of external gravity wave, the subscript 𝐿, 𝑅 represent the left and right side of cell edge. 423 

 Once 𝑚∗ is determined, we convert it back to contravariant speed by 424 

 𝑚 = 𝑚∗√𝐺𝑖𝑖 (52)(57)   

We define the pressure-driven flux as 425 
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𝑃 =

1

2
√𝐺𝜙𝑡

2 (58)   

The flux across the cell edge is then given by 426 

 
𝑭 =

1

2
[𝑚(𝒒𝐿 + 𝒒𝑅) − 𝑠𝑖𝑔𝑛(𝑚)(𝒒𝑅 − 𝒒𝐿)]𝑚[(𝒒𝐿 + 𝒒𝑅) − 𝑠𝑖𝑔𝑛(𝑚)(𝒒𝑅 − 𝒒𝐿)] + 𝑷 (53)(59)   

 

𝑷 =

(

 
 

0
1

2
√𝐺𝐺1𝑖𝜙𝑡

2

1

2
√𝐺𝐺2𝑖𝜙𝑡

2

)

 
 
,(

0
𝐺1𝑖𝑃
𝐺2𝑖𝑃

) , 𝑖 = {
1, 𝑥 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛
2, 𝑦 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛

 

(54)(60)   

For calculation of 𝑯𝑮 (the flux in y direction) the method is similar. 427 

3.4.2 Advection Upstream Splitting Method for All Speeds (AUSM+-up) 428 

The differences between AUSM+-up and LMARS lie in the method of determining the wind speed 𝑚∗ and pressure-429 

driven flux 𝑃. In AUSM+-up 430 

 𝑚∗ = 𝑐𝑀 
(61)   

where 𝑐 denotes the gravity phase speed defined in Eq.(55). Mach number 𝑀 is expressed as 431 

 
𝑀 =ℳ(4)

+ (𝑀𝐿) +ℳ(4)
− (𝑀𝑅) − 𝐾𝑝max(1 − 𝜎𝑀̅

2, 0)
𝑃𝑅 − 𝑃𝐿
𝑐2𝜙

 (62)   

where 𝑀𝐿 =
𝑢𝐿
⊥

𝑐
, 𝑀𝑅 =

𝑢𝑅
⊥

𝑐
, 𝑀̅2 =

(𝑢𝐿
⊥)

2
+(𝑢𝑅

⊥)
2
 

2𝑐2
, and 432 

 
ℳ(4)

± (𝑀) = {

1

2
(𝑀 ± |𝑀|), |𝑀| ≥ 1

ℳ(2)
± (𝑀)[1 ∓ 16𝛽ℳ(2)

∓ (𝑀)], |𝑀| < 1
 

(63)   

 
ℳ(2)

± (𝑀) = ±
1

4
(𝑀 ± 1)2 (64)   

The pressure-driven flux is expressed as 433 

 𝑃 = 𝒫(5)
+ (𝑀𝐿)𝑃𝐿 +𝒫(5)

− (𝑀𝑅)𝑃𝑅 +−2𝐾𝑢𝒫(5)
+ (𝑀𝐿)𝒫(5)

− (𝑀𝑅)𝜙𝑐(𝑢𝑅
⊥ − 𝑢𝐿

⊥) 
(65)   

where 𝑃𝐿 =
1

2
𝜙𝐿
2, 𝑃𝑅 =

1

2
𝜙𝑅
2,  and 434 

 
𝒫(5)
± = {

1

2
(1 ± 𝑠𝑖𝑔𝑛(𝑀)), |𝑀| ≥ 1

ℳ(2)
± (𝑀)[(±2 −𝑀) ∓ 16𝛼𝑀ℳ(2)

∓ (𝑀)], |𝑀| < 1
 

(66)   

The mathematical meaning of 𝑠𝑖𝑔𝑛(𝑀) (returning -1, 0, or 1 based on the sign of M) is standard. The coefficients take the 435 

values: 𝜎 = 1, 𝛼 =
3

16
, 𝛽 =

1

8
, 𝐾𝑝 =

1

4
, 𝐾𝑢 =

3

4
. 436 

Once 𝑚∗ and 𝑃 are computed, the flux across the cell edge can be calculated using Eqs.(57) to (60). 437 

3.5 Temporal Integration 438 

We use the explicit Runge-Kutta (RK) as time marching scheme, Wicker and Skamarock (2002) described a 3rd order 439 
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RK with three stages, for (achieves third-order accuracy exclusively when applied to linear problems). For the prognostic 440 

fields 𝒒, the integration step from time slot 𝑛 to 𝑛 + 1: 441 

 
𝒒∗ = 𝒒𝑛 +

∆𝑡

3
(
𝜕𝒒𝑛

𝜕𝑡
) (55)(67)   

 
𝒒∗∗ = 𝒒∗ +

∆𝑡

2
(
𝜕𝒒∗

𝜕𝑡
) (56)(68)   

 
𝒒𝑛+1 = 𝒒𝑛 + ∆𝑡 (

𝜕𝒒∗∗

𝜕𝑡
) (57)(69)   

where ∆𝑡  is the time step, and temporal tendency terms 
𝜕𝒒

𝜕𝑡
  can be obtain by Eqs.(15), and (16).. In our numerical 442 

experiments, the choice of different time marching schemes influenced only the integration stability; it had no significant 443 

impact on the simulation norm errors, non-oscillatory property, or conservation property. 444 

4. High Performance Implementation and Automatic Differentiation 445 

The spatial operator and temporal integration of HOPE can be easily implemented using PyTorch. Specifically, the spatial 446 

reconstruction given by Eq.(32) is analogous toimplemented as a convolution operation, while the Gaussian quadrature can 447 

be efficiently expressed as a matrix-vector multiplication. Both of these operations are highly optimized for execution on 448 

GPUs, ensuring superior performance. Furthermore, as a versatile platform for AI development, PyTorch offers automatic 449 

differentiation capabilities for all the aforementioned functions, streamlining the implementation and enabling efficient 450 

gradient computation. Leveraging PyTorch's highly optimized built-in functions for both convolution and quadrature 451 

operations ensures superior performance on GPUs. 452 

Furthermore, PyTorch's role as a versatile AI development platform provides automatic differentiation capabilities across 453 

the entire computation graph. This streamlines implementation and enables efficient gradient computation for all components. 454 

For the reconstruction implementation. Suppose the cubed sphere grid comprises 𝑛𝑐 cells in 𝑥-direction within each 455 

panel, including ghost cells. The panel number is 𝑛𝑝, and the shallow water equation involves 𝑛𝑣 prognostic variables per 456 

cell, we write the cell state tensor 𝒒 with the shape (𝑛𝑣𝑛𝑝, 1, 𝑛𝑐 , 𝑛𝑐)(𝑛𝑣, 𝑛𝑝, 1, 𝑛𝑐 , 𝑛𝑐). The TPP reconstruction weight tensor 457 

𝑹 has shape (𝑛𝑝𝑜𝑐, 1, 𝑠𝑤 , 𝑠𝑤), where 𝑛𝑝𝑜𝑐 is the number of points required to be interpolated within each cell (including EQP 458 

and CQP), 𝑠𝑤 denotes the stencil width. (same as the stencil width represented by 𝑛 in Section 3.1). The reconstruction can 459 

be executed by a simple command (pseudo-code):  460 

 𝒒𝑟𝑒𝑐 = 𝑡𝑜𝑟𝑐ℎ. 𝑛𝑛. 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙. 𝑐𝑜𝑛𝑣2𝑑(𝒒,𝑹)(𝒒. 𝑣𝑖𝑒𝑤(𝑛𝑣𝑛𝑝, 1, 𝑛𝑐 , 𝑛𝑐), 𝑹). 𝑣𝑖𝑒𝑤(𝑛𝑣, 𝑛𝑝, 𝑛𝑝𝑜𝑐 , 𝑛𝑐 , 𝑛𝑐) (58)(70)   

where the shape of 𝒒𝑟𝑒𝑐 is (𝑛𝑣𝑛𝑝, 𝑛𝑝𝑜𝑐, 𝑛𝑐 , 𝑛𝑐)(𝑛𝑣, 𝑛𝑝, 𝑛𝑝𝑜𝑐, 𝑛𝑐 , 𝑛𝑐). 461 

ForWe exclusively demonstrate the flux computation procedure at cell edges as an illustrative example, where Gaussian 462 

quadrature implementation. Suppose the is employed to obtain edge-averaged fluxes. The analogous procedure applies to 463 

source term integration at CQPs. The edge state tensor 𝒒𝑒 with the shape (𝑛𝑣, 𝑛𝑝, 𝑛𝑐 , 𝑛𝑐 , 𝑛𝑝𝑜𝑒), where , corresponding to the 464 
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EQPs along𝑛𝑝𝑜𝑒 is the number of quadrature points on each edge. Thecell edge Gaussian quadrature weight tensor 𝒈𝑒 has 465 

shape (𝑛𝑝𝑜𝑒). The quadrature, is subsequently expressed byas: 466 

 𝒒𝑔 = 𝑡𝑜𝑟𝑐ℎ.𝑚𝑎𝑡𝑚𝑢𝑙(𝒒𝑒 , 𝒈𝑒)𝒒𝑒 = 𝒒𝑟𝑒𝑐(… , 𝑝𝑒𝑠: 𝑝𝑒𝑒, : , : ) (59)(71)   

where subscript 𝑒 represents edges on cell including 𝐿(𝑙𝑒𝑓𝑡), 𝑅(𝑟𝑖𝑔ℎ𝑡), 𝐵(𝑏𝑜𝑡𝑡𝑜𝑚), 𝑇(𝑡𝑜𝑝). 𝑝𝑒𝑠, 𝑝𝑒𝑒 are start and end point 467 

indices on edge 𝑒 . The shape of 𝒒𝑒  (including 𝒒𝐿 , 𝒒𝑅 , 𝒒𝐵 , 𝒒𝑇 ) is  (𝑛𝑣, 𝑛𝑝, 𝑛𝑝𝑜𝑒 , 𝑛𝑐 , 𝑛𝑐) . 𝑛𝑝𝑜𝑒  where the shape of 𝒒𝑔  is 468 

(𝑛𝑣, 𝑛𝑝, 𝑛𝑐 , 𝑛𝑐) 469 

denotes the number of edge quadrature points (EQPs). This value is computed as 𝑛𝑝𝑜𝑒 = 𝑝𝑒𝑒 − 𝑝𝑒𝑠  in PyTorch 470 

implementations, whereas in Fortran it is calculated as 𝑛𝑝𝑜𝑒 = 𝑝𝑒𝑒 − 𝑝𝑒𝑠 + 1, reflecting the difference in array indexing 471 

conventions between the two languages. 472 

After spatial reconstruction, the resulting data is utilized in the Riemann solver for EQPs and for source term computation 473 

on CQPs.  Subsequently, integration is performed on both EQPs and CQPs to calculate the net flux and the cell-averaged 474 

source term tendency. However, thereThe cell-edge flux tensor 𝑭 with dimensions  (𝑛𝑣 , 𝑛𝑝, 𝑛𝑝𝑜𝑒 , 𝑛𝑐 , 𝑛𝑐)   is obtained after the 475 

Riemann solver. 476 

There is a dimensionality mismatch between the reconstructed points, i.e. 𝑛𝑝𝑜𝑐 is the first dimensionflux tensor and 477 

weight tensor during using matrix multiplication. For the Gaussian quadrature implementation, consider an edge Gaussian 478 

quadrature weight tensor 𝒈𝑒  with shape (𝑛𝑝𝑜𝑒) , if an edge flux tensor 𝑭̃  has shape (𝑛𝑣, 𝑛𝑝, 𝑛𝑐 , 𝑛𝑐 , 𝑛𝑝𝑜𝑒) , the Gaussian 479 

quadrature can be expressed by: 480 

 𝑭𝑔 = 𝑡𝑜𝑟𝑐ℎ.𝑚𝑎𝑡𝑚𝑢𝑙(𝑭̃, 𝒈𝑒) (72)   

where the shape of 𝒒𝑟𝑒𝑐, while 𝑛𝑝𝑜𝑒𝑭𝑔(𝑛𝑣, 𝑛𝑝, 𝑛𝑐 , 𝑛𝑐) is the average flux on edge. In this operation, 𝑛𝑝𝑜𝑒 must occupy the 481 

last dimension of 𝒒𝑒. 𝑭̃，to permit “𝑡𝑜𝑟𝑐ℎ.𝑚𝑎𝑡𝑚𝑢𝑙” execution. We note, however, that in the flux tensor 𝑭 obtained from 482 

the Riemann solver, 𝑛𝑝𝑜𝑒corresponds to the third dimension, direct matrix multiplication is therefore not feasible. 483 

To address this dimensionality issue, two methods are available. The first method involves rearranging the 𝑛𝑝𝑜𝑐 484 

dimension to the last position using the “torch.tensor.permute𝑡𝑜𝑟𝑐ℎ. 𝑡𝑒𝑛𝑠𝑜𝑟. 𝑝𝑒𝑟𝑚𝑢𝑡𝑒” operation in PyTorch, Thisthis allows 485 

Gaussian integrations to be naturally implemented through the "torch.matmul𝑡𝑜𝑟𝑐ℎ.𝑚𝑎𝑡𝑚𝑢𝑙" operation. The second method, 486 

which avoids the need for the "permute" operation, maintains the original dimension sequence. Instead, Gaussian integrations 487 

are performed using the "torch.einsum𝑡𝑜𝑟𝑐ℎ. 𝑒𝑖𝑛𝑠𝑢𝑚" function. This function sums the product of the elements of the input 488 

arrays along dimensions specified using a notation based on the Einstein summation convention. 489 

 𝒒𝑔𝑭𝑔 = 𝑡𝑜𝑟𝑐ℎ. einsum(′𝑣𝑛𝑝𝑖𝑗, 𝑝 → 𝑣𝑛𝑖𝑗′, 𝒒𝑒 , 𝒈𝑒)(′𝑣𝑛𝑝𝑖𝑗, 𝑝 → 𝑣𝑛𝑖𝑗′, 𝑭, 𝒈𝑒) (60)(73)   

We have conducted performance tests comparing the two methods, and the results indicate that the second method is 490 

approximately 5% faster than the first. Specifically, the first method took 649 seconds, while the second method took 616 491 

seconds. The test was set as a one-day steady state geostrophic flow (with details provided in section 5.2) simulation at a 492 

resolution of 0.1°,C900 (∆𝑥 = ∆𝑦 = 0.1°) , using 3rd order accuracy reconstruction stencil. The time step was 30 seconds, 493 
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and the default data type used was “torch.float32𝑡𝑜𝑟𝑐ℎ. 𝑓𝑙𝑜𝑎𝑡32” (single precision). 494 

The Riemann solver implementation on flux points is way easier, only needs to call “torch.sign𝑡𝑜𝑟𝑐ℎ. 𝑠𝑖𝑔𝑛” for Eq.(59), 495 

while all other operations can be executed using basic arithmetic: addition, subtraction, multiplication, and division. During 496 

a Runge-Kutta sub-step, there are no dependencies, and neither "for" loops nor "if" statements are required in the HOPE 497 

kernel code. This algorithm fully leverages the capabilities of the GPU. 498 

5. Numerical Experiments 499 

The HOPE dynamical core is evaluated using the standard test cases (Test 1, 2, 5, and 6) for the spherical shallow water 500 

model as described in Williamson et al. (1992), along with the perturbed jet flow case proposed by Galewsky et al. (2004). 501 

Additionally, a dam-break experiment is designed to demonstrate the HOPE model's capability in capturing shock waves. 502 

In our experiments, the grid resolutions are denoted by the count of cells along one dimension on each panel of the cubed 503 

sphere; for instance, C90 signifies that each panel is subdivided into a 90 × 90 grid, corresponding to a grid interval of ∆𝑥 =504 

∆𝑦 = 1°. 505 

We measure the conservation errors by defining the normalized error 𝜖𝑟 of the variable 𝜂 as 𝜖𝑟 =
𝐼𝑔(𝜂

𝑛)−𝐼𝑔(𝜂
0)

𝐼𝑔(𝜂
0)

, where 𝜂0 506 

and 𝜂𝑛 stand for 𝜂 value at initial time and time slot 𝑛, respectively. The global integral is defined as: 507 

 
𝐼(𝜂) = ∑∑∑√𝐺𝑖,𝑗,𝑝𝜂𝑖,𝑗,𝑝

𝑛𝑐

𝑖=1

𝑛𝑐

𝑗=1

𝑛𝑝

𝑝=1

 

(74)   

where 𝜂𝑖,𝑗,𝑝 represents the average value of 𝜂 in cell (𝑖, 𝑗, 𝑝) 508 

We use three kinds of norm errors to measure the simulation errors, 509 

 
𝐿1 =

𝐼[𝜙(𝑖, 𝑗, 𝑝) − 𝜙𝑟𝑒𝑓(𝑖, 𝑗, 𝑝)]

𝐼[𝜙𝑟𝑒𝑓(𝑖, 𝑗, 𝑝)]
 

(75)   

 

𝐿2 =
√
𝐼 [(𝜙(𝑖, 𝑗, 𝑝) − 𝜙𝑟𝑒𝑓(𝑖, 𝑗, 𝑝))

2
]

𝐼[𝜙𝑟𝑒𝑓
2 (𝑥, 𝑦, 𝑝)]

 

(76)   

 
𝐿∞ =

max|𝜙(𝑖, 𝑗, 𝑝) − 𝜙𝑟𝑒𝑓(𝑖, 𝑗, 𝑝)|

max|𝜙𝑟𝑒𝑓(𝑖, 𝑗, 𝑝)|
 

(77)   

the subscript 𝑟𝑒𝑓 represents reference state. 510 

5.1 Cosine Bell Advection 511 

The Solid Body Rotation Cosine Bell (Case 1 from Williamson (1992)) is commonly employed to assess noise generated 512 

by panel boundaries, as noted by Chen and Xiao (2008), Ullrich et al. (2010). The wind field is given by 513 
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 𝑢𝑠 = 𝑢0(cos𝜃 cos𝛼 + cos 𝜆 sin 𝜃 sin𝛼) (78)   

 𝑣𝑠 = −𝑢0 sin 𝜆 sin 𝛼 (79)   

where 𝑢𝑠, 𝑣𝑠 are zonal wind and meridional wind, earth radius is 𝑎 = 6371220 𝑚, basic flow speed 𝑢0 =
2𝜋𝑎

12∗86400
 𝑚/𝑠. The 514 

initial height is defined as 515 

 
ℎ(𝜆, 𝜃) = {

ℎ0 (1 + cos
𝜋𝑟

𝑅
) , 𝑟 < 𝑅

0, 𝑟 ≥ 𝑅
 

(80)   

where 𝜆, 𝜃 are longitude and latitude. The basic height ℎ0 = 1000 𝑚. The great circle distance between (𝜆, 𝜃) and the initial 516 

center point of cosine bell (𝜆𝑐 , 𝜃𝑐) = (3𝜋/2,0)  is expressed by 𝑟 = 𝑎 acos[sin 𝜃𝑐 sin 𝜃 + cos𝜃𝑐 cos𝜃 cos(𝜆 − 𝜆𝑐)] . The 517 

radius 𝑅 = 𝑎/3. 518 

Figure 8 presents the norm errors for a 12-day simulation at 𝛼 = 0; results for 𝛼 = 𝜋/2 are identical. The temporal 519 

evolution of 𝐿1 and 𝐿2 norm errors does not exhibit a pronounced signature attributable to panel boundaries. In contrast, the 520 

𝐿∞ norm error evolution shows significant sensitivity to panel boundaries, varying considerably with grid resolution and 521 

reconstruction order. When using low resolution and low reconstruction order (TPP3 with C30 grid), oscillations induced by 522 

panel boundaries are relatively weak. However, as the model resolution or reconstruction order increases, the influence of 523 

panel boundaries on the 𝐿∞ norm error manifests as a distinct four-peak pattern, corresponding to the four longitudinally 524 

aligned panel boundaries of the cubed-sphere grid. 525 

 526 

Figure 8 The variation of norm errors during simulation days for the cosine bell advection test case, with direction 527 

parameter 𝛼 = 0. The rows represent reconstruction schemes TPP3, TPP5 and TPP7, the columns stand for grid C30, C45, 528 
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C90 and C180. 529 

Figure 9 shows the 12-day simulation norm errors for 𝛼 = 𝜋/4. In this test configuration, the cosine bell initially moves 530 

alone the interface between Panel 1 and Panel 5, and subsequently moves along the interface between Panel 3 and Panel 6. 531 

The temporal evolution of 𝐿1 and 𝐿2 norm errors display two gentle peaks, corresponding to the errors generated as the cosine 532 

bell crosses these panel interfaces. Similar to Figure 8, the 𝐿∞ norm error progressively exceeds the 𝐿1 and 𝐿2 norm errors as 533 

grid resolution and reconstruction order increase. 534 

 535 

Figure 9 The variation of norm errors during simulation days for the cosine bell advection test case, with direction 536 

parameter 𝛼 = 𝜋/4 . The rows represent reconstruction schemes TPP3, TPP5 and TPP7, the columns stand for grid C30, 537 

C45, C90 and C180. 538 

Because the Cosine Bell field lacks infinite continuity, the convergence rate of the norm errors cannot exceed second 539 

order in our tests, regardless of the reconstruction order employed. This observation aligns with the key point emphasized in 540 

our paper: high-order numerical methods achieve their design accuracy only when the flow field is sufficiently smooth. 541 

Discontinuities in the flow field violate the fundamental premise of polynomial reconstruction (as discontinuities impair the 542 

continuity of higher derivatives, leading to non-convergence of the Taylor series). This inherent sensitivity to smoothness is 543 

precisely the factor causing norm errors to be influenced by cubed-sphere panel boundaries. When using low-order 544 

reconstruction schemes at low resolutions, the Tensor Product Polynomial (TPP) reconstruction employs lower-degree 545 

polynomials and is consequently less sensitive to the smoothness of the flow field. Conversely, high-order TPP reconstruction 546 

requires the flow field to possess higher-order continuity to maintain accuracy; it is thus more sensitive to discontinuities. 547 

Insufficiently smooth flow fields can introduce numerical oscillations with high-order schemes. Therefore, while TPP5 and 548 
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TPP7 yield lower 𝐿∞ norm error magnitudes than TPP3, they exhibit more pronounced oscillations caused by the cubed-549 

sphere panel boundaries. 550 

5.15.2 Steady State Geostrophic Flow 551 

Steady state geostrophic flow is the 2nd case in Williamson et al. (1992), it provided an analytical solution for spherical 552 

shallow water equations, it was wildlywidely used in accuracy test for shallow water models. The analytical solution is a 553 

steady state, which means the initial filed is the exact solution. The initial wind field replicates the formulation given in 554 

Eqs.(78) and (79), while the initial geopotential height is expressed as  555 

 
𝜙 = 𝜙0 − (𝑎Ω𝑢0 +

𝑢0
2

2
) (− cos 𝜆 cos𝜃 sin𝛼 + sin 𝜃 cos𝛼)2 

(61)(81)   

 𝑢𝑠 = 𝑢0(cos𝜃 cos𝛼 + cos 𝜆 sin 𝜃 sin𝛼) (62)   

 𝑣𝑠 = −𝑢0 sin 𝜆 sin 𝛼 (63)   

where 𝜆, 𝜃 are longitude and latitude, 𝜙Ω = 7.292 × 10−5 𝑠−1 is geopotential height,the 𝑢𝑠 , 𝑣𝑠 are zonal wind and meridional 556 

wind, earth radius is 𝑎 = 6371220 𝑚 , earth rotation angular velocity Ω = 7.292 × 10−5 𝑠−1 , basic flow speed 𝑢0 =557 

2𝜋𝑎

12∗86400
 𝑚/𝑠 , basic geopotential height 𝜙0 = 29400 𝑚

2/𝑠2 ,  𝛼 = 0   denotes the rotation angle transcribed between the 558 

physical north pole and the center of the northern panel on the cubed-sphere grid, and gravity acceleration 𝑔 = 9.80616 𝑚/𝑠2. 559 

The conversion between the spherical wind (𝑢𝑠, 𝑣𝑠) and contravariant wind is given by Eq.(9). 560 

We use three kinds of norm errors to measure the simulation errors, 561 

 
𝐿1 =

𝐼[𝜙(𝑖, 𝑗, 𝑝) − 𝜙𝑟𝑒𝑓(𝑖, 𝑗, 𝑝)]

𝐼[𝜙𝑟𝑒𝑓(𝑖, 𝑗, 𝑝)]
 

(64)(1)   

 

𝐿2 =
√
𝐼 [(𝜙(𝑖, 𝑗, 𝑝) − 𝜙𝑟𝑒𝑓(𝑖, 𝑗, 𝑝))

2
]

𝐼[𝜙𝑟𝑒𝑓
2 (𝑥, 𝑦, 𝑝)]

 

(65)(1)   

 
𝐿∞ =

max|𝜙(𝑖, 𝑗, 𝑝) − 𝜙𝑟𝑒𝑓(𝑖, 𝑗, 𝑝)|

max|𝜙𝑟𝑒𝑓(𝑖, 𝑗, 𝑝)|
 

(66)(1)   

 
𝐼(𝜙) = ∑∑∑(√𝐺𝜙)

𝑖𝑗𝑝

𝑛𝑥

𝑖=1

𝑛𝑦

𝑗=1

𝑛𝑝

𝑝=1

 

(67)   

where 𝑛𝑥 , 𝑛𝑦 represent the number cells in 𝑥, 𝑦 directions, and 𝑛𝑝 = 6 is the number of panels on cubed sphere grid. The 562 

metric Jacobian √𝐺 has the same definition as Eq.(8). For example, a C90 grid corresponds 𝑛𝑥 = 𝑛𝑦 = 90. 563 

We simulated the steady state geostrophic flow over one period (12 days) to test the norm errors and corresponds 564 

convergence rate. Since the norm error becomes too small to express by double precision number, all of the experiments were 565 

based on the quadruple precision version of HOPE. Time steps were set to ∆𝑡 = 600, 400, 200, 100, 50 𝑠 for C30, C45, C90, 566 

C180 and C360, respectively. 567 
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As shown in Figure 10, errors near the panel boundaries of the cubed-sphere grid are significantly higher than those in 568 

the central regions, confirming the presence of grid imprinting. Furthermore, we implemented the AUSM-up+ Riemann solver 569 

(consistent with the scheme described in Ullrich et al. (2010)) as an alternative to LMARS. While computationally more 570 

complex, AUSM+-up substantially reduces simulation errors. Comparative analysis of Figure 10 (a) and (b) demonstrates that 571 

the maximum absolute error decreases from 8.792×10⁻⁵ (LMARS) to 2.413×10⁻⁵ (AUSM+-up), while convergence rates 572 

remain unchanged. 573 

 574 

Figure 10 Numerical errors (simulation result minus exact solution) of geopotential height for steady state flow with Riemann 575 

solvers (a) LMARS and (b) AUSM+-up. The reconstruction scheme is TPP5. 576 

Performance benchmarks using HOPE's Fortran implementation on a C90 grid show that simulating 12 days with a 200-577 

second integration time step requires 49.4 seconds for LMARS versus 57.34 seconds for AUSM+-up. This demonstrates that 578 

Riemann solver selection critically impacts simulation outcomes, consistent with the discussions in Ullrich et al. (2010). 579 

Table 1 Norm errors and convergence rates of steady state geostrophic flow at day 12. 580 

TPP3 C30 C45 C90 C180 C360 

𝐿1 error 1.8853E-03 5.6474E-04 7.0960E-05 8.8777E-06 1.1099E-06 

𝐿1 rate 
 

2.9731  2.9925  2.9988  2.9998  

𝐿2 error 2.1484E-03 6.4171E-04 8.0500E-05 1.0069E-05 1.2588E-06 

𝐿2 rate 
 

2.9802  2.9949  2.9991  2.9998  

𝐿∞ error 4.3242E-03 1.2932E-03 1.6201E-04 2.0275E-05 2.5350E-06 

𝐿∞ rate 
 

2.9770  2.9968  2.9983  2.9997  

TPP5 
     

𝐿1 error 3.6122E-06 4.7493E-07 1.4827E-08 4.6322E-10 1.4474E-11 

𝐿1 rate 
 

5.0039  5.0014  5.0004  5.0002  

𝐿2 error 5.2427E-06 6.9169E-07 2.1627E-08 6.7584E-10 2.1119E-11 

𝐿2 rate 
 

4.9954  4.9992  5.0000  5.0001  

𝐿∞ error 1.6810E-05 2.2451E-06 7.0534E-08 2.2070E-09 6.8985E-11 

𝐿∞ rate 
 

4.9652  4.9923  4.9982  4.9996  

TPP7 
     

𝐿1 error 8.1697E-08 4.7967E-09 3.7678E-11 2.9547E-13 2.3125E-15 

𝐿1 rate  6.9922  6.9922  6.9946  6.9974  

𝐿2 error 8.7991E-08 5.1644E-09 4.0507E-11 3.1728E-13 2.4823E-15 

𝐿2 rate 
 

6.9931  6.9943  6.9963  6.9979  
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𝐿∞ error 1.4741E-07 8.6376E-09 6.7814E-11 5.3387E-13 4.1901E-15 

𝐿∞ rate  6.9971  6.9929  6.9889  6.9934  

TPP9 
     

𝐿1 error 7.8909E-10 2.1780E-11 4.3925E-14 8.6359E-17 
 

𝐿1 rate  8.8537  8.9538  8.9905  
 

𝐿2 error 9.5638E-10 2.6409E-11 5.3341E-14 1.0494E-16 
 

𝐿2 rate  8.8526  8.9516  8.9896  
 

𝐿∞ error 2.3946E-09 6.6773E-11 1.3547E-13 2.6644E-16 
 

𝐿∞ rate  8.8285  8.9452  8.9899  
 

TPP11 
     

𝐿1 error 1.1908E-10 1.3799E-12 6.7696E-16 3.3197E-19 
 

𝐿1 rate  10.9943  10.9932  10.9938  
 

𝐿2 error 1.3084E-10 1.5186E-12 7.4489E-16 3.6500E-19 
 

𝐿2 rate  10.9904  10.9934  10.9949  
 

𝐿∞ error 2.4204E-10 2.8579E-12 1.4147E-15 6.9567E-19 
 

𝐿∞ rate  10.9479  10.9803  10.9898  
 

 581 

WENO3      

𝐿1 error 2.6438E-03 7.2239E-04 7.7012E-05 8.9622E-06  

𝐿1 rate  3.1998 3.2296 3.1032  

𝐿2 error 4.0817E-03 9.7196E-04 9.5476E-05 1.0553E-05  

𝐿2 rate  3.5390 3.3477 3.1775  

𝐿∞ error 2.5439E-02 7.7486E-03 9.6110E-04 1.0723E-04  

𝐿∞ rate  2.9319 3.0112 3.1640  

WENO5      

𝐿1 error 3.6191E-06 4.7551E-07 1.4829E-08 4.6322E-10  

𝐿1 rate  5.0056 5.0030 5.0006  

𝐿2 error 5.2659E-06 6.9252E-07 2.1630E-08 6.7585E-10  

𝐿2 rate  5.0033 5.0008 5.0002  

𝐿∞ error 1.6873E-05 2.2466E-06 7.0539E-08 2.2070E-09  

𝐿∞ rate  4.9727 4.9932 4.9983  

In Table 1, we present the geopotential height simulation errors and convergence accuracyrate of different order accuracy 582 

schemes at various resolutions. It is evident that HOPE is capable of achieving the designed accuracies in all tests. When the 583 

resolution exceeds C180, the errors obtained from the 7th, 9th,TPP7, TPP9 and 11th-order precisionTPP11 schemes have 584 

surpassed the limits expressible by double-precision numbers. This demonstrates HOPE's excellent error convergence for 585 

simulating smooth flow fields. It should be noted that high-order accuracy schemes do consume more computational resources. 586 

HOPE has proven the feasibility of ultra-high-order accuracy finite volume methods on cubed sphere grids. However, in 587 

simulating the real atmosphere, a balance between computational efficiency and error must be considered. We believe that 3rd 588 

or 5th order accuracy schemes will be more practical for subsequent developments in baroclinic atmosphere model. 589 

At lower resolutions, the simulation error of WENO3 is significantly higher than that of TPP3. However, as the resolution 590 

increases, the error of WENO3 progressively approaches that of TPP3. Comparing WENO5 and TPP5 results reveals a 591 

marginal increase in norm errors for WENO5, while maintaining 5th-order convergence rates. This confirms WENO5's 592 

capability to preserve high accuracy when simulating smooth flows. 593 
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It should be noted that HOPE achieves extremely small errors in simulating smooth flow fields even on very coarse 594 

resolutions. These errors can be so minute that they fall below the 16 significant digits representable in double precision. 595 

Under these conditions, conducting precision tests using double precision alone fails to accurately capture the true 596 

convergence rate. To obtain correct error measurements and convergence rate, we must employ FP128 (real(16) in Fortran). 597 

However, PyTorch's underlying architecture is built on NVIDIA CUDA, which currently supports only up to FP64 (double 598 

precision). Consequently, the PyTorch implementation cannot provide correct simulation errors when utilizing ultra-high-599 

order schemes. 600 

5.25.3 Zonal Flow over an Isolated Mountain 601 

Zonal flow over an isolated mountain is the 5th case mentioned in Williamson et al. (1992), this case was usually be 602 

implemented to test the topography influence in shallow water models. The initial condition is defined by Eq.(81)~(79), but 603 

ℎ0 = 5960 𝑚, 𝜙0 = ℎ0𝑔, 𝑢0 = 20𝑚/𝑠. The mountain height is expressed as 604 

 ℎ𝑠 = ℎ𝑠0 (1 −
𝑟

𝑅
) (68)(82)   

where ℎ𝑠0 = 2000 𝑚 ; 𝑅 =
𝜋

9
 ; 𝑟 = √min[𝑅2, (𝜆 − 𝜆𝑐)2 + (𝜃 − 𝜃𝑐)2] ,. 𝜆𝑐 , 𝜃𝑐 =

3𝜋

2
, 𝜃𝑐 =

𝜋

6
  are the center longitude and 605 

latitude of the mountain, respectively, we set 𝜆𝑐 =
3𝜋

2
, 𝜃𝑐 =

𝜋

6
.. 606 
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 607 

Figure 11 Simulation TPP5 (with LMARS) simulation result of the isolated mountain wave on C90 grid. The rows stand for 608 

variables: geopotential height, zonal wind, meridional wind and relative vorticity, respectively. The columns represent simulation 609 

day 5, 10, 15. Geopotential height contour from 5050 to 5950 𝑚 with interval 50 𝑚. Zonal wind contour from −30 to 50 𝑚/𝑠 610 

with interval 10 𝑚/𝑠 . Meridional wind contour from −30  to 30 𝑚/𝑠  with interval 10 m/s. Relative vorticity contour from 611 

−3 × 10−5 to 4 × 10−5 𝑠−1 with interval 1 × 10−5 𝑠−1. 612 

HOPE is able to deal with the bottom topography correctly, as shown in Figure 11, all of the simulation result is consistent 613 

with prior researches such as (Nair et al., 2005a; Ullrich et al., 2010; Chen and Xiao, 2008) and so on. Furthermore, as 614 

discussed in Bao et al. (2014), some high order Discontinuous Galerkin (DG) method exhibit non-physical oscillation during 615 

simulating the over mountain flow, the additional viscosity operators are necessary to alleviate this issue. However, HOPE 616 

does not require any explicit viscosity operator to suppress vorticity oscillations, the vorticity fields are smooth all the time 617 

as illustrated in Figure 11 (j), (k), (l). (j), (k), (l). We have tested other schemes as well, including TPP3, TPP7, WENO3, and 618 

WENO5, all of the schemes are able to achieve similar simulation results. 619 
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 620 

Figure 12 Time series of normalized conservation errors for the zonal flow over isolated mountain simulation on the C90 grid 621 

over days 0 to 100. (a) Normalized total energy error. (b) Normalized total potential enstrophy error. (c) Normalized total zonal 622 

angular momentum error. 623 

In the 15-day simulation of zonal flow over an isolated mountain the total energy exhibited a gradual increase over the 624 

integration time, while both the total potential enstrophy and the total zonal angular momentum showed gradual dissipation 625 

as the simulation progressed. The AUSM+-up scheme demonstrated stronger energy dissipation compared to the LMARS 626 

scheme, as illustrated in Figure 12。 627 

5.35.4 Rossby-Haurwitz Wave with 4 Waves 628 

Rossby-Haurwitz (RH) wave is the 6th test case introduced by Williamson et al. (1992), the RH waves are analytic 629 

solution of the spherical nonlinear barotropic vorticity equation, the reference solution is the zonal advection of RH wave 630 

without pattern changing, the angular phase speed is given by 631 

 
𝑐 =

𝑅(𝑅 + 3)𝜔 − 2Ω

(𝑅 + 1)(𝑅 + 2)
 

(69)(83)   

where 𝑅 = 4  is the zonal wavenumber, 𝜔 = 7.848 × 10−6 𝑠−1 ; the earth rotation angular speed Ω = 7.292 × 10−5 𝑠−1 . 632 

Therefore, we have 𝑐 = 29.52 𝑑𝑎𝑦𝑑𝑎𝑦𝑠. The initial condition expressed as 633 

 𝜙 = 𝜙0 + 𝑎
2[𝐴(𝜃) + 𝐵(𝜃) cos𝑅𝜆 + 𝐶(𝜃) cos2𝑅𝜆] (70)(84)   

 𝑢 = 𝑎𝜔 cos𝜃 + 𝑎𝐾 cos𝑅−1 𝜃 (𝑅 sin2 𝜃 − cos2 𝜃) cos𝑅𝜆 (71)(85)   
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 𝑣 = −𝑎𝐾𝑅 cos𝑅−1 𝜃 sin 𝜃 sin𝑅𝜆 (72)(86)   

 
𝐴(𝜃) =

𝜔

2
(2Ω + 𝜔) cos2 𝜃 +

1

4
𝐾2 cos2𝑅 𝜃 [(𝑅 + 1) cos2 𝜃 + 2𝑅2 − 𝑅 − 2 − 2𝑅2 cos−2 𝜃] (73)(87)   

 
𝐵(𝜃) =

2(Ω + 𝜔)𝐾

(𝑅 + 1)(𝑅 + 2)
cos𝑅 𝜃 [𝑅2 + 2𝑅 + 2 − (𝑅 + 1)2 cos2 𝜃] 

(74)(88)   

 
𝐶(𝜃) =

1

4
𝐾2 cos2𝑅 𝜃 [(𝑅 + 1) cos2 𝜃 − 𝑅 − 2] (75)(89)   

where 𝜆, 𝜃 are longitude and latitude, 𝐾 = 𝜔,𝜙0 = 𝑔ℎ0, ℎ0 = 8000 𝑚, and 𝑎 = 6371220 𝑚 is the earth radius. 634 

According to the study by Thuburn and Li (2000), the Rossby-Haurwitz (RH) wave with wavenumber 4 is inherently 635 

dynamically unstable and prone to waveform collapse due to factors. This instability can be triggered by minute perturbations, 636 

such as those arising from grid structure (breaking initial symmetry,), initial condition perturbation, and modelimperfections, 637 

or numerical errors. (e.g., truncation or roundoff). Similar conclusions have been verified in subsequent research. In tests 638 

conducted by Zhou et al. (2020), the TRiSK framework based on the SCVT grid could only sustain the RH wave pattern for 639 

25 days without collapse. In contrast, (Li et al., 2020) successfully maintained the RH wave pattern for 89 days using a similar 640 

algorithm on a latitude-longitude grid. Ullrich et al. (2010) developed the high-order accuracy finite volume model based on 641 

a cubed-sphere grid, which was able to sustain the RH wave for up to 90 days. In the most of our experiments, the ability of 642 

HOPE to maintain the Rossby-Haurwitz (RH) wave significantly improved with increased order of accuracy and grid 643 

resolution. All of the simulation results are based on LMARS in this section. 644 

In the 3rd order accuracyTPP3 simulation, we found that the duration for which the RH wave is maintained increases 645 

with higher grid resolution, as exhibit in Figure 13. When the grid resolution is low (C45, C90), an obvious 646 

dissipation phenomenon can be observed. When the resolution reaches C180, the dissipation is significantly reduced, but the 647 

waveform has completely collapsed by day 90. When the resolution reaches C360, the simulation results are further improved, 648 

with dissipation further reduced, and the RH wave waveform can still barely be maintained on day 90. 649 
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 650 

Figure 13 Geopotential height of Rossby-Haurwitz wave simulated by 3rd order spatial reconstructionTPP3 scheme. The rows 651 

represent grid C45, C90, C180 and C360, the columns stand for simulation day 14, 30, 60, 90. Contours from 8100 to 10500 𝑚 652 

with interval 200 𝑚. 653 

 654 

A 100-day simulation of the Rossby-Haurwitz wave was conducted using a C90 grid (1° resolution). The total energy 655 

simulated with the TPP3, TPP5, TPP7, and TPP9 schemes underwent dissipation to varying degrees. By day 100, the 656 

normalized total energy errors reached −1.49 × 10−3, −1.33 × 10−5, −1.71 × 10−6, −4.20 × 10−7, respectively, indicating 657 

significantly stronger dissipation for the TPP3 scheme compared to the other higher-order schemes Figure 14 (a). Figure 14 658 

(b) presents a scaled view of the energy evolution for TPP5, TPP7, and TPP9, clearly demonstrating that increasing the 659 

reconstruction order progressively reduces energy dissipation. Furthermore, following the RH wave collapse, a significant 660 

drop in total energy was observed for the TPP5 scheme (after approximately 90 days) and the TPP7 scheme (after 661 

approximately 95 days). 662 
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 663 

Figure 14 Time series of normalized conservation errors for the Rossby-Haurwitz wave simulation on the C90 grid over days 0 to 664 

100, with LMARS scheme as Riemann solver. (a) Normalized total energy error for TPP3, TPP5, TPP7 and TPP9. (b) The total 665 

energy normalized error for TPP5, TPP7 and TPP9. (c) Normalized potential enstrophy error for TPP3, TPP5, TPP7 and TPP9. (d) 666 

Normalized total zonal angular momentum error for TPP3, TPP5, TPP7 and TPP9. 667 

 Analysis of the normalized total potential enstrophy error (Figure 14 (c)) and the normalized zonal angular momentum 668 

error (Figure 14 (d)) over time yields conclusions consistent with those for total energy. Specifically, the TPP3 scheme 669 

exhibited substantially higher dissipation than the higher-order schemes, confirming that employing higher-order 670 

reconstruction schemes effectively minimizes dissipation. Notably, significant dissipation surges occurred in these quantities 671 

following the RH wave collapse. 672 
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 673 

Figure 15 Geopotential height of Rossby-Haurwitz wave on C90 grid, the rows represent the spatial reconstruction scheme with 674 

TPP3, TPP5, TPP7 and TPP9 the columns stand for simulation day 30, 60, 90 and 100. Contours from 8100 to 10500 𝑚 with 675 

interval 200 𝑚. 676 

In Figure 15, we compare the impact of order-of-accuracy on the simulation capability of RH waves by fixing the 677 

resolution. By comparing row by row, it can be observed that when the accuracy reaches 5th order or higher, the dissipation 678 

is significantly reduced. Both the 5th orderTPP5 and 7th order accuracyTPP7 simulations show signs of 679 

waveform distortion on day 90, and the waveform completely collapses by day 100. However, when using 9th order 680 

accuracyTPP9 for the simulation, the waveform is well maintained even until day 100. 681 
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 682 

Figure 10 Geopotential height of Rossby-Haurwitz wave on C90 grid, the rows represent the spatial reconstruction scheme with 3rd, 683 

5th, 7th, 9th order, the columns stand for simulation day 30, 60, 90 and 100. Contours from 8100 to 10500 𝑚 with interval 200 𝑚. 684 

 685 

Figure 11Figure 16 presents the simulation results on the 80th day for different resolutions and accuracy reconstruction 686 

schemes. The dissipation decreases as the resolution and accuracyreconstruction order improve. At the C45 resolution, both 687 

the 3rd orderTPP3 and 5th order accuracyTPP5 simulations exhibit significant dissipation. Although the 7th orderTPP7 688 

simulation shows a notable improvement in dissipation, the waveform is severely distorted. The 9th order accuracyTPP9 689 

scheme produces the best simulation results. As the resolution increases, the simulation performance also improves 690 

significantly. When using the C360 resolution, all accuracyTPP schemes yield good simulation results. 691 

 692 
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 693 

Figure 16 Geopotential height of Rossby-Haurwitz wave at simulation day 80. The rows represent spatial reconstruction with 3rd, 694 

5th, 7thTPP3, TPP5, TPP7 and 9th orderTPP9. The columns stand for grid C45, C90, C180 and C360. Contours from 8100  to 695 

10500 𝑚 with interval 200 𝑚. 696 

 697 

Significant differences were observed between the 2D WENO scheme and the TPP schemes in this test. Regardless of 698 

the specific WENO order employed (3, 5, 7, or 9), all WENO variants maintained the Rossby-Haurwitz (RH) wave pattern 699 

for a shorter duration compared to their TPP counterparts of equivalent order. We infer that the nonlinear processes inherent 700 

within the WENO scheme introduce asymmetries that disrupt the computational stencil symmetry, leading to a premature 701 

collapse of the RH wave. 702 

5.45.5 Perturbed Jet Flow 703 

The perturbed jet flow was introduced by Galewsky et al. (2004), this experiment was desired to test the model ability 704 

of simulating the fast and slow motion. the initial field is defined as 705 

 
𝑢(𝜃) = {

𝑢𝑚𝑎𝑥
𝑒𝑛

𝑒
1

(𝜃−𝜃0)(𝜃−𝜃1), 𝜃 ∈ (𝜃0, 𝜃1)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(76)(90)   

 
𝜙(𝜆, 𝜃) = 𝜙0 + 𝜙

′(𝜆, 𝜃) −∫ 𝑎𝑢(𝜃′) [𝑓 +
tan𝜃′

𝑎
𝑢(𝜃′)]  𝑑𝜃′

𝜃

−
𝜋
2

 
(77)(91)   

 
𝜙′(𝜆, 𝜃) = 𝑔ℎ̂ cos𝜃 𝑒

−(
𝜆
𝛼
)
2

−(
𝜃2−𝜃
𝛽

)
2

, 𝜆 ∈ (−𝜋, 𝜋) 
(78)(92)   
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where 𝜆, 𝜃 represents longitude and latitude, 𝑎 = 6371220 𝑚 is radius of earth, 𝑢𝑚𝑎𝑥 = 80 𝑚/𝑠, 𝜃0 =
𝜋

7
, 𝜃1 =

5𝜋

14
, 𝜃2 =

𝜋

4
,706 

𝑒𝑛 = 𝑒
−4

(𝜃1−𝜃0)
2 , 𝛼 =

1

3
, 𝛽 =

1

15
, and ℎ̂ = 120 𝑚. We adopt LMARS as Riemann solver in all of the simulation in this section. 707 

As mentioned in Chen and Xiao (2008), the perturbed jet flow experiment poses a particular challenge for the cubed-708 

sphere grid model. Firstly, the jet stream is located at 45°𝑁, which is very close to the boundaries of panel 5 of the cubed-709 

sphere grid, resulting in a large geopotential height gradient in the ghost interpolation region, which leads to larger 710 

interpolation error. Furthermore, the location of the geopotential height perturbation 𝜙′ coincides with the boundary between 711 

panel 1 and panel 5, which also leads to greater numerical computation errors. 712 

 713 

Figure 17 Relative vorticity of perturbed jet flow. (a)~(c) represent the results of 5th orderTPP5 scheme with resolutions C45, C90, 714 

C180. (d)~(f) represent the results of 7th orderTPP7 scheme with resolutions C45, C90, C180. (g)~(i) represent the results of 9th 715 

orderTPP9 scheme with resolutions C45, C90, C180. (j)~(l) represent the results of 11th orderTPP11 scheme with resolutions C45, 716 

C90, C180. 717 

Figure 17 displays the HOPE simulation outcomes at day 6 for varying levels of accuracy reconstruction order and 718 

resolutions. The four rows correspond to the 5th, 7th, 9th,TPP5, TPP7, TPP9 and 11thTPP11 schemes in terms of 719 

accuracyreconstruction order. The three columns, meanwhile, represent the resolutions of C45, C90, and C180, respectively. 720 

Upon comparing the different columns, it is evident that the perturbed jet flow test case converges as the resolution increases. 721 

Figure 17 (a), (d), (g), and (j) illustrate that, with an increase in accuracyreconstruction order, the vorticity field patterns 722 

become increasingly similar to the high-resolution results shown in the second and third columns of Figure 17. Notably, 723 

HOPE enhances the simulation results by utilizing both higher accuracyreconstruction order and higher resolution. 724 
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5.55.6 Dam-Break Shock Wave 725 

In this section we introduce a dam-break case for testing the capability of HOPE to capture the shock wave and comparing 726 

the difference between 1D and 2D WENO schemes. The initial condition is configured as a cylinder with a height of 30000 727 

meters, as shown in Figure 18(a). The geopotential height is given by 728 

 𝜙(𝑟(𝜆, 𝜃)) = {
2𝜙0, 𝑟 < 𝑟𝑐
𝜙0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (79)(93)   

where 𝑟 = √(𝜆 − 𝜆𝑐)
2 + (𝜃 − 𝜃𝑐)

2, 𝜆𝑐 = 𝜋, 𝜃𝑐 = 0, 𝑟𝑐 =
𝜋

9
, 𝜙0 = 𝑔ℎ0, ℎ0 = 30000 𝑚, and the earth rotation angular speed 729 

Ω = 0. We adopt LMARS as Riemann solver in all of the simulation in this section. 730 

 731 

Figure 18 Geopotential height of dam-break test case on C90 grid at 2nd hour. (a) Initial condition, (b) WENO 1D, (c) WENO 732 

2D. The horizontal resolution for both schemes is C90. Shaded and contour from 3.2 × 104 to  6 × 104 meters, with contour 733 

interval 103 meters. 734 

 735 

In this experiment, we compare 5th order accuracyWENO5 (WENO scheme with reconstruction width 5) on both 1D 736 

and 2D schemes, the WENO-Z (Borges et al., 2008) is adopted as WENO 1D scheme, and WENO 2D scheme is consist with 737 

section 3.2. Due to the initial condition being a cylinder, the resulting shock wave should maintain a circular feature. In the 738 

simulation results of WENO 1D, numerous radial textures appear, Figure 18(b).  The simulation results using the WENO 2D 739 

scheme exhibit a smoother circular shape, Figure 18(c). This outcome arises because the 1D reconstruction scheme suffers 740 

from dimension split error, whereas the fitting function in the 2D reconstruction scheme incorporates cross terms, 741 

significantly improving the handling of anomalous anisotropic. Therefore, when simulating fluid fields characterized by 742 

isotropic features, the 1D scheme lacks the capability to accurately represent diagonal directional features. Conversely, the 743 

2D scheme correctly captures the inherent isotropic characteristics. 744 

6. Conclusions 745 

This paper presents HOPE, an innovative finite-volume model capable of achieving arbitrary odd-order convergence 746 
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accuracyrate. Through comprehensive numerical experiments, we demonstrate that HOPE exhibits excellent convergence 747 

properties when applied to smooth flow fields, with simulation errors decreasing rapidly as the order of accuracy increases. 748 

The model's performance has been rigorously evaluated across several benchmark cases: 749 

1. In Rossby-Haurwitz wave simulations, HOPE demonstrates superior waveform preservation capabilities that scale 750 

with both spatial resolution and accuracy order. 751 

2. For perturbed jet flow scenarios, the model successfully resolves both fast and slow dynamical features, with 752 

significant improvements in solution quality observed at higher orders and finer resolutions. 753 

3. Mountain wave simulations confirm HOPE's ability to accurately represent orographically-forced gravity waves. 754 

4. In the dam break test case featuring cylindrical shock fronts, the two-dimensional WENO reconstruction scheme 755 

proves more effective than dimension-split approaches in maintaining circular symmetry. 756 

In the case of steady geostrophic flow, Both WENO3 and WENO5 achieve the expected 3rd-order and 5th-order 757 

convergence rates, respectively. However, the computed norm errors for WENO schemes are marginally larger than those 758 

obtained with the TPP3 and TPP5 schemes. This observation confirms that the 2D WENO scheme preserves the designed 759 

convergence rate in smooth flow regions. Concurrently, in the Dam-Break Shock Wave case, the 2D WENO scheme 760 

demonstrates its robust capability for handling discontinuous flow fields. These combined results align perfectly with the 761 

primary motivation for introducing the WENO scheme: its adaptive oscillation suppression capability. Specifically, the 762 

scheme preserves the high convergence rate in sufficiently smooth regions while automatically reducing the reconstruction 763 

order near discontinuities to effectively suppress the development and propagation of non-physical oscillations. 764 

A key innovation of HOPE lies in its computational architecture. The algorithm is specifically designed to harness GPU 765 

acceleration through (1) Implementation of spatial reconstructions as convolutional operations, and (2) Formulation of 766 

integration steps as matrix-vector products. These design choices leverage computational patterns widely adopted in machine 767 

learning frameworks. By developing HOPE within PyTorch, we inherit automatic differentiation capabilities, enabling 768 

straightforward coupling with neural network systems. 769 

This integration facilitates the development of hybrid prediction models that combine a high-order, high-performance 770 

dynamical core, and Neural network-based physical parameterizations. Current research efforts have successfully extended 771 

this algorithmic framework to a two-dimensional baroclinic model (X-Z dimensions). 772 

Future work will focus on developing a global, fully compressible baroclinic model using the HOPE algorithm, further 773 

demonstrating its versatility and advantages for modeling complex atmospheric dynamics. The model's unique combination 774 

of physical conservation, computational efficiency, and machine learning compatibility positions it as a powerful tool for 775 

next-generation atmospheric modeling. 776 
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7. Appendix  777 

In this appendix, we introduce a novel boundary ghost cell interpolation scheme for cubed sphere, which is able to 778 

support HOPE to reach the accuracy over 11th order or even higher.  779 

There are two types of cells, in-domain and out-domain (also named ghost cell, as show in Figure 7(b)), we define the 780 

set of in-domain cell values 𝒒𝑑×1 = (𝑞1, 𝑞2, … , 𝑞𝑑)
𝑇, the set of out-domain cell values 𝒈ℎ×1 = (𝑔1, 𝑔2, … , 𝑔𝑑)

𝑇, and the set 781 

of Gaussian quadrature point values (green points in Figure 3) in out-domain cells is define as 𝒗𝑝×1 = (𝑣1, 𝑣2, … , 𝑣𝑝). To 782 

identify the shape of the arrays, we denote the array shape using subscripts (this convention will be followed throughout the 783 

subsequent text). The purpose of ghost cell interpolation is using the known cell value 𝒒 to interpolate the unknown 𝒈. 784 

Define a new set includes the values of domain cell values and ghost cell values 785 

 𝒒̃(𝑑+ℎ)×1 = 𝒒⋃𝒈 = (𝑞1, 𝑞2, … , 𝑞𝑑 , 𝑔1, 𝑔2, … , 𝑔ℎ)
𝑇 

(A.1)   

Similar to the describe in section 0, we can use a TPP to reconstruct the ghost quadrature points 786 

 𝒗𝑝×1 = 𝐴𝑝×(𝑑+ℎ)𝒒̃(𝑑+ℎ)×1 
(A.2)   

where 𝐴𝑝×(𝑑+ℎ) is the interpolation matrix that can be obtain by the similar method to Eq.(29). The ghost cell values are 787 

calculated by Gaussian quadrature 788 

 𝒈ℎ×1 = 𝐵ℎ×𝑝𝒗𝑝×1 
(A.3)   

where 𝐵ℎ×𝑝 is the Gaussian quadrature matrix. 789 

𝒒̃(𝑑+ℎ)×1 can be decomposed as the linear combination of 𝒒𝑑×1 and 𝒗𝑝×1 790 

 
𝒒̃(𝑑+ℎ)×1 = (

𝐼𝑑×𝑑 0
0 𝐵ℎ×𝑝

) (
𝒒𝑑×1
 𝒗𝑝×1

) = 𝐵̃(𝑑+ℎ)×(𝑑+𝑝)𝒒̅(𝑑+𝑝)×1 (A.4)   

where 𝐼𝑑×𝑑 is an identity matrix, and 791 

 
𝐵̃(𝑑+ℎ)×(𝑑+𝑝) = (

𝐼𝑑×𝑑 0
0 𝐵ℎ×𝑝

) (A.5)   

 𝒒̅(𝑑+𝑝)×1 = (
𝒒𝑑×1
 𝒗𝑝×1

) (A.6)   

Substitute Eq.(30) into Eq.(26), we have 792 

 𝒗𝑝×1 = 𝐴𝑝×(𝑑+ℎ)𝐵̃(𝑑+ℎ)×(𝑑+𝑝)𝒒̅(𝑑+𝑝)×1 = 𝐴̃𝑝×(𝑑+𝑝)𝒒̅(𝑑+𝑝)×1 = 𝐴̃𝑝×(𝑑+𝑝) (
𝒒𝑑×1
 𝒗𝑝×1

) (A.7)   

We found that matrix 𝐴̃𝑝×(𝑑+𝑝) can be decomposed into two parts 793 

 𝐴̃𝑝×(𝑑+𝑝) = (𝐴̅𝑝×𝑑 𝐶𝑝×𝑝) (A.8)   

Such that 794 

 𝒗𝑝×1 = 𝐴̅𝑝×𝑑𝒒𝑑×1 + 𝐶𝑝×𝑝𝒗𝑝×1 (A.9)   

Therefore 795 

 (𝐼𝑝×𝑝 − 𝐶𝑝×𝑝)𝒗𝑝×1 = 𝐴̅𝑝×𝑑𝒒𝑑×1 
 

(A.10)   

We set 𝐷𝑝×𝑝 = 𝐼𝑝×𝑝 − 𝐶𝑝×𝑝, then 𝒗𝑝×1 can be determined by 796 
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 𝒗𝑝×1 = 𝐷𝑝×𝑝
−1 𝐴̅𝑝×𝑑𝒒𝑑×1 (A.11)   

Substitute Eq.(A.11) into Eq.(A.3), we establish the relationship between ghost cell values and in-domain cell values 797 

 𝒈ℎ×1 = 𝐵ℎ×𝑝𝒗𝑝×1 = 𝐵ℎ×𝑝𝐷𝑝×𝑝
−1 𝐴̅𝑝×𝑑𝒒𝑑×1 = 𝐺ℎ×𝑑𝒢ℎ×𝑑𝒒𝑑×1 

 
(A.12)   

where 𝐺ℎ×𝑑𝒢ℎ×𝑑 = 𝐵ℎ×𝑝𝐷𝑝×𝑝
−1 𝐴̅𝑝×𝑑 . It’s clear that Eq.(A.12) is linear, and only rely on the mesh and Gaussian 798 

quadrature scheme. Therefore, we need to compute the projection matrix 𝐺ℎ×𝑑𝒢ℎ×𝑑 only once for a given mesh and accuracy, 799 

this matrix can be computed by a preprocessing system and save it to the hard disk. 800 
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