
Reply on RC1 

Upon reviewing your comments, I recognize that you have conducted a detailed and rigorous 

examination of the manuscript, even cross-referencing it with the source code. I am deeply 

impressed by such dedication to scientific rigor. Before addressing your points individually, I 

would first like to express my sincere appreciation for your meticulous scientific approach, 

exceptional expertise, and profound theoretical insight. The numerous comments you provided are 

invaluable for enhancing the quality of this paper. 

 

Points related to interpretation and understanding 

Referee Comment 1  

Line 74. It is important to make sure that you compare like with like. A k'th order 1D finite 

difference derivative requires (generally) a stencil of k+1 points or cells. In HOPE you mostly 

discuss reconstructions rather than derivatives; a k'th order reconstruction can be done with a 

stencil of k cells. But if you take a difference of two reconstructions to compute a derivative then 

you will have used two different stencils and at least k+1 data points. 

Response to Referee: 

Your point is entirely correct. In HOPE, we employ the finite volume method to discretize the 

equations. The increment of the cell-averaged prognostic variables stems from the net flux and 

source terms. Since a cell boundary is shared by two adjacent cells, the calculation of the flux 

utilizes reconstructed values from both sides. Therefore, to complete one Runge-Kutta substep 

integration for a given cell, information from a total of (𝑘 + 2) × (𝑘 + 2) cells is required. This 

is consistent with our statement on Line 74 that a reconstruction stencil of width k enables the 

construction of a 𝑘𝑡ℎ order accurate scheme. 

Furthermore, regarding comparisons: Ullrich and Jablonowski (2012, JCP, Section 4.2) 

constructed a class of 4th-order accurate schemes. They first expressed derivatives using a rhombic 

stencil spanning 5 cells in width. These derivatives were then used to reconstruct the state at cell 

interfaces for input to a Riemann solver. Consequently, completing one Runge-Kutta substep 



integration for a cell required information from neighbor cells within a rhombic region spanning 7 

cells in width. 

Within the HOPE framework, a rhombic stencil can also be employed. When configured as 

described above, HOPE achieves 5th-order accuracy with such a stencil, bypassing the need for 

complex derivative relationships. However, it is noteworthy that when using a rhombic stencil for 

reconstruction, the stability of explicit time integration is adversely affected. Compared to the 

rectangular stencils used in the present work, rhombic stencils necessitate a shorter time step to 

maintain computational stability. Although rhombic stencils slightly reduce reconstruction 

computational cost, this benefit does not compensate for the efficiency loss due to the reduced 

time step. Furthermore, in implementation, reconstruction using rectangular stencils can be 

efficiently mapped to PyTorch's conv2d function, offering advantages in both computational 

efficiency and implementation simplicity. 

 

Referee Comment 2  

High order 

• It is good to see the requirement for smoothness of data mentioned for high order to be 

more accurate (line 65, 81-82). Advocates of high order schemes don't always mention 

this. 

• However, it is important to be precise with terminology to avoid confusion for readers 

(and authors!) The phrase 'convergence accuracy' (line 69) mixes up two ideas that 

should be kept distinct: order of accuracy and convergence rate. Convergence rate agrees 

with order of accuracy only for sufficiently smooth data. It is very common for the 

convergence rate to be less than the order of accuracy. 

• Line 77. 'arbitrary accuracy' -> arbitrary order of accuracy. Check for other places 

where you have used 'accuracy' when you mean 'order of accuracy' (e.g., lines 424, 433, 

458, 461, 463). Order of accuracy is not the same thing as accuracy; there are even 

situations where a higher order of accuracy produces a less accurate solution. 

Response to Referee: 

Your description aligns with our understanding: accuracy refers to the closeness of the numerical 

solution to the true value, while reconstruction order characterizes the property of the numerical 



scheme. For high-order schemes, the convergence rate achieves the designed reconstruction order 

only when the flow field is sufficiently smooth. We have thoroughly reviewed and revised the 

corresponding sections of the manuscript to clearly distinguish between the terms accuracy, 

reconstruction order, and convergence rate. 

 

Referee Comment 3  

Line 224. It is not obvious that negative values of (an element of) \gamma could cause instability. 

Presumably the elements of R_H must be allowed to be negative, otherwise we would not be able 

to achieve more than second order? So why should there be such a restriction on \gamma? Please 

give some discussion or a reference. 

Response to Referee: 

The conclusion that negative 𝛾 values cause computational breakdown originates from the study 

by Shi et al. 2002, entitled “A Technique of Treating Negative Weights in WENO Schemes” 

(already cited in the manuscript). 

The following description is cited from Shi et al. 2002 Section 1: 

We remark that negative linear weights do not appear in finite difference WENO schemes 

in any spatial dimensions for conservation laws for any order of accuracy…, Unfortunately, they 

do appear in some other cases, such as the central WENO schemes using staggered meshes we 

have seen above, high-order finite volume schemes for two dimensions described in [8] and in this 

paper, … In fact, in all the test cases involving negative linear weights and discontinuous solutions 

presented in this paper, WENO schemes without special treatment to the negative weights are 

unstable (the numerical solution blows up and the code stops). 

 

Referee Comment 4  

At first glance (41) seems to be dimensionally inconsistent, since it mixes derivatives of different 

orders. It might be good to remind the reader that the computational coordinates x and y have 

effectively been non-dimensionalized by the grid spacing so that \Delta x = \Delta y = 1. (Thus, 

(41) is dimensionally correct, after all.) This non-dimensionalization is also appropriate to ensure 

that the smoothness indicators \beta_i scale with resolution in an appropriate way. What is 

\epsilon in (39)? 



Response to Referee: 

We agree with your suggestion and have implemented the following revisions to the relevant 

portion in Section 3.2: 

𝛼𝑖
± = 𝛾𝑖

± (1 +
𝜏

𝛽𝑖 + 𝜀
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where 𝜀 = 10−14 is introduced to prevent division by zero. The smooth indicators 𝛽𝑖 quantify the 

smoothness of reconstruction functions within the target cell. We employ a formulation analogous 

to that described in,  

As mentioned in Section 错误!未找到引用源。, all cells participating in reconstruction within 

HOPE's computational space can be treated as identical unit squares with ∆𝑥 = ∆𝑦 = 1. Thus, the 

smooth indicators are expressed as: 
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where 𝜁1 + 𝜁2 = 𝜁 and 𝜁 > 0, 𝜁1, 𝜁2 ∈ [0, 𝑛], and 𝑙 is the sub-stencil width. 

 

Referee Comment 5  

Section 5, general comment (to the whole community, really!): make sure you extract good, useful 

information from your test cases, not just attractive-looking plots! For example, see the next point, 

as well as the suggestion below to diagnose dissipation quantitatively. 

Some of the test cases in section 5 are run with the high-order reconstruction and some are run 

with the WENO scheme, and the flow over the mountain case does not say which scheme is used. 

In an operational model one must make up one's mind which scheme to use, though, in research 

mode, having different options available allows one to explore sensitivities. It would be valuable 

for readers if you could share any knowledge and understanding you have gleaned by comparing 

WENO vs high order on the different test cases. Even if you don't show figures and tables for all 

combinations, it would be good to comment on any differences. For example, do WENO3 and 

WENO5 give 3rd order and 5th order convergence for the steady geostrophic flow case? Do high 

order schemes produce oscillations in the flow over a mountain case? Does WENO3 produce 

similar solutions to the third order scheme on the Rossby-Haurwitz test case? 

Response to Referee: 



Thank you for your valuable suggestions and questions. In response, we have clarified the specific 

schemes used in each test case within the revised manuscript and have included new experimental 

results. 

1. Steady Geostrophic Flow: Both WENO3 and WENO5 achieve the expected 3rd-order and 

5th-order convergence rates, respectively. However, the computed norm errors for WENO 

schemes are marginally larger than those obtained with the TPP3 and TPP5 schemes. This 

observation confirms that the 2D WENO scheme preserves the designed convergence rate in 

smooth flow regions. Concurrently, in the Dam-Break Shock Wave case, the 2D WENO 

scheme demonstrates its robust capability for handling discontinuous flow fields. These 

combined results align perfectly with the primary motivation for introducing the WENO 

scheme: its adaptive oscillation suppression capability. Specifically, the scheme preserves the 

high convergence rate in sufficiently smooth regions while automatically reducing the 

reconstruction order near discontinuities to effectively suppress the development and 

propagation of non-physical oscillations. 

2. Rossby-Haurwitz Wave: Significant differences were observed between the 2D WENO 

scheme and the TPP schemes in this test. Regardless of the specific WENO order employed 

(3, 5, 7, or 9), all WENO variants maintained the Rossby-Haurwitz (RH) wave pattern for a 

shorter duration compared to their TPP counterparts of equivalent order. We infer that the 

nonlinear processes inherent within the WENO scheme introduce asymmetries that disrupt the 

computational stencil symmetry, leading to a premature breakdown of the RH wave. 

3. Zonal Flow over an Isolated Mountain: We tested TPP3, TPP5, TPP7, WENO3, and 

WENO5 schemes for this case. The simulation results from all these schemes were found to 

be closely matched. 

To explicitly state these conclusion, we have added clarifying remarks in the manuscript. 

 

Referee Comment 6  

Line 407. 'prone to collapse due to factors such as...'. To be clear, the R=4 Rossby-Haurwitz wave 

is unstable. Those factors, or even roundoff error, can provide a perturbation that initiates the 

instability, but they are not the fundamental cause of the collapse - that is the instability itself. 

Response to Referee: 



We appreciate your identification of the inaccuracy in our manuscript's description. We confirm 

that the fundamental cause of waveform collapse in the Rossby-Haurwitz wavenumber-4 solution 

is its intrinsic dynamical instability—not external factors such as grid symmetry, initial 

perturbations, or model errors. The role of these external factors is to act as sources of minute 

perturbations that may trigger this inherent instability or influence the timing and manner of its 

manifestation in numerical simulations. Accordingly, we have revised the relevant text as follows: 

“According to the study by Thuburn and Li (2000), the Rossby-Haurwitz (RH) wave with 

wavenumber 4 is inherently dynamically unstable and prone to collapse. This instability can be 

triggered by minute perturbations, such as those arising from grid structure (breaking initial 

symmetry), initial condition imperfections, or numerical errors (e.g., truncation or roundoff).” 

 

Referee Comment 7  

Line 491. That test case is actually dominated by Rossby waves, not gravity waves. 

Response to Referee: 

We appreciate this correction and have revised the manuscript accordingly. 

  

Referee Comment 8  

Points for discussion; the authors may or may not wish to address these in the manuscript. 

Riemann solver 

• The Riemann solver is applied at every quadrature point before doing the quadrature. 

Would there be any advantage in doing the quadrature first and then applying the 

Riemann solver just once at each interface? 

Response to Referee: 

The sequence of quadrature and Riemann solver operations is not arbitrary. In the finite volume 

method, the conservation law is formulated as: 
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Consequently, computing the temporal tendency of the cell-averaged solution requires the integral 

averages of fluxes 𝑭 and 𝑮 along cell interfaces. Considering only the x-direction flux, the 

interface-averaged flux is defined as: 
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This requires first computing 𝑭 from 𝒒 followed by integration. Conversely, if one first computes 

the interface-averaged state: 
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and then applies the Riemann solver, the resulting flux becomes: 
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Due to the nonlinear nature of 𝑭: 
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Numerical testing confirms that using 𝑭̃
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 as the flux limits accuracy to second-order regardless 

of reconstruction scheme order. 

Furthermore, in curved coordinate systems where metric tensors vary spatially. The averaged 

quantity 𝒒
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 lacks physical correspondence to any specific point on the interface. This 

ambiguity prevents determination of both: (i) The spatial location represented by 𝒒
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; (ii) The 

appropriate metric tensor position for flux computation. Thus invalidating accurate calculation of 
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. 

 

Referee Comment 9  

High order 

• Line 378. Do you have any data on how much more expensive high order is? Of course 

the answer will depend on implementation, computing platform, resolution, etc, but it 

would be good to have an idea. 

Response to Referee: 

We conducted 15-day simulations for the "Zonal Flow Over an Isolated Mountain" test case using 

TPP5 and TPP7 schemes at C180 resolution. The time integration step was 100 seconds, executed 

on an NVIDIA RTX 3090 GPU. Computational costs were measured as follows: 



 TPP5: 

32-bit precision: 144 s 

64-bit precision: 469 s 

TPP7: 

32-bit precision: 160 s 

64-bit precision: 730 s 

The NVIDIA GeForce RTX 3090 GPU is primarily designed for single-precision (FP32) compute 

workloads, lacking dedicated hardware for high-performance double-precision (FP64) 

computation. Its FP64 performance is significantly lower, typically operating at 1/64th of its peak 

FP32 throughput (according to https://www.techpowerup.com/gpu-specs/geforce-rtx-3090.c3622). 

Consequently, FP64 execution times increase substantially with scheme order, whereas the 

computational cost difference between TPP5 and TPP7 under FP32 is marginal at 11%. 

 

Referee Comment 10  

• Line 380. I am inclined to agree that 3rd or 5th order will be the practical choice, but I 

would be interested to know your reasoning. 

Response to Referee: 

Our preference for 3rd/5th-order schemes stems from empirical observations in HOPE's 

baroclinic version and studies of other high-order models (e.g., Multi-moment Constrained finite 

Volume model developed by CMA Earth System Modeling and Prediction Centre). We note 

diminishing returns in forecast accuracy improvement beyond these orders due to three 

fundamental constraints: 

1. Dominant Parameterization Errors 

Forecast errors originate from dynamical cores, physical parameterization schemes, and data 

assimilation. Current subgrid physical processes remain poorly characterized, with 

parameterizations relying heavily on empirical functions. These parameterization-induced 

errors dominate total forecast error, rendering excessive dynamical core refinement ineffective 

for error reduction. 

2. Resolution-Precision Interdependence 



a) Smoothness Requirement: High-order schemes achieve theoretical convergence rates only 

for sufficiently smooth flows. Atmospheric discontinuities (e.g., planet boundary layer 

heating, turbulence, orography) frequently violate this condition. 

b) Wave Resolution Limits: Discrete systems require ≥2 gridpoints per wave - even with 

infinite-order schemes. Gridpoint models accurately resolve only wavelengths >4-6Δx. 

c) Scale Separation: Increasing reconstruction order without grid refinement cannot improve 

subgrid-scale representation; enhanced resolution remains essential for smaller-scale 

systems. 

3. Computational Efficiency 

Extensive HOPE testing reveals: 

a) 5th-order schemes provide substantially better accuracy than 3rd-order 

b) Higher orders yield diminishing accuracy gains disproportionate to computational cost 

increases 

Conclusion: While higher-order schemes improve smooth-flow representation, their 

computational expense and resolution constraints make 5th-order reconstruction the optimal 

balance between precision and cost-effectiveness in current atmospheric modeling. 

We emphasize the exploratory nature of this perspective. Given rapid advancements in 

artificial intelligence, whether integrating high-order dynamical cores with AI-based physical 

parameterization schemes will yield significant advances remains an open research question. We 

would welcome opportunities for deeper discussions with experts of your caliber on this evolving 

frontier. 

 

Referee Comment 11  

• One very useful potential application of a code like HOPE would be to help answer that 

question in a quantitative way. Flows of realistic complexity (therefore not very smooth), 

like the flow over an isolated mountain case, generally don't have exact solutions 

available. But if you could compute an accurate high-resolution reference solution then 

you would be able to plot error versus computational cost as you vary both resolution and 

order of accuracy. 

Response to Referee: 



We appreciate the constructive suggestion. Traditionally, such analyses have relied on 

spectral models: a relatively accurate solution is first obtained via spectral methods to establish a 

benchmark for evaluating other models' simulation capabilities. Your proposed quantitative 

framework provides valuable inspiration for HOPE's development, and we will incorporate such 

analyses in future work. 

Based on our current assessment of HOPE's performance, for smooth flow fields, increasing 

the order of accuracy yields significantly greater benefits than refining spatial resolution. This is 

because higher resolution necessitates reduced time steps in explicit time integration. We concur 

that your approach is particularly well-suited for analyzing the trade-off between simulation 

accuracy versus computational cost under complex topographic conditions – specifically, 

identifying optimal combinations of resolution and accuracy order that achieve sufficiently 

accurate results while balancing computational expense and error magnitude. 

 

Referee Comment 12  

Rossby-Haurwitz wave collapse 

• Lines 414-418. How long the Rossby-Haurwitz wave is sustained is a measure of how 

strongly numerical errors project onto the growing mode(s) at early times. After that the 

instability grows at its own rate until the RH wave collapses.  Note that a cubed sphere 

(in the usual orientation) has an advantage (compared to an icosahedral grid, for 

example) in that its discretization errors should project onto zonal wavenumber 4 and 

higher harmonics, whereas zonal wavenumbers 1, 3, and 5 project onto the instability. 

Thus, presumably, it is roundoff errors that break the wavenumber 4 symmetry and trigger 

the instability for HOPE(?) If that is the case, then higher precision should delay the 

collapse. Have you tested that? It sounds like you are set up to be able to do that easily. 

Conversely, if higher precision does not delay the collapse, then that begs the question: 

what is breaking the wavenumber 4 symmetry to trigger the instability, and could it be an 

implementation bug? 

Response to Referee: 



Your assessment is correct. The description in our manuscript (lines 424-428) intended to 

convey the same point as your comment here. This also made us realize the need for a clearer and 

more detailed explanation of this conclusion. 

Figure 10 in the manuscript shows simulation results using a C90 grid. The 

four rows correspond to simulations using the TPP3, TPP5, TPP7 and TPP9 schemes, respectively. 

The four columns represent simulation durations of 30, 60, 90, and 100 days. For example, Figure 

10(h) is located in the second row (5th-order scheme) and the fourth column (100 days). 

 

Figure 1 Geopotential height of Rossby-Haurwitz wave on C90 grid, the rows represent the spatial 

reconstruction scheme with TPP3, TPP5, TPP7 and TPP9, the columns stand for simulation day 30, 60, 

90 and 100. Contours from 8100 to 10500 𝑚 with interval 200 𝑚. 

 

Specifically: 

1. The first row of subfigures TPP3 (3rd-order scheme) shows that although the wave pattern 

remains intact (does not collapse) as simulation time increases, the maximum geopotential 

height exhibits a significant decrease compared to the initial state. 

2. For the TPP5 scheme (second row), the wave becomes distorted by day 90 and completely 

collapses by day 100 (Figure 10(h)). 



3. Using the TPP7 scheme (third row), wave distortion at day 90 shows some improvement, but 

the pattern still cannot be maintained until day 100. 

4. When simulating the RH wave with the TPP9 scheme (fourth row), the maximum 

geopotential height is well preserved, and the wave pattern shows no collapse even at day 

100. 

Based on this analysis, we can conclude that for the HOPE model, employing a higher-order 

scheme indeed enhances the ability to maintain the RH wave structure, i.e., delays the collapse. 

 

Referee Comment 13  

• Also, it is good to be aware of what the time of collapse is really telling you about the 

model formulation, and to look at other informative aspects of the solution. For example, 

you mention apparent 'dissipation' of the solution. You could measure that dissipation 

quantitiatively by diagnosing a conserved quantity like energy or potential enstrophy, for 

example, and look at how their conservation depends on resolution and order of 

accuracy. 

Response to Referee: 

Your suggestion is very well-founded. Therefore, we have incorporated a new figure into the 

manuscript depicting the time series of total energy, total potential enstrophy and total zonal 

angular momentum. The following addition has been made to the manuscript:  

We measure the conservation errors by defining the normalized error 𝜖𝑟 of the variable 𝜂 as 

𝜖𝑟 =
𝐼𝑔(𝜂𝑛)−𝐼𝑔(𝜂0)

𝐼𝑔(𝜂0)
, where 𝜂0 and 𝜂𝑛 stand for 𝜂 value at initial time and time slot 𝑛, respectively. 

The global integral is defined as: 

𝐼𝑔(𝜂𝑛) = ∑ ∑ ∑ √𝐺𝑖,𝑗,𝑝𝜂̅𝑖,𝑗,𝑝

𝑛𝑥

𝑖=1

𝑛𝑦

𝑗=1

𝑛𝑝

𝑝=1

 

where 𝜂̅𝑖,𝑗,𝑝 represents the average value of 𝜂 in cell (𝑖, 𝑗, 𝑝) 

 In the 15-day simulation of zonal flow over an isolated mountain the total energy exhibited 

a gradual increase over the integration time, while both the total potential enstrophy and the total 

zonal angular momentum showed gradual dissipation as the simulation progressed. The AUSM+-



up scheme demonstrated stronger energy dissipation compared to the LMARS scheme, as 

illustrated in Figure 2。 

 

Figure 2 Time series of normalized conservation errors for the zonal flow over isolated mountain 

simulation on the C90 grid over days 0 to 100. (a) Normalized total energy error. (b) Normalized total 

potential enstrophy error. (c) Normalized total zonal angular momentum error. 

A 100-day simulation of the Rossby-Haurwitz wave was conducted using a C90 grid (1° 

resolution). The total energy simulated with the TPP3, TPP5, TPP7, and TPP9 schemes underwent 

dissipation to varying degrees. By day 100, the normalized total energy errors reached −1.49 ×

10−3, −1.33 × 10−5, −1.71 × 10−6, −4.20 × 10−7, respectively, indicating significantly stronger 

dissipation for the TPP3 scheme compared to the other higher-order schemes Figure 3 (a)。Figure 

3 (b) presents a scaled view of the energy evolution for TPP5, TPP7, and TPP9, clearly 

demonstrating that increasing the reconstruction order progressively reduces energy dissipation. 

Furthermore, following the RH wave collapse, a significant drop in total energy was observed for 

the TPP5 scheme (after approximately 90 days) and the TPP7 scheme (after approximately 95 

days). 



 

Figure 3 Time series of normalized conservation errors for the Rossby-Haurwitz wave simulation 

on the C90 grid over days 0 to 100, with LMARS scheme as Riemann solver. (a) Normalized total 

energy error for TPP3, TPP5, TPP7 and TPP9. (b) The total energy normalized error for TPP5, 

TPP7 and TPP9. (c) Normalized potential enstrophy error for TPP3, TPP5, TPP7 and TPP9. (d) 

Normalized total zonal angular momentum error for TPP3, TPP5, TPP7 and TPP9. 

 Analysis of the normalized total potential enstrophy error (Figure 3 (c)) and the normalized 

zonal angular momentum error (Figure 3 (d)) over time yields conclusions consistent with those 

for total energy. Specifically, the TPP3 scheme exhibited substantially higher dissipation than the 

higher-order schemes, confirming that employing higher-order reconstruction schemes effectively 

minimizes dissipation. Notably, significant dissipation surges occurred in these quantities 

following the RH wave collapse. 

 

Points related to improving the clarity of the explanations 

Referee Comment 14  

Line 18. '...reduces interpolation to matrix-vector multiplication'. When I first read this I thought it 

was stating the obvious: interpolation is a linear operation. The significance only became clear 

when I read section 3.3: even though the panel boundary treatment couples ghost points on the 



two sides of the boundary, it can be reduced to a straightforward matrix-vector multiplication. 

Perhaps you can briefly mention this two-way coupling in the abstract. 

Response to Referee: 

Your understanding of our novel ghost cell interpolation scheme is precisely captured. We concur 

that the descriptor "two-way coupling" accurately reflects the algorithm's characteristics. 

Accordingly, we have included a description of the two-way coupled ghost cell interpolation 

scheme in the abstract. 

 

Referee Comment 15  

Abstract line 23. It is unclear why a separate fortran code version is needed for `convergence 

analysis'. The fortran version is not mentioned in the main text (though the source code is 

provided). 

Response to Referee: 

As demonstrated in the Steady State Geostrophic Flow test, when using high-order schemes, 

HOPE achieves extremely small errors in simulating smooth flow fields even on very coarse 

resolutions. These errors can be so minute that they fall below the 16 significant digits 

representable in double precision. Under these conditions, conducting precision tests using double 

precision alone fails to accurately capture the true convergence rate. To obtain correct error 

measurements and convergence rate, we must employ FP128 (real(16) in Fortran). However, 

PyTorch's underlying architecture is built on NVIDIA CUDA, which currently supports only up to 

FP64 (double precision). Consequently, the PyTorch implementation cannot provide correct 

simulation errors when utilizing ultra-high-order schemes. We appreciate your observation and 

have added a description addressing this issue in the Steady State Geostrophic Flow Experiment 

section to clarify the implementation details. 

 

Referee Comment 16  

Line 44. Comment: whether a spectral method conserves mass depends on which variables are 

chosen to be represented by a spectral expansion. For example, predicting a spectral 

representation of surface pressure (rather than the more usual log of surface pressure) should 

conserve mass in a hydrostatic model. 



Response to Referee: 

It is true that spectral methods can achieve mass conservation with supplementary adjustments. 

However, our emphasis here is that finite volume methods inherently ensure strict mass 

conservation. This property stems from the fundamental principle of the finite volume approach: 

the change in the cell-averaged quantity equals the net flux across the cell boundary. 

Consequently, strict mass conservation is guaranteed without requiring additional algorithmic 

design. Following your suggestion, we have revised this section to state: 

“While the implementation of a spectral dynamical core in NeuralGCM theoretically enables 

infinite-order accuracy, the global nature of spectral expansion restricts the method’s scalability. 

Furthermore, in contrast to finite-volume algorithms which inherently ensure strict mass 

conservation, achieving strict mass conservation with NeuralGCM’s spectral dynamical core 

requires supplementary modifications.” 

 

Referee Comment 17  

Line 60. At this point it is unclear which Jacobian matrix you mean. Which derivatives are 

computed automatically? Some more explanation is needed. Similarly on line 320: which 

gradients can be computed efficiently? 

Response to Referee: 

We appreciate this clarification. The original reference to the "Jacobian matrix" was indeed 

ambiguous. The matrix in question is specifically the ghost cell interpolation matrix. This 

terminology was adopted because its computational generation method closely resembles the 

algorithm used by PyTorch to compute Jacobian matrices. We have revised the text to consistently 

use ghost cell interpolation matrix for clarity. 

Notably, our implementation for generating this matrix achieves significant 

acceleration and substantially reduces VRAM demand compared to PyTorch's 

native “torch.autograd.functional.jacobian” function. The key optimizations are: 

1. Parallel Multi-Row Computation: Utilizing “torch.vmap” to encapsulate “torch.func.vjp”, 

enabling simultaneous computation of multiple matrix rows. 

2. CSR Compression & Incremental Disk Storage: 

a) Employing Compressed Sparse Row (CSR) format for matrix representation. 



b) Implementing incremental disk storage, where computed data batches are immediately written 

to disk after processing, avoiding prolonged VRAM retention. 

3. Tunable Batch Processing: Adjusting the number of rows processed per iteration 

maximizes GPU utilization while respecting VRAM constraints (e.g., 24GB on NVIDIA RTX 

3090). 

 

Referee Comment 18  

Line 70, also 243. 'does not surpass 7th order'. Please clarify whether you were using the MCORE 

code or your own implementation of something similar. Also, is this a fundamental limitation of 

the mathematical formulation or an issue with a particular implementation? It would be good to 

clarify what is meant by one-sided interpolation. You could avoid ghost points altogether by doing 

one-sided reconstruction, but I don't think that is what you mean. Do you mean that with one-

sided interpolation there is no coupling between ghost points on the two sides of a panel 

boundary? 

Response to Referee: 

The previous statement was indeed ambiguous. What we intended to convey here is that 

during the design of the ghost cell interpolation for HOPE, we initially attempted to use a one-

sided reconstruction stencil similar to MCORE. While stable integration was achieved with the 

3rd-, 5th-, and 7th-order schemes, the model became unstable when schemes of 9th-order or 

higher were used. In other words, for HOPE, overcoming the 7th-order accuracy limitation 

necessitated the development of a new ghost cell interpolation scheme. 

Therefore, we designed a bilateral interpolation algorithm. This algorithm employs an 

iterative procedure that incorporates information from both adjacent panels of the cubed-sphere 

grid simultaneously. This enabled stable model integration even with higher-order schemes. 

Though not detailed in the paper, our testing confirmed stable integration even at 13th-order 

accuracy. 

 

Referee Comment 19  



Line 71. I can guess what you mean by ghost interpolation scheme, but many readers will need 

more explanation at this point, or at least a forward reference to where it is discussed in more 

detail. 

Response to Referee: 

In response to your suggestion, we have amended the relevant section of the manuscript as 

follows: 

“A high-order finite volume model was developed on cubed sphere, named MCORE (Ullrich et al., 

2010; Ullrich and Jablonowski, 2012). High-order reconstruction requires information from cells 

external to panel boundaries (commonly termed ghost cells). Due to coordinate discontinuities 

across the six panels of the cubed-sphere grid, MCORE implements an interpolation scheme for 

ghost cells based on one-side information. This approach employs a two-dimensional 

reconstruction stencil to interpolate prognostic variables onto Gaussian quadrature points within 

each cell, followed by integration to obtain cell-averaged values.” 

 

Referee Comment 20  

Line 84+. The WENO scheme is (or can be) used whenever the model needs to compute a flux. Is 

that correct? It was not clear to me. 

Response to Referee: 

If by "whenever" you mean that the WENO algorithm can be employed at any stage within 

HOPE's computational process, then your understanding is correct. Specifically, HOPE invokes 

the WENO scheme only once per Runge-Kutta substep to perform all necessary reconstructions. 

This single invocation yields the reconstructed state fields at all required cell interfaces. Since 

each cell interface is shared by two adjacent cells, the reconstructed values are then used as input 

to the Riemann solver to compute the fluxes. 

 

Referee Comment 21  

Line 125. It is not yet clear where 'reconstructing' is used in the algorithm, hence this discussion is 

hard to follow. It would be good to give a brief overview of the method before getting into details. 

Also, if the reader does not already know what the 'C-property' is then line 125 does not help 



them. Either explain or omit. It would be worth adding that, although you use \phi_t in the 

momentum equation, in (13) you still predict \sqrt{G} \phi for mass conservation. 

Response to Referee: 

We accept your suggestion and have revised the presentation in the manuscript accordingly. 

Specifically, the description of the 'C-property' has been omitted. While our approach was indeed 

inspired by related studies investigating this property, our subsequent analysis indicates that the 

primary cause of numerical oscillations when reconstructing √𝐺𝜙 directly is topography-induced 

discontinuities compromising the smoothness of the ϕ distribution. These discontinuities perturb 

high-order reconstruction. Therefore, introducing the concept of the 'C-property' at this point is 

unnecessary. The revised text now reads as follows: 

“To discretize and solve the equation system, we first perform reconstruction on the 

prognostic variables to obtain their values at the cell interfaces. These reconstructed values are 

then used within a Riemann solver to compute the numerical fluxes. During the numerical 

experiments, we observed that reconstructing √𝐺𝜙 directly leads to non-physical oscillations. 

This occurs because topography induces discontinuities in the variable 𝜙, while high-order 

reconstruction fundamentally requires smoothness of the field. 

To address this, inspired by the approach mentioned by Ii and Xiao (2010), we instead 

reconstruct√𝐺𝜙𝑡, where 𝜙𝑡 = 𝜙 + 𝜙𝑠 is total geopotential height. The detailed formulation of this 

reconstruction method is presented in Section 3. Crucially, √𝐺𝜙𝑡 is used exclusively during the 

reconstruction step. The prognostic variable remains √𝐺𝜙 to ensure exact mass conservation.” 

 

Referee Comment 22  

Line 138. It could be worth mentioning that, although LMARS is an approximate Riemann solver, 

it combines two high-order estimates to obtain the flux, so the result is high order.  

Response to Referee: 

We accept your suggestion. This clarification indeed helps readers better understand the 

algorithmic design. 

 

Referee Comment 23  



Equation (26). A few words of explanation would be helpful. Here we know the \bar{q}_i, since 

they are predicted by the time stepping, and we wish to determine the coefficients a. 

To be clear, do we need a version of the matrix R (31) for every grid cell, or is a single 

matrix R applicable to all grid cells? 

Response to Referee: 

We acknowledge that your inquiry rightly identifies insufficient clarification regarding the 

reconstruction matrix 𝑅 in the manuscript. Crucially, a fundamental advantage of our cubed-

sphere grid dynamical core implementation lies in employing a globally shared reconstruction 

matrix 𝑅. This unification signifies that a single instance of 𝑅 applies identically to all grid cells, 

thereby: 

1. Significantly reducing memory/VRAM requirements 

2. Enabling straightforward utilization of PyTorch's conv2d for accelerated reconstruction 

To address how 𝑅 is generated, we have expanded the discussion in the revised manuscript. 

 

Referee Comment 24  

Can you clarify whether the 2D WENO scheme is arbitrary order too, or is the implementation 

currently limited to 3rd and 5th order?. (The namelist file suggests the latter.) 

Response to Referee: 

In our implementation, two-dimensional WENO schemes with stencil widths of 3, 5, 7, and 9 are 

available. Support for higher-order schemes is not currently implemented. This is because 

computing the smoothness indicator β_i, defined as: 

𝛽𝑖 = ∑ ∬ [
𝜕𝜁

𝜕𝑥̂𝜁1𝜕𝑦̂𝜁2
𝑝𝑗(𝑥̂, 𝑦̂)]

2

𝑑𝑥̂𝑑𝑦̂

𝛺

𝑙

𝜁=1

 

for schemes of different orders is inherently nonlinear. To enhance computational efficiency, we 

utilize the symbolic computation capabilities of Mathematica to derive analytical expressions for 

𝛽𝑖 directly from the reconstruction polynomial 𝑝𝑗(𝑥̂, 𝑦̂). Consequently, natively supporting 

arbitrarily high-order WENO in Fortran or PyTorch would necessitate the direct integration of 

these symbolically computed results into the model code. Achieving this would likely require 

significant additional engineering development costs, which we deem disproportionate to the 

benefits gained. First, WENO schemes of orders 3, 5, 7, and 9 are generally sufficient for the 



requirements of atmospheric simulations in the vast majority of cases. Moreover, the number of 

required sub-stencils increases substantially with the order of the scheme. For a 9th-order 2D 

WENO scheme, the number of sub-stencils reaches 25. Even when employing symbolic 

computation to directly provide the expression for 𝛽𝑖, the computational burden increases rapidly 

with the order of the scheme. 

 

Referee Comment 25  

Lines 225 to 229. This section is confusing: You define \gamma^+ and \gamma^- then jump to 

expressing q(x,y) in terms of \omega^+ and \omega^-. 

Response to Referee: 

We acknowledge that the original presentation exhibited a conceptual discontinuity between 

defining 𝛾⁺/𝛾⁻ and the expression for 𝑞(𝑥, 𝑦). Our intention was to first present the complete 

formulation of the WENO scheme before defining its components. As you correctly noted, this 

approach created an unjustified logical leap. 

To address this, we have restructured the section. We first introduce how WENO 

assigns nonlinear weights 𝜔𝑖 , ( 𝑖 = 1,2, … , 𝑠) to candidate stencils based on smoothness 

measurements to maintain the Essentially Non-Oscillatory property. We subsequently present 

the calculation procedure for the weights 𝜔𝑖. Finally, we provide the expression for 

the reconstructed value 𝑞(𝑥, 𝑦). 

This sequential presentation establishes clearer logical progression from concept to 

implementation. 

 

Referee Comment 26  

Line 238. '...eight panel boundaries...'. Please check! 

Response to Referee: 

We sincerely apologize for the incorrect statement regarding the number of cubed-sphere panel 

boundaries. You are absolutely right – a cube has 12 edges, not eight. This was an oversight that 

should not have occurred in a rigorous scientific manuscript. We have corrected this error in the 

revised manuscript. We greatly appreciate your meticulous review, which has improved the 

precision of our work. 



 

Referee Comment 27  

The scheme for ghost cell interpolation neatly exploits the auto-differentiation capability of 

PyTorch! What do you do near panel corners? Section 3.3.1: could you please clarify, is the 

iterative scheme used once at setup to obtain the matrix G, and then matrix multiplication is used 

subsequently at run time? Presumably there can be lots of zeros in G, since cells near the centre of 

a panel do not affect any ghost cells; thus, could some compact representation of G be used? 

Response to Referee: 

Your observation is quite astute regarding the necessity for special handling near the corners 

of the cubed-sphere grid. However, this process does not introduce significant complexity. Similar 

to the approach used near panel boundaries, we extend the reconstruction stencil. This leverages 

information from the adjacent panel to populate the ghost cells, thereby ensuring each cell 

possesses a complete square-shaped reconstruction stencil. 

It is important to note that overlapping GQPs occur at the corner positions of the cubed-

sphere grid, as illustrated by the magenta points in Figure 2(b). These points lie on the interface 

shared by adjacent panels (e.g., Panel 1 and Panel 5). Consequently, during ghost value 

interpolation, two distinct interpolated values are obtained at these overlapping points – one from 

each adjoining panel. The final interpolated value is computed as the average of these two values. 

Since the interpolation performed on each individual panel is high-order, the approximation order 

is preserved when taking this average. 



Panel 4 Panel 1

Panel 5

(a) (b)

A
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Figure 4 (a) Adjacent area of panels 1,4 and 5. (b) 5 × 5 reconstruction stencil nearby panel 

corner is represented by shade. The cell contains red dot is the target cell on panel 4; the magenta 

points are overlapped GQPs shared by panel 1 and panel 5; red solid lines are boundary of panel 4, 

red dash lines are extension line of panel 4 boundary line. 𝐴 and 𝐶 are points on dash line, 𝐵 is the 

upper right corner point of panel 4. 

 

𝒢 is a sparse matrix containing many zero entries. To avoid unnecessary memory costs, we 

adopt the Compressed Sparse Row (CSR) format for storing 𝒢. Furthermore，the size of 𝒢 

is extremely large，making direct application of 𝑡𝑜𝑟𝑐ℎ. 𝑎𝑢𝑡𝑜𝑔𝑟𝑎𝑑. 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙. 𝑗𝑎𝑐𝑜𝑏𝑖𝑎𝑛 to 

generate 𝒢 computationally infeasible. our implementation for generating ghost cell interpolation 

matrix achieves significant acceleration and substantially reduces VRAM demand compared to 

PyTorch's native “𝑡𝑜𝑟𝑐ℎ. 𝑎𝑢𝑡𝑜𝑔𝑟𝑎𝑑. 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙. 𝑗𝑎𝑐𝑜𝑏𝑖𝑎𝑛” function. The key optimizations are: 

1. Parallel Multi-Row Computation: Utilizing “𝑡𝑜𝑟𝑐ℎ. 𝑣𝑚𝑎𝑝” to encapsulate “𝑡𝑜𝑟𝑐ℎ. 𝑓𝑢𝑛𝑐. 𝑣𝑗𝑝”, 

enabling simultaneous computation of multiple matrix rows. 

2. CSR Compression & Incremental Disk Storage: 

a) Employing Compressed Sparse Row (CSR) format for matrix representation. 

b) Implementing incremental disk storage, where computed data batches are immediately written 

to disk after processing, avoiding prolonged VRAM retention. 



3. Tunable Batch Processing: Adjusting the number of rows processed per iteration 

maximizes GPU utilization while respecting VRAM constraints (e.g., 24GB on NVIDIA RTX 

3090). 

 

Referee Comment 28  

Line 312. Comment: the Wicker-Skamarock RK scheme is 3rd order only for linear problems. 

Which scheme was used to produce figure 8? Was it one of the WENO schemes or the arbitrary 

order (non-WENO) scheme? In either case, what was the order of accuracy? It is encouraging 

that there are no numerical oscillations in the vorticity or other fields. Is that true for all the 

schemes discussed, or only for the WENO schemes? 

Response to Referee: 

Figure 8 presents simulation results obtained using the TPP5 scheme. We tested the zonal flow 

case with TPP3, TPP5, TPP7, WENO3, and WENO5 schemes. All tested schemes produced 

similar results. The use of WENO versus non-WENO reconstruction did not yield a fundamental 

difference in the outcome. The primary factor significantly impacting the solution quality was the 

choice of reconstruction variable. Specifically, reconstructing √𝐺𝜙𝑡 instead of directly 

reconstructing the prognostic variable √𝐺𝜙 proved crucial. This is because the distribution 

of √𝐺𝜙 becomes discontinuous due to the presence of topography, whereas √𝐺𝜙𝑡 remains 

relatively smooth. This critical aspect of the formulation, which addresses this issue, is detailed in 

Eqs. (13)-(14) of Section 2. 

 

Points related to equations and mathematical notation 

Referee Comment 29  

Equation (21). r is a dummy subscript in the middle expression; it should not appear in the final 

expression. Similarly for equation (22). 

Response to Referee: 

We thank the reviewer for identifying this error. The corrections have been implemented in the 

manuscript. 

 

Referee Comment 30  



Line 162-163 does not make sense, since you have not specified any relation between k and n. 

There are many inconsistencies in notation in this section. n is the number of terms in a 

polynomial (line 162), then it is the stencil width in the x-direction (23). m is the stencil width in 

the y-direction (23), then it is equal to n^2 (line 169, 207, 213). k is the width of the stencil (line 

163) then a dummy index for coefficients (23). Line 207: the stencil width is now h (but h is not 

mentioned again). In section 4 the stencil width is s_w. 

Response to Referee: 

We acknowledge the inconsistencies in notation raised by the reviewer. We have implemented the 

following corrections throughout the manuscript and verified consistency in relevant sections: 

1. TPP Reconstruction (Section 3): 

(1) The stencil width is now uniformly denoted as 𝑛. 

(2) The total number of cells within the stencil is denoted as 𝑁. 

2. WENO Algorithm (Section 3): 

(1) ℎ specifically denotes the width of the high-order stencil. 

(2) 𝑙 specifically denotes the width of the low-order stencil. 

(3) This distinction was intentionally introduced to emphasize the difference in scale between 

these stencils, even when numerically identical. Although h and l may not be explicitly 

referenced later, the notation serves to prevent conceptual conflation of stencils with different 

intended orders of accuracy. 

3. Section 4 (𝑠𝑤): 

(1) 𝑠𝑤 represents the stencil width within the context of the PyTorch code implementation. 

(2) This notation was adopted directly from the HOPE-PyTorch codebase to enhance clarity and 

facilitate code comprehension for readers. 

(3) We acknowledge the objectively valid inconsistency with the notation in Section 3. 

Therefore, we have added an explicit statement in the manuscript equating 𝑠𝑤 with n (the 

stencil width defined in Section 3). 

 

Referee Comment 31  

Inconsistent fonts are used for the matrix \gamma (compare (32) and (35)). 

Response to Referee: 



We appreciate this observation and have standardized the notation for vector 𝜸 throughout the 

manuscript. 

 

Referee Comment 32  

Presumably (36) refers to individual elements of the matrix \gamma, not the entire matrix? 

(37) and (38) don't seem to be correct. (38) implies that \sum_i \omega_i^+ = 1 and 

\sum_i \omega_i^- = 1. However, in order for (37) to be a proper weighted average of the p_i's we 

would need \sum_i (\omega_i^+ - \omega_i^-) = 1. \omega_i is mentioned in the text, but only 

\omega_i^+ and \omega_i^- are defined by equations. Should we assume \omega_i = \omega_i^+ 

- \omega_i^- ? Please check. 

Response to Referee: 

This formulation indeed contains an omission, as noted by the referee. 

The reconstruction value on point (𝑥, 𝑦) is expressed by: 

𝑞(𝑥, 𝑦) = ∑(𝜎+𝜔𝑖
+ − 𝜎−𝜔𝑖

−)𝑝𝑖(𝑥, 𝑦)

𝑠

𝑖=1

 

where 

𝜎± = ∑ 𝛾̃𝑖
±

𝑠

𝑖=1

 

and 

𝜸̃+ =
𝜃|𝜸| + 𝜸

2
, 𝜸̃− = 𝜸+ − 𝜸 

𝛾̃𝑖
± is the i-th element of 𝜸̃±, 𝛾𝑖

± is the i-th element of 𝜸± 

We have accordingly corrected the relevant formulas and refined their formulation in the 

manuscript. 

 

Referee Comment 33  

Equation (53) seems to be dimensionally inconsistent. Should sign(m) not be abs(m), which would 

pick out the upwind value of q? See also line 346. Actually, taking careful note of parentheses, the 

(fortran) source code seems to be correct, but is inconsistent with equation (53). 

Response to Referee: 



Thanks a lot for finding out the mistake! 

Eq.(53) should be: 

𝑭 =
1

2
𝑚[(𝒒𝐿 + 𝒒𝑅) − 𝑠𝑖𝑔𝑛(𝑚)(𝒒𝑅 − 𝒒𝐿)] + 𝑷 

The wind speed 𝑚 should be multiplied outside the brackets. Of course, replacing 𝑠𝑖𝑔𝑛(𝑚) by 

𝑎𝑏𝑠(𝑚) is also correct. 

 

Referee Comment 34  

The notation G is used for the metric (section 2) and also for the matrix to compute ghost cell 

values (section 3.3.1). 

Response to Referee: 

This notation conflict has been identified. To resolve the ambiguity, we now denote the ghost cell 

interpolation matrix with a calligraphic symbol 𝒢 throughout the manuscript. 

 

Referee Comment 35  

Line 262: g should be bold font. 

Response to Referee: 

The notation has been corrected to use boldface for 𝒈 in the manuscript. 

 

Referee Comment 36  

Lines 324 and 327: can I just check that there should be no comma between n_v and n_p, i.e., the 

first dimension is of size n_v \times n_p? The code (if I understand it correctly) suggests that these 

arrays are 5-dimensional. Also, comparing lines 327 and  334, n_{poc} seems to be the size of the 

second (or perhaps third) dimension, not the first. 

Response to Referee: 

We acknowledge that the issues you identified accurately reflect ambiguities in the tensor 

dimension descriptions within the manuscript. Consequently, we have restructured the relevant 

section detailing the Gaussian quadrature scheme. 



Briefly stated, the rationale for employing einsum rather than matmul arises because the 

dimension containing quadrature points is not the last dimension following reconstruction via 

conv2d, thereby precluding direct use of matmul for Gaussian quadrature. 

Your observation is particularly astute: during the reconstruction process using the conv2d 

function, the shape of 𝒒 is transformed from (𝑛𝑣, 𝑛𝑝, 1, 𝑛𝑐 , 𝑛𝑐) to (𝑛𝑣𝑛𝑝, 1, 𝑛𝑐 , 𝑛𝑐). This reshaping 

occurs because conv2d requires the first dimension to represent batch size and the second channel 

size, necessitating the collapse of 𝑛𝑣 and 𝑛𝑝 into a unified batch dimension. 

 

 Points related to phrasing, typos, etc 

Referee Comment 37  

Line 17, line 53. 'intensive' panel boundary treatment. What is meant by intensive? Perhaps a 

different word would be better? 

Response to Referee: 

Thank you for the suggestion. During the initial design phase, we intended the term "intensive" to 

convey that the new ghost cell interpolation scheme incorporates information from both sides of 

the panel boundary, while requiring a narrower halo region compared to one-sided reconstruction. 

We agree that "two-way coupling" provides a more accurate description, as it directly conveys the 

core characteristic of the new interpolation algorithm. Consequently, we have revised all relevant 

instances in the manuscript to use the new descriptor: "two-way coupled panel boundary." 

 

Referee Comment 38  

Line 34. 'Unlike...' is not a complete sentence. Perhaps the preceding full stop should be a 

comma? 

Response to Referee: 

You are correct; this was a punctuation error. We have replaced the period with a comma in the 

revised manuscript. 

 

Referee Comment 39  

Line 78. Does 'its' refer to the new ghost interpolation scheme? 

Response to Referee: 



We clarify that "its" refers to the effectiveness of the Taylor series expansion itself, not the 

ghost interpolation scheme. Our statement highlights fundamental mathematical constraints for 

Taylor series approximations: 

The accuracy of approximating a function via a Taylor series requires two essential 

conditions: 

(1) The existence of higher-order derivatives of the function at the expansion point, 

(2) The convergence of the series within the relevant domain. 

This context was intended to motivate the limitations of Taylor-based reconstructions in 

discontinuous regions, which necessitate the non-oscillatory schemes discussed subsequently. 

 

Referee Comment 40  

Line 92. If I understand correctly, GPU optimization and automatic differentiabilty are two 

different things; PyTorch happens to provide them both. The sentence as written implies that 

automatic differentiation is needed for GPU implementation, which I don't think is correct. 

Response to Referee: 

You are correct. Our original wording inaccurately implied a dependency between GPU 

implementation and automatic differentiation. The revised text now clarifies: "Section 4 focuses 

on HOPE's high-performance implementation leveraging PyTorch's built-in operators for GPU 

acceleration. The adoption of PyTorch simultaneously enables automatic differentiation 

capabilities through its computational graph construction." This modification explicitly 

distinguishes the two independent features provided by PyTorch. 

 

Referee Comment 41  

Line 133. Can you clarify: Gaussian quadrature along the interface (rather than, say, over some 

upwind region). 

Response to Referee: 

The purpose of Gaussian quadrature is to compute the line integral of fluxes along cell edges. 

As shown in Eqs. (17)-(20), the finite-volume discretization requires that the tendency of cell-

averaged quantities depends on the net flux through cell boundaries. Since obtaining an analytic 

expression for the flux distribution along the entire edge is impractical (Riemann solvers typically 



operate on pointwise reconstructed states rather than continuous flux functions), Gaussian 

quadrature provides high-order integration: for smooth flows, 𝑚 quadrature points achieve (2𝑚 −

1)th-order accuracy, enabling precise numerical integration of interfacial fluxes. 

Regarding your query about upwind regions: While reconstruction stencils are symmetric 

within each cell, asymmetry arises at shared interfaces. Specifically: Left-biased reconstruction 

incorporates more information from the left cell; Right-biased reconstruction incorporates more 

from the right cell. The Riemann solver resolves this by assigning greater weight to information 

from the upstream side based on characteristic wave propagation directions. 

Your reference to integrating over an upwind region aligns conceptually with Flux-Form 

Semi-Lagrangian (FFSL) methods. While currently not implemented in HOPE, we acknowledge 

their efficiency and plan to explore FFSL for tracer advection in future developments. 

 

Referee Comment 42  

Line 162. The term 'order' is already overloaded. It is not necessary to talk about a k'th-order 

square stencil. It is enough to say k \times k stencil. See also line 206. 

Line 163: n^2 is the number of cells in the stencil ('cell number in the stencil' is ambiguous). 

Similarly, it is the number of terms in the TPP. 

Response to Referee: 

We have restructured Section 3.1 and 3.2 in response to this comment. The revisions clarify the 

symbolic expressions and standardize the terminology used to describe stencil sizes throughout the 

section. 

 

Referee Comment 43  

Line 210. The phrase 'determine the unique weights' suggests that (32) can be solved and has a 

unique solution. As soon becomes clear, (32) is overdetermined and has no exact solution, and 

only a least squares approximate solution can be found. 

Response to Referee: 

Your analysis is entirely valid. We would like to share an interesting finding regarding Eq. 

(32) (In new version manuscript Eq.(34)). While the system appears overdetermined at first 



glance, solving it via the least squares method yields a unique solution. Furthermore, substituting 

this solution back into Eq. (32) reveals that it satisfies the linear system exactly. 

This discovery was a significant conclusion during the development of HOPE. Initially, when 

designing the 2D WENO scheme (around year 2021), we were skeptical about the existence of 

optimal weights precisely due to the overdetermined nature of the linear system, as you point out. 

Proceeding experimentally, we investigated the case for WENO5 (WENO with stencil width 5). 

Applying the least squares method to solve the system yielded a set of weights that appeared 

remarkably concise, physically plausible, and, intuitively, almost too specific. To our surprise, 

substituting these weights back into the equations demonstrated that they satisfied Eq. (32) 

exactly. 

Subsequent review of WENO literature revealed that this phenomenon is not unprecedented. 

Indeed, earlier research on 1D WENO and WENO on Triangular meshes (Hu and Shu, 1999) also 

leveraged this very property. 

 

Referee Comment 44  

Line 227. 'stencil i is smooth ... stencil i is discontinuous...'. Don't you mean the data sampled or 

reconstructed on stencil i is smooth or discontinuous? 

Response to Referee: 

We have change the description in new manuscript: 

“The WENO scheme adaptively assigns nonlinear weights 𝜔𝑖 , (𝑖 = 1,2, … , 𝑠) to each candidate 

stencil to suppress unphysical oscillations during high-order reconstruction. Essentially, it gives 

greater weight to stencils identified as smooth over the local cell, while suppressing the influence 

of those containing discontinuities by assigning them smaller weights.” 

 

Referee Comment 45  

Line 301. 'location, since'. Full stop and a new sentence would be better. 

Response to Referee: 

We appreciate your diligent review of the manuscript. This specific correction has been 

implemented in the revised version of the paper as suggested. 

 



Referee Comment 46  

Equation (47). Since Einstein summation is mentioned in various places, perhaps note that there is 

no summation over i in (47). 

Response to Referee: 

Your suggestion is crucial for avoiding ambiguity regarding the meaning of the superscripts and 

aids readers in correctly interpreting Equation (47) (Equation (51) in the revised manuscript). We 

have added an explicit clarification to this effect in the new version of the paper. 

 

Referee Comment 47  

Line 310. I cannot find any other mention of H. 

Response to Referee: 

It should be 𝑮 (the flux in y direction), we have revised the presentation in the manuscript 

accordingly. 

 

Referee Comment 48  

Line 318-321. 'Both of these operations are highly optimized for execution on GPUs...' Do you 

mean highly optimized in the PyTorch implementation? The next sentence seems to be confusing 

two distinct ideas: (i) PyTorch has built-in commands for convolutions and matrix-vector 

multiplication, streamlining implementation (without explicit loop commands); (ii) PyTorch offers 

automatic differentiation, enabling efficient gradient computation. 

Response to Referee: 

To enhance clarity, we have revised the relevant passage in response to this point. 

“The spatial operator and temporal integration of HOPE can be easily implemented using 

PyTorch. Specifically, the spatial reconstruction given by Eq.错误!未找到引用源。 is 

implemented as a convolution operation, while the Gaussian quadrature can be efficiently 

expressed as a matrix-vector multiplication. Leveraging PyTorch's highly optimized built-in 

functions for both convolution and quadrature operations ensures superior performance on GPUs. 

Furthermore, PyTorch's role as a versatile AI development platform provides automatic 

differentiation capabilities across the entire computation graph. This streamlines implementation 

and enables efficient gradient computation for all components.” 



 

Referee Comment 49  

Line 323. To be clear, n_v prognostic variables per cell. 

Response to Referee: 

Good advice, this specific correction has been implemented in the revised version of the paper as 

suggested. 

 

Referee Comment 50  

Line 359: widely? 

Response to Referee: 

We appreciate your diligent review of the manuscript. This specific correction has been 

implemented in the revised version of the paper as suggested. 

 

Referee Comment 51  

Line 363. You haven't said what \alpha is, other than a number that is set to zero. 

Response to Referee: 

In the steady-state flow test, 𝛼 denotes the rotation angle transcribed between the physical north 

pole and the top point in model grid (the center of northern panel on the cubed-sphere grid in 

HOPE). While Williamson et al. (1992) explore various values of 𝛼 in their benchmark 

specifications, our sensitivity analysis confirms that the choice of 𝛼 does not affect the measured 

convergence rate. Consequently, we present accuracy results exclusively for the 𝛼 = 0 

configuration in our convergence study. 

 

Referee Comment 52  

Line 387. The phrase 'we set' makes it seem like you have made your own choice for 

\lambda_c and \theta_c. But aren't those values the standard ones for this test case? 

Response to Referee: 



Thank you for this observation. Our phrasing here was inaccurate and potentially misleading. The 

values 𝜆𝑐 =
3𝜋

2
, 𝜃𝑐 =

𝜋

6
 are indeed the standard values specified for this test case in Williamson et 

al. (1992). We have corrected the corresponding statement in the manuscript accordingly. 

 

Referee Comment 53  

Line 401. zonal advection -> zonal propagation. (The wave structure is not simply advected in the 

zonal direction; it propagates through the Rossby wave propagation mechanism.) 

Response to Referee: 

We acknowledge the imprecise terminology in the original text. Your characterization more 

accurately describes the Rossby wave propagation mechanism, and we have implemented this 

correction throughout the manuscript. 

 

Referee Comment 54  

Line 404. Please check the units for c. 

Response to Referee: 

We thank the reviewer for identifying this error, “day” should be “days”. 

 

Referee Comment 55  

Line 481. 'handling of anomalous anisotropic characateristics'. I think the problem is that the 1D 

scheme lacks isotropy, rather than the data. 

Response to Referee: 

Your observation regarding this terminological distinction is crucial. We acknowledge that the 

original phrasing was inaccurate and ambiguous; this section has been rectified in the revised text 

as: 

“Therefore, when simulating fluid fields characterized by isotropic features, the 1D scheme lacks 

the capability to accurately represent diagonal directional features. Conversely, the 2D scheme 

correctly captures the inherent isotropic characteristics.” 

 

Referee Comment 56  



References: Kochkov et al.; the year should be 2024. 

Response to Referee: 

We appreciate your diligent review of the manuscript. This specific correction has been 

implemented in the revised version of the paper as suggested. 
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Reply on RC2 

We sincerely appreciate your questions and suggestions. Based on the issues you identified, 

we have implemented significant revisions to the manuscript. We commend your scientific rigor 

throughout this process. 

 

Referee Comment 57  

Line 50: The model uses a finite-volume scheme. Please explain why it is characterized as a 

local-stencil-based model. 

Response to Referee: 

Thank you for your suggestion. The term "local stencil-based model" refers to the computational 

characteristic of our finite-volume scheme, where updating a cell's state during explicit time 

marching requires only information from a local stencil surrounding that cell. This design 

eliminates the need for global communication, making each time step highly parallelizable. 

Accordingly, we have revised the sentence to: 

“A finite-volume scheme requiring only information from a local stencil surrounding each cell to 

perform state updates, enabling massively parallel scalability.” 

 

Referee Comment 58  

Line 52: It should be explicitly stated that the attractive property discussed here arises from the 

WENO scheme. 

Response to Referee: 

According to your advice, the new description is written as: 

“A WENO (Weighted Essentially Non-Oscillatory) based, adaptive polynomial order reduction for 

essential non-oscillation.” 

 

Referee Comment 59  

Figure 4: Panel (b) shows the spatial stencil for a quadratic polynomial, and panel (c) for a 

quartic polynomial. Please correct the caption. 



Response to Referee: 

The new version of Figure 4 (Figure 5 in this reply file) is shown as 

 

Figure 5 Reconstruction coordinate and polynomial terms on stencils. (a): Local reconstruction 

coordinate (the red points denote cell centers) (b): 2nd degree polynomial stencil; (c): TPP3 stencil; (d) 

TPP5 stencil 

HOPE employs an equiangular cubed-sphere grid, where each panel undergoes uniform 

angular discretization into  𝑛𝑐 × 𝑛𝑐 cells. In the computational space (equiangular coordinates), 

each cell spans an angular interval of 
𝜋

2𝑛𝑐
, therefore 

∆𝑥 = ∆𝑦 =
𝜋

2𝑛𝑐
 

This uniformity ensures that all cells are geometrically identical in the computational space, 

thereby avoiding the need for cell-specific treatment during reconstruction studies. In the 

following part of this section, we set a new computational space for reconstruction process. The 

coordinate system (𝑥̂, 𝑦̂) is established such that within each reconstruction stencil, the origin 

(0,0) is located at the stencil center, the central cell spans[−0.5,0.5] in both 𝑥̂ and 𝑦̂ directions, as 

shown in Figure 5 (a). All of the cells have the same size in 𝑥̂, 𝑦̂ directions: 

∆𝑥̂ = ∆𝑦̂ = 1 



On the cubed-sphere grid, a fixed reconstruction scheme yields consistent stencils across all 

cells. This structural homogeneity renders the reconstruction operation computationally equivalent 

to two-dimensional convolution, thereby enabling efficient GPU acceleration through PyTorch's 

built-in conv2d function. 

To construct genuinely 2D reconstructions, the functional form of the reconstruction basis 

must be selected. A bivariate polynomial of degree 𝑑 contains 
(𝑑+1)(𝑑+2)

2
 terms. As illustrated in 

Figure 5 (b), the 6 terms of a bivariate quadratic polynomial (𝑑 = 2) are insufficient to cover a 

square stencil. To address this, we adopt Tensor Product Polynomials (TPP) as basis functions. We 

denote a TPP function containing 𝑛 × 𝑛 terms as TPPn. Determining the coefficients of TPPn 

requires information from a 𝑛 × 𝑛 block of cells. When using a TPP reconstruction stencil of size 

𝑛 × 𝑛, HOPE achieves fifth-order accuracy when simulating smooth flow fields. We therefore 

designate a TPP reconstruction stencil of size 𝑛 × 𝑛 as an n-th order TPP stencil, the 3rd and 5th 

order TPP stencils are shown in Figure 5 (c)(d). 

 

Referee Comment 60  

Figure 7: The ghost cells are interpolated using a two-dimensional procedure, which involves 

solving a system of equations iteratively. I recommend the authors consider employing a one-

dimensional interpolation scheme instead, as the quadrature points in ghost cells are arranged 

along lines connecting the corresponding points in neighboring cells. One-

dimensional interpolation can simplify the interpolation and improve efficiency. 

Response to Referee: 

Thank you for your suggestion. While a one-dimensional interpolation scheme would indeed 

be efficient for models employing a dimension-by-dimension reconstruction approach, our testing 

indicates that a 1D ghost cell interpolation scheme cannot achieve accuracy beyond second 

order—consistent with findings from Ullrich et al. (2010). This limitation arises because HOPE 

integrates a two-dimensional reconstruction scheme with cell-boundary flux calculations. Using 

1D reconstruction for ghost cell interpolation would cause a loss of two-dimensional information. 

To illustrate, consider reconstruction along the x-direction: a pure 1D scheme computes ghost 

point values not as true pointwise quantities, but as integral averages along the y-direction within 



the cell. Recovering the actual point values would require an additional deconvolution operation 

(Ullrich et al., 2010). Crucially, this process necessitates a wider interpolation stencil than the 

original scheme. 

As you noted, our proposed ghost cell interpolation method appears to require solving linear 

systems for a closed-form expression. We acknowledge in the Appendix that direct inversion of 

such large-scale systems is impractical. HOPE’s key innovation (Section 3.3.1) circumvents this 

by leveraging PyTorch’s auto-differentiation: 

1. The ghost cell interpolation matrix 𝒢 is computed row-wise via automatic differentiation. 

2. 𝒢 is stored efficiently in Compressed Sparse Row (CSR) format. 

3. Ghost cell interpolation then reduces to a single matrix-vector multiplication. 

This approach dramatically reduces computational costs while preserving high-order 

accuracy. 

 

Referee Comment 61  

Subsection 3.5: As the model is based on a WENO scheme, I recommend using a TVD Runge-

Kutta time integration. 

Response to Referee: 

Thank you for the valuable suggestion. The pairing of WENO with a TVD Runge-Kutta time 

integration scheme is indeed appropriate. HOPE is compatible with various explicit Runge-Kutta 

schemes, and our experiments have comprehensively evaluated multiple such methods. For the 

test cases presented in this paper, results demonstrate no discernible differences between using 

TVD Runge-Kutta and the WRF Runge-Kutta formulation. 

 

Referee Comment 62  

I suggest including results for solid rotation of a cosine bell along different directions. Please 

also provide time histories of normalized errors. 

Response to Referee: 

The Solid Body Rotation Cosine Bell (Case 1 from Williamson (1992)) is widely used to 

assess noise generated by panel boundaries, as noted by Chen and Xiao (2008), Ullrich et al. 

(2010). 



Figure 6 presents the norm errors for a 12-day simulation at 𝛼 = 0; results for 𝛼 = 𝜋/2 are 

identical. The temporal evolution of 𝐿1 and 𝐿2 norm errors does not exhibit a pronounced 

signature attributable to panel boundaries. In contrast, the 𝐿∞norm error evolution shows 

significant sensitivity to panel boundaries, varying considerably with grid resolution and 

reconstruction order. When using low resolution and low reconstruction order (TPP3 with C30 

grid), oscillations induced by panel boundaries are relatively weak. However, as the model 

resolution or reconstruction order increases, the influence of panel boundaries on the 𝐿∞ norm 

error manifests as a distinct four-peak pattern, corresponding to the four longitudinally aligned 

panel boundaries of the cubed-sphere grid. 

 

Figure 6 The variation of norm errors during simulation days for the cosine bell advection test case, 

with direction parameter 𝛼 = 0. The rows represent reconstruction schemes TPP3, TPP5 and TPP7, the 

columns stand for grid C30, C45, C90 and C180. 

Figure 7 shows the 12-day simulation norm errors for 𝛼 = 𝜋/4. In this test configuration, the 

cosine bell initially moves alone the interface between Panel 1 and Panel 5, and subsequently 

moves along the interface between Panel 3 and Panel 6. The temporal evolution of 𝐿1 and 𝐿2 norm 

errors display two gentle peaks, corresponding to the errors generated as the cosine bell crosses 



these panel interfaces. Similar to Figure 6, the 𝐿∞ norm error progressively exceeds the 𝐿1 and 𝐿2 

norm errors as grid resolution and reconstruction order increase. 

 

Figure 7 The variation of norm errors during simulation days for the cosine bell advection test case, 

with direction parameter 𝛼 = 𝜋/4 . The rows represent reconstruction schemes TPP3, TPP5 and TPP7, 

the columns stand for grid C30, C45, C90 and C180. 

Because the Cosine Bell field lacks infinite continuity, the convergence rate of the norm 

errors cannot exceed second order in our tests, regardless of the reconstruction order employed. 

This observation aligns with the key point emphasized in our paper: high-order numerical methods 

achieve their design accuracy only when the flow field is sufficiently smooth. Discontinuities in 

the flow field violate the fundamental premise of polynomial reconstruction (as discontinuities 

impair the continuity of higher derivatives, leading to non-convergence of the Taylor series). This 

inherent sensitivity to smoothness is precisely the factor causing norm errors to be influenced by 

cubed-sphere panel boundaries. When using low-order reconstruction schemes at low resolutions, 

the Tensor Product Polynomial (TPP) reconstruction employs lower-degree polynomials and is 

consequently less sensitive to the smoothness of the flow field. Conversely, high-order TPP 

reconstruction requires the flow field to possess higher-order continuity to maintain accuracy; it is 

thus more sensitive to discontinuities. Insufficiently smooth flow fields can introduce numerical 



oscillations with high-order schemes. Therefore, while TPP5 and TPP7 yield lower 𝐿∞ norm error 

magnitudes than TPP3, they exhibit more pronounced oscillations caused by the cubed-sphere 

panel boundaries. 

 

Referee Comment 63  

Williamson test case 2: It would also be helpful to present results obtained using the 

corresponding linear scheme (i.e., by applying optimal weights in WENO schemes directly). 

Displaying the absolute error distributions will be helpful to evaluate the grid imprinting. 

Response to Referee: 

Thank you for your valuable suggestion. We have visualized the simulation errors and 

obtained meaningful insights. 

As shown in Figure 8, errors near the panel boundaries of the cubed-sphere grid are 

significantly higher than those in the central regions, confirming the presence of grid imprinting. 

Furthermore, we implemented the AUSM+-up Riemann solver (consistent with the scheme 

described in Ullrich et al. (2010)) as an alternative to LMARS. While computationally more 

complex, AUSM+-up substantially reduces simulation errors. Comparative analysis of Figure 8 (a) 

and (b) demonstrates that the maximum absolute error decreases from 8.792×10⁻⁵ (LMARS) to 

2.4129×10⁻⁵ (AUSM+-up), while convergence rates remain unchanged. 

Performance benchmarks using HOPE's Fortran implementation on a C90 grid show that 

simulating 12 days with a 200-second integration time step requires 49.4 seconds for LMARS 

versus 57.34 seconds for AUSM+-up. This demonstrates that Riemann solver selection critically 

impacts simulation outcomes, consistent with the discussions in Ullrich et al. (2010). 

 

Figure 8 Numerical errors (simulation result minus exact solution) of geopotential height for steady 

state flow (Williamson test case 2) with Riemann solvers (a) LMARS and (b) AUSM+-up. The 



reconstruction scheme is TPP5. 

 

Referee Comment 64  

Williamson test cases 5 and 6: I recommend reporting the time histories of normalized errors of 

total energy and potential enstrophy. 

Response to Referee: 

We measure the conservation errors by defining the normalized error 𝜖𝑟 of the variable 𝜂 as 

𝜖𝑟 =
𝐼𝑔(𝜂𝑛)−𝐼𝑔(𝜂0)

𝐼𝑔(𝜂0)
, where 𝜂0 and 𝜂𝑛 stand for 𝜂 value at initial time and time slot 𝑛, respectively. 

The global integral is defined as: 

𝐼𝑔(𝜂𝑛) = ∑ ∑ ∑ √𝐺𝑖,𝑗,𝑝𝜂̅𝑖,𝑗,𝑝

𝑛𝑥

𝑖=1

𝑛𝑦

𝑗=1

𝑛𝑝

𝑝=1

 

where 𝜂̅𝑖,𝑗,𝑝 represents the average value of 𝜂 in cell (𝑖, 𝑗, 𝑝) 

 In the 15-day simulation of zonal flow over an isolated mountain the total energy exhibited 

a gradual increase over the integration time, while both the total potential enstrophy and the total 

zonal angular momentum showed gradual dissipation as the simulation progressed. The AUSM+-

up scheme demonstrated stronger energy dissipation compared to the LMARS scheme, as 

illustrated in Figure 2。 



 

Figure 9 Time series of normalized conservation errors for the zonal flow over isolated mountain 

simulation on the C90 grid over days 0 to 100. (a) Normalized total energy error. (b) Normalized total 

potential enstrophy error. (c) Normalized total zonal angular momentum error. 

A 100-day simulation of the Rossby-Haurwitz wave was conducted using a C90 grid (1° 

resolution). The total energy simulated with the TPP3, TPP5, TPP7, and TPP9 schemes underwent 

dissipation to varying degrees. By day 100, the normalized total energy errors reached −1.49 ×

10−3, −1.33 × 10−5, −1.71 × 10−6, −4.20 × 10−7, respectively, indicating significantly stronger 

dissipation for the TPP3 scheme compared to the other higher-order schemes Figure 3 (a)。Figure 

3 (b) presents a scaled view of the energy evolution for TPP5, TPP7, and TPP9, clearly 

demonstrating that increasing the reconstruction order progressively reduces energy dissipation. 

Furthermore, following the RH wave collapse, a significant drop in total energy was observed for 

the TPP5 scheme (after approximately 90 days) and the TPP7 scheme (after approximately 95 

days). 



 

Figure 10 Time series of normalized conservation errors for the Rossby-Haurwitz wave 

simulation on the C90 grid over days 0 to 100, with LMARS scheme as Riemann solver. (a) 

Normalized total energy error for TPP3, TPP5, TPP7 and TPP9. (b) The total energy normalized 

error for TPP5, TPP7 and TPP9. (c) Normalized potential enstrophy error for TPP3, TPP5, TPP7 

and TPP9. (d) Normalized total zonal angular momentum error for TPP3, TPP5, TPP7 and TPP9. 

 Analysis of the normalized total potential enstrophy error (Figure 3 (c)) and the normalized 

zonal angular momentum error (Figure 3 (d)) over time yields conclusions consistent with those 

for total energy. Specifically, the TPP3 scheme exhibited substantially higher dissipation than the 

higher-order schemes, confirming that employing higher-order reconstruction schemes effectively 

minimizes dissipation. Notably, significant dissipation surges occurred in these quantities 

following the RH wave collapse. 

 

Referee Comment 65  

Genuine 2D scheme: The manuscript emphasizes the benefits of using a genuine two-

dimensional discretization. The benefits should be demonstrated through  Williamson’s 

standard test suite, rather than a dam-break problem, which is not representative of global 

atmospheric dynamics. Additionally, please quantify the computational cost differences between 

the dimension-by-dimension and genuinely 2D schemes. 



Response to Referee: 

The motivation behind designing the dam break test case was specifically to highlight the 

differences between the genuine two-dimensional scheme and dimension-by-dimension 

approaches. These differences proved to be understated in Williamson's Case 5 (zonal flow over 

an isolated mountain) and Case 6 (Rossby-Haurwitz wave).  

We recognize that Multi-Moment Finite Volume Method (MCV) algorithms can achieve high 

accuracy even with dimension-by-dimension discretization. This is because MCV inherently 

computes the tendency of point values (PV) through its spatial discretization. 

Conversely, in the HOPE model, the prognostic variable is the Volume Integral Average 

(VIA), not PV. When a dimension-by-dimension reconstruction scheme is applied in this context 

(specifically for Case 2, steady-state geostrophic flow), the accuracy cannot surpass second order. 

This limitation parallels the situation mentioned in Fig. 2 of Ullrich et al. (2010). The underlying 

reason, consistent with our response to Referee Comment 4, is that performing a reconstruction in 

the x-direction targeting the VIA does not directly yield PV. Instead, it produces line integral 

averages along the y-direction. Consequently, achieving high accuracy necessitates additional 

convolution or deconvolution operations. 

Furthermore, Shi et al. (2002) report in their Table 3.1 that for the simulation of the 2D 

Vortex Evolution problem, the convergence rates of genuine finite-volume methods and 

dimension-by-dimension methods are similar. However, the 𝐿∞ error of the genuine method is 

significantly lower. 

In our own performance tests using WENO with a stencil width of 5 on a C90 grid, 

simulating 1 day with a 200s time step via RK3 TVD, the dimension-by-dimension scheme took 

16.4 seconds, while the genuine 2D scheme required 80.9 seconds (Fortran code, Dual E5-2699V4 

processors). It is crucial to note that the current research primarily demonstrates the feasibility of 

the scheme; the model implementation has not undergone high-performance optimization. 

Therefore, these timing results should be considered preliminary, and significant improvements in 

computational efficiency are anticipated during future development. 
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