
We sincerely appreciate your questions and suggestions. Based on the issues you identified, 

we have implemented significant revisions to the manuscript. We commend your scientific rigor 

throughout this process. 

 

Referee Comment 1 

Line 50: The model uses a finite-volume scheme. Please explain why it is characterized as a 

local-stencil-based model. 

Response to Referee: 

Thank you for your suggestion. The term "local stencil-based model" refers to the computational 

characteristic of our finite-volume scheme, where updating a cell's state during explicit time 

marching requires only information from a local stencil surrounding that cell. This design 

eliminates the need for global communication, making each time step highly parallelizable. 

Accordingly, we have revised the sentence to: 

“A finite-volume scheme requiring only information from a local stencil surrounding each cell to 

perform state updates, enabling massively parallel scalability.” 

 

Referee Comment 2 

Line 52: It should be explicitly stated that the attractive property discussed here arises from the 

WENO scheme. 

Response to Referee: 

According to your advice, the new description is written as: 

“A WENO (Weighted Essentially Non-Oscillatory) based, adaptive polynomial order reduction for 

essential non-oscillation.” 

 

Referee Comment 3 

Figure 4: Panel (b) shows the spatial stencil for a quadratic polynomial, and panel (c) for a 

quartic polynomial. Please correct the caption. 

Response to Referee: 

The new version of Figure 4 (Figure 1 in this reply file) is shown as 



 

Figure 1 Reconstruction coordinate and polynomial terms on stencils. (a): Local reconstruction 

coordinate (the red points denote cell centers) (b): 2nd degree polynomial stencil; (c): TPP3 stencil; (d) 

TPP5 stencil 

HOPE employs an equiangular cubed-sphere grid, where each panel undergoes uniform 

angular discretization into  𝑛𝑐 × 𝑛𝑐 cells. In the computational space (equiangular coordinates), 

each cell spans an angular interval of 
𝜋

2𝑛𝑐
, therefore 

∆𝑥 = ∆𝑦 =
𝜋

2𝑛𝑐
 

This uniformity ensures that all cells are geometrically identical in the computational space, 

thereby avoiding the need for cell-specific treatment during reconstruction studies. In the 

following part of this section, we set a new computational space for reconstruction process. The 

coordinate system (𝑥̂, 𝑦̂) is established such that within each reconstruction stencil, the origin 

(0,0) is located at the stencil center, the central cell spans[−0.5,0.5] in both 𝑥̂ and 𝑦̂ directions, as 

shown in Figure 1 (a). All of the cells have the same size in 𝑥̂, 𝑦̂ directions: 

∆𝑥̂ = ∆𝑦̂ = 1 

On the cubed-sphere grid, a fixed reconstruction scheme yields consistent stencils across all 

cells. This structural homogeneity renders the reconstruction operation computationally equivalent 



to two-dimensional convolution, thereby enabling efficient GPU acceleration through PyTorch's 

built-in conv2d function. 

To construct genuinely 2D reconstructions, the functional form of the reconstruction basis 

must be selected. A bivariate polynomial of degree 𝑑 contains 
(𝑑+1)(𝑑+2)

2
 terms. As illustrated in 

Figure 1 (b), the 6 terms of a bivariate quadratic polynomial (𝑑 = 2) are insufficient to cover a 

square stencil. To address this, we adopt Tensor Product Polynomials (TPP) as basis functions. We 

denote a TPP function containing 𝑛 × 𝑛 terms as TPPn. Determining the coefficients of TPPn 

requires information from a 𝑛 × 𝑛 block of cells. When using a TPP reconstruction stencil of size 

𝑛 × 𝑛, HOPE achieves fifth-order accuracy when simulating smooth flow fields. We therefore 

designate a TPP reconstruction stencil of size 𝑛 × 𝑛 as an n-th order TPP stencil, the 3rd and 5th 

order TPP stencils are shown in Figure 1 (c)(d). 

 

Referee Comment 4 

Figure 7: The ghost cells are interpolated using a two-dimensional procedure, which involves 

solving a system of equations iteratively. I recommend the authors consider employing a one-

dimensional interpolation scheme instead, as the quadrature points in ghost cells are arranged 

along lines connecting the corresponding points in neighboring cells. One-

dimensional interpolation can simplify the interpolation and improve efficiency. 

Response to Referee: 

Thank you for your suggestion. While a one-dimensional interpolation scheme would indeed 

be efficient for models employing a dimension-by-dimension reconstruction approach, our testing 

indicates that a 1D ghost cell interpolation scheme cannot achieve accuracy beyond second 

order—consistent with findings from Ullrich et al. (2010). This limitation arises because HOPE 

integrates a two-dimensional reconstruction scheme with cell-boundary flux calculations. Using 

1D reconstruction for ghost cell interpolation would cause a loss of two-dimensional information. 

To illustrate, consider reconstruction along the x-direction: a pure 1D scheme computes ghost 

point values not as true pointwise quantities, but as integral averages along the y-direction within 

the cell. Recovering the actual point values would require an additional deconvolution operation 



(Ullrich et al., 2010). Crucially, this process necessitates a wider interpolation stencil than the 

original scheme. 

As you noted, our proposed ghost cell interpolation method appears to require solving linear 

systems for a closed-form expression. We acknowledge in the Appendix that direct inversion of 

such large-scale systems is impractical. HOPE’s key innovation (Section 3.3.1) circumvents this 

by leveraging PyTorch’s auto-differentiation: 

1. The ghost cell interpolation matrix 𝒢 is computed row-wise via automatic differentiation. 

2. 𝒢 is stored efficiently in Compressed Sparse Row (CSR) format. 

3. Ghost cell interpolation then reduces to a single matrix-vector multiplication. 

This approach dramatically reduces computational costs while preserving high-order 

accuracy. 

 

Referee Comment 5 

Subsection 3.5: As the model is based on a WENO scheme, I recommend using a TVD Runge-

Kutta time integration. 

Response to Referee: 

Thank you for the valuable suggestion. The pairing of WENO with a TVD Runge-Kutta time 

integration scheme is indeed appropriate. HOPE is compatible with various explicit Runge-Kutta 

schemes, and our experiments have comprehensively evaluated multiple such methods. For the 

test cases presented in this paper, results demonstrate no discernible differences between using 

TVD Runge-Kutta and the WRF Runge-Kutta formulation. 

 

Referee Comment 6 

I suggest including results for solid rotation of a cosine bell along different directions. Please 

also provide time histories of normalized errors. 

Response to Referee: 

The Solid Body Rotation Cosine Bell (Case 1 from Williamson (1992)) is widely used to 

assess noise generated by panel boundaries, as noted by Chen and Xiao (2008), Ullrich et al. 

(2010). 



Figure 2 presents the norm errors for a 12-day simulation at 𝛼 = 0; results for 𝛼 = 𝜋/2 are 

identical. The temporal evolution of 𝐿1 and 𝐿2 norm errors does not exhibit a pronounced 

signature attributable to panel boundaries. In contrast, the 𝐿∞norm error evolution shows 

significant sensitivity to panel boundaries, varying considerably with grid resolution and 

reconstruction order. When using low resolution and low reconstruction order (TPP3 with C30 

grid), oscillations induced by panel boundaries are relatively weak. However, as the model 

resolution or reconstruction order increases, the influence of panel boundaries on the 𝐿∞ norm 

error manifests as a distinct four-peak pattern, corresponding to the four longitudinally aligned 

panel boundaries of the cubed-sphere grid. 

 

Figure 2 The variation of norm errors during simulation days for the cosine bell advection test case, 

with direction parameter 𝛼 = 0. The rows represent reconstruction schemes TPP3, TPP5 and TPP7, the 

columns stand for grid C30, C45, C90 and C180. 

Figure 3 shows the 12-day simulation norm errors for 𝛼 = 𝜋/4. In this test configuration, the 

cosine bell initially moves alone the interface between Panel 1 and Panel 5, and subsequently 

moves along the interface between Panel 3 and Panel 6. The temporal evolution of 𝐿1 and 𝐿2 norm 

errors display two gentle peaks, corresponding to the errors generated as the cosine bell crosses 



these panel interfaces. Similar to Figure 2, the 𝐿∞ norm error progressively exceeds the 𝐿1 and 𝐿2 

norm errors as grid resolution and reconstruction order increase. 

 

Figure 3 The variation of norm errors during simulation days for the cosine bell advection test case, 

with direction parameter 𝛼 = 𝜋/4 . The rows represent reconstruction schemes TPP3, TPP5 and TPP7, 

the columns stand for grid C30, C45, C90 and C180. 

Because the Cosine Bell field lacks infinite continuity, the convergence rate of the norm 

errors cannot exceed second order in our tests, regardless of the reconstruction order employed. 

This observation aligns with the key point emphasized in our paper: high-order numerical methods 

achieve their design accuracy only when the flow field is sufficiently smooth. Discontinuities in 

the flow field violate the fundamental premise of polynomial reconstruction (as discontinuities 

impair the continuity of higher derivatives, leading to non-convergence of the Taylor series). This 

inherent sensitivity to smoothness is precisely the factor causing norm errors to be influenced by 

cubed-sphere panel boundaries. When using low-order reconstruction schemes at low resolutions, 

the Tensor Product Polynomial (TPP) reconstruction employs lower-degree polynomials and is 

consequently less sensitive to the smoothness of the flow field. Conversely, high-order TPP 

reconstruction requires the flow field to possess higher-order continuity to maintain accuracy; it is 

thus more sensitive to discontinuities. Insufficiently smooth flow fields can introduce numerical 



oscillations with high-order schemes. Therefore, while TPP5 and TPP7 yield lower 𝐿∞ norm error 

magnitudes than TPP3, they exhibit more pronounced oscillations caused by the cubed-sphere 

panel boundaries. 

 

Referee Comment 7 

Williamson test case 2: It would also be helpful to present results obtained using the 

corresponding linear scheme (i.e., by applying optimal weights in WENO schemes directly). 

Displaying the absolute error distributions will be helpful to evaluate the grid imprinting. 

Response to Referee: 

Thank you for your valuable suggestion. We have visualized the simulation errors and 

obtained meaningful insights. 

As shown in Figure 4, errors near the panel boundaries of the cubed-sphere grid are 

significantly higher than those in the central regions, confirming the presence of grid imprinting. 

Furthermore, we implemented the AUSM+-up Riemann solver (consistent with the scheme 

described in Ullrich et al. (2010)) as an alternative to LMARS. While computationally more 

complex, AUSM+-up substantially reduces simulation errors. Comparative analysis of Figure 4 (a) 

and (b) demonstrates that the maximum absolute error decreases from 8.792×10⁻⁵ (LMARS) to 

2.4129×10⁻⁵ (AUSM+-up), while convergence rates remain unchanged. 

Performance benchmarks using HOPE's Fortran implementation on a C90 grid show that 

simulating 12 days with a 200-second integration time step requires 49.4 seconds for LMARS 

versus 57.34 seconds for AUSM+-up. This demonstrates that Riemann solver selection critically 

impacts simulation outcomes, consistent with the discussions in Ullrich et al. (2010). 

 

Figure 4 Numerical errors (simulation result minus exact solution) of geopotential height for steady 

state flow (Williamson test case 2) with Riemann solvers (a) LMARS and (b) AUSM+-up. The 



reconstruction scheme is TPP5. 

 

Referee Comment 8 

Williamson test cases 5 and 6: I recommend reporting the time histories of normalized errors of 

total energy and potential enstrophy. 

Response to Referee: 

We measure the conservation errors by defining the normalized error 𝜖𝑟 of the variable 𝜂 as 

𝜖𝑟 =
𝐼𝑔(𝜂𝑛)−𝐼𝑔(𝜂0)

𝐼𝑔(𝜂0)
, where 𝜂0 and 𝜂𝑛 stand for 𝜂 value at initial time and time slot 𝑛, respectively. 

The global integral is defined as: 

𝐼𝑔(𝜂𝑛) = ∑ ∑ ∑ √𝐺𝑖,𝑗,𝑝𝜂̅𝑖,𝑗,𝑝

𝑛𝑥

𝑖=1

𝑛𝑦

𝑗=1

𝑛𝑝

𝑝=1

 

where 𝜂̅𝑖,𝑗,𝑝 represents the average value of 𝜂 in cell (𝑖, 𝑗, 𝑝) 

In the 15-day simulation of zonal flow over an isolated mountain the total energy exhibited a 

gradual increase over the integration time, while both the total potential enstrophy and the total 

zonal angular momentum showed gradual dissipation as the simulation progressed. The AUSM+-

up scheme demonstrated stronger energy dissipation compared to the LMARS scheme, as 

illustrated in Figure 5。 



 

Figure 5 Time series of normalized conservation errors for the zonal flow over isolated mountain 

simulation on the C90 grid over days 0 to 100. (a) Normalized total energy error. (b) Normalized total 

potential enstrophy error. (c) Normalized total zonal angular momentum error. 

A 100-day simulation of the Rossby-Haurwitz wave was conducted using a C90 grid (1° 

resolution). The total energy simulated with the TPP3, TPP5, TPP7, and TPP9 schemes underwent 

dissipation to varying degrees. By day 100, the normalized total energy errors reached −1.49 ×

10−3, −1.33 × 10−5, −1.71 × 10−6, −4.20 × 10−7, respectively, indicating significantly stronger 

dissipation for the TPP3 scheme compared to the other higher-order schemes Figure 6 (a)。Figure 

6 (b) presents a scaled view of the energy evolution for TPP5, TPP7, and TPP9, clearly 

demonstrating that increasing the reconstruction order progressively reduces energy dissipation. 

Furthermore, following the RH wave collapse, a significant drop in total energy was observed for 

the TPP5 scheme (after approximately 90 days) and the TPP7 scheme (after approximately 95 

days). 



 

Figure 6 Time series of normalized conservation errors for the Rossby-Haurwitz wave simulation 

on the C90 grid over days 0 to 100, with LMARS scheme as Riemann solver. (a) Normalized total 

energy error for TPP3, TPP5, TPP7 and TPP9. (b) The total energy normalized error for TPP5, 

TPP7 and TPP9. (c) Normalized potential enstrophy error for TPP3, TPP5, TPP7 and TPP9. (d) 

Normalized total zonal angular momentum error for TPP3, TPP5, TPP7 and TPP9. 

 Analysis of the normalized total potential enstrophy error (Figure 6 (c)) and the normalized 

zonal angular momentum error (Figure 6 (d)) over time yields conclusions consistent with those 

for total energy. Specifically, the TPP3 scheme exhibited substantially higher dissipation than the 

higher-order schemes, confirming that employing higher-order reconstruction schemes effectively 

minimizes dissipation. Notably, significant dissipation surges occurred in these quantities 

following the RH wave collapse. 

 

Referee Comment 9 

Genuine 2D scheme: The manuscript emphasizes the benefits of using a genuine two-

dimensional discretization. The benefits should be demonstrated through  Williamson’s 

standard test suite, rather than a dam-break problem, which is not representative of global 

atmospheric dynamics. Additionally, please quantify the computational cost differences between 

the dimension-by-dimension and genuinely 2D schemes. 



Response to Referee: 

The motivation behind designing the dam break test case was specifically to highlight the 

differences between the genuine two-dimensional scheme and dimension-by-dimension 

approaches. These differences proved to be understated in Williamson's Case 5 (zonal flow over 

an isolated mountain) and Case 6 (Rossby-Haurwitz wave).  

We recognize that Multi-Moment Finite Volume Method (MCV) algorithms can achieve high 

accuracy even with dimension-by-dimension discretization. This is because MCV inherently 

computes the tendency of point values (PV) through its spatial discretization. 

Conversely, in the HOPE model, the prognostic variable is the Volume Integral Average 

(VIA), not PV. When a dimension-by-dimension reconstruction scheme is applied in this context 

(specifically for Case 2, steady-state geostrophic flow), the accuracy cannot surpass second order. 

This limitation parallels the situation mentioned in Fig. 2 of Ullrich et al. (2010). The underlying 

reason, consistent with our response to Referee Comment 4, is that performing a reconstruction in 

the x-direction targeting the VIA does not directly yield PV. Instead, it produces line integral 

averages along the y-direction. Consequently, achieving high accuracy necessitates additional 

convolution or deconvolution operations. 

Furthermore, Shi et al. (2002) report in their Table 3.1 that for the simulation of the 2D 

Vortex Evolution problem, the convergence rates of genuine finite-volume methods and 

dimension-by-dimension methods are similar. However, the 𝐿∞ error of the genuine method is 

significantly lower. 

In our own performance tests using WENO with a stencil width of 5 on a C90 grid, 

simulating 1 day with a 200s time step via RK3 TVD, the dimension-by-dimension scheme took 

16.4 seconds, while the genuine 2D scheme required 80.9 seconds (Fortran code, Dual E5-2699V4 

processors). It is crucial to note that the current research primarily demonstrates the feasibility of 

the scheme; the model implementation has not undergone high-performance optimization. 

Therefore, these timing results should be considered preliminary, and significant improvements in 

computational efficiency are anticipated during future development. 
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