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Supplementary 29 
 30 

S1. SNEPI (Standardized Net Precipitation and Distribution Index) (For details, refer 31 

to Singh et al., 2021): 32 

The methodology to develop the Standardized Net-Precipitation Index (SNEPI) is 33 

explained below. 34 

- Potential evapotranspiration (PET) is subtracted from daily precipitation to ascertain 35 

the daily net precipitation. The Penman-Monteith equation is employed to acquire the 36 

PET data, which takes into account variables such as vapor pressure, ambient 37 

temperature, net radiation, wind speed, and vapor pressure deficit. The drought index's 38 

daily fluctuations are precisely represented by the daily net precipitation. 39 

- In order to assign days as either rainy or non-rainy, a threshold is established at which 40 

the daily net precipitation balances atmospheric demand (PET) and precipitation input. 41 

During periods of excess precipitation, net precipitation values are positive, while 42 

negative values indicate deficit precipitation. The analysis encompasses all pertinent 43 

data, including single-day periods of surplus or deficit. 44 

- The daily net-precipitation series is used to extract the magnitude, duration, and 45 

frequency of excess and deficit periods. The characteristics of deficit periods are 46 

accounted for by a weighted average of monthly net precipitation. In order to 47 

distinguish between periods with uniform precipitation and those with daily 48 

fluctuations, a uniformity coefficient is implemented to capture intra-period variability. 49 

- For the efficient utilization of water resources, it is crucial to consider the concept of 50 

uniformity during periods of surplus or deficit. The uniformity is described by a 51 

coefficient, and the non-uniformity is quantified by the area of deviation. 52 

- A refined monthly aggregate is produced by adjusting the initial monthly aggregate to 53 

account for the distribution of magnitudes within excess or deficit periods. The 1-month 54 

SNEPI is computed using this refined aggregate; however, the methodology can be 55 

modified to calculate SNEPI at various time scales. 56 

- The Kolmogorov-Smirnov (KS) goodness-of-fit test is employed to evaluate four 57 

candidate distributions in order to fit the refined monthly aggregate to a suitable 58 

probability distribution function (PDF). The optimal distribution is determined by the 59 

discrepancy between the critical value and the test statistic. 60 

 61 

 62 



Performance Analysis: 63 

Contingency tables are generated for a variety of time periods (1, 3, 6, and 12 months) in 64 

order to evaluate the efficacy of SNEPI in comparison to SPEI. SPEI is the reference due 65 

to the absence of high-resolution official records, and its methodology is consistent with 66 

SPI. The tables delineate drought conditions according to the definitions of both indices, 67 

emphasizing the areas of agreement and disagreement. Positive disagreements arise when 68 

SNEPI suggests wetter conditions than SPEI, while negative disagreements arise when 69 

SNEPI suggests arid conditions. 70 

The maximum level of agreement between SNEPI and SPEI is observed at the 1-month 71 

time scale, and this agreement decreases as the time scale increases. This is attributable to 72 

the growing significance of spell and frequency characteristics over extended periods. 73 

Additionally, the boxplots of SNEPI and SPEI ranges demonstrated that SNEPI 74 

significantly better depicts extreme wet and dry events across the majority of time scales. 75 

Specifically, SNEPI consistently reports heightened tails in the 1-month scale, which are 76 

associated with reduced uniformity coefficients (Uc) indicating high variability and skewed 77 

rainfall events. This emphasizes SNEPI's superior capacity to capture extreme events in 78 

comparison to SPEI, particularly at shorter time scales (Singh et al., 2021). 79 

 80 

S2. EEMD (Empirical Ensemble Mode Decomposition) 81 

MEEMD, which is derived from EEMD (Ensemble Empirical Mode Decomposition) and 82 

EMD (Empirical Mode Decomposition), is employed to assess the existence of any trend 83 

in each of the variables. EMD is a non-stationary, non-linear, and one-dimensional time-84 

domain decomposition procedure. This method is highly localized and adaptive, 85 

decomposing a time series into multiple empirical modes known as intrinsic mode 86 

functions (IMFs). IMFs are oscillatory functions that are simple in nature and have a 87 

specific frequency and amplitude, which are frequently associated with a particular 88 

physical process. Additionally, IMFs must meet two criteria: 89 

i. The number of local extrema and the number of zero crossings must be equal or at most 90 

differ by one, while the function must be symmetric in time. 91 

ii. The mean value of the envelope, which is determined by the local maxima and local 92 

minima, must be zero.  93 

In general, a time series is comprised of two primary components: a mono component (I) 94 

and a gradually varying component (R). The initial IMF can be derived by extracting the 95 

mono component, which is also known as IMF, through a refining process known as sifting. 96 



Figure S1 illustrates the procedures associated with the sieving process. The process will 97 

terminate when the slow varying component is a monotonic function or when a curve 98 

contains at most one extremum, at which point no additional oscillatory component can be 99 

defined. The initial time series can be represented as: 100 

𝑌(𝑡) =  ∑ 𝐼𝑗(𝑡)𝑛
𝐽=1 + 𝑅𝑛(𝑡),         (1) 101 

The sifting process, which is wholly dependent on the distribution of extrema, is the 102 

standard method of enforcing EMD. The results could be substantially different if the 103 

locations and values of the extrema are altered. Additionally, mode mixing may result from 104 

oscillations of disparate scales, which can result in an incorrect interpretation of the 105 

physical meaning of IMF. This unequivocally underscores the fact that EMD is susceptible 106 

to noise. The EMD approach is unstable and fails to satisfy the physical uniqueness of the 107 

decomposition methods, as we are aware that real data typically contains a certain quantity 108 

of random noise and intermittences. Ensemble Empirical Mode Decomposition (EEMD) 109 

was devised to address this limitation. This method is a noise-assisted data analysis 110 

technique. The following are the steps that are engaged in EEMD:  111 

1. Incorporate a white noise series into the targeted data;  112 

2. Decompose the data with the added white noise into IMFs (as outlined in EMD). 113 

3. Repeat steps I and II on multiple occasions, each time incorporating a distinct white noise 114 

series. 115 

4. The final result is the (ensemble) mean of the corresponding IMFs of the decompositions. 116 

𝑇𝑟𝑒𝑛𝑑𝐸𝐸𝑀𝐷(𝑡) =  𝑅𝑛(𝑡) − 𝑅𝑛(1902)     (2)      117 
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S3. Results: 130 

 131 
Figure S1: a) Spatiotemporal evolution of drought characteristics (intensity, duration, and 132 

frequency); b) Spatiotemporal evolution of heatwave characteristics (intensity, duration, 133 

and frequency); c) Spatiotemporal evolution of maximum temperature event characteristics 134 

(intensity, duration, and frequency) over the 6 decades starting from 1951 till 2016. 135 



 136 

 137 
Figure S2: Silhouette plots corresponding to the heatwaves for a) 2 clusters, b) 3 clusters, 138 

c) 4 clusters, and those corresponding to the droughts for d) 2 clusters, e) 3 clusters, f) 4 139 

clusters. The maximum number of points with high silhouette values (almost the same for 140 

all the clusters) was observed for an optimum 3 clusters for both droughts and heatwaves. 141 

 142 

 143 
Figure S3: Spatiotemporal extent of the extracted overlapped clusters of individual 144 

droughts and heatwaves during each decade from 1951 till 2016. 145 

 146 
 147 
 148 



 149 
Figure S4: Spatiotemporal evolution of the different CDHW event categories (Moderate, 150 

Elevated, Severe, Intense, and Extreme) across each decade from 1951 till 2016. 151 

 152 
 153 



Figure S5: Spatial and decadal evolution of the dominant CDHW category across India 154 

from 1951-2016, illustrating the shifts in the most frequent event category per grid over 155 

successive decades to further highlight the intensification and spatial expansion of the 156 

different CDHW categories.  157 

 158 

 159 
Figure S6: a) Influence of drought intensities on the compound occurrence frequency 160 

during a year for a given heatwave intensity, showing that the frequency decreased with 161 

increasing drought intensity; (b) Influence of heatwave durations on the compound 162 

occurrence frequency within a year for moderate droughts, with increase in frequency with 163 

longer duration of heatwaves except extreme east India; (c) For a given drought intensity 164 

and heatwave duration, influence of increase in temperature on the decreasing frequencies.  165 

 166 

Possible Impacts of CDHW on population dynamics and land use/ land cover 167 

The progression of Compound Drought and Heatwave (CDHW) occurrences in India 168 

during the last sixty years indicates changing climate patterns, regional susceptibilities, and 169 

alterations in land use and land cover (LULC). A large regional transition in CDHW 170 

occurrences from northwestern to southeastern India has profoundly impacted both 171 

physical landscapes and demographic patterns. This study assesses these changes 172 



concerning regional adaptation capacities, as described by Mohanty et al. (2021), 173 

highlighting the capacity to address increasing climate problems and formulate mitigation 174 

solutions. Urban population data from the census of India (2011) has been utilized to 175 

analyse demographic shifts in the CDHW hotspots.  176 

Over the past 4 decades, India has experienced significant land use and land cover changes 177 

(figure 9(a)) indicating a 6% rise in urbanization and a reduction in plantation cover, 178 

especially in the dry areas of Rajasthan, where approximately the urban population which 179 

is significantly susceptible to Severe and Elevated CDHW events (figure 9(b)) has 180 

increased by almost fivefold. In West Bengal, situated in the eastern tropical wet and dry 181 

zone, urban population susceptible to Severe and Elevated CDHW conditions have 182 

increased by fourfold. Districts such as Purulia, classified as ‘extreme danger’ zones for 183 

heatwaves (Debnath et al., 2023), endure persistent droughts attributable to increasing 184 

temperatures and irregular precipitation patterns. Assam, notwithstanding its tropical wet 185 

and humid subtropical climate, has experienced over 10-fold urban expansion, amplifying 186 

vulnerability to intensified CDHW events due to its weak adaptation capacity. In Andhra 187 

Pradesh’s semi-arid regions, the urban population at risk has risen more than fourfold, with 188 

Intense CDHW events. Kerala, notwithstanding its tropical wet environment, is 189 

experiencing heightened CDHW intensity leading to a fivefold rise in the urban population 190 

at risk. Himachal Pradesh, despite little exposure, has encountered escalating CDHW 191 

occurrences coupled with a fourfold increase in the exposed urban population (figure 9(b)).  192 

In the realm of LULC changes, this analysis reveals a tale of transformation, with regions 193 

experiencing shifts in land cover and population dynamics. From northwestern expanses 194 

witnessing urban expansion to the coastal regions grappling with intensified CDHW 195 

occurrences, the story of India's evolving landscape is intricately linked to its climatic 196 

challenges.  197 

198 



 199 



Figure S7: (a) LULC dynamics across India depicts the evolving landscape of land 

use/land cover (LULC) across India amidst Compound Drought and Heatwave (CDHW) 

events during the most vulnerable decades 1981-1990, 1991-2000, and 2001-2016; (b) 

CDHW hotspots (states) showing increase in urban population exposure with respect to the 

decadal change in the CDHW intensities since 1951 till 2016.  

 


