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Supplementary

S1. SNEPI (Standardized Net Precipitation and Distribution Index) (For details, refer
to Singh et al., 2021):
The methodology to develop the Standardized Net-Precipitation Index (SNEPI) is

explained below.

Potential evapotranspiration (PET) is subtracted from daily precipitation to ascertain
the daily net precipitation. The Penman-Monteith equation is employed to acquire the
PET data, which takes into account variables such as vapor pressure, ambient
temperature, net radiation, wind speed, and vapor pressure deficit. The drought index's
daily fluctuations are precisely represented by the daily net precipitation.

In order to assign days as either rainy or non-rainy, a threshold is established at which
the daily net precipitation balances atmospheric demand (PET) and precipitation input.
During periods of excess precipitation, net precipitation values are positive, while
negative values indicate deficit precipitation. The analysis encompasses all pertinent
data, including single-day periods of surplus or deficit.

The daily net-precipitation series is used to extract the magnitude, duration, and
frequency of excess and deficit periods. The characteristics of deficit periods are
accounted for by a weighted average of monthly net precipitation. In order to
distinguish between periods with uniform precipitation and those with daily
fluctuations, a uniformity coefficient is implemented to capture intra-period variability.
For the efficient utilization of water resources, it is crucial to consider the concept of
uniformity during periods of surplus or deficit. The uniformity is described by a
coefficient, and the non-uniformity is quantified by the area of deviation.

A refined monthly aggregate is produced by adjusting the initial monthly aggregate to
account for the distribution of magnitudes within excess or deficit periods. The 1-month
SNEPI is computed using this refined aggregate; however, the methodology can be
modified to calculate SNEPI at various time scales.

The Kolmogorov-Smirnov (KS) goodness-of-fit test is employed to evaluate four
candidate distributions in order to fit the refined monthly aggregate to a suitable
probability distribution function (PDF). The optimal distribution is determined by the

discrepancy between the critical value and the test statistic.



63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

Performance Analysis:

Contingency tables are generated for a variety of time periods (1, 3, 6, and 12 months) in
order to evaluate the efficacy of SNEPI in comparison to SPEI. SPEI is the reference due
to the absence of high-resolution official records, and its methodology is consistent with
SPI. The tables delineate drought conditions according to the definitions of both indices,
emphasizing the areas of agreement and disagreement. Positive disagreements arise when
SNEPI suggests wetter conditions than SPEI, while negative disagreements arise when
SNEPI suggests arid conditions.

The maximum level of agreement between SNEPI and SPEI is observed at the 1-month
time scale, and this agreement decreases as the time scale increases. This is attributable to
the growing significance of spell and frequency characteristics over extended periods.
Additionally, the boxplots of SNEPI and SPEI ranges demonstrated that SNEPI
significantly better depicts extreme wet and dry events across the majority of time scales.
Specifically, SNEPI consistently reports heightened tails in the 1-month scale, which are
associated with reduced uniformity coefficients (Uc) indicating high variability and skewed
rainfall events. This emphasizes SNEPI's superior capacity to capture extreme events in

comparison to SPEI, particularly at shorter time scales (Singh et al., 2021).

S2. EEMD (Empirical Ensemble Mode Decomposition)

MEEMD, which is derived from EEMD (Ensemble Empirical Mode Decomposition) and
EMD (Empirical Mode Decomposition), is employed to assess the existence of any trend
in each of the variables. EMD is a non-stationary, non-linear, and one-dimensional time-
domain decomposition procedure. This method is highly localized and adaptive,
decomposing a time series into multiple empirical modes known as intrinsic mode
functions (IMFs). IMFs are oscillatory functions that are simple in nature and have a
specific frequency and amplitude, which are frequently associated with a particular
physical process. Additionally, IMFs must meet two criteria:

1. The number of local extrema and the number of zero crossings must be equal or at most
differ by one, while the function must be symmetric in time.
ii. The mean value of the envelope, which is determined by the local maxima and local
minima, must be zero.

In general, a time series is comprised of two primary components: a mono component (1)
and a gradually varying component (R). The initial IMF can be derived by extracting the

mono component, which is also known as IMF, through a refining process known as sifting.
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Figure S1 illustrates the procedures associated with the sieving process. The process will
terminate when the slow varying component is a monotonic function or when a curve
contains at most one extremum, at which point no additional oscillatory component can be
defined. The initial time series can be represented as:

Y(t) = Xj () + Ru(0), (1

The sifting process, which is wholly dependent on the distribution of extrema, is the
standard method of enforcing EMD. The results could be substantially different if the
locations and values of the extrema are altered. Additionally, mode mixing may result from
oscillations of disparate scales, which can result in an incorrect interpretation of the
physical meaning of IMF. This unequivocally underscores the fact that EMD is susceptible
to noise. The EMD approach is unstable and fails to satisfy the physical uniqueness of the
decomposition methods, as we are aware that real data typically contains a certain quantity
of random noise and intermittences. Ensemble Empirical Mode Decomposition (EEMD)
was devised to address this limitation. This method is a noise-assisted data analysis
technique. The following are the steps that are engaged in EEMD:

1. Incorporate a white noise series into the targeted data;

2. Decompose the data with the added white noise into IMFs (as outlined in EMD).
3. Repeat steps I and 11 on multiple occasions, each time incorporating a distinct white noise
series.

4. The final result is the (ensemble) mean of the corresponding IMFs of the decompositions.

Trendggyp(t) = Ry(t) — R, (1902) (2)
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132 Figure S1: a) Spatiotemporal evolution of drought characteristics (intensity, duration, and
133 frequency); b) Spatiotemporal evolution of heatwave characteristics (intensity, duration,
134 and frequency); ¢) Spatiotemporal evolution of maximum temperature event characteristics

135 (intensity, duration, and frequency) over the 6 decades starting from 1951 till 2016.
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Figure S2: Silhouette plots corresponding to the heatwaves for a) 2 clusters, b) 3 clusters,
c) 4 clusters, and those corresponding to the droughts for d) 2 clusters, e) 3 clusters, f) 4
clusters. The maximum number of points with high silhouette values (almost the same for

all the clusters) was observed for an optimum 3 clusters for both droughts and heatwaves.
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Figure S3: Spatiotemporal extent of the extracted overlapped clusters of individual

droughts and heatwaves during each decade from 1951 till 2016.
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150 Figure S4: Spatiotemporal evolution of the different CDHW event categories (Moderate,
151 Elevated, Severe, Intense, and Extreme) across each decade from 1951 till 2016.
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Figure S5: Spatial and decadal evolution of the dominant CDHW category across India
from 1951-2016, illustrating the shifts in the most frequent event category per grid over
successive decades to further highlight the intensification and spatial expansion of the

different CDHW categories.
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Figure S6: a) Influence of drought intensities on the compound occurrence frequency
during a year for a given heatwave intensity, showing that the frequency decreased with
increasing drought intensity; (b) Influence of heatwave durations on the compound
occurrence frequency within a year for moderate droughts, with increase in frequency with
longer duration of heatwaves except extreme east India; (c) For a given drought intensity

and heatwave duration, influence of increase in temperature on the decreasing frequencies.

Possible Impacts of CDHW on population dynamics and land use/ land cover

The progression of Compound Drought and Heatwave (CDHW) occurrences in India
during the last sixty years indicates changing climate patterns, regional susceptibilities, and
alterations in land use and land cover (LULC). A large regional transition in CDHW
occurrences from northwestern to southeastern India has profoundly impacted both

physical landscapes and demographic patterns. This study assesses these changes
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concerning regional adaptation capacities, as described by Mohanty et al. (2021),
highlighting the capacity to address increasing climate problems and formulate mitigation
solutions. Urban population data from the census of India (2011) has been utilized to
analyse demographic shifts in the CDHW hotspots.

Over the past 4 decades, India has experienced significant land use and land cover changes
(figure 9(a)) indicating a 6% rise in urbanization and a reduction in plantation cover,
especially in the dry areas of Rajasthan, where approximately the urban population which
is significantly susceptible to Severe and Elevated CDHW events (figure 9(b)) has
increased by almost fivefold. In West Bengal, situated in the eastern tropical wet and dry
zone, urban population susceptible to Severe and Elevated CDHW conditions have
increased by fourfold. Districts such as Purulia, classified as ‘extreme danger’ zones for
heatwaves (Debnath et al., 2023), endure persistent droughts attributable to increasing
temperatures and irregular precipitation patterns. Assam, notwithstanding its tropical wet
and humid subtropical climate, has experienced over 10-fold urban expansion, amplifying
vulnerability to intensified CDHW events due to its weak adaptation capacity. In Andhra
Pradesh’s semi-arid regions, the urban population at risk has risen more than fourfold, with
Intense CDHW events. Kerala, notwithstanding its tropical wet environment, is
experiencing heightened CDHW intensity leading to a fivefold rise in the urban population
at risk. Himachal Pradesh, despite little exposure, has encountered escalating CDHW
occurrences coupled with a fourfold increase in the exposed urban population (figure 9(b)).
In the realm of LULC changes, this analysis reveals a tale of transformation, with regions
experiencing shifts in land cover and population dynamics. From northwestern expanses
witnessing urban expansion to the coastal regions grappling with intensified CDHW
occurrences, the story of India's evolving landscape is intricately linked to its climatic

challenges.
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Figure S7: (a) LULC dynamics across India depicts the evolving landscape of land
use/land cover (LULC) across India amidst Compound Drought and Heatwave (CDHW)
events during the most vulnerable decades 1981-1990, 1991-2000, and 2001-2016; (b)
CDHW hotspots (states) showing increase in urban population exposure with respect to the

decadal change in the CDHW intensities since 1951 till 2016.



