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Abstract. Process-based crop models combined with land surface models are useful tools for accurately quantifying the 10 

impacts of climate change on crops while considering the interactions between agricultural land and climate. MATCRO model 

is a process-based crop model initially developed for paddy rice, combined with a land surface model. We developed 

MATCRO-Maize as a new model for maize by incorporating leaf-level photosynthesis of C4 plants and adjusting crop-specific 

parameters into the original MATCRO model. MATCRO-Maize was evaluated at both a point scale and a global scale through 

comparisons with observational values. For global-scale simulations, the simulated yield showed statistically significant 15 

differences compared with Food and Agriculture Organization’s FAOSTAT data at the country and global levels. Although 

the absolute value of the simulated yield tended to be overestimated, MATCRO-Maize reproduced spatial patterns with a 

correlation coefficient (COR) of 0.58 (p value < 0.01) for the 30-year average yield comparison of the top 20 maize-producing 

countries. In addition, the comparisons of the interannual variability derived from detrended deviation were statistically 

significant for the total global yield (COR of 0.55 with p value < 0.01) and for half of the top 20 countries (COR of 0.64-0.90 20 

with p value < 0.001 for 6 countries; COR of 0.50-0.51 with p value < 0.01 for 2 countries; COR of 0.48-0.55 with p value < 

0.05 for 2 countries), which are comparable with those of other global crop models. One of the reasons for this overestimation 

could be related to the strong model response to nitrogen fertilizer observed in MATCRO-Maize. With experimental field data 

under more comprehensive conditions, improvements in the functions of nitrogen fertilizer in the model would be needed to 

simulate the maize yield more accurately. 25 

1 Introduction 

Maize (Zea mays L.) is one of the most important cereals not only because of its large production (FAO, 2022) but also because 

of its various roles in human food, feed, and industrial uses. Maize exhibits high photosynthetic efficiency due to its C4 plant 

nature. It contains phosphoenolpyruvate (PEP) carboxylase in mesophyll cells, which concentrates CO2 in bundle sheath cells. 

The concentrated CO2 increases the relative amount of carboxylation versus oxygenation performed by ribulose-1,5-30 
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bisphosphate carboxylase/oxygenase (Rubisco) (Kanai and Edwards, 1999), allowing C4 plants to operate at lower stomatal 

conductance rates than C3 plants (Sage, 1999). This mechanism results in high efficiencies of light, water, and nitrogen use 

(Knapp and Medina, 1999; Long, 1999). These features, such as multipurpose crops and high photosynthetic efficiency, enable 

the cultivated area to range over wide environments from wet to dry and from low to midlatitudes. However, climate change 

impacts and climate-related extremes negatively affect the productivity of the agricultural sector, which leads to negative 35 

consequences for food security (Intergovernmental Panel on Climate Change (IPCC), 2023). Therefore, it is important to 

accurately quantify the impact of climate change on crop growth and yield and to identify effective adaptation strategies to 

mitigate climate risk. 

Process-based crop models are useful tools for climate change studies because they consider the response of the 

physiological processes of crop growth and development to the environment and management (Tubiello and Ewert, 2002). 40 

The ensemble of process-based crop model simulations has shown good agreement with observed maize yields both at the site 

scale and at the global scale (Bassu et al., 2014; Jägermeyr et al., 2021), showing its potential to quantify the uncertainty in 

studies on the impacts of climate change on crop yields (Asseng et al., 2013). Crop models combined with Land Surface 

Models (LSMs) or Earth System Models (ESMs) (as classified by Peng et al., 2017) have the ability to consider the effects of 

agricultural land on the climate globally through the exchange of fluxes of heat, water, and gases, as well as the effects of 45 

climate on crops. Some studies have revealed that agricultural land affects the climate through fluxes (Bondeau et al., 2007; 

Levis et al., 2012; Maruyama and Kuwagata, 2010; Tsvetsinskaya et al., 2001) and subsequently affects crop production 

(Osborne et al., 2009). This indicates the importance of considering the interaction between agricultural land and climate to 

accurately quantify the impacts of climate change on crops. Despite this importance, few LSM/ESM-based crop models exist 

(Lin et al., 2021; Lombardozzi et al., 2020; Osborne et al., 2015; Wu et al., 2016). 50 

MATCRO is a process-based crop growth model developed for C3 plants (Masutomi et al., 2016a, b; Yusara et al., 2025). 

It was initially combined with a land surface model of Minimal Advanced Treatments of Surface Interaction and Runoff, called 

MATSIRO (Takata et al., 2003). MATSIRO is embedded in an ESM, which is the Model for Interdisciplinary Research on 

Climate, Earth System version 2 for Long-term simulations called MIROC-ES2L (Hajima et al., 2020). MATCRO simulates 

crop growth based on leaf-level photosynthesis and parameterized crop-specific parameters determined from experimental 55 

data, and it can run simulations both at a point scale and at a global scale. The model was applied to assess the impact of 

climate change at the country and local levels (Kinose et al., 2020; Kinose and Masutomi, 2019), and it was used in a study 

investigating factors to improve the simulation performance of global gridded crop models (GGCMs) (Iizumi et al., 2021). 

MATCRO is applicable to other crops, including maize as a C4 plant, with adjusted parameters from experimental datasets 

and the literature. 60 

We extended MATCRO for global maize yield simulation, called MATCRO-Maize, by adjusting crop-specific 

parameters for maize and incorporating the C4 photosynthetic mechanism. The original model of MATCRO-Rice can simulate 

latent heat flux, sensible heat flux, net carbon uptake by crops, and rice yield, indicating its application in studies on climate 

change impacts as an LSM-based model (Masutomi et al. 2016b). However, this study focused only on crop growth and yields, 
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omitting water and heat fluxes to increase computational efficiency. This paper aims to describe the methodology of 65 

MATCRO-Maize in detail (Section 2), to evaluate simulated yields both at a point scale and at a global scale with reference 

datasets (Section 3), and to provide discussion of the evaluation and model limitations (Section 4). 

2. Model description 

MATCRO consists of four modules: radiation, net carbon assimilation, crop growth, and soil water balance. It requires the 

following input data: (i) phenological data (i.e., crop calendar), (ii) water management data (i.e., the land is rainfed or irrigated), 70 

(iii) nitrogen fertilizer application data (𝑁𝑓𝑒𝑟𝑡) [kg N ha-1], (iv) soil classification data (i.e., soil texture classification), (v) 

annual CO2 data [ppm], and (vi) 6 types of daily meteorological data: air pressure (𝑃𝑠) [Pa], precipitation (𝑃𝑟𝑐) [kg m-2 s-1], 

specific humidity [𝑆ℎ] [kg kg-1], downwards shortwave radiation (𝑅𝑠) [W m-2], maximum, minimum, and mean air temperature 

(𝑇𝑚𝑎𝑥, 𝑇𝑚𝑖𝑛, 𝑇𝑎) [K], and wind speed (𝑈) [m s-1]. Based on input data, MATCRO simulates crop growth during a growing 

period. It is controlled by the crop developmental stage (𝐷𝑣𝑠) based on (Bouman et al., 2001), which is the index used to 75 

quantify crop development. The final crop yield is determined by the dry weight of the storage organ with a parameter (𝐾𝑦𝑙𝑑) 

when 𝐷𝑣𝑠 = 1. To adapt MATCRO for maize, crop-specific parameters and equations were improved, as shown in Table 1 

and Eq. (1)−(35). The details are described in the following sections. 

2.1 Photosynthetic mechanism 

MATCRO-Maize calculates net carbon assimilation for the entire canopy (𝐴𝑛) via the big-leaf model, where C4 leaf-level 80 

photosynthesis is separately calculated for sunlit and shaded leaves from the coupled photosynthesis‒stomatal conductance 

model (Dai et al., 2004).  

𝐴𝑛 for the entire canopy is given by: 

𝐴𝑛 =  𝐴𝑛,𝑠𝑛 𝐿𝑠𝑛 + 𝐴𝑛,𝑠ℎ𝐿𝑠ℎ,                   (1) 

where 𝐴𝑛,𝑠𝑛 and 𝐴𝑛,𝑠ℎ represent the net carbon assimilation per unit leaf area [𝜇 mol m-2 s-1]; 𝐿𝑠𝑛 and 𝐿𝑠ℎ represent the leaf 85 

area index (LAI) [m2 (leaf) m-2]; and 𝑠𝑛 and 𝑠ℎ indicate sunlit and shaded leaves, respectively. 𝐴𝑛,𝑠𝑛 and 𝐴𝑛,𝑠ℎ are defined in 

the following equations: 

𝐴𝑛,𝑥 =   𝐴𝑔,𝑥 − 𝑅𝑑,𝑥,                   (2) 

where 𝐴𝑔,𝑥 and 𝑅𝑑,𝑥 represent gross carbon assimilation and dark respiration per unit leaf area [𝜇 mol m-2 s-1], respectively. 

Suffix 𝑥 means 𝑠𝑛 or 𝑠ℎ. 𝐿𝑠𝑛 and 𝐿𝑠ℎ are determined following the approach of Masutomi et al., (2016a). 𝑅𝑑,𝑥 is calculated 90 

via the following equation (Bonan et al., 2011): 

𝑅𝑑,𝑥 =  0.025 𝑉𝑐𝑚𝑎𝑥,𝑥 (
2(𝑇𝑣−298.15)/10

1+exp (1.3(𝑇𝑣−328.15))
),                (3) 
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where 𝑉𝑐𝑚𝑎𝑥,𝑥 [𝜇 mol m-2 s-1] is the maximum rate of carboxylation and where 𝑇𝑣 is the leaf temperature [K] (assumed to be 

the same as the air temperature: 𝑇𝑎).  

𝐴𝑔,𝑥 is determined by the smaller root of the following equations: 95 

𝛽𝑐𝑗 𝐴𝑖,𝑥

2
− (𝐴𝑐,𝑥 + 𝐴𝑗,𝑥)𝐴𝑖,𝑥 + 𝐴𝑐,𝑥𝐴𝑗,𝑥 = 0,                 (4) 

𝛽𝑖𝑝𝐴𝑔,𝑥

2
− (𝐴𝑖,𝑥 + 𝐴𝑝,𝑥)𝐴𝑔,𝑥 + 𝐴𝑖,𝑥𝐴𝑝,𝑥 = 0,                 (5) 

where 𝛽𝑐𝑗  and 𝛽𝑖𝑝  are the transition factors (Table 1) and where 𝐴𝑖,𝑥  [𝜇 mol m-2 s-1] is the carbon fixation rate. Here, we 

introduced the C4 leaf-level photosynthesis model based on Collatz et al. (1992) into MATCRO, in which some parameters 

were taken from Oleson et al., (2013) and Lawrence et al., (2020) (see Table 1). In C4 photosynthesis, 𝐴𝑐,𝑥, 𝐴𝑗,𝑥, and 𝐴𝑝,𝑥 [𝜇 100 

mol m-2 s-1] represent Rubisco-limited, RUBP-limited, and PEP-limited photosynthesis, respectively, and are given by the 

following equations: 

𝐴𝑐,𝑥 = 𝑉𝑐𝑚𝑎𝑥,𝑥 ,                    (6) 

𝐴𝑗,𝑥 =  𝛼(4.6𝑄𝑎𝑏,𝑥),                   (7) 

𝐴𝑝,𝑥 = 𝑘𝑝,𝑥𝐶𝑖,𝑥 ,                    (8) 105 

where 𝑄𝑎𝑏,𝑥 [W m-2] is the absorbed photosynthetically active radiation (PAR); 𝛼 [mol mol-1] is the quantum efficiency; 𝑘𝑝,𝑥 

[mol m-2 s-1] is the initial slope of the CO2 response curve for the C4 CO2 response curve; and 𝐶𝑖,𝑥 [ppm] is the internal leaf 

CO2 concentration.  𝑄𝑎𝑏,𝑥 is calculated from 𝑅𝑠  via the same methods conducted in Masutomi et al. (2016a) and is converted 

to photosynthetic photon flux by multiplying by 4.6 [𝜇 mol (photons) J-1]. 𝑉𝑐𝑚𝑎𝑥,𝑥 and 𝑘𝑝,𝑥 are functions of 𝑇𝑣 and are based 

on Lawrence et al. (2020), 110 

𝑉𝑐𝑚𝑎𝑥,𝑥 =  𝑓𝑣  𝑉𝑐𝑚𝑎𝑥25,𝑥  [
𝑄10

(𝑇𝑣−298.15)/10

𝑓𝐻(𝑇𝑣)𝑓𝐿(𝑇𝑣)
],                 (9) 

𝑓𝐻(𝑇𝑣) = 1 + 𝑒𝑥𝑝[𝑆1(𝑇𝑣 − 𝑆2)],                (10) 

𝑓𝐿(𝑇𝑣) = 1 + 𝑒𝑥𝑝[𝑆3(𝑆4 − 𝑇𝑣)],                (11) 

𝑘𝑝,𝑥 = {
𝑘𝑝25,𝑥𝑄10

(𝑇𝑣−298.15)/10
, 𝑉𝑐𝑚𝑎𝑥25,𝑥 > 0,

0.7, 𝑉𝑐𝑚𝑎𝑥25,𝑥 = 0,
 ,              (12) 

𝑘𝑝25,𝑥 =  20000𝑉𝑐𝑚𝑎𝑥25,𝑥 ,                (13) 115 

with 𝑄10 = 2, 𝑆1 = 0.3 𝐾−1, 𝑆2 = 313.15𝐾, 𝑆3 = 0.2 𝐾−1, and 𝑆4 = 288.15𝐾 (see Table 1). Notably, 𝑘𝑝,𝑥 is adjusted to be 

0.7 𝑚𝑜𝑙 𝑚−2 𝑠−1 (Collatz et al., 1992) when 𝑉𝑐𝑚𝑎𝑥25,𝑥 = 0 because of the process of the photosynthesis calculation (see Eq. 

(20)). 𝑉𝑐𝑚𝑎𝑥25,𝑥 is the maximum Rubisco carboxylation rate per unit leaf area at 25℃ (the details are described in Section 

2.2.2). 𝑓𝐻(𝑇𝑣) and 𝑓𝐿(𝑇𝑣) are modulating functions that reduce 𝑉𝑐𝑚𝑎𝑥,𝑥 at high and low temperatures, respectively. 𝑓𝑣   is the 

water stress factor calculated in the soil water balance module, which indirectly affects 𝐴𝑛  through 𝑉𝑐𝑚𝑎𝑥,𝑥  (Sellers et al., 120 

1996). 𝑓𝑣 is derived from the following equations: 
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𝑓𝑣 =  ∑ {
1 ∗ 𝐸𝑇𝐹(𝑖), 𝐹𝐴𝑊(𝑖) > 0.45,

𝐹𝐴𝑊(𝑖)

0.45
∗ 𝐸𝑇𝐹(𝑖), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

𝑁𝑆𝐿
𝑖=1                (14) 

𝐹𝐴𝑊(𝑖) = min (
max((𝑊𝑆𝐿(𝑖)−𝑊𝐼𝐿𝑇),0)

𝐹𝐶−𝑊𝐼𝐿𝑇
, 1),               (15) 

𝐸𝑇𝐹(𝑖) =  
3

2

(𝑧𝑟𝑡
2−𝑧2)

𝑧𝑟𝑡
3 ,                 (16) 

where 𝑁𝑆𝐿 represents the number of soil layers, 𝐸𝑇𝐹 represents the fraction of transpiration from root distribution, 𝐹𝐴𝑊 125 

represents the fraction of available water, 𝑊𝑆𝐿 represents the soil water content [m3 m-3], 𝑊𝐼𝐿𝑇 represents the wilting point, 

𝐹𝐶  represents the field capacity, and 𝑧𝑟𝑡  and 𝑧  represent the root depth and the soil depth, respectively, for each layer. 

MATCRO assumes 𝑁𝑆𝐿 = 5, where each of the soil layers has depth of 0.05, 0.2, 0.75, 1, and 2 [m] below the ground, 

respectively. MATCRO uses the soil texture data as input data, where the soil is classified into 13 types, leading to differences 

in 𝑊𝐼𝐿𝑇  and 𝐹𝐶  based on Campbell and Norman (1998). 𝑊𝑆𝐿  is calculated considering transpiration from the canopy, 130 

evaporation from the soil, and water flux (those calculations are the same as those of the original MATCRO). The 𝐸𝑇𝐹 

calculation assumes that the root has no spatial orientation and is equally distributed in the soil (Masutomi et al., 2016a). 𝑧𝑟𝑡 

is determined by the same calculation as the original MATCRO, where the crop-specific parameter (𝑧𝑟𝑡,𝑚𝑥) was changed to 

maize (Table 1). The conditional branch (𝐹𝐴𝑊(𝑖) > 0.45) is based on the FAO 56 guidelines (Allen et al., 1998). 

Stomatal conductance influences CO2 uptake during photosynthesis. MATCRO-Maize represents stomatal conductance 135 

for CO2 (𝐺𝑠𝑐,𝑥 [𝜇 mol m-2 s-1]), based on Ball (1988) as follows: 

𝐺𝑠𝑐,𝑥 = {
𝐺0𝑐 + 𝐺1𝑐𝑅ℎ

𝐴𝑛,𝑥

𝐶𝑠,𝑥
, 𝐴𝑛,𝑥 ≥ 0,

𝐺0𝑐 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
               (17) 

where 𝐶𝑠,𝑥 [ppm] is the CO2 concentration at the leaf surface and 𝑅ℎ  [-] is the relative humidity at the leaf surface. 𝐺0𝑐 and 𝐺1𝑐 

are derived from parameters of Ball-Berry stomatal conductance model of 𝑏 and 𝑚 (shown in Table 1) by adjusting their ratio 

of 1:1.6, which is the ratio of diffusivity of H2O to CO2. Here, the leaf-level net carbon assimilation rate (𝐴𝑛,𝑥), stomatal 140 

conductance for CO2 (𝐺𝑠𝑐,𝑥), and boundary layer conductance for CO2 (𝐺𝑏𝑐) were calculated to satisfy the following physical 

flux equations. 

𝐴𝑛,𝑥 = 𝐺𝑠𝑐,𝑥(𝐶𝑠,𝑥 − 𝐶𝑖,𝑥),                 (18) 

𝐴𝑛,𝑥 = 𝐺𝑏𝑐(𝐶𝑎 − 𝐶𝑠,𝑥),                 (19) 

where 𝐶𝑎 [ppm] is the atmospheric CO2 concentration. 𝐺𝑏𝑐 is a function of air pressure (𝑃𝑠  [𝑃𝑎]) and the wind speed in the 145 

canopy (𝑈 [m s-1]).  

Here, 𝑇𝑣, 𝑄𝑎𝑏,𝑥, 𝑅ℎ , 𝑈, and 𝐶𝑎 are environmental variables derived from input meteorological climate data. There are four 

relationships (Eqs. (2), (17)-(19)) in terms of internal variables (𝐴𝑛,𝑥, 𝐺𝑠𝑐,𝑥, 𝐶𝑠,𝑥, 𝐶𝑖,𝑥). MATCRO for C3 photosynthesis obtains 

analytical solutions from relationships via the method shown in Masutomi (2023). For C4 photosynthesis, it is also possible to 

solve these equations analytically. In the case of Rubisco-limited and RuBP-limited photosynthesis, exact expressions for 𝐴𝑐,𝑥 150 
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and 𝐴𝑗,𝑥 are obtained. Under 𝐴𝑛,𝑥 ≥ 0, PEP-limited photosynthesis (𝐴𝑝,𝑥) can be represented by quadratic equations by the 

algebraic procedures as follows: 

0 =  {𝐺𝑏𝑐
2 𝐺1𝑐𝑅ℎ − 𝐺𝑏𝑐𝐺0𝑐 − 𝑘𝑝,𝑥(𝐺0𝑐 − 𝐺𝑏𝑐𝐺1𝑐𝑅ℎ + 𝐺𝑏𝑐)}𝐴̅𝑝,𝑥

2
+  {𝐶𝑎𝐺𝑏𝑐

2 𝐺0𝑐 − 𝐺𝑏𝑐𝐺0𝑐𝑅𝑑 + 𝐺𝑏𝑐
2 𝐺1𝑐𝑅ℎ𝑅𝑑 −

𝑘𝑝,𝑥𝐶𝑎(𝐺𝑏𝑐
2 𝐺1𝑐𝑅ℎ − 2𝐺𝑏𝑐𝐺0𝑐 − 𝐺𝑏𝑐

2 )}𝐴̅𝑝,𝑥 + 𝐶𝑎𝐺𝑏𝑐
2 𝐺0𝑐(𝑅𝑑 − 𝑘𝑝,𝑥𝐶𝑎).            (20) 

Under 𝐴𝑛,𝑥 < 0, the PEP-limited photosynthesis rate can be expressed as 155 

𝐴̅𝑝,𝑥 =
𝑘𝑝,𝑥𝐶𝑎−𝑅𝑑

1+𝑘𝑝,𝑥(
1

𝐺𝑏𝑐
+

1
𝐺0𝑐

)
.                 (21) 

According to these equations, in the case of PEP-limited photosynthesis, there are three possible solutions. Following the 

criteria described by Masutomi (2023), only one analytical solution can be selected when the following requirements are 

satisfied: (i) under 𝐴𝑛,𝑥 ≥ 0, the solution must be a positive or zero real solution, and under 𝐴𝑛,𝑥 < 0, it must be a negative 

real solution; (ii) 𝐺𝑠𝑐,𝑥 > 0; and (iii) 𝐶𝑖 > 0. 160 

2.2 Crop-specific parameterization 

2.2.1 Phenology 

The crop growing period in MATCRO is expressed as 𝐷𝑣𝑠 based on Bouman et al. (2001). Here, 𝐷𝑣𝑠 = 0 means sowing, and 

𝐷𝑣𝑠 = 1 means maturity (harvesting). It is calculated from the following equations: 

𝐷𝑣𝑠,𝑖 =  𝐺𝑑𝑑,𝑖 𝐺𝑑𝑑𝑚,𝑖⁄ ,                 (22) 165 

𝐺𝑑𝑑 =  ∫ 𝐷𝑣𝑟 𝑑𝑡′
𝑡

0
 ,                 (23) 

𝐷𝑣𝑟 = {

0, 𝑇𝑡 < 𝑇𝑏 | 𝑇ℎ ≤ 𝑇𝑡 ,
𝑇𝑡 − 𝑇𝑏 , 𝑇𝑏 ≤ 𝑇𝑡 < 𝑇𝑜 ,

(𝑇𝑏−𝑇𝑜)(𝑇𝑡−𝑇ℎ)

(𝑇ℎ−𝑇𝑜)
, 𝑇𝑜 ≤ 𝑇𝑡 < 𝑇ℎ ,

               (24) 

where 𝐺𝑑𝑑,𝑖  is the growing degree days at 𝑡 (time) for specific grid cell number i; 𝐺𝑑𝑑𝑚,𝑖 is the growing degree day at maturity; 

𝐷𝑣𝑟  is the developmental rate at time 𝑡; and 𝑇𝑡  is the temperature at time 𝑡 . 𝑇𝑏 , 𝑇ℎ , and 𝑇𝑜  are the crop-specific cardinal 

temperatures (minimum, maximum, and optimal temperatures for development, respectively, as shown in Table 1). 𝐺𝑑𝑑,𝑚 170 

were calibrated for each point scale simulation and global scale simulation (Section 2.3). In addition, one parameter that 

represents the timing of flowering (known as silking; 𝐷𝑣𝑠,𝑓𝑙𝑤) was calibrated based on observational data for the point scale 

simulation (Table 1). 

2.2.2 Leaf nitrogen and Rubisco capacity 

Maximum Rubisco carboxylation rate 175 
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𝑉𝑐𝑚𝑎𝑥25,𝑥 used in the photosynthesis module (Section 2.1) is obtained by dividing the maximum Rubisco carboxylation rate at 

a LAI depth of l (𝑉𝑐𝑚𝑎𝑥25,𝑥(𝑙)) by 𝐿𝑥  separately for sunlit and shaded leaves based on Bonan et al. (2011). The vertical 

distribution of 𝑉𝑐𝑚𝑎𝑥25(𝑙), which is the sum of 𝑉𝑐𝑚𝑎𝑥25,𝑠𝑛(𝑙) and 𝑉𝑐𝑚𝑎𝑥25,𝑠ℎ(𝑙), follows the exponential profile: 

𝑉𝑐𝑚𝑎𝑥25(𝑙) = 𝑉𝑐𝑚𝑎𝑥25(0) exp(−𝐾𝑛𝑙),               (25) 

where 𝑉𝑐𝑚𝑎𝑥25(0) is the maximum Rubisco carboxylation rate at the canopy top, 𝐾𝑛 is a parameter for the vertical distribution 180 

of nitrogen (Table 1), and 𝑙 represents the LAI depth from the top. The maximum Rubisco carboxylation rate in sunlit leaves 

(𝑉𝑐𝑚𝑎𝑥25,𝑠𝑛(𝑙)) is also calculated by the same relationship considering the light distribution: 

𝑉𝑐𝑚𝑎𝑥25,𝑠𝑛(𝑙) = 𝑉𝑐𝑚𝑎𝑥25(0)[1 − 𝑒𝑥𝑝(−𝑙(𝐾𝑛 + 𝐾))]
1

𝐾𝑛+𝐾
 ,             (26) 

where 𝐾 is the direct beam extinction coefficient (the calculation is the same as that for Masutomi et al., 2016a). 𝑉𝑐𝑚𝑎𝑥25,𝑠ℎ(𝑙) 

is given by the subtraction of Eq. (25) and Eq. (26). 185 

Here, while Bonan et al. (2011) use the fixed value of 𝑉𝑐𝑚𝑎𝑥25(0) value over time, 𝑉𝑐𝑚𝑎𝑥25(0) in MATCRO is calculated 

dynamically as a function of specific leaf nitrogen (𝑆𝑙𝑛 [g N m-2]). The function is established based on the experimental 

literature data. Notably, we applied the relationship between 𝑆𝑙𝑛  and light-saturated CO2 assimilation (𝐴𝑚𝑎𝑥 ) from the 

literature, although MATCRO-Rice and MATCRO-Soy utilize the direct relationship between 𝑆𝑙𝑛 and 𝑉𝑐𝑚𝑎𝑥25(0) based on 

the experimental literature data. The reasons are that we assume that 𝐴𝑚𝑎𝑥  could be used as Rubisco-limited photosynthesis 190 

in C4 photosynthesis, hence Rubisco-limited photosynthesis could be equal to the maximum Rubisco carboxylation rate from 

Eq. (6). Several studies have shown that 𝐴𝑚𝑎𝑥  has a close relationship with 𝑆𝑙𝑛, as shown by the logistic equation for maize 

(Drouet and Bonhomme, 2004; Muchow and Sinclair, 1994; Paponov and Engels, 2003; Paponov et al., 2005; Sinclair and 

Horie, 1989; Vos et al., 2005). We used two functions from the studies for different 𝐷𝑣𝑠 as follows: 

𝑉𝑐𝑚𝑎𝑥25(0) = {
45.1 ∗ {

2

1+exp[−2.9∗(𝑆𝑙𝑛−0.25)]
− 1} , 𝐷𝑣𝑠 < 𝐷𝑣𝑠,𝑓𝑙𝑤,

40.2 ∗ {
2

1+exp[−1.41∗(𝑆𝑙𝑛−0.43)]
− 1} , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

            (27) 195 

where 𝐷𝑣𝑠 < 𝐷𝑣𝑠,𝑓𝑙𝑤  represents the vegetative stage at which the equation was based on Vos et al. (2005); then, for the 

reproductive stage, the equation was from Drouet and Bonhomme (2004). Stage-specific parameterizations were applied to 

reflect the lower photosynthetic activity observed during the reproductive phase compared to the vegetative phase since no 

single dataset adequately represents both growth phase. 

 200 

Specific leaf nitrogen 

𝑆𝑙𝑛, which is used in the calculation of 𝑉𝑐𝑚𝑎𝑥25(0), is dynamically change during the crop growth of 𝐷𝑣𝑠 in MATCRO. The 

function is established based on the observational data. We utilized the study by Muchow (1988), in which 𝑆𝑙𝑛 was measured 

under various levels of 𝑁𝑓𝑒𝑟𝑡  (0, 60, 120, 240, 420 [kg ha-1]), as follows: (i) we traced 𝑆𝑙𝑛  data using digitizer software 

(https://apps.automeris.io/wpd4/) and obtained the measurement and phenological data from the paper; and (ii) we conducted 205 
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the fitting based on the assumption that 𝑆𝑙𝑛  linearly increased until flowering and then decreased towards maturity. The 

parameterization given by Eqs. (28)−(30) is shown in Figure 1. 

𝑆𝑙𝑛 = {

𝑆𝑙𝑛,𝑚𝑥−𝑆𝑙𝑛,𝑝𝑙𝑡

𝐷𝑣𝑠,𝑓𝑙𝑤
𝐷𝑣𝑠 + 𝑆𝑙𝑛,𝑝𝑙𝑡 , 𝐷𝑣𝑠 < 𝐷𝑣𝑠,𝑓𝑙𝑤,

𝑆𝑙𝑛,𝑚𝑎𝑡𝑢−𝑆𝑙𝑛,𝑚𝑥

1−𝐷𝑣𝑠,𝑓𝑙𝑤
(𝐷𝑣𝑠 − 1) + 𝑆𝑙𝑛,𝑚𝑎𝑡𝑢 , 𝐷𝑣𝑠 ≥ 𝐷𝑣𝑠,𝑓𝑙𝑤.

             (28) 

Where 𝑆𝑙𝑛,𝑚𝑥, 𝑆𝑙𝑛,𝑝𝑙𝑡, 𝑆𝑙𝑛,𝑚𝑎𝑡𝑢 are maximum 𝑆𝑙𝑛, and 𝑆𝑙𝑛 at planting time and maturity, respectively. 𝑆𝑙𝑛,𝑝𝑙𝑡 was parameterized 

by assuming low 𝑆𝑙𝑛  in the early stage (Table 1). Menwhile, 𝑆𝑙𝑛,𝑚𝑥  and 𝑆𝑙𝑛,𝑚𝑎𝑡𝑢 are empirically parameterized as functions of 210 

𝑁𝑓𝑒𝑟𝑡 as follows: 

𝑆𝑙𝑛,𝑚𝑥 = {
−0.00001 𝑁𝑓𝑒𝑟𝑡

2 +  0.0064 𝑁𝑓𝑒𝑟𝑡 + 0.6891, 𝑁𝑓𝑒𝑟𝑡 ≤ 240,

1.75, 𝑁𝑓𝑒𝑟𝑡 > 240.
                  (29) 

𝑆𝑙𝑛,𝑚𝑎𝑡𝑢 = {
0.001 𝑁𝑓𝑒𝑟𝑡 + 0.57, 𝑁𝑓𝑒𝑟𝑡 ≤ 240,

1, 𝑁𝑓𝑒𝑟𝑡 > 240.
              (30) 

We set fixed values of 1.75 for 𝑆𝑙𝑛,𝑚𝑥 and 1.0 for 𝑆𝑙𝑛,𝑚𝑎𝑡𝑢 when 𝑁𝑓𝑒𝑟𝑡 exceeds 240 [kg ha-1], as 𝑆𝑙𝑛,𝑚𝑥 and 𝑆𝑙𝑛,𝑚𝑎𝑡𝑢 exhibit 

minimal increases beyond this threshold. 215 

 

Figure 1. Relationship between developmental stage (𝑫𝒗𝒔) and specific leaf nitrogen (𝑺𝒍𝒏) in MATCRO-Maize. Symbols show observational 

data from Muchow (1988) with the 5 types of 𝑵𝒇𝒆𝒓𝒕: 0 kg ha-1 (square), 60 kg ha-1 (cycle), 120 kg ha-1 (triangle), 240 kg ha-1 (diamond), and 

420 kg ha-1 (inverted triangle). The red lines represent the fitted line parameters used in MATCRO-Maize, while the dashed line represents 

𝑫𝒗𝒔 at flowering (𝑫𝒇𝒍𝒘). 220 

2.2.3 Crop growth 

Glucose partitioning 

MATCRO calculates crop growth by partitioning net carbon assimilation (𝐴𝑛) in the form of glucose, which is calculated in 

the photosynthesis module (Section 2.1). Partitioned glucose is supplied through photosynthesis in leaves and remobilization 
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from the stem. The ratio of glucose partition to each organ (leaf, stem, root, and storage organ; ear) depends on 𝐷𝑣𝑠. The term 225 

“ear” in maize represents the organ that supports the development and storage of grain. The grain developed later than the ear 

with approximately 83% of ear at maturity in this study (see Section 2.2.5). The dry matter for each organ is obtained from the 

partitioned glucose considering the carbon fraction for each organ (𝐶𝑔𝑙𝑢,𝑒𝑎𝑟 , 𝐶𝑔𝑙𝑢,𝑙𝑒𝑎𝑓 , 𝐶𝑔𝑙𝑢,𝑟𝑜𝑡 , 𝐶𝑔𝑙𝑢,𝑠𝑡𝑚  in Table 1). We 

calibrated the partitioning ratio to leaf and ear based on the observational biomass data from Ciampitti et al. (2013a, b), whereas 

the ratio to shoots:roots was derived from the value from Penning de Vries et al. (1989). The stem partitioning was determined 230 

by reducing the shoot ratio with respect to the leaf and ear. Figure 2 shows the partition ratio to the leaf (𝑃𝑟,𝑙𝑒𝑓) and ear (𝑃𝑟,𝑒𝑎𝑟) 

established via the following equations: 

𝑃𝑟,𝑙𝑒𝑓 = {

𝑃𝑙𝑒𝑓 , 𝐷𝑣𝑠 < 𝐷𝑣𝑠,𝑙𝑒𝑓1,
𝑃𝑙𝑒𝑓(𝐷𝑣𝑠,𝑙𝑒𝑓2−𝐷𝑣𝑠)

𝐷𝑣𝑠,𝑙𝑒𝑓2−𝐷𝑣𝑠,𝑙𝑒𝑓1
, 𝐷𝑣𝑠 < 𝐷𝑣𝑠,𝑙𝑒𝑓2

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

,               (31) 

𝑃𝑟,𝑒𝑎𝑟 = {

0, 𝐷𝑣𝑠 < 𝐷𝑣𝑠,𝑒𝑎𝑟1,
𝐷𝑣𝑠−𝐷𝑣𝑠,𝑒𝑎𝑟1

𝐷𝑣𝑠,𝑒𝑎𝑟2−𝐷𝑣𝑠,𝑒𝑎𝑟1
, 𝐷𝑣𝑠 < 𝐷𝑣𝑠,𝑙𝑒𝑓2,

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

               (32) 

where 𝐷𝑣𝑠,𝑙𝑒𝑓1, 𝐷𝑣𝑠,𝑙𝑒𝑓2, 𝐷𝑣𝑠,𝑒𝑎𝑟1 and 𝐷𝑣𝑠,𝑒𝑎𝑟2 represent the 𝐷𝑣𝑠 at which the corresponding partition changes, as described in 235 

Table 1 and based on Figure 2; 𝑃𝑙𝑒𝑓 is the ratio of glucose partitioned to glucose to the leaf from glucose partitioned to the 

shoot. 

 

Figure 2. The ratio of glucose partitioning to leaves (a) and ears (b). Symbols show the ratio of glucose partition with different 𝑵𝒇𝒆𝒓𝒕: 0 kg 

ha-1 (square), 112 kg ha-1 (cycle), and 224 kg ha-1 (triangle) measured in Ciampitti et al. (2013a, b). The red lines in Figure 2 show the 240 
segmented line parameters used in MATCRO-Maize, while the dashed line represents 𝑫𝒗𝒔 at flowering (𝑫𝐯𝐬,𝒇𝒍𝒘).  

Specific leaf weight 

The specific leaf weight (𝑆𝑙𝑤) is used to calculate the total leaf area index (𝐿) in MATCRO. It is varied dynamically with the 

developmental stage of 𝐷𝑣𝑠 and is given by: 
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𝑆𝑙𝑤 =  𝑆𝑙𝑤,𝑚𝑥 + (𝑆𝑙𝑤,𝑚𝑛 −  𝑆𝑙𝑤,𝑚𝑥)exp (−𝑘𝑆𝑙𝑤𝐷𝑣𝑠)              (33) 245 

where 𝑆𝑙𝑤,𝑚𝑛 , 𝑆𝑙𝑤,𝑚𝑥 , and 𝑘𝑆𝑙𝑤  are minimum, maximum, and absolute value of the rate constant in the 𝑆𝑙𝑤  function, 

respectively. These crop-specific parameters were derived from the observational data expressed in Table 1. We conducted 

curve fitting of 𝑆𝑙𝑤  to calculate the dry weight of the leaf biomass and the leaf area index based on Ciampitti et al. (2013a, b) 

and established a relationship (Figure 3). 

 250 

Figure 3. Relationships between specific leaf weights and developmental stages. Symbols are the same as in Fig. 2. 

2.2.4 Crop height 

Crop height (𝐻𝑔𝑡) is related to the calculation of evapotranspiration in MATCRO. It assumes that the dependence of the crop 

height is based on 𝐷𝑣𝑠 using function from Penning de Vries et al. (1989) and is given by 

𝐻𝑔𝑡 = {
ℎ𝑎𝑎𝐷𝑣𝑠/𝐷𝑣𝑠,𝑓𝑙𝑤, 𝐷𝑣𝑠 < 𝐷𝑣𝑠,𝑓𝑙𝑤

ℎ𝑎𝑎 , 𝐷𝑣𝑠 ≥ 𝐷𝑣𝑠,𝑓𝑙𝑤
               (34) 255 

where ℎ𝑎𝑎  is the crop height at flowering (Table 1). 

2.2.5 Crop yield 

MATCRO calculates the final crop yield, 𝑌𝑙𝑑 , from the dry weight of the storage organ at maturity (𝑊𝑒𝑎𝑟,𝑚𝑡) as follows: 

𝑌𝑙𝑑 =  𝑘𝑦𝑙𝑑𝑊𝑒𝑎𝑟,𝑚𝑡.                 (35) 

Here, 𝑘𝑦𝑙𝑑 is the crop-specific parameter (Table 1), which represents the ratio of 𝑌𝑙𝑑  to 𝑊𝑒𝑎𝑟,𝑚𝑡. The dry weight of the ear is a 260 

consistent predictor of the plant’s potential yield at maturity. We parameterized 𝐾𝑦𝑙𝑑 using experimental data from Ciampitti 

et al. (2013b).  
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Table 1. Parameters in MATCRO-Maize 265 

Variable Value Units Description Source 

Crop-specific (maize)    

𝑏 0.04 mol (H2O) m-2 s-1 intercept of the Ball-Berry model Sellers et al. (1996) 

𝐶𝑔𝑙𝑢,𝑒𝑎𝑟 0.815 ratio conversion factor of dry weight from glucose to ear Penning de Vries et al. (1989) 

𝐶𝑔𝑙𝑢,𝑙𝑒𝑎𝑓 0.871 ratio conversion factor of dry weight from glucose to leaf Penning de Vries et al. (1989) 

𝐶𝑔𝑙𝑢,𝑟𝑜𝑡 0.857 ratio conversion factor of dry weight from glucose to root Penning de Vries et al. (1989) 

𝐶𝑔𝑙𝑢,𝑠𝑡𝑚 0.810 ratio conversion factor of dry weight from glucose to stem Penning de Vries et al. (1989) 

𝐷𝑣𝑠,𝑟𝑜𝑡1 0.35 ratio 1st point of 𝐷𝑣𝑠at which the partition pattern to root changes Penning de Vries et al. (1989) 

Crop-specific (maize)    

𝐷𝑣𝑠,𝑟𝑜𝑡2 0.72 ratio 2nd point of 𝐷𝑣𝑠  at which the partition pattern to root changes Penning de Vries et al. (1989) 

𝐷𝑣𝑠,𝑒𝑎𝑟1 0.37 ratio 1st point of 𝐷𝑣𝑠  at which the partition pattern to ear changes Parameterized in this study 

𝐷𝑣𝑠,𝑒𝑎𝑟2 0.6 ratio 2nd point of 𝐷𝑣𝑠  at which the partition pattern to ear changes Parameterized in this study 

𝐷𝑣𝑠,𝑓𝑙𝑤 0.52 ratio 𝐷𝑣𝑠  at flowering Parameterized in this study 

𝐷𝑣𝑠,𝑙𝑒𝑓1 0.25 ratio 1st point of 𝐷𝑣𝑠  at which the partition pattern to leaf changes Parameterized in this study 

𝐷𝑣𝑠,𝑙𝑒𝑓2 0.48 ratio 2nd point of 𝐷𝑣𝑠  at which the partition pattern to leaf changes Parameterized in this study 

𝑓𝑠𝑡𝑐 0.35 ratio fraction of glucose allocated to starch reserves Penning de Vries et al. (1989) 

ℎ𝑎𝑎 2 m crop height at flowering Penning de Vries et al. (1989) 

𝑘𝑦𝑙𝑑 0.83 ratio ratio of crop yield to dry weight of ear at maturity Parameterized in this study 

𝑘𝑆𝑙𝑤 3 ratio parameter that represents the relationship between 𝑆𝑙𝑤 and𝐷𝑣𝑠  Parameterized in this study 

𝑚 4 ratio the slope of the Ball-Berry model Sellers et al. (1996) 

𝐺𝑑𝑑,𝑚  – K day growing degree day at maturity Parameterized in this study 

𝑃𝑙𝑒𝑓 0.49 ratio partition ratio of glucose to leaf from glucose partitioned to the shoot Parameterized in this study 

𝑃𝑟𝑜𝑡 0.25 ratio partition ratio of glucose to root Penning de Vries et al. (1989) 

𝑟𝑑𝑙,𝑙𝑒𝑓 3.0×10-7 s-1 ratio of dead leaf at harvest Masutomi et al. (2016) 

𝑟𝑟𝑡 0.06 m s-1 growth ratio of root Penning de Vries et al. (1989) 

𝑆𝑙𝑛,𝑝𝑙𝑡 0.825 g m-2 specific leaf nitrogen at planting Parameterized in this study 

𝑆𝑙𝑛,𝑚𝑥 See Eq. (29) g m-2 maximum specific leaf nitrogen Parameterized in this study 

𝑆𝑙𝑛,𝑚𝑎𝑡𝑢 See Eq. (30) g m-2 specific leaf nitrogen at maturity Parameterized in this study 

𝑆𝑙𝑤,𝑚𝑛 400 kg ha-1 minimum specific leaf weight Parameterized in this study 

𝑆𝑙𝑤,𝑚𝑥 700 kg ha-1 maximum specific leaf weight Parameterized in this study 

𝑇𝑏 8.6 ℃ minimum temperature for development Osborne et al. (2015) 

𝑇ℎ 42.0 ℃ maximum temperature for development Osborne et al. (2015) 

𝑇𝑜 30.0 ℃ optimal temperature for development Osborne et al. (2015) 

𝑧𝑟𝑡,𝑚𝑥 1.5 m maximum root depth Penning de Vries et al. (1989) 

𝛼 0.05 mol mol-1 quantum efficiency Sellers et al. (1996) 

𝛽𝑐𝑗  0.8 ratio GPP transition factor Lawrence et al. (2020) 

Others     

𝑘𝑛 0.3 ratio vertical distribution of nitrogen Oleson et al. (2013) 

𝑆1 0.3 K-1 temperature dependence of 𝑉𝑐𝑚𝑎𝑥,𝑥 Lawrence et al. (2020) 

𝑆2 313.15 K temperature dependence of 𝑉𝑐𝑚𝑎𝑥,𝑥 Lawrence et al. (2020) 

𝑆3 0.2 K-1 temperature dependence of 𝑉𝑐𝑚𝑎𝑥,𝑥 Lawrence et al. (2020) 
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2.3 Model evaluation 

MATCRO can run the simulation both at a point scale and at a global scale. The developed model was evaluated both at a 

point scale and at a global scale. For point scale levels, LAI and total aboveground were compared with the observation data 

from the four sites. Meanwhile, we use yield data for evaluation. After confirming the ability of the model to simulate maize 

growth, two types of evaluations were conducted at the global scale. First, the simulated yields at the grid cell were compared 270 

with the gridded yield datasets of the Global Dataset of Historical Yields (GDHY; Iizumi and Sakai, 2020), GlobalCropYield 

(GCY; Cao et al., 2025), and the Spatial Production Allocation Model (SPAM; IFPRI, 2019). Second, the simulated yields at 

the country and total global levels were compared with the country yield report and global data from the Food and Agriculture 

Organization’s FAOSTAT database (FAOSTAT, 2024). To quantify the model performance, four statistical values were used 

in this study: the Pearson correlation coefficient (COR), root mean square error (RMSE), relative root mean square error 275 

(RRMSE) and normalized mean absolute error (NMAE). RRMSE and NMAE were calculated as follows: 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1 ,                 (36) 

𝑅𝑅𝑀𝑆𝐸 =  
𝑅𝑀𝑆𝐸

𝑦
,                  (37) 

𝑁𝑀𝐴𝐸 =  
1

𝑛
∑

|𝑦̂𝑖−𝑦𝑖|

𝑦𝑖

𝑛
𝑖=1 ,                 (38) 

where 𝑦𝑖  is the actual value, 𝑦̂𝑖  is the predicted value, and 𝑦 is the mean of the actual value. 280 

2.3.1 Model evaluation at a point scale 

To evaluate the model performance at a field scale, we used observational data from four sites (Brazil, France, Tanzania, and 

the USA; Table 2) used in the Agricultural Model Intercomparison and Improvement Project (AgMIP) study (Bassu et al., 

2014). We used local daily climate data of precipitation, downwards shortwave radiation, air temperature, wind speed (𝑃𝑟𝑐, 

𝑅𝑠 , 𝑇𝑎 ,  𝑈 respectively), management data (𝑁𝑓𝑒𝑟𝑡  and irrigation regime) and phenological data (planting, flowering, and 285 

maturity dates) for model input data at each site. We identified the soil texture from the gridded soil texture dataset of ISIMIP 

(Volkholz and Müller, 2020), and annual CO2 data from the ISIMIP3a (Büchner and Reyer, 2022).Climatic data were obtained 

from the NASA Modern Era Retrospective-Analysis for Research and Applications corrected with observational datasets 

(AgMERRA; Ruane et al., 2015) when measured data were unavailable (Bassu et al., 2014).  

Table 2. Evaluation site information in the point-scale simulation 290 

Variable Value Units Description Source 

𝑆4 288.15 K temperature dependence of 𝑉𝑐𝑚𝑎𝑥,𝑥 Lawrence et al. (2020) 

𝛽𝑖𝑝 0.95 ratio GPP transition factor Lawrence et al. (2020) 

Country Site Latitude Longitude Soil type Sowing date Hybrid 
Total N fertilizer 

[kg N ha-1] 
Irrigation 

Brazil Rio Verde 17.52°S 51.43°W Geri-Gibbsic Ferralsol Oct. 22nd 2003 Pioneer 30K75 0   No 
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Notably, air pressure (𝑃𝑠) and specific humidity (𝑆ℎ) data were not provided. Hence, we represented the point scale by 

extracting 𝑃𝑠 from the nearest 0.5° × 0.5° grid cell of GSWP3-W5E5 dataset for the ISIMIP3a (Lange et al., 2022). Meanwhile, 

𝑆ℎ  was converted from 𝑅ℎ using 𝑇𝑎  and the vapour pressure. We parameterized 𝐺𝑑𝑑,𝑚  and 𝐷𝑣𝑠,𝑓𝑙𝑤  based on 𝑇𝑎  and 

phenological data (sowing, flowering, and maturity dates). 𝐺𝑑𝑑,𝑚 calibrated for each site is used for the simulations, while the 295 

average 𝐷𝑣𝑠,𝑓𝑙𝑤 over the 4 sites is used (0.52 in Table 1). As a result, the mean average errors were estimated as 4.25 and 7 

days for flowering and maturity, respectively (Figure 4). MATCRO was run with these parameters, and then the model output 

was evaluated with the observations for the following 3 variables: seasonal change in the LAI, total aboveground biomass, and 

final yield.  

Model calibration was conducted based on phenological data (Table 2, Bassu et al., 2014) and biomass data for carbon 300 

partitioning of leaves and ear (Figure 2, derived from Ciampitti et al., 2013a, b). In this study, a global parameter was applied 

uniformly across all regions at the grid-cell level instead of using site-specific calibrated parameters in the simulations. The 

model was then assessed at the point scale to verify calibration for phenology (flowering and maturity) and was evaluated 

against time-series data of LAI, aboveground biomass, and harvested yield (see Section 3.1), which were not included in the 

model calibration. 305 

 

 

Figure 4. Model-fit comparison of the flowering and maturity date simulations (SIM on the y-axis) and observations (OBS on the x-axis). 

DOY represents the number of days from January 1st. Symbols show each site: Brazil (square), France (circle), Tanzania (triangle), and the 

USA (diamond). The colours indicate the phenological stages of flowering (red) and maturity (blue). 310 

France Lusignan 46.25°N 00.07°E Cambisol Apr. 26th 1996 Furio 255 Yes 

Tanzania Morogoro 06.50°S 37.39°E Haplic Arenosol Oct. 26th 2009 TMV1 61 Yes 

USA Iowa 42.01°N 93.45°W Gleysols May 4th 2010 Golden Harvest GH-9014 167 No 
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2.3.2 Model evaluation at a global scale 

Simulation settings 

For the global-scale simulation, the model was run at a spatial resolution of 0.5° × 0.5° from 1980–2010 under both rainfed 

and irrigated conditions. The required input data were as follows. (i) Crop calendar data were from the Global Gridded Crop 

Model Intercomparison (GGCMI) phase 3 protocol (Jägermeyr et al., 2021). It provides planting and maturity dates for 18 315 

different crops, including maize, separated by rainfed and irrigated systems. We parameterized the average 𝐺𝑑𝑑,𝑚 at each grid 

over the period 1980-2010 for the growing season from the planting to maturity dates for each of the rainfed and irrigated 

conditions. Both the planting date and the simulated 𝐺𝑑𝑑,𝑚 were used as the input data for the global-scale simulations. (ii) 

Water management data (i.e., irrigation regime) from the MIRCA2000 dataset (Portmann et al., 2010). In the case of irrigated 

conditions, the soil moisture was set to field capacity during the growing season. (iii) 𝑁𝑓𝑒𝑟𝑡 from the Inter-Sectoral Impact 320 

Model Intercomparison Project (ISIMIP; Volkholz and Ostberg, 2022). It provides the annual nitrogen fertilizer inputs for five 

canonical crop types, including C4 annual crops for maize. (iv) Soil texture classification from ISIMIP3a protocol soil input 

data (Volkholz and Müller, 2020). (v) Annual atmospheric CO2 data from the ISIMIP3a (Büchner and Reyer, 2022). (vi) Six 

types of daily meteorological for model inputs (𝑃𝑠, 𝑃𝑟𝑐, 𝑅𝑠 , 𝑆ℎ, 𝑇𝑚𝑎𝑥, 𝑇𝑚𝑖𝑛, 𝑇𝑎, 𝑈) from the GSWP3-W5E5 dataset for the 

ISIMIP3a dataset (Lange et al., 2022). We set the data from (i), (ii), and (iv) as constants across the simulation period, whereas 325 

the data from (iii), (v), and (vi) are variables. 

 

Analysis 

MATCRO-Maize was first assessed for the phenological simulation of harvest time against the phenological dataset GGCMI 

(Jägermeyr et al., 2021) and global datasets of crop phenological events for agricultural and earth system modeling which were 330 

derived from various field experiments and a phenology model (GCPE; Mori et al., 2023). These datasets were compared 

under both rainfed and irrigated conditions at a 0.5° × 0.5° resolution to check the model’s performance. Then, we assessed 

the yields by combining simulated yield at irrigated and rainfed according to the maize area in each grid cell.  

The simulated final yields in each grid cell under irrigated and rainfed conditions were aggregated by grid cell, country and 

global level with the harvested area from MIRCA2000 data (Portmann et al., 2010) via the following equation for each year 335 

from 1981-2010: 

𝑌𝑖𝑒𝑙𝑑𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑 =  
∑ (𝑌𝑖𝑒𝑙𝑑𝑖,𝑟𝑓×𝐴𝑟𝑒𝑎𝑖,𝑟𝑓)𝑛

𝑖=1 +∑ (𝑌𝑖𝑒𝑙𝑑𝑖,𝑖𝑟𝑟×𝐴𝑟𝑒𝑎𝑖,𝑖𝑟𝑟)𝑛
𝑖=1

∑ (𝐴𝑟𝑒𝑎𝑖,𝑟𝑓+𝐴𝑟𝑒𝑎𝑖,𝑖𝑟𝑟)𝑛
𝑖=1

            (39) 

where 𝑌𝑖𝑒𝑙𝑑𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑  is the aggregated yield with the total grid cells (𝑛) in grid cell 𝑖. 𝑌𝑖𝑒𝑙𝑑𝑟𝑓 and 𝑌𝑖𝑒𝑙𝑑𝑖𝑟𝑟 are the simulated 

yields under rainfed and irrigated conditions, respectively, and 𝐴𝑟𝑒𝑎𝑟𝑓  and 𝐴𝑟𝑒𝑎𝑖𝑟𝑟 are the harvested areas from MIRCA2000 

for rainfed and irrigated conditions, respectively. 340 

The model performance was evaluated by comparing its output with the historical yield dataset. The grid cell-level yield 

was averaged across a 30-year period and compared with the Global Dataset of Historical Yields (GDHY) (Iizumi and Sakai, 
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2020), 29-year period of GlobalCropYield (GCY, Cao et al., 2025), and year 2010 of Spatial Production Allocation Model 

(SPAM; IFPRI, 2019). The country and global-level yields were compared with FAOSTAT data (FAOSTAT, 2024) for the 

average and annual variabilities over the 30 years. In the comparison at the country level, we focus on the top 20 maize-345 

producing countries that account for more than 85% of total maize production. 

We focused on two perspectives for evaluation: (i) the ability of the model to capture the spatial distribution of yield in 

both low and high-producing countries and (ii) the ability of the model to reproduce the climatic effect reflected in the 

interannual variability at the country and global scales. The first perspective was analysed using NMAE to quantify model 

error for both the global yield and the yield of the top 20 producing countries. The 30-year average yields were also compared 350 

based on the statistics of COR, RMSE, and RRMSE to confirm accuracy. The second perspective was analysed via the COR 

of the detrended deviation between the simulated and FAOSTAT yields to assess the interannual variability. 

3 Results 

3.1 Point-scale simulations 

A comparison of the time series changes in the LAI at each experimental site is shown in Figure 5. In general, MATCRO-355 

Maize captured the increasing trend towards flowering time, followed by a decreasing trend towards the end of maturity. 

Especially during the vegetative stage (𝐷𝑣𝑠 <  𝐷𝑣𝑠,𝑓𝑙𝑤: 0.52), the simulated LAI showed relatively good agreement. However, 

the simulated LAI was notably underestimated in Brazil and France immediately before the reproductive stage (near the dashed 

black line in Fig. 5). The LAI underestimation in France and Brazil (Fig. 5) could also be seen with a large RMSE, which is 

approximately 50% of the average LAI across all observational values at 3 sites except for Tanzania during the crop growth, 360 

although overall, the comparison was statistically significant (p value < 0.01), with a COR of 0.762.  

Figure 6 compares the time series of total aboveground biomass between the simulated and experimental data. Except for 

Tanzania, MATCRO-Maize accurately estimated the increasing trend of total aboveground biomass towards maturity (Figs. 

6(a) and 6(b)), although the simulated biomass in Brazil was underestimated at maturity (Fig. 6(a)). The simulated total 

aboveground biomass in Tanzania increased until maturity, while the observations gradually decreased towards the maturity 365 

time (Fig. 6(c)). The comparison of total aboveground biomass during the crop growth was statistically significant (p value < 

0.001), with a COR of 0.895, although the RMSE was 3,628.3 [kg ha-1], which corresponds to approximately 35% of the 

average of all observed total aboveground biomass. 

Figure 7 compares the 1:1 line between the simulated and experimental data for harvested yield. The comparison of the 

final crop yield was statistically significant (p value < 0.01). It had a relatively low COR compared with the LAI and total 370 

aboveground biomass, due to the small sample size (N=4) and the overestimation for Tanzania. The RMSE was 2,575.0 [kg 

ha-1], which is approximately 30% of the average observational yield at all the sites. It is noted that Figures 5−7 present the 

model evaluation using independent data. Evaluation was performed using a global parameter from the literature to simulate 

the plant organs in the global-scale simulation, which may have resulted in some deviations.  
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Figure 5. Temporal evaluation of leaf area index (LAI) simulated by MATCRO-Maize (red line) at each site: (a) Brazil, (b) France, (c) 

Tanzania and (d) the USA across the developmental stage (𝑫𝒗𝒔). The observation data in each site are shown by black points. Notably, there 

were no observational data in Tanzania. The error bars were provided only for Brazil. The dashed black line shows the flowering time. 

 380 
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Figure 6. Temporal evaluation of total aboveground biomass (AGB) simulated by MATCRO-Maize (red line) at each site: (a) Brazil, (b) 

France, (c) Tanzania and (d) the USA across the developmental stage (𝑫𝒗𝒔). The observation data in each site are shown by black points. 

The error bars were only provided for Brazil and Tanzania. The dashed black line shows the flowering time. 

 385 
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Figure 7. Statistical comparison (COR, RMSE, and RRMSE) of maize yield. The x-axis (OBS) represents the observational data, and the 

y-axis (SIM.) is the simulated data. Shapes show each site: Brazil (square), France (circle), Tanzania (triangle), and the USA (diamond). 

Notably, there was no observed LAI in Tanzania. The symbols ***, **, indicate p values < 0.001 and 0.01, respectively. 

3.2 Global-scale simulations 390 

3.2.1 Phenology  

The timing of seasonal biological events (i.e. harvest time) has a significant impact on crop growth and yield outcomes. Global 

yield is affected by global phenology. We assessed agreement to check the model performance by comparing the difference 

between simulated global average harvest time (1981–2010) with the gridded global dataset of phenological datasets of 

GGCMI (Jägermeyr et al., 2021; Figs. 8(a and b)), and GCPE (Mori et al., 2023; Figs. 8(c and d)). The maps show consistent 395 

spatial patterns for later harvest time between the simulation and the reference datasets, in parts of Brazil, USA, southern and 

central Africa. The discrepancies between datasets are likely produced due to the difference in phenology parameterization 

and management assumptions where GGCMI and GCPE used different methodologies and data sources. Moreover, the use of 

the average growing degree day in the simulations led to year-to-year differences in harvest time compared with the reference 

crop calendar used for the input data (Figs. 8(a and b)). The mean absolute differences in harvest time (Figs. 8(e and f)) indicate 400 

that the largest biases occur mostly in tropical regions.  
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Figure 8. The difference between simulated harvest time (days) in MATCRO-Maize simulations with: (a) GGCMI in the rainfed, and (b) 

irrigated conditions; (c) GCPE in the irrigated, and (d) rainfed conditions. Blue indicates underestimation, while red indicates overestimation 

between simulations and references. Panels (e) and (f) show the mean of absolute differences (days) between simulations and two reference 405 
datasets under the rainfed (a, c) and irrigated (b, d) conditions, respectively. 

3.2.2 Yield  

A comparison of the global distributions is shown in Figure 9 (simulations: Fig. 9(a); observation datasets: Figs. 9(b, c, and 

d)). All datasets were harmonized to a 0.5° × 0.5° resolution, including simulated yield from MATCRO-Maize (Fig. 9(a)),  

GDHY (Iizumi and Sakai, 2020; Fig. 9(b)), GCY (Cao et al., 2025; Fig. 9(c)), and SPAM (IFPRI, 2019; Fig. 9(d)). The data 410 

were averaged over 1981–2014 for GDHY, 1982–2014 for GCY, and at the year 2010 for SPAM. While the overestimation is 
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mainly evident in tropical regions, the simulated yield could capture high-yielding regions, including the Corn Belt in the 

United States and the northern part of China, in agreement with the reference datasets.  

 

Figure 9. Global distribution of the 30-year average (1981-2010) maize yield by (a) simulations from the MATCRO-Maize and (b) the 415 
GDHY dataset. For comparison, yield estimates from shorter periods are also shown from (c) GCY for 29-year average (1982-2014) and (d) 

SPAM2010 for year 2010. The yield is aggregated based on the harvested area from MIRCA2000.  

Temporal changes in the global yield across 30 years indicated that although the global yield had an NMAE of 0.67, 

indicating a simulation error of 67% with respect to the average FAOSTAT yield, the comparison of the interannual variability 

between the simulations and observations was statistically significant (p value < 0.01), with a COR of 0.549 (Figure 10). For 420 

the top 20 producing countries, MATCRO-Maize also tended to overestimate the annual yield (Figure 11) and the average 

yield over a 30-year period (Figure 12). The overestimation was particularly pronounced in Egypt, where the simulated yield 

was approximately four times greater over a 30-year period. In terms of interannual variability, half of the 20 countries were 

statistically significant, with p values < 0.001 for 6 countries, < 0.01 for 2 countries, and < 0.05 for 2 countries (Fig. 11). The 

30-year average comparison was also statistically significant (p value < 0.01), with a COR of 0.58, although the RMSE was 425 

4,007.7 [kg ha-1], which is almost the same as the average yield of the top 20 maize-producing countries (Fig. 12). 
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Figure 10. Interannual variability in global maize yield from 1981 to 2010 for our simulation (red circles) and FAOSTAT (black) yields. 

COR represents the correlation coefficient of interannual variability. NMAE means normalized mean absolute error. Asterisks ** indicate p 430 
value < 0.01. 

 

 

Figure 11. Comparison of interannual variability for the top 20 maize-producing countries. Similar to Fig. 9. Notably, the simulated yield 

in Egypt is not shown as it extends beyond the range of the y-axis. The symbols ***, **, and * indicate p values < 0.001, 0.01, and 0.05, 435 
respectively. 



 

22 

 

  

Figure 12. Accuracy of the 30-year average of the simulated yield (SIM) to the observed yield (OBS from FAOSTAT data) for the top 20 

countries. Symbols show the average yield in each country. Notably, the Egypt data points are not shown as exceeding the range of the y-

axis. Asterisks ** indicate a p value < 0.01. 440 

3.3 The effects of photosynthesis and N fertilizer 

In addition to the yield comparison, we analysed the effect of nitrogen fertilizer (𝑁𝑓𝑒𝑟𝑡) on maize yield, as it is a key determinant 

of crop yield. It compared both simulated yield data and FAOSTAT yield data with 𝑁𝑓𝑒𝑟𝑡 for a 30-year average using a fitted 

polynomial curve (quadratic polynomial regression). We also conducted two tests to quantify the effects of the 𝑁𝑓𝑒𝑟𝑡-related 

function and parameters as follows: (i) Eq. (27) during the vegetative stage is derived from Drouet and Bonhomme (2004), 445 

defined as “test 𝑆𝑙𝑛-𝑉𝑐𝑚𝑎𝑥”, where 𝑉𝑐𝑚𝑎𝑥(0) used this function: 

𝑉𝑐𝑚𝑎𝑥(0) = 36.8 ∗ {
2

1+exp[−2.45∗(𝑆𝑙𝑛−0.27)]
− 1} , 𝐷𝑣𝑠 < 𝐷𝑣𝑠,𝑓𝑙𝑤              (40) 

and (ii) 𝑆𝑙𝑛,𝑝𝑙𝑡 used parameter value from 0.825 (Table 1) to 0.5 (defined as “test 𝑆𝑙𝑛,𝑝𝑙𝑡”). 

Figure 13 illustrates the comparison of country-level yield data with nitrogen fertilizer levels: (a) FAOSTAT data, (b) 

simulated yield by MATCRO-Maize, (c) the impact of reduced Rubisco activity on photosynthetic rates based on experimental 450 

data from Drouet and Bonhomme (2004) in the “test Sln-Vcmax” scenario, and (d) the effect of reduced photosynthetic rates 

due to lower initial specific leaf nitrogen at planting time in the “test Sln,plt” scenario. The nitrogen fertilizer values were 

derived from gridded dataset of ISIMIP (Volkholz and Ostberg, 2022). 

Figures 13 (a) and (b) show the comparisons based on 𝑁𝑓𝑒𝑟𝑡  for each FAOSTAT and simulated yield, respectively. 

MATCRO has a strong 𝑁𝑓𝑒𝑟𝑡 effect on the yield reflected in the steep upward trend of the fitted curves. This effect was scarcely 455 

alleviated by the intentionally reduced effect of photosynthesis (Figs. 13(c and d)), mainly because of the effect of Egypt as 

an outlier with higher values. Without Egypt as an outlier, the curves for FAOSTAT and MATCRO-Maize were more 

comparable. The maize yield in Egypt shows high value compared to other countries where significant overestimation was 

observed. 
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  460 

Figure 13. Relationship between 𝑵𝒇𝒆𝒓𝒕 and yield in (a) FAOSTAT data, (b) simulated yield with the original setting (Default), (c) simulated 

yield with the changed 𝑺𝒍𝒏-𝑽𝒄𝒎𝒂𝒙 relationship (test Sln-Vcmax), (d) simulated yield with the changed parameter related to the 𝑫𝒗𝒔-𝑺𝒍𝒏 

function (test Sln, plt). 𝑵𝒇𝒆𝒓𝒕 (N fertilizer) and country yield were averaged across 30 years for each country. The legends for symbols are 

the same as those in Fig. 11. The solid lines are the fitted curves for the data, while the dashed line in (b), (c), and (d) indicates a fitted curve 

in (a). All lines were fitted using a quadratic polynomial regression. 465 

4 Discussion 

4.1 Point-scale simulations 

The point-scale simulations were evaluated using global parameters to assess their ability to capture broad yield patterns across 

different regions. The simulated harvested yield showed statistically significant correlations at the point scale (Fig. 7), 

indicating that the MATCRO-Maize model could simulate maize growth and yield. However, there were some discrepancies 470 

between the simulations and observations that remain due to the limitations of using global parameters, such as the 

underestimation of the LAI in Brazil and France, the underestimation of the total aboveground biomass in Brazil, and the 

different growth trends of the total aboveground biomass in Tanzania. The underestimation of LAI is primarily due to the use 

of global morphological parameters at the site scale. Further investigation will improve site-specific performance by coupling 

LAI to key soil properties (soil organic carbon, total nitrogen, and water-holding capacity) and by incorporating canopy cover 475 

fraction following Hasegawa et al. (2008). Global parameters at the point scale enable testing the model's applicability across 

various regions, although local variations in soil, climate, or crop management may not be fully captured in this study.  

One potential factor contributing to the underestimation of the LAI in France might be related to the effect of plant density, 

which is not currently considered in MATCRO. The actual plant density [plants m-2] at each site was 9.5 (France), 7.5 (USA), 
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6.6 (Brazil), and 9.5 (Tanzania) (Bassu et al., 2014). Some studies have shown that LAI trends are affected primarily by the 480 

plant density factor relative to 𝑁𝑓𝑒𝑟𝑡 and hybrids (Boomsma et al., 2009; Ciampitti et al., 2013a; Ciampitti and Vyn, 2011). 

MATCRO could not reproduce the trends driven by plant density leading to underestimation, although other important factors 

(e.g., management practices, climatic conditions), which are quite different from each site in the literature, would also affect 

crop growth variables, including the LAI. 

Both the underestimation of the LAI and total aboveground biomass in Brazil were caused by the field experimental 485 

conditions of 𝑁𝑓𝑒𝑟𝑡 = 0, given its effect on crop growth in MATCRO. The reason for the lack of fertilization in the field 

experiment was that sufficient N was released by organic matter mineralization (Bassu et al., 2014), which was not considered 

in the model. Moreover, 𝑁𝑓𝑒𝑟𝑡  directly affects 𝑆𝑙𝑛  in MATCRO, with an increasing trend towards flowering and then a 

decreasing trend towards maturity (Fig. 1). 𝑆𝑙𝑛 is related to 𝑉𝑐𝑚𝑎𝑥25(0), which in turn affects the photosynthesis calculation 

(Section 2.1 and Section 2.2.2). In particular, during the reproductive stage, we used Eq. (27), which results in a low 𝑉𝑐𝑚𝑎𝑥25(0) 490 

under low 𝑆𝑙𝑛 due to the more gradual slope of the curve compared with the vegetative stage (1.41 for the reproductive stage, 

and 2.9 for the vegetative stage, in Eq. (27)), indirectly leading to low biomass accumulation through photosynthesis. This 

could be attributed to the underestimation of total aboveground biomass at maturity (Fig. 6 (a)). For underestimation of the 

LAI, low leaf biomass accumulation, which is derived from the same mechanism, would be the reason considering the 

calculation process of the LAI in MATCRO. The LAI is determined by the division of the leaf biomass weight by 𝑆𝑙𝑤 , which 495 

depends on 𝐷𝑣𝑠. Because 𝑆𝑙𝑤  is calculated from the same parameter at all sites (Eq. (33) and Fig. 3), leaf weight is the factor 

that causes differences between sites, leading to the underestimation of the LAI in Brazil. Therefore, the condition of 𝑁𝑓𝑒𝑟𝑡 =

0 might be the reason for both underestimations. 

Another reason for the difference in the growth trend of biomass in Tanzania was related to the length of the growing 

season. The cultivar used in Tanzania was a short-season type with 99 days of observed growing season length, whereas the 500 

cultivars at other sites were medium- or long-season types with lengths ranging from 122 to 173 days (Bassu et al., 2014). 

Capristo et al. (2007) reported that, compared with medium- and long-season cultivars, short-season cultivars presented the 

lowest biomass accumulation from flowering to maturity, which was reflected in the observed biomass (Fig. 6 (c)). This 

suggests that the trend of biomass accumulation varies across growing season types. Although other factors, such as climatic 

conditions or biotic stresses, could also affect the biomass accumulation. While MATCRO considers the growing season length 505 

as 𝐺𝑑𝑑,𝑚 to judge the harvesting time, this does not mean that MATCRO could capture the difference in trends due to growing 

season types, leading to the gap between the simulations and observations shown in Tanzania. 

4.2 Global-scale simulations 

A comparison of the global distribution of maize yield revealed that MATCRO-Maize could capture the distribution of high-

yield regions but could not capture the yield in tropical regions (Figures 8 and 9). Similar overestimations in tropical regions 510 

have also been reported in other global models, possibly because of the lack of representation of extreme weather events or 
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crop pests (Lombardozzi et al., 2020; Osborne et al., 2015). Moreover, soil fertility is also an important source of model error 

and contributes to spatial variation.  

Notably, MATCRO-Maize tended to overestimate the absolute values for global yield and the yields of the top 20 countries, 

as reflected in the NMAE and RMSE values (Figures 10, 11, and 12). The simulated total global yield is mainly determined 515 

by the yields of the top three maize-producing countries: the United States, China, and Brazil, which have large cultivation 

areas (Table 3). The yields of all three countries were overestimated, with simulated yields approximately 1.2, 1.7, and 1.8 

times greater than the 30-year averages in the United States, China, and Brazil, respectively, leading to an overestimation of 

the total global yield. Such overestimations in the main producing countries, especially in China and Brazil, are also observed 

in other global crop models (Von Bloh et al., 2018; Osborne et al., 2015; Schaphoff et al., 2018). This indicates that there are 520 

factors important for determining yields that are not considered in most crop models. 

For the top 20 producing countries, the overestimation was particularly strong in Egypt, with a simulated yield 

approximately four times greater than that reported by FAOSTAT. This overestimation is caused by the irrigated conditions 

in all grids in Egypt. Under simulation in rainfed conditions, crop growth in Egypt was not simulated in the model due to the 

inhibited photosynthesis rate caused by strong water stress. Under irrigated conditions, this strong water stress was alleviated. 525 

In addition, the radiation in Egypt was consistently strong throughout the growing period, and 𝑁𝑓𝑒𝑟𝑡 was highest among the 

top 20 countries across the 30 years simulated, increasing from approximately 180 kg ha-1 in 1980 to 360 kg ha-1 in 2010. This 

caused the photosynthesis rate to be high (Eq. (4)) across the growing seasons, leading to marked overestimation. 

The current version of MATCRO-Maize can reproduce yield responses to nitrogen fertilization across a range of fertilizer 

levels, but it tends to overestimate yields under certain conditions (e.g., Egypt). This occurs because the model assumes high 530 

nitrogen use efficiency and idealized irrigation conditions, where actual yields are constrained by soil quality, management, 

and local cultivar traits not explicitly represented. This suggests that the representation of nitrogen effects in the model remains 

simplified, and further refinement is needed for region-specific scale simulation. 

Although the simulated yield has the large error in terms of the absolute value, the comparison of the 30-year average yield 

was statistically significant, with a COR of 0.58 (p value < 0.01) and an RMSE of 4,008 kg ha-1 (Fig. 12), showing the ability 535 

to capture the spatial distribution of the yield both in low- and high-producing countries from the first perspective of the 

comparison (Section 2.3.2). This result was comparable to another model, LPJ-GUESS (Olin et al., 2015), with a COR of 0.46 

and an RMSE of 4,300 kg ha-1 (Table 4). Although the targeted countries differed (top 20 producing countries for MATCRO-

Maize, and whole countries for LPJ-GUESS). 

In terms of interannual variability from the second perspective, the total global yield and approximately one-third of the 540 

top 20 producing countries were statistically significant, with p values < 0.01 (Figs. 10 and 11). It indicates that MATCRO-

Maize could reproduce the climatic effect globally to some extent. This result is also supported by similar comparisons of 

other global crop models in terms of statistics (Table 4). However, it is difficult to simply compare the statistical values between 

the models owing to the differences in periods, input data, and methods for detrending and aggregating the yield. The COR of 

interannual variability for total global yield in MATCRO-Maize was in the range of those of the other models (0.55; 0.42~0.89, 545 
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respectively). For the top 20 countries, almost all the COR values also fell within the range of the other models. Therefore, 

these comparisons from two perspectives might indicate that MATCRO-Maize reproduces reasonable results. The moderate 

correlations observed reflect the typical influence of yield data variability and uncertainty in management practices across 

regions. 

 550 

Table 3. Maize cultivated land area for 20 major producer countries from MIRCA2000 (Portmann et al., 2010). 
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Country Total area [ha] Rainfed area [ha] Irrigated area [ha] 

Argentina 3,248,715.9 3,147,580.7 101,135.3 

Brazil 11,223,262.5 11,120,154.9 103,107.6 

Canada 1,364,585.3 1,328,206.2 36,379.1 

China 24,376,805.2 11,615,190.0 12,761,615.2 

Egypt 827,766.1 0.0 827,766.1 

Ethiopia 1,172,231.1 1,084,795.6 87,435.5 

France 3,128,401.0 2,257,380.0 871,021.0 

Hungary 1,057,610.7 1,052,622.6 4,988.1 

India 6,294,770.9 4,833,685.9 1,461,085.0 

Indonesia 3,479,825.7 3,135,443.9 344,381.8 

Italy 1,322,692.9 534,281.4 788,411.5 

Mexico 7,459,039.5 5,852,617.4 1,606,422.1 

Nigeria 3,686,757.3 3,667,564.5 19,192.8 

Philippines 2,590,081.0 2,590,081.0 0.0 

Romania 3,139,981.1 3,016,990.5 122,990.6 

Russia 4,206,747.0 3,594,403.2 612,343.9 

Serbia 1,074,614.2 1,062,985.8 11,628.4 

South Africa 3,060,053.5 2,930,208.2 129,845.4 

Ukraine 3,382,783.5 3,194,146.2 188,637.3 

United States 31,307,667.3 26,508,600.7 4,799,066.7 
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Table 4. Statics of model simulation accuracy of the MATCRO-Maize and other crop models. Notably, the asterisks for GGCMI phase I 

indicate the p values: *** for p values < 0.001, ** for p values < 0.05, * for p values < 0.1, whereas those of LPJmL4 and MATCRO-Maize 

indicate the p values: *** for p values < 0.001, ** for p values < 0.01, * for p values < 0.05. 575 

   COR of interannual variability 

References Period Global USA China Brazil Mexic

o 

France Argenti

na 

MATCRO-

Maize 

 1981-

2010 
0.549** 0.692*** 

0.518*

* 

0.349 0.015 0.654*** 0.694*** 

JULES-crop1a  1961-

2008 
0.48 0.43 0.12 

0.12 0.061 0.52 0.57 

LPJmL42b  1981-

2010 
– 0.675*** 

0.676*

** 

0.169 -0.124 -0.331 0.717*** 

LPJmL53c  1981-

2010 
– 0.686*** 

0.641*

** 

0.059

1 

0.0618 0.461* 0.650*** 

GGCMI phase 

34d 

 1981-

2015 

– 0.817 0.245 0.029 – 0.649 0.727 

GGCMI phase 

15e 

 1982-

2006 

0.42**~0.8

9*** 

0.89 0.75 0.66 0.85 0.87 0.85 

   COR of interannual variability 

References Period Romania South 

Africa 

India Italy Hunga

ry 

Indonesi

a 

Ukraine 

MATCRO-

Maize 

 1981-

2010 

0.719*** 0.646*** 0.046 0.276 0.900*

** 

0.252 0.339 

JULES-crop1a  1961-

2008 

0.32 0.41 0.34 0.34 0.33 0.065 – 

LPJmL42b  1981-

2010 

– 0.711*** -0.22 – – 0.124 -0.046 

LPJmL53c  1981-

2010 

– 0.667*** 0.496*

* 

– – -0.163 0.152 

GGCMI phase 

34d 

 1981-

2015 

– – – – – – – 

GGCMI phase 

15e 

 1982-

2006 

0.90 0.91 0.76 0.76 0.90 0.42 0.61 

   30-year averaged yield      

References Period COR RMSE [kg 

ha-1] 
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MATCRO-

Maize 

 1981-

2010 

0.580** 4,008      

LPJ-GUESS6f  1996-

2005 

0.46 4,300      

1 Countries-level comparison was conducted for 12 countries, which were detrended only for observation. p values are not shown. 

2,3 Countries-level comparison was conducted for the top 10 producing countries, which were detrended via a 5-year moving average. 

4 Twelve global gridded crop models were used. The COR shown here is the ensembled mean value for the 5 largest producing countries 

after detrending. p values are not shown. 

5 Fourteen global gridded crop models were used. The COR of the global yield shown here is the minimum and maximum value, except for 580 

one nonsignificant correlation with the default setting. The COR of each country shown here is the best correlation among the 14 models, 

including 3 different settings with statistical significance (p values are not shown). For both the global and country-level comparisons, a 

5-year moving average was used to remove trends. 

6 The 10-year average comparisons included all countries. p values are not shown. 

a Osborne et al., 2015 585 

b Schaphoff et al., 2018 

c Bloh et al., 2018 

d Jägermeyr et al., 2021 

e Müller et al., 2017 

f Olin et al., 2015  590 
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4.3 Model limitations 

MATCRO-Maize currently lacks explicit simulation of soil organic carbon and soil nitrogen mineralization. Instead, the effects 

of nitrogen supply are represented by describing the relationship between a broad range of nitrogen fertilization levels 

(Muchow, 1988) and specific leaf nitrogen (SLN), which subsequently affects photosynthetic capacity (Vcmax). While this 

simplification allows for global-scale application, it limits the model’s ability to accurately represent nitrogen balance in maize 595 

yield at specific sites. Yield variations can be influenced by soil organic carbon and nitrogen, which are affected by farming 

practices and contribute to soil fertility (Ma et al., 2023). Future development could involve coupling MATCRO with a 

mechanistic soil nitrogen and carbon module to a dynamic plant nitrogen balance. This would enhance the model ability to 

capture nitrogen dynamics under varying soil types and management practices.  

The strong 𝑁𝑓𝑒𝑟𝑡 effect shown in the evaluation (underestiomation found in Brazil for the point scale comparison) and 600 

comparison based on the 𝑁𝑓𝑒𝑟𝑡 and yield (Figure 13). In the model, 𝑁𝑓𝑒𝑟𝑡 has a direct relationship with 𝑆𝑙𝑛 (Eq. (28)) and 

consequently affects 𝑉𝑐𝑚𝑎𝑥25 (0) through the function 𝑆𝑙𝑛-𝑉𝑐𝑚𝑎𝑥25(0) (Eq. (27)). Therefore, the strong 𝑁𝑓𝑒𝑟𝑡 effect is caused 

by either the former, the latter, or both processes. Few studies have explicitly shown time series changes in 𝑆𝑙𝑛 and 𝑆𝑙𝑛-𝑉𝑐𝑚𝑎𝑥 

relationships from experiments. We used some of them to establish the functions shown in Eqs. (27) and (28) (Section 2.2.2) 

at this stage, resulting in a strong 𝑁𝑓𝑒𝑟𝑡 effect in the model. However, the intentional experiment indicated that the changed 605 

relationships could partly reproduce the adequate effect, which was observed in the FAOSTAT yield. This might mean that 

the established functions include a degree of uncertainty. Nitrogen effects are represented indirectly via SLN as a function of 

fertilizer rate and developmental stage, which constrains the model ability to capture nitrogen cycling in soils and plants.  

Incorporating broader experimental data could refine the model’s nitrogen response and improve maize yield simulations. 

In this study, we applied global parameters to simulate the global yield across all grid cells and throughout the years without 610 

considering cultivar differences. As mentioned in Section 3.1.2, the trend of biomass accumulation would differ across growing 

season types. A limitation of the current study is the use of global parameters at the site scale leads to discrepancies between 

site-level and country-level simulations. Although MATCRO-Maize shows relatively weak correlations at the site scale due 

to the use of generalized parameters that do not account for local varieties and management, the model demonstrates consistent 

and statistically significant performance at country and global levels. This indicates that MATCRO-Maize is well suited for 615 

capturing large-scale yield patterns and for application in global gridded crop modeling, while recognizing its limited capacity 

for precise site-specific prediction. However, global-scale simulation results tend to overestimate yield due to LAI being 

directly driven by carbon balance, which can create feedback that produce excessively high LAI. Future improvements should 

incorporate constraints on LAI expansion and adjust leaf partitioning when LAI exceeds realistic levels. 

Moreover, in major producing countries, such as the United States and China, some studies have shown that there is genetic 620 

gain in terms of maize yield (Cooper et al., 2014; Duvick et al., 2003; Liu et al., 2021). Such cultivar differences and long-

term genetic improvements are not included in the current MATCRO-Maize. This finding indicates that the generic 

parameterization used in the model are simple in accounting for the diversity of crop cultivars (Lombardozzi et al., 2020), 
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partly leading to a gap between the simulations and observations, which is recognized as a limitation of the global model 

(Osborne et al., 2015). Other important factors that are not considered in the current MATCRO include biotic stresses (e.g., 625 

diseases, pests) and detailed management practices (e.g., plant density, as mentioned in Section 4.1) as it affects crop growth 

and final yield. Further improvement to incorporate such factors with reliable 𝑁𝑓𝑒𝑟𝑡-related functions could be needed to 

contribute to more accurate simulations and contribute to studies on the interaction between climate and agriculture. 

5 Conclusions 

We developed a process-based crop model for maize yield estimation, called MATCRO-Maize, by incorporating C4 leaf-level 630 

photosynthesis and some crop-specific parameters into MATCRO. The model was first evaluated at the point scale, showing 

a somewhat reasonable accuracy considered with the available field-based information for parameterization. The calibrated 

parameters were set from point-scale experimental data and used uniformly in the global-scale simulation. MATCRO-Maize 

could represent the spatial distribution well and showed reasonable responses to climatic variability, where the results were 

comparable with those of other studies in terms of statistics. The strong nitrogen fertilizer effect was one of the MATCRO 635 

limitations, while the established functions related to nitrogen fertilizer in the model have a degree of uncertainty. Further 

experimental data under more comprehensive conditions might improve the model. Overall, MATCRO-Maize could contribute 

to climate effect studies through its ability to be integrated with the LSM for crop growth and the interactions between climate 

and agriculture. 
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