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Abstract. Process-based crop models combined with land surface models are useful tools for accurately quantifying the
impacts of climate change on crops while considering the interactions between agricultural land and climate. MATCRO model
is a process-based crop model initially developed for paddy rice, combined with a land surface model. We developed
MATCRO-Maize as a new model for maize by incorporating leaf-level photosynthesis of C4 plants and adjusting crop-specific
parameters into the original MATCRO model. MATCRO-Maize was evaluated at both a point scale and a global scale through
comparisons with observational values. For global-scale simulations, the simulated yield showed statistically significant
differences compared with Food and Agriculture Organization’s FAOSTAT data at the country and global levels. Although
the absolute value of the simulated yield tended to be overestimated, MATCRO-Maize reproduced spatial patterns with a
correlation coefficient (COR) of 0.58 (p value < 0.01) for the 30-year average yield comparison of the top 20 maize-producing
countries. In addition, the comparisons of the interannual variability derived from detrended deviation were statistically
significant for the total global yield (COR of 0.55 with p value < 0.01) and for half of the top 20 countries (COR of 0.64-0.90
with p value < 0.001 for 6 countries; COR of 0.50-0.51 with p value < 0.01 for 2 countries; COR of 0.48-0.55 with p value <
0.05 for 2 countries), which are comparable with those of other global crop models. One of the reasons for this overestimation
could be related to the strong model response to nitrogen fertilizer observed in MATCRO-Maize. With experimental field data
under more comprehensive conditions, improvements in the functions of nitrogen fertilizer in the model would be needed to

simulate the maize yield more accurately.

1 Introduction

Maize (Zea mays L.) is one of the most important cereals not only because of its large production (FAO, 2022) but also because
of its various roles in human food, feed, and industrial uses. Maize exhibits high photosynthetic efficiency due to its C4 plant
nature. It contains phosphoenolpyruvate (PEP) carboxylase in mesophyll cells, which concentrates CO: in bundle sheath cells.

The concentrated CO; increases the relative amount of carboxylation versus oxygenation performed by ribulose-1,5-
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bisphosphate carboxylase/oxygenase (Rubisco) (Kanai and Edwards, 1999), allowing C4 plants to operate at lower stomatal
conductance rates than C3 plants (Sage, 1999). This mechanism results in high efficiencies of light, water, and nitrogen use
(Knapp and Medina, 1999; Long, 1999). These features, such as multipurpose crops and high photosynthetic efficiency, enable
the cultivated area to range over wide environments from wet to dry and from low to midlatitudes. However, climate change
impacts and climate-related extremes negatively affect the productivity of the agricultural sector, which leads to negative
consequences for food security (Intergovernmental Panel on Climate Change (IPCC), 2023). Therefore, it is important to
accurately quantify the impact of climate change on crop growth and yield and to identify effective adaptation strategies to
mitigate climate risk.

Process-based crop models are useful tools for climate change studies because they consider the response of the
physiological processes of crop growth and development to the environment and management (Tubiello and Ewert, 2002).
The ensemble of process-based crop model simulations has shown good agreement with observed maize yields both at the site
scale and at the global scale (Bassu et al., 2014; Jagermeyr et al., 2021), showing its potential to quantify the uncertainty in
studies on the impacts of climate change on crop yields (Asseng et al., 2013). Crop models combined with Land Surface
Models (LSMs) or Earth System Models (ESMs) (as classified by Peng et al., 2017) have the ability to consider the effects of
agricultural land on the climate globally through the exchange of fluxes of heat, water, and gases, as well as the effects of
climate on crops. Some studies have revealed that agricultural land affects the climate through fluxes (Bondeau et al., 2007,
Levis et al., 2012; Maruyama and Kuwagata, 2010; Tsvetsinskaya et al., 2001) and subsequently affects crop production
(Osborne et al., 2009). This indicates the importance of considering the interaction between agricultural land and climate to
accurately quantify the impacts of climate change on crops. Despite this importance, few LSM/ESM-based crop models exist
(Lin et al., 2021; Lombardozzi et al., 2020; Osborne et al., 2015; Wu et al., 2016).

MATCRO is a process-based crop growth model developed for C3 plants (Masutomi et al., 2016a, b; Yusara et al., 2025).
It was initially combined with a land surface model of Minimal Advanced Treatments of Surface Interaction and Runoff, called
MATSIRO (Takata et al., 2003). MATSIRO is embedded in an ESM, which is the Model for Interdisciplinary Research on
Climate, Earth System version 2 for Long-term simulations called MIROC-ES2L (Hajima et al., 2020). MATCRO simulates
crop growth based on leaf-level photosynthesis and parameterized crop-specific parameters determined from experimental
data, and it can run simulations both at a point scale and at a global scale. The model was applied to assess the impact of
climate change at the country and local levels (Kinose et al., 2020; Kinose and Masutomi, 2019), and it was used in a study
investigating factors to improve the simulation performance of global gridded crop models (GGCMs) (lizumi et al., 2021).
MATCRO is applicable to other crops, including maize as a C4 plant, with adjusted parameters from experimental datasets
and the literature.

We extended MATCRO for global maize yield simulation, called MATCRO-Maize, by adjusting crop-specific
parameters for maize and incorporating the C4 photosynthetic mechanism. The original model of MATCRO-Rice can simulate
latent heat flux, sensible heat flux, net carbon uptake by crops, and rice yield, indicating its application in studies on climate

change impacts as an LSM-based model (Masutomi et al. 2016b). However, this study focused only on crop growth and yields,
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omitting water and heat fluxes to increase computational efficiency. This paper aims to describe the methodology of
MATCRO-Maize in detail (Section 2), to evaluate simulated yields both at a point scale and at a global scale with reference

datasets (Section 3), and to provide discussion of the evaluation and model limitations (Section 4).

2. Model description

MATCRO consists of four modules: radiation, net carbon assimilation, crop growth, and soil water balance. It requires the
following input data: (i) phenological data (i.e., crop calendar), (i) water management data (i.e., the land is rainfed or irrigated),
(iii) nitrogen fertilizer application data (Nfr) [kg N ha'], (iv) soil classification data (i.e., soil texture classification), (v)
annual CO, data [ppm], and (vi) 6 types of daily meteorological data: air pressure (P;) [Pa], precipitation (B,..) [kg m? s™'],
specific humidity [S,,] [kg kg™!], downwards shortwave radiation (Ry) [W m2], maximum, minimum, and mean air temperature
(Trmax> Trmin> To) [K], and wind speed (U) [m s'']. Based on input data, MATCRO simulates crop growth during a growing
period. It is controlled by the crop developmental stage (D,s) based on (Bouman et al., 2001), which is the index used to
quantify crop development. The final crop yield is determined by the dry weight of the storage organ with a parameter (Ky,4)
when D,; = 1. To adapt MATCRO for maize, crop-specific parameters and equations were improved, as shown in Table 1

and Eq. (1)—(35). The details are described in the following sections.

2.1 Photosynthetic mechanism

MATCRO-Maize calculates net carbon assimilation for the entire canopy (4,,) via the big-leaf model, where C4 leaf-level
photosynthesis is separately calculated for sunlit and shaded leaves from the coupled photosynthesis—stomatal conductance
model (Dai et al., 2004).
A, for the entire canopy is given by:

An = Ansn Lsn + AnsnLon, )
where ansn and ansh represent the net carbon assimilation per unit leaf area [y mol m? s7']; Ly, and L, represent the leaf
area index (LAI) [m? (leaf) m?]; and sn and sh indicate sunlit and shaded leaves, respectively. Zn,sn and Zn‘sh are defined in
the following equations:

Apx= Agx— Rax 2
where Zg,x and Ed_x represent gross carbon assimilation and dark respiration per unit leaf area [ mol m s7!], respectively.
Suffix x means sn or sh. Lg, and L, are determined following the approach of Masutomi et al., (2016a). Ed,x is calculated

via the following equation (Bonan et al., 2011):

2(’[‘17—298.15)/10
1+exp (1.3(Tv—328.15)))’

Ed,x = 0025 chax,x( (3)
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where Vopax x [ mol m? s7'] is the maximum rate of carboxylation and where T, is the leaf temperature [K] (assumed to be

the same as the air temperature: T,).

Xg,x is determined by the smaller root of the following equations:
_2 _ _ _ _

ﬁchi,x - (Ac,x + Aj,x)Ai,x + Ac,xAj,x =0, 4)
_2 _ _ _ _

.BipAg,x - (Ai,x + Ap,x)Ag,x + Ai,xAp,x =0, Q)

where f.; and B;;, are the transition factors (Table 1) and where Zi_x [ mol m? s7'] is the carbon fixation rate. Here, we
introduced the C4 leaf-level photosynthesis model based on Collatz et al. (1992) into MATCRO, in which some parameters
were taken from Oleson et al., (2013) and Lawrence et al., (2020) (see Table 1). In C4 photosynthesis, chx, Zj‘x, and Zp,x [u

mol m? s7'] represent Rubisco-limited, RUBP-limited, and PEP-limited photosynthesis, respectively, and are given by the

following equations:

Zc,x = Vemaxx » (6)
Ajx = a(4.6Qapx), (7
Zp,x = kp,xCi,x > (8)

where Qg [W m?] is the absorbed photosynthetically active radiation (PAR); a [mol mol'] is the quantum efficiency; k;,
[mol m? s7'] is the initial slope of the CO, response curve for the C4 CO; response curve; and C; , [ppm] is the internal leaf
CO concentration. Qg  is calculated from Ry via the same methods conducted in Masutomi et al. (2016a) and is converted
to photosynthetic photon flux by multiplying by 4.6 [ mol (photons) J™']. Vopayx » and k, x are functions of T,, and are based

on Lawrence et al. (2020),

Q(Tu—298-15)/10
Vemaxx = fo Vemaxasx [m ; )
fu(T,) = 1+ exp[S1(T, — S2)], (10)
fu(ly) = 1+ exp[S5(Ss — T))], (11)
k.. = {kpzs,ngv_zg&ls)/lor Vemaxzsx > 0, (12)
P 0.7, Vemaxzsx = 0,
kp2sx = 20000Vemaxas x » (13)

with Q0 = 2,5, =03 K1, S, =313.15K,5; = 0.2 K™%, and S, = 288.15K (see Table 1). Notably, ky x is adjusted to be
0.7 mol m™% s (Collatz et al., 1992) when V4525 » = 0 because of the process of the photosynthesis calculation (see Eq.
(20)). Vemaxzsx 1s the maximum Rubisco carboxylation rate per unit leaf area at 25°C (the details are described in Section
2.2.2). fy(T,) and f;,(T,) are modulating functions that reduce V.4, , at high and low temperatures, respectively. f;, is the
water stress factor calculated in the soil water balance module, which indirectly affects A,, through V 4, (Sellers et al.,

1996). f, is derived from the following equations:



125

130

135

140

145

150

1 ETF (i), FAW (i) > 0.45,

fo = Xiz1 {”T"l’s(l)* ETF (i), otherwise, "

N _ . (max((WSL(i)-WILT),0)
FAW (i) = mm( — ,1), (15)
2_,2
ETF(i) = ;% (16)

where NSL represents the number of soil layers, ETF represents the fraction of transpiration from root distribution, FAW
represents the fraction of available water, WSL represents the soil water content [m® m~], WILT represents the wilting point,
FC represents the field capacity, and z,; and z represent the root depth and the soil depth, respectively, for each layer.
MATCRO assumes NSL = 5, where each of the soil layers has depth of 0.05, 0.2, 0.75, 1, and 2 [m] below the ground,
respectively. MATCRO uses the soil texture data as input data, where the soil is classified into 13 types, leading to differences
in WILT and FC based on Campbell and Norman (1998). WSL is calculated considering transpiration from the canopy,
evaporation from the soil, and water flux (those calculations are the same as those of the original MATCRO). The ETF
calculation assumes that the root has no spatial orientation and is equally distributed in the soil (Masutomi et al., 2016a). z,.;
is determined by the same calculation as the original MATCRO, where the crop-specific parameter (.. ,m,) Was changed to
maize (Table 1). The conditional branch (FAW (i) > 0.45) is based on the FAO 56 guidelines (Allen et al., 1998).
Stomatal conductance influences CO, uptake during photosynthesis. MATCRO-Maize represents stomatal conductance

for CO; (G [ mol m? s7']), based on Ball (1988) as follows:

Anx
_ )Goc + GicRy Cox Ay 20, )
Gy., otherwise,

Gsc,x

where C; , [ppm] is the CO; concentration at the leaf surface and Ry, [-] is the relative humidity at the leaf surface. G, and G,
are derived from parameters of Ball-Berry stomatal conductance model of b and m (shown in Table 1) by adjusting their ratio
of 1:1.6, which is the ratio of diffusivity of H,O to CO,. Here, the leaf-level net carbon assimilation rate (Zn,x), stomatal
conductance for COz (G »), and boundary layer conductance for CO; (Gp,.) were calculated to satisfy the following physical
flux equations.
A = Goox (Cox — Ci), (18)
Anx = Gpe(Ca— Cox)s (19)
where C, [ppm] is the atmospheric CO; concentration. Gy, is a function of air pressure (P; [Pa]) and the wind speed in the
canopy (U [m s!)).

Here, T, Qap x> R, U, and C, are environmental variables derived from input meteorological climate data. There are four
relationships (Egs. (2), (17)-(19)) in terms of internal variables (Zn,x, Gscx> Cs x> Cix)- MATCRO for C3 photosynthesis obtains
analytical solutions from relationships via the method shown in Masutomi (2023). For C4 photosynthesis, it is also possible to

solve these equations analytically. In the case of Rubisco-limited and RuBP-limited photosynthesis, exact expressions for chx
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and Zj_x are obtained. Under Zn‘x = 0, PEP-limited photosynthesis (Zp_x) can be represented by quadratic equations by the
algebraic procedures as follows:

0 = {G3cGicRy = GpcGoc — kpx(Goc — GpcGicRpy + Gbc)}gp,xz + {CaGhcGoc = GpcGocRy + GjcGicRyRy —

kp xCa(GhGrcRr = 2GpcGoc = Gh) YAp x + CaGheGoc(Ra = kpxCa)- (20)

Under Zn_x < 0, the PEP-limited photosynthesis rate can be expressed as

1 kp,xca_Rd

. @1)
)

1
1+k <—+—
PX\Gpc  Goc

AP,X -

According to these equations, in the case of PEP-limited photosynthesis, there are three possible solutions. Following the
criteria described by Masutomi (2023), only one analytical solution can be selected when the following requirements are
satisfied: (i) under Zn‘x = 0, the solution must be a positive or zero real solution, and under Zn,x < 0, it must be a negative

real solution; (ii) G, > 0; and (iii) C; > 0.

2.2 Crop-specific parameterization
2.2.1 Phenology

The crop growing period in MATCRO is expressed as D,,; based on Bouman et al. (2001). Here, D,,; = 0 means sowing, and
D,s = 1 means maturity (harvesting). It is calculated from the following equations:

Dysi = Gaa,i/ Gaam,i» (22)
Gaa = [y Dordt’, (23)

0, T,<Ty|Th<T,
Tt_Tb' Tb STt<TO’

(Tp=To)(T=Tp)
s T ST < Ty,

D, = (24)
where G4 ; is the growing degree days at t (time) for specific grid cell number i; G4y, ; 1S the growing degree day at maturity;
D, is the developmental rate at time t; and T; is the temperature at time t. T}, T, and T, are the crop-specific cardinal
temperatures (minimum, maximum, and optimal temperatures for development, respectively, as shown in Table 1). Ggg.m
were calibrated for each point scale simulation and global scale simulation (Section 2.3). In addition, one parameter that
represents the timing of flowering (known as silking; Dy f;,,) Was calibrated based on observational data for the point scale

simulation (Table 1).

2.2.2 Leaf nitrogen and Rubisco capacity

Maximum Rubisco carboxylation rate
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Vemaxzs,x used in the photosynthesis module (Section 2.1) is obtained by dividing the maximum Rubisco carboxylation rate at
a LAI depth of I (Vemgxzsx (D)) by Ly separately for sunlit and shaded leaves based on Bonan et al. (2011). The vertical
distribution of Vygx25 (1), which is the sum of Vi gx25,5n (1) and Vepaxas sn (1), follows the exponential profile:

Vemax2s (D) = Vemaxas (0) exp(—K, D), (25)
where V,p,4x25(0) is the maximum Rubisco carboxylation rate at the canopy top, K, is a parameter for the vertical distribution
of nitrogen (Table 1), and [ represents the LAI depth from the top. The maximum Rubisco carboxylation rate in sunlit leaves

(Vemaxzs,sn (1) is also calculated by the same relationship considering the light distribution:

chaxZS,sn(l) = Vemaxzs (0)[1 — exp(—1(K, + K))]

where K is the direct beam extinction coefficient (the calculation is the same as that for Masutomi et al., 2016a). Vepmaxas,sn (D

1
Kn+K’

(26)

is given by the subtraction of Eq. (25) and Eq. (26).

Here, while Bonan et al. (2011) use the fixed value of V,,,4,25(0) value over time, V ;4425 (0) in MATCRO is calculated
dynamically as a function of specific leaf nitrogen (S;, [g N m™]). The function is established based on the experimental
literature data. Notably, we applied the relationship between S;, and light-saturated CO; assimilation (A4, ) from the
literature, although MATCRO-Rice and MATCRO-Soy utilize the direct relationship between S, and V., 4,25(0) based on
the experimental literature data. The reasons are that we assume that A4,,,, could be used as Rubisco-limited photosynthesis
in C4 photosynthesis, hence Rubisco-limited photosynthesis could be equal to the maximum Rubisco carboxylation rate from
Eq. (6). Several studies have shown that A,,,,, has a close relationship with S;,,, as shown by the logistic equation for maize
(Drouet and Bonhomme, 2004; Muchow and Sinclair, 1994; Paponov and Engels, 2003; Paponov et al., 2005; Sinclair and

Horie, 1989; Vos et al., 2005). We used two functions from the studies for different D,,; as follows:

[ - 1}: Dvs < Dvs,flw'

i 1}, otherwise,

2
1+exp[—2.9%(S;,—0.25)

2
1+exp[—1.41%(S;,—0.43)

451*{

Vemaxzs(0) = (27)

4&2*{

where D5 < Dy f1,, represents the vegetative stage at which the equation was based on Vos et al. (2005); then, for the
reproductive stage, the equation was from Drouet and Bonhomme (2004). Stage-specific parameterizations were applied to
reflect the lower photosynthetic activity observed during the reproductive phase compared to the vegetative phase since no

single dataset adequately represents both growth phase.

Specific leaf nitrogen

Sin, which is used in the calculation of V,p,4,25(0), is dynamically change during the crop growth of D,; in MATCRO. The
function is established based on the observational data. We utilized the study by Muchow (1988), in which S;,, was measured
under various levels of Ny (0, 60, 120, 240, 420 [kg ha']), as follows: (i) we traced S, data using digitizer software

(https://apps.automeris.io/wpd4/) and obtained the measurement and phenological data from the paper; and (ii) we conducted



the fitting based on the assumption that S;,, linearly increased until flowering and then decreased towards maturity. The
parameterization given by Egs. (28)—(30) is shown in Figure 1.

Sln,mx_sln,plt D
Dvs,flw

Sln,matu _Sln,mx
1-D (Dvs - 1) + Sln,matu: Dvs = Dvs,flw-
vs,flw

vs + Sln,plt: Dvs < Dvs,flw'
Sin =

(28)
Where Sin mx> Sinpits Sinmatu ar€ maximum Sy, and Sy, at planting time and maturity, respectively. S, ,,; Was parameterized
210 by assuming low Sy, in the early stage (Table 1). Menwhile, Sy, 1, and Sy, maey are empirically parameterized as functions of

Npert as follows:

¢ _ [~000001 Nfere? + 0.0064 Nfopp + 0.6891, Nf,pp < 240, 29)
tnmx = 1.75, Nyere > 240.
0.001 Nrory + 0.57, Npgpe < 240
_ fert » Nfert = ’
Sln,matu - { 1, Nfert > 240. (30)

We set fixed values of 1.75 for Sy, my and 1.0 for Sp, maey, When Nig,e exceeds 240 [kg ha™'], as Spy ny and Sy, maey exhibit

215 minimal increases beyond this threshold.
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Figure 1. Relationship between developmental stage (D,,s) and specific leaf nitrogen (Sy;,) in MATCRO-Maize. Symbols show observational
data from Muchow (1988) with the 5 types of Nfere: 0 kg ha' (square), 60 kg ha! (cycle), 120 kg ha™! (triangle), 240 kg ha! (diamond), and

420 kg ha! (inverted triangle). The red lines represent the fitted line parameters used in MATCRO-Maize, while the dashed line represents
220 D, at flowering (D sy).

2.2.3 Crop growth

Glucose partitioning
MATCRO calculates crop growth by partitioning net carbon assimilation (4,,) in the form of glucose, which is calculated in

the photosynthesis module (Section 2.1). Partitioned glucose is supplied through photosynthesis in leaves and remobilization
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from the stem. The ratio of glucose partition to each organ (leaf, stem, root, and storage organ; ear) depends on D,. The term
“ear” in maize represents the organ that supports the development and storage of grain. The grain developed later than the ear
with approximately 83% of ear at maturity in this study (see Section 2.2.5). The dry matter for each organ is obtained from the
partitioned glucose considering the carbon fraction for each organ (Cypyear» Cgiiears Cgiurot» Cgiusem in Table 1). We
calibrated the partitioning ratio to leaf and ear based on the observational biomass data from Ciampitti et al. (2013a, b), whereas
the ratio to shoots:roots was derived from the value from Penning de Vries et al. (1989). The stem partitioning was determined
by reducing the shoot ratio with respect to the leaf and ear. Figure 2 shows the partition ratio to the leaf (Py,;.¢) and ear (P ¢qr)
established via the following equations:
Pres, Dys < Dygierts
oL T Doy < Dostera (1)
0, otherwise,
0, Dys < Dyseart,
Prear = { o258 Dy < Dysieps, (32)

Dys,ear2—Dys,ear1
1, otherwise,

P _ Plef(Dvs,lefz_Dvs)
rlef —

where Dy o1, Dysiefz> Dyseart and Dyg eqr Tepresent the D¢ at which the corresponding partition changes, as described in

Table 1 and based on Figure 2; Py, is the ratio of glucose partitioned to glucose to the leaf from glucose partitioned to the

shoot.
(a) Leaves/Shoot (b) Ear/Shoot
o H o ’
S i S i
— 1 o |
] ]
c i c i
L v i L. i
= e | =N I
= i £t o ; o <4
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Figure 2. The ratio of glucose partitioning to leaves (a) and ears (b). Symbols show the ratio of glucose partition with different Ngere: 0 kg
ha! (square), 112 kg ha'!' (cycle), and 224 kg ha'! (triangle) measured in Ciampitti et al. (2013a, b). The red lines in Figure 2 show the
segmented line parameters used in MATCRO-Maize, while the dashed line represents D¢ at flowering (Dys f1w)-

Specific leaf weight
The specific leaf weight (S;,,) is used to calculate the total leaf area index (L) in MATCRO. It is varied dynamically with the

developmental stage of D,,; and is given by:
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Stw = Stwmx + (Swmn = Siwmx )€XP (—ksi Dys) (33)
where Sy mn > Siwmx, and kg, are minimum, maximum, and absolute value of the rate constant in the Sy, function,
respectively. These crop-specific parameters were derived from the observational data expressed in Table 1. We conducted
curve fitting of S;,,, to calculate the dry weight of the leaf biomass and the leaf area index based on Ciampitti et al. (2013a, b)
and established a relationship (Figure 3).

8(IJO
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6(.30

5(30

Specific leaf weight [kg ha™']

400

300

0.00 0.25 0.50 0.75 1.00
DVS

Figure 3. Relationships between specific leaf weights and developmental stages. Symbols are the same as in Fig. 2.
2.2.4 Crop height

Crop height (Hy,) is related to the calculation of evapotranspiration in MATCRO. It assumes that the dependence of the crop
height is based on D, using function from Penning de Vries et al. (1989) and is given by

H. = {haaDvs/Dvs,flw' Dvs < Dvs,flw

= 34
gt haa: Dvs = Dvs,flw ( )

where hg, is the crop height at flowering (Table 1).

2.2.5 Crop yield

MATCRO calculates the final crop yield, Y4, from the dry weight of the storage organ at maturity (Wg; m¢) as follows:

Yia = ky1aWearme- (35)
Here, k.4 is the crop-specific parameter (Table 1), which represents the ratio of Y4 to Wqy 1m¢. The dry weight of the ear is a
consistent predictor of the plant’s potential yield at maturity. We parameterized K,,;; using experimental data from Ciampitti

etal. (2013b).

10



265 Table 1. Parameters in MATCRO-Maize

Variable Value Units Description Source

Crop-specific (maize)

b 0.04 mol (H20) m?2s!  intercept of the Ball-Berry model Sellers et al. (1996)

Cotuear 0.815 ratio conversion factor of dry weight from glucose to ear Penning de Vries et al. (1989)
Cytutear 0.871 ratio conversion factor of dry weight from glucose to leaf Penning de Vries et al. (1989)
Coturot 0.857 ratio conversion factor of dry weight from glucose to root Penning de Vries et al. (1989)
Cotustm 0.810 ratio conversion factor of dry weight from glucose to stem Penning de Vries et al. (1989)
Dys rot1 0.35 ratio Ist point of D,;at which the partition pattern to root changes Penning de Vries et al. (1989)
Crop-specific (maize)

Dys rota 0.72 ratio 2nd point of D, at which the partition pattern to root changes Penning de Vries et al. (1989)
Dys.ear 0.37 ratio Ist point of D,,; at which the partition pattern to ear changes Parameterized in this study
Dys.earz 0.6 ratio 2nd point of D, at which the partition pattern to ear changes Parameterized in this study
Dys, fiw 0.52 ratio D, at flowering Parameterized in this study
Dysief1 0.25 ratio Ist point of D, at which the partition pattern to leaf changes Parameterized in this study
Dysief2 0.48 ratio 2nd point of D, at which the partition pattern to leaf changes Parameterized in this study
fste 0.35 ratio fraction of glucose allocated to starch reserves Penning de Vries et al. (1989)
R 2 m crop height at flowering Penning de Vries et al. (1989)
kyia 0.83 ratio ratio of crop yield to dry weight of ear at maturity Parameterized in this study
Ksiw 3 ratio parameter that represents the relationship between Sy, andD,,¢ Parameterized in this study

m 4 ratio the slope of the Ball-Berry model Sellers et al. (1996)

Gaam - K day growing degree day at maturity Parameterized in this study
Ps 0.49 ratio partition ratio of glucose to leaf from glucose partitioned to the shoot ~ Parameterized in this study
Prot 0.25 ratio partition ratio of glucose to root Penning de Vries et al. (1989)
Tavier 3.0x107 st ratio of dead leaf at harvest Masutomi et al. (2016)

Tt 0.06 ms’! growth ratio of root Penning de Vries et al. (1989)
Sinpit 0.825 gm? specific leaf nitrogen at planting Parameterized in this study
Sinmx See Eq. (29) gm? maximum specific leaf nitrogen Parameterized in this study
Sinmatu See Eq. (30) gm? specific leaf nitrogen at maturity Parameterized in this study
Stwmn 400 kg ha'! minimum specific leaf weight Parameterized in this study
Stw,mx 700 kg ha'! maximum specific leaf weight Parameterized in this study
T, 8.6 °C minimum temperature for development Osborne et al. (2015)

Ty 42.0 °C maximum temperature for development Osborne et al. (2015)

T, 30.0 °C optimal temperature for development Osborne et al. (2015)

Zrtmx 1.5 m maximum root depth Penning de Vries et al. (1989)
a 0.05 mol mol! quantum efficiency Sellers et al. (1996)

Bej 0.8 ratio GPP transition factor Lawrence et al. (2020)
Others

k, 0.3 ratio vertical distribution of nitrogen Oleson et al. (2013)

M 0.3 K! temperature dependence of Voax x Lawrence et al. (2020)

S, 313.15 K temperature dependence of Voqx Lawrence et al. (2020)

S 0.2 K-! temperature dependence of Vg x Lawrence et al. (2020)
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Variable Value Units Description Source

M 288.15 K temperature dependence of Vqx x Lawrence et al. (2020)

Bip 0.95 ratio GPP transition factor Lawrence et al. (2020)

2.3 Model evaluation

MATCRO can run the simulation both at a point scale and at a global scale. The developed model was evaluated both at a
point scale and at a global scale. For point scale levels, LAI and total aboveground were compared with the observation data
from the four sites. Meanwhile, we use yield data for evaluation. After confirming the ability of the model to simulate maize
270 growth, two types of evaluations were conducted at the global scale. First, the simulated yields at the grid cell were compared
with the gridded yield datasets of the Global Dataset of Historical Yields (GDHY; lizumi and Sakai, 2020), GlobalCropYield
(GCY; Cao et al., 2025), and the Spatial Production Allocation Model (SPAM; IFPRI, 2019). Second, the simulated yields at
the country and total global levels were compared with the country yield report and global data from the Food and Agriculture
Organization’s FAOSTAT database (FAOSTAT, 2024). To quantify the model performance, four statistical values were used
275 in this study: the Pearson correlation coefficient (COR), root mean square error (RMSE), relative root mean square error

(RRMSE) and normalized mean absolute error (NMAE). RRMSE and NMAE were calculated as follows:

1 ~
RMSE = |-Xi2.(vi = 9)%, (36)
RRMSE = R’”;SE, (37)
1 Y=yl
NMAE = ~ ;;1%, (38)

280 where y; is the actual value, y; is the predicted value, and y is the mean of the actual value.

2.3.1 Model evaluation at a point scale

To evaluate the model performance at a field scale, we used observational data from four sites (Brazil, France, Tanzania, and
the USA; Table 2) used in the Agricultural Model Intercomparison and Improvement Project (AgMIP) study (Bassu et al.,
2014). We used local daily climate data of precipitation, downwards shortwave radiation, air temperature, wind speed (B,

285 R,, T,, U respectively), management data (N, and irrigation regime) and phenological data (planting, flowering, and
maturity dates) for model input data at each site. We identified the soil texture from the gridded soil texture dataset of ISIMIP
(Volkholz and Miiller, 2020), and annual CO, data from the ISIMIP3a (Biichner and Reyer, 2022).Climatic data were obtained
from the NASA Modern Era Retrospective-Analysis for Research and Applications corrected with observational datasets
(AgMERRA; Ruane et al., 2015) when measured data were unavailable (Bassu et al., 2014).

290  Table 2. Evaluation site information in the point-scale simulation

Total N fertilizer
Country Site Latitude Longitude Soil type Sowing date Hybrid [kg N ha] Irrigation
g N\ ha”

Brazil Rio Verde 17.52°S 51.43°W Geri-Gibbsic Ferralsol Oct. 22M 2003 Pioneer 30K75 0 No
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France Lusignan 46.25°N  00.07°E Cambisol Apr. 26" 1996 Furio 255 Yes
Tanzania ~ Morogoro 06.50°S 37.39°E Haplic Arenosol Oct. 26 2009 TMV1 61 Yes
USA Towa 42.01°N 93.45°W Gleysols May 4 2010 Golden Harvest GH-9014 167 No

Notably, air pressure (F;) and specific humidity (S;) data were not provided. Hence, we represented the point scale by
extracting P; from the nearest 0.5° x 0.5° grid cell of GSWP3-WS5ES dataset for the ISIMIP3a (Lange et al., 2022). Meanwhile,
Sp was converted from R, using T, and the vapour pressure. We parameterized Ggqm and Dy sy, based on T, and

295 phenological data (sowing, flowering, and maturity dates). G44 ,,, calibrated for each site is used for the simulations, while the
average Dy 1, Over the 4 sites is used (0.52 in Table 1). As a result, the mean average errors were estimated as 4.25 and 7
days for flowering and maturity, respectively (Figure 4). MATCRO was run with these parameters, and then the model output
was evaluated with the observations for the following 3 variables: seasonal change in the LAI, total aboveground biomass, and
final yield.

300 Model calibration was conducted based on phenological data (Table 2, Bassu et al., 2014) and biomass data for carbon
partitioning of leaves and ear (Figure 2, derived from Ciampitti et al., 2013a, b). In this study, a global parameter was applied
uniformly across all regions at the grid-cell level instead of using site-specific calibrated parameters in the simulations. The
model was then assessed at the point scale to verify calibration for phenology (flowering and maturity) and was evaluated
against time-series data of LAI, aboveground biomass, and harvested yield (see Section 3.1), which were not included in the

305 model calibration.

o
Ty L
.
’,"‘ Phenology
Floweri

g_ .. @ Flowering
- @ Maturity
O Country
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=
] - [] France

E- <> Tanzania

A /N UsA
A"
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180 o7 : 450

70 360
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Figure 4. Model-fit comparison of the flowering and maturity date simulations (SIM on the y-axis) and observations (OBS on the x-axis).

DOY represents the number of days from January 1%. Symbols show each site: Brazil (square), France (circle), Tanzania (triangle), and the
310 USA (diamond). The colours indicate the phenological stages of flowering (red) and maturity (blue).
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2.3.2 Model evaluation at a global scale

Simulation settings

For the global-scale simulation, the model was run at a spatial resolution of 0.5° x 0.5° from 1980-2010 under both rainfed
and irrigated conditions. The required input data were as follows. (i) Crop calendar data were from the Global Gridded Crop
Model Intercomparison (GGCMI) phase 3 protocol (Jagermeyr et al., 2021). It provides planting and maturity dates for 18
different crops, including maize, separated by rainfed and irrigated systems. We parameterized the average G4 ,,, at each grid
over the period 1980-2010 for the growing season from the planting to maturity dates for each of the rainfed and irrigated
conditions. Both the planting date and the simulated G4 ,,, were used as the input data for the global-scale simulations. (ii)
Water management data (i.e., irrigation regime) from the MIRCA2000 dataset (Portmann et al., 2010). In the case of irrigated
conditions, the soil moisture was set to field capacity during the growing season. (iii) Nfr; from the Inter-Sectoral Impact
Model Intercomparison Project (ISIMIP; Volkholz and Ostberg, 2022). It provides the annual nitrogen fertilizer inputs for five
canonical crop types, including C4 annual crops for maize. (iv) Soil texture classification from ISIMIP3a protocol soil input
data (Volkholz and Miiller, 2020). (v) Annual atmospheric CO, data from the ISIMIP3a (Biichner and Reyer, 2022). (vi) Six
types of daily meteorological for model inputs (P;, B¢, Rg, Sn, Tmax> Tmin> Ta, U) from the GSWP3-WS5ES dataset for the
ISIMIP3a dataset (Lange et al., 2022). We set the data from (i), (ii), and (iv) as constants across the simulation period, whereas

the data from (iii), (v), and (vi) are variables.

Analysis
MATCRO-Maize was first assessed for the phenological simulation of harvest time against the phenological dataset GGCMI
(Jagermeyr et al., 2021) and global datasets of crop phenological events for agricultural and earth system modeling which were
derived from various field experiments and a phenology model (GCPE; Mori et al., 2023). These datasets were compared
under both rainfed and irrigated conditions at a 0.5° x 0.5° resolution to check the model’s performance. Then, we assessed
the yields by combining simulated yield at irrigated and rainfed according to the maize area in each grid cell.

The simulated final yields in each grid cell under irrigated and rainfed conditions were aggregated by grid cell, country and
global level with the harvested area from MIRCA2000 data (Portmann et al., 2010) via the following equation for each year
from 1981-2010:

Z'i;l(Yieldi'foAreai'rf) +Z'lﬂ=1(Yieldi'i.,rxAreai'irr)

Y (Area; prArea; iry)

Yieldaggregated = (39)

where Yield g 4regateq is the aggregated yield with the total grid cells (n) in grid cell i. Yield, s and Yield;,, are the simulated
yields under rainfed and irrigated conditions, respectively, and Area, s and Area;,, are the harvested areas from MIRCA2000

for rainfed and irrigated conditions, respectively.
The model performance was evaluated by comparing its output with the historical yield dataset. The grid cell-level yield

was averaged across a 30-year period and compared with the Global Dataset of Historical Yields (GDHY) (lizumi and Sakai,
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2020), 29-year period of GlobalCropYield (GCY, Cao et al., 2025), and year 2010 of Spatial Production Allocation Model
(SPAM; IFPRI, 2019). The country and global-level yields were compared with FAOSTAT data (FAOSTAT, 2024) for the
average and annual variabilities over the 30 years. In the comparison at the country level, we focus on the top 20 maize-
producing countries that account for more than 85% of total maize production.

We focused on two perspectives for evaluation: (i) the ability of the model to capture the spatial distribution of yield in
both low and high-producing countries and (ii) the ability of the model to reproduce the climatic effect reflected in the
interannual variability at the country and global scales. The first perspective was analysed using NMAE to quantify model
error for both the global yield and the yield of the top 20 producing countries. The 30-year average yields were also compared
based on the statistics of COR, RMSE, and RRMSE to confirm accuracy. The second perspective was analysed via the COR

of the detrended deviation between the simulated and FAOSTAT yields to assess the interannual variability.

3 Results
3.1 Point-scale simulations

A comparison of the time series changes in the LAI at each experimental site is shown in Figure 5. In general, MATCRO-
Maize captured the increasing trend towards flowering time, followed by a decreasing trend towards the end of maturity.
Especially during the vegetative stage (Dys < Dy f1,: 0.52), the simulated LAI showed relatively good agreement. However,
the simulated LAI was notably underestimated in Brazil and France immediately before the reproductive stage (near the dashed
black line in Fig. 5). The LAI underestimation in France and Brazil (Fig. 5) could also be seen with a large RMSE, which is
approximately 50% of the average LAI across all observational values at 3 sites except for Tanzania during the crop growth,
although overall, the comparison was statistically significant (p value < 0.01), with a COR of 0.762.

Figure 6 compares the time series of total aboveground biomass between the simulated and experimental data. Except for
Tanzania, MATCRO-Maize accurately estimated the increasing trend of total aboveground biomass towards maturity (Figs.
6(a) and 6(b)), although the simulated biomass in Brazil was underestimated at maturity (Fig. 6(a)). The simulated total
aboveground biomass in Tanzania increased until maturity, while the observations gradually decreased towards the maturity
time (Fig. 6(c)). The comparison of total aboveground biomass during the crop growth was statistically significant (p value <
0.001), with a COR of 0.895, although the RMSE was 3,628.3 [kg ha''], which corresponds to approximately 35% of the
average of all observed total aboveground biomass.

Figure 7 compares the 1:1 line between the simulated and experimental data for harvested yield. The comparison of the
final crop yield was statistically significant (p value < 0.01). It had a relatively low COR compared with the LAI and total
aboveground biomass, due to the small sample size (N=4) and the overestimation for Tanzania. The RMSE was 2,575.0 [kg
ha'!], which is approximately 30% of the average observational yield at all the sites. It is noted that Figures 5—7 present the
model evaluation using independent data. Evaluation was performed using a global parameter from the literature to simulate

the plant organs in the global-scale simulation, which may have resulted in some deviations.
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Figure 5. Temporal evaluation of leaf area index (LAI) simulated by MATCRO-Maize (red line) at each site: (a) Brazil, (b) France, (c)

Tanzania and (d) the USA across the developmental stage (D,,5). The observation data in each site are shown by black points. Notably, there
were no observational data in Tanzania. The error bars were provided only for Brazil. The dashed black line shows the flowering time.
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Figure 6. Temporal evaluation of total aboveground biomass (AGB) simulated by MATCRO-Maize (red line) at each site: (a) Brazil, (b)
France, (c) Tanzania and (d) the USA across the developmental stage (D). The observation data in each site are shown by black points.
The error bars were only provided for Brazil and Tanzania. The dashed black line shows the flowering time.
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Figure 7. Statistical comparison (COR, RMSE, and RRMSE) of maize yield. The x-axis (OBS) represents the observational data, and the
y-axis (SIM.) is the simulated data. Shapes show each site: Brazil (square), France (circle), Tanzania (triangle), and the USA (diamond).
Notably, there was no observed LAI in Tanzania. The symbols ***, ** indicate p values <0.001 and 0.01, respectively.

3.2 Global-scale simulations
3.2.1 Phenology

The timing of seasonal biological events (i.e. harvest time) has a significant impact on crop growth and yield outcomes. Global
yield is affected by global phenology. We assessed agreement to check the model performance by comparing the difference
between simulated global average harvest time (1981-2010) with the gridded global dataset of phenological datasets of
GGCMI (Jagermeyr et al., 2021; Figs. 8(a and b)), and GCPE (Mori et al., 2023; Figs. 8(c and d)). The maps show consistent
spatial patterns for later harvest time between the simulation and the reference datasets, in parts of Brazil, USA, southern and
central Africa. The discrepancies between datasets are likely produced due to the difference in phenology parameterization
and management assumptions where GGCMI and GCPE used different methodologies and data sources. Moreover, the use of
the average growing degree day in the simulations led to year-to-year differences in harvest time compared with the reference
crop calendar used for the input data (Figs. 8(a and b)). The mean absolute differences in harvest time (Figs. 8(e and f)) indicate

that the largest biases occur mostly in tropical regions.
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Figure 8. The difference between simulated harvest time (days) in MATCRO-Maize simulations with: (a) GGCMI in the rainfed, and (b)
irrigated conditions; (c) GCPE in the irrigated, and (d) rainfed conditions. Blue indicates underestimation, while red indicates overestimation
between simulations and references. Panels (¢) and (f) show the mean of absolute differences (days) between simulations and two reference
datasets under the rainfed (a, ¢) and irrigated (b, d) conditions, respectively.

3.2.2 Yield

A comparison of the global distributions is shown in Figure 9 (simulations: Fig. 9(a); observation datasets: Figs. 9(b, ¢, and
d)). All datasets were harmonized to a 0.5° x 0.5° resolution, including simulated yield from MATCRO-Maize (Fig. 9(a)),
GDHY (lizumi and Sakai, 2020; Fig. 9(b)), GCY (Cao et al., 2025; Fig. 9(c)), and SPAM (IFPRI, 2019; Fig. 9(d)). The data
were averaged over 1981-2014 for GDHY, 1982-2014 for GCY, and at the year 2010 for SPAM. While the overestimation is
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mainly evident in tropical regions, the simulated yield could capture high-yielding regions, including the Corn Belt in the

United States and the northern part of China, in agreement with the reference datasets.
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Figure 9. Global distribution of the 30-year average (1981-2010) maize yield by (a) simulations from the MATCRO-Maize and (b) the
GDHY dataset. For comparison, yield estimates from shorter periods are also shown from (c) GCY for 29-year average (1982-2014) and (d)
SPAM2010 for year 2010. The yield is aggregated based on the harvested area from MIRCA2000.

Temporal changes in the global yield across 30 years indicated that although the global yield had an NMAE of 0.67,
indicating a simulation error of 67% with respect to the average FAOSTAT yield, the comparison of the interannual variability
between the simulations and observations was statistically significant (p value < 0.01), with a COR of 0.549 (Figure 10). For
the top 20 producing countries, MATCRO-Maize also tended to overestimate the annual yield (Figure 11) and the average
yield over a 30-year period (Figure 12). The overestimation was particularly pronounced in Egypt, where the simulated yield
was approximately four times greater over a 30-year period. In terms of interannual variability, half of the 20 countries were
statistically significant, with p values < 0.001 for 6 countries, < 0.01 for 2 countries, and < 0.05 for 2 countries (Fig. 11). The
30-year average comparison was also statistically significant (p value < 0.01), with a COR of 0.58, although the RMSE was
4,007.7 [kg ha''], which is almost the same as the average yield of the top 20 maize-producing countries (Fig. 12).

20



Global

COR = 0.549**
NMAE = 0.670

WW"

Yield [kg ha™]
2000 4000 60.00 8000 10000

g

1980 1985 1990 1995 2000 2005 2010
YEAR

Figure 10. Interannual variability in global maize yield from 1981 to 2010 for our simulation (red circles) and FAOSTAT (black) yields.
430 COR represents the correlation coefficient of interannual variability. NMAE means normalized mean absolute error. Asterisks ** indicate p
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Figure 11. Comparison of interannual variability for the top 20 maize-producing countries. Similar to Fig. 9. Notably, the simulated yield
435 in Egypt is not shown as it extends beyond the range of the y-axis. The symbols ***, ** and * indicate p values < 0.001, 0.01, and 0.05,
respectively.
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Figure 12. Accuracy of the 30-year average of the simulated yield (SIM) to the observed yield (OBS from FAOSTAT data) for the top 20
countries. Symbols show the average yield in each country. Notably, the Egypt data points are not shown as exceeding the range of the y-
axis. Asterisks ** indicate a p value <0.01.

3.3 The effects of photosynthesis and N fertilizer

In addition to the yield comparison, we analysed the effect of nitrogen fertilizer (N¢,.) on maize yield, as it is a key determinant
of crop yield. It compared both simulated yield data and FAOSTAT yield data with N, for a 30-year average using a fitted
polynomial curve (quadratic polynomial regression). We also conducted two tests to quantify the effects of the Ny, ,-related
function and parameters as follows: (i) Eq. (27) during the vegetative stage is derived from Drouet and Bonhomme (2004),

defined as “test Sy, -Vomax > Where Veq, (0) used this function:

2
- 1}'Dvs < Dvs,flw (40)

1+exp[—2.45%(S;,—0.27)]

Vemax (0) = 36.8 % {

and (ii) Sy pi; used parameter value from 0.825 (Table 1) to 0.5 (defined as “test Sy, 51¢”)-

Figure 13 illustrates the comparison of country-level yield data with nitrogen fertilizer levels: (a) FAOSTAT data, (b)
simulated yield by MATCRO-Maize, (c) the impact of reduced Rubisco activity on photosynthetic rates based on experimental
data from Drouet and Bonhomme (2004) in the “test SIn-Vemax™ scenario, and (d) the effect of reduced photosynthetic rates
due to lower initial specific leaf nitrogen at planting time in the “test Sln,plt” scenario. The nitrogen fertilizer values were
derived from gridded dataset of ISIMIP (Volkholz and Ostberg, 2022).

Figures 13 (a) and (b) show the comparisons based on N, for each FAOSTAT and simulated yield, respectively.
MATCRO has a strong N, effect on the yield reflected in the steep upward trend of the fitted curves. This effect was scarcely
alleviated by the intentionally reduced effect of photosynthesis (Figs. 13(c and d)), mainly because of the effect of Egypt as
an outlier with higher values. Without Egypt as an outlier, the curves for FAOSTAT and MATCRO-Maize were more
comparable. The maize yield in Egypt shows high value compared to other countries where significant overestimation was

observed.
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Figure 13. Relationship between Ny, and yield in (a) FAOSTAT data, (b) simulated yield with the original setting (Default), (c) simulated
yield with the changed S;,,-V cjnay relationship (test Sln-Vemax), (d) simulated yield with the changed parameter related to the D,4-Sy,
function (test Sln, plt). Nfere (N fertilizer) and country yield were averaged across 30 years for each country. The legends for symbols are
the same as those in Fig. 11. The solid lines are the fitted curves for the data, while the dashed line in (b), (c), and (d) indicates a fitted curve
in (a). All lines were fitted using a quadratic polynomial regression.

4 Discussion
4.1 Point-scale simulations

The point-scale simulations were evaluated using global parameters to assess their ability to capture broad yield patterns across
different regions. The simulated harvested yield showed statistically significant correlations at the point scale (Fig. 7),
indicating that the MATCRO-Maize model could simulate maize growth and yield. However, there were some discrepancies
between the simulations and observations that remain due to the limitations of using global parameters, such as the
underestimation of the LAI in Brazil and France, the underestimation of the total aboveground biomass in Brazil, and the
different growth trends of the total aboveground biomass in Tanzania. The underestimation of LAI is primarily due to the use
of global morphological parameters at the site scale. Further investigation will improve site-specific performance by coupling
LAI to key soil properties (soil organic carbon, total nitrogen, and water-holding capacity) and by incorporating canopy cover
fraction following Hasegawa et al. (2008). Global parameters at the point scale enable testing the model's applicability across
various regions, although local variations in soil, climate, or crop management may not be fully captured in this study.

One potential factor contributing to the underestimation of the LAI in France might be related to the effect of plant density,

which is not currently considered in MATCRO. The actual plant density [plants m2] at each site was 9.5 (France), 7.5 (USA),
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6.6 (Brazil), and 9.5 (Tanzania) (Bassu et al., 2014). Some studies have shown that LAI trends are affected primarily by the
plant density factor relative to Ny, and hybrids (Boomsma et al., 2009; Ciampitti et al., 2013a; Ciampitti and Vyn, 2011).
MATCRO could not reproduce the trends driven by plant density leading to underestimation, although other important factors
(e.g., management practices, climatic conditions), which are quite different from each site in the literature, would also affect
crop growth variables, including the LAIL

Both the underestimation of the LAI and total aboveground biomass in Brazil were caused by the field experimental
conditions of Nfg, = 0, given its effect on crop growth in MATCRO. The reason for the lack of fertilization in the field
experiment was that sufficient N was released by organic matter mineralization (Bassu et al., 2014), which was not considered

in the model. Moreover, N¢., directly affects S;;, in MATCRO, with an increasing trend towards flowering and then a

decreasing trend towards maturity (Fig. 1). Sy, is related to V,p,4x25(0), which in turn affects the photosynthesis calculation
(Section 2.1 and Section 2.2.2). In particular, during the reproductive stage, we used Eq. (27), which results in a low V., 4525(0)
under low S, due to the more gradual slope of the curve compared with the vegetative stage (1.41 for the reproductive stage,
and 2.9 for the vegetative stage, in Eq. (27)), indirectly leading to low biomass accumulation through photosynthesis. This
could be attributed to the underestimation of total aboveground biomass at maturity (Fig. 6 (a)). For underestimation of the
LAI low leaf biomass accumulation, which is derived from the same mechanism, would be the reason considering the
calculation process of the LAI in MATCRO. The LAI is determined by the division of the leaf biomass weight by S;,,,, which
depends on D,,. Because S;,, is calculated from the same parameter at all sites (Eq. (33) and Fig. 3), leaf weight is the factor
that causes differences between sites, leading to the underestimation of the LAI in Brazil. Therefore, the condition of N¢,,. =
0 might be the reason for both underestimations.

Another reason for the difference in the growth trend of biomass in Tanzania was related to the length of the growing
season. The cultivar used in Tanzania was a short-season type with 99 days of observed growing season length, whereas the
cultivars at other sites were medium- or long-season types with lengths ranging from 122 to 173 days (Bassu et al., 2014).
Capristo et al. (2007) reported that, compared with medium- and long-season cultivars, short-season cultivars presented the
lowest biomass accumulation from flowering to maturity, which was reflected in the observed biomass (Fig. 6 (c)). This
suggests that the trend of biomass accumulation varies across growing season types. Although other factors, such as climatic
conditions or biotic stresses, could also affect the biomass accumulation. While MATCRO considers the growing season length
as Ggq m to judge the harvesting time, this does not mean that MATCRO could capture the difference in trends due to growing

season types, leading to the gap between the simulations and observations shown in Tanzania.

4.2 Global-scale simulations

A comparison of the global distribution of maize yield revealed that MATCRO-Maize could capture the distribution of high-
yield regions but could not capture the yield in tropical regions (Figures 8 and 9). Similar overestimations in tropical regions

have also been reported in other global models, possibly because of the lack of representation of extreme weather events or
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crop pests (Lombardozzi et al., 2020; Osborne et al., 2015). Moreover, soil fertility is also an important source of model error
and contributes to spatial variation.

Notably, MATCRO-Maize tended to overestimate the absolute values for global yield and the yields of the top 20 countries,
as reflected in the NMAE and RMSE values (Figures 10, 11, and 12). The simulated total global yield is mainly determined
by the yields of the top three maize-producing countries: the United States, China, and Brazil, which have large cultivation
areas (Table 3). The yields of all three countries were overestimated, with simulated yields approximately 1.2, 1.7, and 1.8
times greater than the 30-year averages in the United States, China, and Brazil, respectively, leading to an overestimation of
the total global yield. Such overestimations in the main producing countries, especially in China and Brazil, are also observed
in other global crop models (Von Bloh et al., 2018; Osborne et al., 2015; Schaphoff et al., 2018). This indicates that there are
factors important for determining yields that are not considered in most crop models.

For the top 20 producing countries, the overestimation was particularly strong in Egypt, with a simulated yield
approximately four times greater than that reported by FAOSTAT. This overestimation is caused by the irrigated conditions
in all grids in Egypt. Under simulation in rainfed conditions, crop growth in Egypt was not simulated in the model due to the
inhibited photosynthesis rate caused by strong water stress. Under irrigated conditions, this strong water stress was alleviated.
In addition, the radiation in Egypt was consistently strong throughout the growing period, and Nf,. was highest among the
top 20 countries across the 30 years simulated, increasing from approximately 180 kg ha™! in 1980 to 360 kg ha™! in 2010. This
caused the photosynthesis rate to be high (Eq. (4)) across the growing seasons, leading to marked overestimation.

The current version of MATCRO-Maize can reproduce yield responses to nitrogen fertilization across a range of fertilizer
levels, but it tends to overestimate yields under certain conditions (e.g., Egypt). This occurs because the model assumes high
nitrogen use efficiency and idealized irrigation conditions, where actual yields are constrained by soil quality, management,
and local cultivar traits not explicitly represented. This suggests that the representation of nitrogen effects in the model remains
simplified, and further refinement is needed for region-specific scale simulation.

Although the simulated yield has the large error in terms of the absolute value, the comparison of the 30-year average yield
was statistically significant, with a COR of 0.58 (p value < 0.01) and an RMSE of 4,008 kg ha™! (Fig. 12), showing the ability
to capture the spatial distribution of the yield both in low- and high-producing countries from the first perspective of the
comparison (Section 2.3.2). This result was comparable to another model, LPJ-GUESS (Olin et al., 2015), with a COR of 0.46
and an RMSE of 4,300 kg ha'! (Table 4). Although the targeted countries differed (top 20 producing countries for MATCRO-
Maize, and whole countries for LPJ-GUESS).

In terms of interannual variability from the second perspective, the total global yield and approximately one-third of the
top 20 producing countries were statistically significant, with p values < 0.01 (Figs. 10 and 11). It indicates that MATCRO-
Maize could reproduce the climatic effect globally to some extent. This result is also supported by similar comparisons of
other global crop models in terms of statistics (Table 4). However, it is difficult to simply compare the statistical values between
the models owing to the differences in periods, input data, and methods for detrending and aggregating the yield. The COR of
interannual variability for total global yield in MATCRO-Maize was in the range of those of the other models (0.55; 0.42~0.89,
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respectively). For the top 20 countries, almost all the COR values also fell within the range of the other models. Therefore,
these comparisons from two perspectives might indicate that MATCRO-Maize reproduces reasonable results. The moderate

correlations observed reflect the typical influence of yield data variability and uncertainty in management practices across

regions.
550
Table 3. Maize cultivated land area for 20 major producer countries from MIRCA2000 (Portmann et al., 2010).

Country Total area [ha] Rainfed area [ha]  Irrigated area [ha]
Argentina 3,248,715.9 3,147,580.7 101,135.3
Brazil 11,223,262.5 11,120,154.9 103,107.6

555 Canada 1,364,585.3 1,328,206.2 36,379.1
China 24,376,805.2 11,615,190.0 12,761,615.2
Egypt 827,766.1 0.0 827,766.1
Ethiopia 1,172,231.1 1,084,795.6 87,435.5
France 3,128,401.0 2,257,380.0 871,021.0
Hungary 1,057,610.7 1,052,622.6 4,988.1

560 India 6,294,770.9 4,833,685.9 1,461,085.0
Indonesia 3,479,825.7 3,135,443.9 344,381.8
Italy 1,322,692.9 534,281.4 788,411.5
Mexico 7,459,039.5 5,852,617.4 1,606,422.1
Nigeria 3,686,757.3 3,667,564.5 19,192.8

565 Philippines 2,590,081.0 2,590,081.0 0.0
Romania 3,139,981.1 3,016,990.5 122,990.6
Russia 4,206,747.0 3,594,403.2 612,343.9
Serbia 1,074,614.2 1,062,985.8 11,628.4
South Africa 3,060,053.5 2,930,208.2 129,845.4
Ukraine 3,382,783.5 3,194,146.2 188,637.3

570 United States 31,307,667.3 26,508,600.7 4,799,066.7

26



Table 4. Statics of model simulation accuracy of the MATCRO-Maize and other crop models. Notably, the asterisks for GGCMI phase |
indicate the p values: *** for p values < 0.001, ** for p values < 0.05, * for p values < 0.1, whereas those of LPJmL4 and MATCRO-Maize
575 indicate the p values: *** for p values < 0.001, ** for p values < 0.01, * for p values < 0.05.

COR of interannual variability

References Period Global USA China  Brazil Mexic France Argenti
0 na
MATCRO- 1981- 0.518" 0349  0.015 0.654™  0.694™"
0.549** 0.692°*
Maize 2010 *
JULES-crop'? 1961- 0.12 0.061 0.52 0.57
0.48 0.43 0.12
2008
LPJmL4% 1981- . 0.676° 0.169 -0.124  -0.331 0.717"*
- 0.675 o
2010
LPJmL5% 1981- e 0.641°  0.059 0.0618 0.461" 0.650"""
- 0.686
2010 ** 1
GGCMI phase 1981- - 0.817 0245  0.029 - 0.649 0.727
34d 2015
GGCMI phase 1982- 0.42"°~0.8  0.89 0.75 0.66 0.85 0.87 0.85
1% 2006 9"

COR of interannual variability

References Period Romania South India Italy Hunga Indonesi Ukraine
Africa ry a

MATCRO- 1981- 0.719"** 0.646"*" 0.046 0276  0.900" 0.252 0.339

Maize 2010 -

JULES-crop' 1961- 0.32 0.41 0.34 0.34 0.33 0.065 -
2008

LPJmL4? 1981- - 0.711"*" -0.22 - - 0.124 -0.046
2010

LPJmL53¢ 1981- - 0.667" 0.496" - - -0.163 0.152
2010 *

GGCMI phase 1981- - - - - - - -

34d 2015

GGCMI phase 1982- 0.90 091 0.76 0.76 0.90 0.42 0.61

1°¢ 2006

30-year averaged yield

References Period COR RMSE [kg
ha']
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MATCRO- 1981- 0.580™ 4,008

Maize 2010
LPJ-GUESS®f 1996- 0.46 4,300
2005

! Countries-level comparison was conducted for 12 countries, which were detrended only for observation. p values are not shown.

23 Countries-level comparison was conducted for the top 10 producing countries, which were detrended via a 5-year moving average.

4 Twelve global gridded crop models were used. The COR shown here is the ensembled mean value for the 5 largest producing countries

after detrending. p values are not shown.

3 Fourteen global gridded crop models were used. The COR of the global yield shown here is the minimum and maximum value, except for
one nonsignificant correlation with the default setting. The COR of each country shown here is the best correlation among the 14 models,
including 3 different settings with statistical significance (p values are not shown). For both the global and country-level comparisons, a
S-year moving average was used to remove trends.

¢ The 10-year average comparisons included all countries. p values are not shown.

3 Osborne et al., 2015

b Schaphoffet al., 2018

¢Blohetal., 2018

d Jigermeyr et al., 2021

¢ Miiller et al., 2017

fOlin et al., 2015
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4.3 Model limitations

MATCRO-Maize currently lacks explicit simulation of soil organic carbon and soil nitrogen mineralization. Instead, the effects
of nitrogen supply are represented by describing the relationship between a broad range of nitrogen fertilization levels
(Muchow, 1988) and specific leaf nitrogen (SLN), which subsequently affects photosynthetic capacity (Vcmax). While this
simplification allows for global-scale application, it limits the model’s ability to accurately represent nitrogen balance in maize
yield at specific sites. Yield variations can be influenced by soil organic carbon and nitrogen, which are affected by farming
practices and contribute to soil fertility (Ma et al., 2023). Future development could involve coupling MATCRO with a
mechanistic soil nitrogen and carbon module to a dynamic plant nitrogen balance. This would enhance the model ability to
capture nitrogen dynamics under varying soil types and management practices.

The strong Ny, effect shown in the evaluation (underestiomation found in Brazil for the point scale comparison) and
comparison based on the N¢,,. and yield (Figure 13). In the model, Ng,, has a direct relationship with S;,, (Eq. (28)) and
consequently affects Vipaxos (0) through the function Sip-Vemax2s (0) (Eq. (27)). Therefore, the strong Np., effect is caused

by either the former, the latter, or both processes. Few studies have explicitly shown time series changes in S, and Sy, -Vemax
relationships from experiments. We used some of them to establish the functions shown in Egs. (27) and (28) (Section 2.2.2)
at this stage, resulting in a strong N, effect in the model. However, the intentional experiment indicated that the changed
relationships could partly reproduce the adequate effect, which was observed in the FAOSTAT yield. This might mean that
the established functions include a degree of uncertainty. Nitrogen effects are represented indirectly via SLN as a function of
fertilizer rate and developmental stage, which constrains the model ability to capture nitrogen cycling in soils and plants.
Incorporating broader experimental data could refine the model’s nitrogen response and improve maize yield simulations.

In this study, we applied global parameters to simulate the global yield across all grid cells and throughout the years without
considering cultivar differences. As mentioned in Section 3.1.2, the trend of biomass accumulation would differ across growing
season types. A limitation of the current study is the use of global parameters at the site scale leads to discrepancies between
site-level and country-level simulations. Although MATCRO-Maize shows relatively weak correlations at the site scale due
to the use of generalized parameters that do not account for local varieties and management, the model demonstrates consistent
and statistically significant performance at country and global levels. This indicates that MATCRO-Maize is well suited for
capturing large-scale yield patterns and for application in global gridded crop modeling, while recognizing its limited capacity
for precise site-specific prediction. However, global-scale simulation results tend to overestimate yield due to LAI being
directly driven by carbon balance, which can create feedback that produce excessively high LAI. Future improvements should
incorporate constraints on LAI expansion and adjust leaf partitioning when LAI exceeds realistic levels.

Moreover, in major producing countries, such as the United States and China, some studies have shown that there is genetic
gain in terms of maize yield (Cooper et al., 2014; Duvick et al., 2003; Liu et al., 2021). Such cultivar differences and long-
term genetic improvements are not included in the current MATCRO-Maize. This finding indicates that the generic

parameterization used in the model are simple in accounting for the diversity of crop cultivars (Lombardozzi et al., 2020),
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partly leading to a gap between the simulations and observations, which is recognized as a limitation of the global model
(Osborne et al., 2015). Other important factors that are not considered in the current MATCRO include biotic stresses (e.g.,
diseases, pests) and detailed management practices (e.g., plant density, as mentioned in Section 4.1) as it affects crop growth
and final yield. Further improvement to incorporate such factors with reliable N¢,,.-related functions could be needed to

contribute to more accurate simulations and contribute to studies on the interaction between climate and agriculture.

5 Conclusions

We developed a process-based crop model for maize yield estimation, called MATCRO-Maize, by incorporating C4 leaf-level
photosynthesis and some crop-specific parameters into MATCRO. The model was first evaluated at the point scale, showing
a somewhat reasonable accuracy considered with the available field-based information for parameterization. The calibrated
parameters were set from point-scale experimental data and used uniformly in the global-scale simulation. MATCRO-Maize
could represent the spatial distribution well and showed reasonable responses to climatic variability, where the results were
comparable with those of other studies in terms of statistics. The strong nitrogen fertilizer effect was one of the MATCRO
limitations, while the established functions related to nitrogen fertilizer in the model have a degree of uncertainty. Further
experimental data under more comprehensive conditions might improve the model. Overall, MATCRO-Maize could contribute
to climate effect studies through its ability to be integrated with the LSM for crop growth and the interactions between climate

and agriculture.
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