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Abstract. Process-based crop models combined with land surface models are useful tools for accurately quantifying the 10 

impacts of climate change on crops while considering the interactions between agricultural land and climate. We developed a 

new process-based crop model for maize, named MATCRO-Maize, by incorporating leaf-level photosynthesis of C4 plants 

and adjusting crop-specific parameters into the original MATCRO model, which is a process-based crop model initially 

developed for paddy rice combined with a land surface model. The model was evaluated at both a point scale and a global 

scale through comparisons with observational values. The evaluation at the point scale was conducted at four globally 15 

distributed sites based on global parameters. It showed statistically significant correlation for final yield with correlation 

coefficient (COR) of 0.34 with a p value < 0.01. For the global scale evaluation, the simulated yield was statistically compared 

with the reference data at the country level and total global level. Although the absolute value of the simulated yield tended to 

be overestimated, MATCRO-Maize could capture spatial variability, as indicated by a COR of 0.58 (p value < 0.01) for the 

30-year average yield comparison of the top 20 maize-producing countries. In addition, the comparisons of the interannual 20 

variability derived from detrended deviation were statistically significant for the total global yield (COR of 0.54 with p value 

< 0.01) and for half of the top 20 countries (COR of 0.64-0.90 with p value < 0.001 for 6 countries; COR of 0.50-0.51 with p 

value < 0.01 for 2 countries; COR of 0.48-0.55 with p value < 0.05 for 2 countries), which are comparable with those of other 

global crop models. One of the reasons for this overestimation could be related to the strong nitrogen fertilization effect 

observed in MATCRO-Maize. With experimental field data under more comprehensive conditions, improvements in the 25 

functions of nitrogen fertilizer in the model would be needed to simulate the maize yield more accurately. 

 

1 Introduction 

Maize (Zea mays L.) is one of the most important cereals not only because of its large production (FAO, 2022) but also because 

of its various roles in human food, feed, and industrial uses. Maize has high photosynthetic efficiency as a C4 plant. It contains 30 
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phosphoenolpyruvate (PEP) carboxylase in mesophyll cells, which concentrates CO2 in bundle sheath cells. The concentrated 

CO2 increases the relative amount of carboxylation versus oxygenation performed by ribulose-1,5-bisphosphate 

carboxylase/oxygenase (Rubisco) (Kanai and Edwards, 1999), allowing C4 plants to operate at lower stomatal conductance 

rates than C3 plants (Sage, 1999). This mechanism results in high efficiencies of light, water, and nitrogen use (Knapp and 

Medina, 1999; Long, 1999). These features, such as multipurpose crops and high photosynthetic efficiency, enable the 35 

cultivated area to range over wide environments from wet to dry and from low to midlatitude. However, climate change impacts 

and climate-related extremes negatively affect the productivity of the agricultural sector, which leads to negative consequences 

for food security (Intergovernmental Panel on Climate Change (IPCC), 2023). Therefore, it is important to accurately quantify 

the impact of climate change on crop growth and yield and to identify effective adaptation strategies to mitigate climate risk. 

Process-based crop models are useful tools for climate change studies because they consider the response of the 40 

physiological processes of crop growth and development to the environment and management (Tubiello and Ewert, 2002). 

The ensemble of process-based crop model simulations has shown good agreement with observed maize yields both at the site 

scale and at the global scale (Bassu et al., 2014; Jägermeyr et al., 2021), showing its potential to quantify the uncertainty in 

studies on the impacts of climate change on crop yields (Asseng et al., 2013). Crop models combined with land surface models 

(LSMs) or earth system models (ESMs) (as classified by Peng et al., 2017) have the ability to consider the effects of agricultural 45 

land on the climate globally through the exchange of fluxes of heat, water, and gases, as well as the effects of climate on crops. 

Some studies have revealed that agricultural land affects the climate through fluxes (Bondeau et al., 2007; Levis et al., 2012; 

Maruyama and Kuwagata, 2010; Tsvetsinskaya et al., 2001) and subsequently affects crop production (Osborne et al., 2009). 

This indicates the importance of considering the interaction between agricultural land and climate to accurately quantify the 

impacts of climate change on crops. Despite this importance, few LSM/ESM-based crop models exist (Lin et al., 2021; 50 

Lombardozzi et al., 2020; Osborne et al., 2015; Wu et al., 2016). 

MATCRO is a process-based crop growth model developed for C3 plants (Masutomi et al., 2016a, b; Yusara et al., in 

prep). It was initially combined with a land surface model of Minimal Advanced Treatments of Surface Interaction and Runoff, 

called MATSIRO (Takata et al., 2003). MATSIRO is embedded in an earth system model, which is the Model for 

Interdisciplinary Research on Climate, Earth System version 2 for Long-term simulations called MIROC-ES2L (Hajima et al., 55 

2020). MATCRO simulates crop growth based on leaf-level photosynthesis and parameterized crop-specific parameters 

determined from experimental data, and can run simulations both at a point scale and at a global scale. The model was applied 

to assess the impact of climate change at the country and local levels (Kinose et al., 2020; Kinose and Masutomi, 2019) and 

was used in the study investigating factors to improve the simulation performance of global gridded crop models (GGCMs) 

(Iizumi et al., 2021). MATCRO is applicable to other crops, including maize as a C4 plant, with adjusted parameters from 60 

experimental datasets and the literature. 

We extended MATCRO for global maize yield simulation, called MATCRO-Maize, by adjusting crop-specific 

parameters for maize and incorporating the C4 photosynthetic mechanism. MATCRO-Rice can simulate latent heat flux, 

sensible heat flux, net carbon uptake by crops, and rice yield, indicating its application in studies on climate change impacts 
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as an LSM-based model (Masutomi et al. 2016b). However, this study focused only on crop growth and yields, omitting water 65 

and heat fluxes to increase computational efficiency. This paper aims to describe MATCRO-Maize in detail (Section 2) and 

model evaluation on simulated yields both at a point scale and at a global scale (Section 3), with a discussion of the vevaluation 

and model limitations (Section 4). 

2. Model description 

MATCRO consists of four modules: radiation, net carbon assimilation, crop growth, and soil water balance. It requires the 70 

following input data: (i) phenological data (i.e., crop calendar), (ii) water management data (i.e., the land is rainfed or irrigated), 

(iii) nitrogen fertilizer application data (𝑁𝑓𝑒𝑟𝑡) [kg N ha-1], (iv) soil classification data (i.e., soil texture classification), (v) 

annual CO2 data [ppm], and (vi) 6 types of daily meteorological data: air pressure (𝑃𝑠) [Pa], precipitation (𝑃𝑟𝑐) [kg m-2 s-1], 

specific humidity [𝑆ℎ] [kg kg-1], downwards shortwave radiation (𝑅𝑠) [W m-2], maximum, minimum, and mean air temperature 

(𝑇𝑚𝑎𝑥, 𝑇𝑚𝑖𝑛, 𝑇𝑎) [K], and wind speed (𝑈) [m s-1]. Based on input data, MATCRO simulates crop growth during a growing 75 

period. It is controlled by the crop developmental stage (𝐷𝑣𝑠) based on (Bouman et al., 2001), which is the index used to 

quantify crop development. The final crop yield is determined by the dry weight of the storage organ with a parameter (𝐾𝑦𝑙𝑑) 

when 𝐷𝑣𝑠 = 1. To adapt MATCRO for maize, crop-specific parameters and equations were improved, as shown in Table 1 

and Eq. (1)−(35). The details are described in the following sections. 

2.1 Photosynthetic mechanism 80 

MATCRO-Maize calculates net carbon assimilation for the entire canopy (𝐴𝑛) via the big-leaf model, where C4 leaf-level 

photosynthesis is separately calculated for sunlit and shaded leaves from the coupled photosynthesis‒stomatal conductance 

model (Dai et al., 2004).  

𝐴𝑛 for the entire canopy is given by: 

𝐴𝑛 =  𝐴𝑛,𝑠𝑛 𝐿𝑠𝑛 + 𝐴𝑛,𝑠ℎ𝐿𝑠ℎ,                   (1) 85 

where 𝐴𝑛,𝑠𝑛 and 𝐴𝑛,𝑠ℎ represent the net carbon assimilation per unit leaf area [𝜇 mol m-2 s-1] and where 𝐿𝑠𝑛 and 𝐿𝑠ℎ represent 

the leaf area index (LAI) [m2 (leaf) m-2]. 𝑠𝑛 and 𝑠ℎ indicate sunlit and shaded leaves, respectively. 𝐴𝑛,𝑠𝑛 and 𝐴𝑛,𝑠ℎ are 

defined in the following equations: 

 

𝐴𝑛,𝑥 =   𝐴𝑔,𝑥 − 𝑅𝑑,𝑥,                   (2) 90 

where 𝐴𝑔,𝑥 and 𝑅𝑑,𝑥 represent gross carbon assimilation and dark respiration per unit leaf area [𝜇 mol m-2 s-1], respectively. 

Suffix 𝑥 means 𝑠𝑛 or 𝑠ℎ. 𝐿𝑠𝑛 and 𝐿𝑠ℎ are determined following the approach of Masutomi et al., (2016a). 𝑅𝑑,𝑥 is calculated 

via the following equation (Bonan et al., 2011): 
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𝑅𝑑,𝑥 =  0.025 𝑉𝑐𝑚𝑎𝑥,𝑥 (
2(𝑇𝑣−298.15)/10

1+exp (1.3(𝑇𝑣−328.15))
),                (3) 

where 𝑉𝑐𝑚𝑎𝑥,𝑥 [𝜇 mol m-2 s-1] is the maximum rate of carboxylation and where 𝑇𝑣 is the leaf temperature [K] (assumed to be 95 

the same as the air temperature: 𝑇𝑎). 𝐴𝑔,𝑥 is determined by the smaller root of the following equations: 

𝛽𝑐𝑗 𝐴𝑖,𝑥

2
− (𝐴𝑐,𝑥 + 𝐴𝑗,𝑥)𝐴𝑖,𝑥 + 𝐴𝑐,𝑥𝐴𝑗,𝑥 = 0,                 (4) 

𝛽𝑖𝑝𝐴𝑔,𝑥

2
− (𝐴𝑖,𝑥 + 𝐴𝑝,𝑥)𝐴𝑔,𝑥 + 𝐴𝑖,𝑥𝐴𝑝,𝑥 = 0,                 (5) 

where 𝛽𝑐𝑗  and 𝛽𝑖𝑝  are the transition factors (Table 1) and where 𝐴𝑖,𝑥  [𝜇 mol m-2 s-1] is the carbon fixation rate. Here, we 

introduced the C4 leaf-level photosynthesis model based on Collatz et al., (1992) into MATCRO, in which some parameters 100 

were taken from Oleson et al., (2013) and Lawrence et al., (2020) (Table 1). In C4 photosynthesis, 𝐴𝑐,𝑥, 𝐴𝑗,𝑥, and 𝐴𝑝,𝑥 [𝜇 mol 

m-2 s-1] represent Rubisco-limited, RUBP-limited, and PEP-limited photosynthesis, respectively, and are given by the 

following equations: 

𝐴𝑐,𝑥 = 𝑉𝑐𝑚𝑎𝑥,𝑥 ,                    (6) 

𝐴𝑗,𝑥 =  𝛼(4.6𝑄𝑎𝑏,𝑥),                   (7) 105 

𝐴𝑝,𝑥 = 𝑘𝑝,𝑥𝐶𝑖,𝑥 ,                    (8) 

where 𝐶𝑖,𝑥  [ppm] is the internal leaf CO2 concentration, 𝑄𝑎𝑏,𝑥 [W m-2] is the absorbed photosynthetically active radiation 

(PAR), 𝛼 [mol mol-1] is the quantum efficiency, and 𝑘𝑝,𝑥 [mol m-2 s-1] is the initial slope of the CO2 response curve for the C4 

CO2 response curve. 𝑄𝑎𝑏,𝑥 is calculated from 𝑅𝑠  via the same methods as in Masutomi et al. (2016a) and is converted to 

photosynthetic photon flux by multiplying by 4.6 [𝜇 mol (photons) J-1]. 𝑉𝑐𝑚𝑎𝑥,𝑥 and 𝑘𝑝,𝑥 are functions of 𝑇𝑣 and are based on 110 

Lawrence et al. (2020), 

𝑉𝑐𝑚𝑎𝑥,𝑥 =  𝑓𝑣  𝑉𝑐𝑚𝑎𝑥25,𝑥  [
𝑄10

(𝑇𝑣−298.15)/10

𝑓𝐻(𝑇𝑣)𝑓𝐿(𝑇𝑣)
],                 (9) 

𝑓𝐻(𝑇𝑣) = 1 + 𝑒𝑥𝑝[𝑆1(𝑇𝑣 − 𝑆2)],                (10) 

𝑓𝐿(𝑇𝑣) = 1 + 𝑒𝑥𝑝[𝑆3(𝑆4 − 𝑇𝑣)],                (11) 

𝑘𝑝,𝑥 = {
𝑘𝑝25,𝑥𝑄10

(𝑇𝑣−298.15)/10
, 𝑉𝑐𝑚𝑎𝑥25,𝑥 > 0,

0.7, 𝑉𝑐𝑚𝑎𝑥25,𝑥 = 0,
 ,              (12) 115 

𝑘𝑝25,𝑥 =  20000𝑉𝑐𝑚𝑎𝑥25,𝑥 ,                (13) 

with 𝑄10 = 2, 𝑆1 = 0.3 𝐾−1 , 𝑆2 = 313.15𝐾 , 𝑆3 = 0.2 𝐾−1 , and 𝑆4 = 288.15𝐾  (Table 1). Notably, 𝑘𝑝,𝑥  is adjusted to be 

0.7 𝑚𝑜𝑙 𝑚−2 𝑠−1 (Collatz et al., 1992) when 𝑉𝑐𝑚𝑎𝑥25,𝑥 = 0 because of the process of the photosynthesis calculation (Eq. (20)). 

𝑉𝑐𝑚𝑎𝑥25,𝑥 is the maximum Rubisco carboxylation rate per unit leaf area at 25℃ (the details are described in Section 2.2.2). 𝑓𝑣   

is the water stress factor calculated in the soil water balance module, which indirectly affects 𝐴𝑛 through 𝑉𝑐𝑚𝑎𝑥,𝑥 (Sellers et 120 

al., 1996). 𝑓𝑣 is derived from the following equations: 
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𝑓𝑣 =  ∑ {
1 ∗ 𝐸𝑇𝐹(𝑖), 𝐹𝐴𝑊(𝑖) > 0.45,

𝐹𝐴𝑊(𝑖)

0.45
∗ 𝐸𝑇𝐹(𝑖), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

𝑁𝑆𝐿
𝑖=1                (14) 

𝐹𝐴𝑊(𝑖) = min (
max((𝑊𝑆𝐿(𝑖)−𝑊𝐼𝐿𝑇),0)

𝐹𝐶−𝑊𝐼𝐿𝑇
, 1),               (15) 

𝐸𝑇𝐹(𝑖) =  
3

2

(𝑧𝑟𝑡
2−𝑧2)

𝑧𝑟𝑡
3 ,                 (16) 

where 𝑁𝑆𝐿 represents the number of soil layers, 𝐸𝑇𝐹 represents the fraction of transpiration from root distribution, 𝐹𝐴𝑊 125 

represents the fraction of available water, 𝑊𝑆𝐿 represents the soil water content [m3 m-3], 𝑊𝐼𝐿𝑇 represents the wilting point, 

𝐹𝐶 represents the field capacity, and 𝑧𝑟𝑡 and 𝑧 represent the root depth and the soil depth, respectively, for each layer. 

MATCRO assumes 𝑁𝑆𝐿 = 5, where each of the soil layers has thicknesses of 0.05, 0.2, 0.75, 1, and 2 [m], respectively. 

MATCRO uses the soil texture data as input data, where the soil is classified into 13 types, leading to differences in 𝑊𝐼𝐿𝑇 

and 𝐹𝐶 based on Campbell and Norman (1998). 𝑊𝑆𝐿 is calculated considering transpiration from the canopy, evaporation 130 

from the soil, and water flux (those calculations are the same as those of the original MATCRO). The 𝐸𝑇𝐹 calculation 

assumes that the root has no spatial orientation and is equally distributed in the soil (Masutomi et al., 2016a). 𝑧𝑟𝑡 is 

determined by the same calculation as the original MATCRO, where the crop-specific parameter (𝑧𝑟𝑡,𝑚𝑥) was changed to 

maize (Table 1). The conditional branch (𝐹𝐴𝑊(𝑖) > 0.45) is based on the FAO 56 guidelines (Allen et al., 1998). 

Stomatal conductance influences CO2 uptake during photosynthesis. MATCRO-Maize represents stomatal conductance 135 

for CO2, 𝐺𝑠𝑐,𝑥 [𝜇 mol m-2 s-1], based on Ball et al. (1987) as follows: 

𝐺𝑠𝑐,𝑥 = {
𝐺0𝑐 + 𝐺1𝑐𝑅ℎ

𝐴𝑛,𝑥

𝐶𝑠,𝑥
, 𝐴𝑛,𝑥 ≥ 0,

𝐺0𝑐 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
               (17) 

where 𝐶𝑠,𝑥 [ppm] is the CO2 concentration at the leaf surface and where 𝑅ℎ  [-] is the relative humidity at the leaf surface. 𝐺0𝑐 

and 𝐺1𝑐 are derived from parameters 𝑏 and 𝑚 (shown in Table 1), respectively, by adjusting their ratio of 1:1.6, which is the 

ratio of diffusivity of H2O to CO2. Here, the leaf-level net carbon assimilation rate (𝐴𝑛,𝑥), stomatal conductance for CO2 (𝐺𝑠𝑐,𝑥), 140 

and boundary layer conductance for CO2 (𝐺𝑏𝑐) were calculated to satisfy the following physical flux equations. 

𝐴𝑛,𝑥 = 𝐺𝑠𝑐,𝑥(𝐶𝑠,𝑥 − 𝐶𝑖,𝑥),                 (18) 

𝐴𝑛,𝑥 = 𝐺𝑏𝑐(𝐶𝑎 − 𝐶𝑠,𝑥),                 (19) 

where 𝐶𝑎 [ppm] is the atmospheric CO2 concentration. 𝐺𝑏𝑐 is a function of air pressure (𝑃𝑠  [𝑃𝑎]) and the wind speed in the 

canopy (𝑈 [m s-1]) (Masutomi, 2023). 145 

Here, 𝑇𝑣, 𝑄𝑎𝑏,𝑥, 𝑅ℎ , 𝑈, and 𝐶𝑎 are environmental variables derived from input meteorological climate data. There are 

four relationships (Eqs. (2), (17)-(19)) in terms of internal variables (𝐴𝑛,𝑥, 𝐺𝑠𝑐,𝑥, 𝐶𝑠,𝑥, 𝐶𝑖,𝑥). MATCRO for C3 photosynthesis 

obtains analytical solutions from relationships via the method shown in Masutomi (2023). For C4 photosynthesis, it is also 

possible to solve these equations analytically. In the case of Rubisco-limited and RuBP-limited photosynthesis, exact 
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expressions for 𝐴𝑐,𝑥 and 𝐴𝑗,𝑥 are obtained. Under 𝐴𝑛,𝑥 ≥ 0, PEP-limited photosynthesis (𝐴𝑝,𝑥) can be represented by 150 

quadratic equations by the algebraic procedures as follows: 

0 =  {𝐺𝑏𝑐
2 𝐺1𝑐𝑅ℎ − 𝐺𝑏𝑐𝐺0𝑐 − 𝑘𝑝,𝑥(𝐺0𝑐 − 𝐺𝑏𝑐𝐺1𝑐𝑅ℎ + 𝐺𝑏𝑐)}𝐴̅𝑝,𝑥

2
+  {𝐶𝑎𝐺𝑏𝑐

2 𝐺0𝑐 − 𝐺𝑏𝑐𝐺0𝑐𝑅𝑑 + 𝐺𝑏𝑐
2 𝐺1𝑐𝑅ℎ𝑅𝑑 −

𝑘𝑝,𝑥𝐶𝑎(𝐺𝑏𝑐
2 𝐺1𝑐𝑅ℎ − 2𝐺𝑏𝑐𝐺0𝑐 − 𝐺𝑏𝑐

2 )}𝐴̅𝑝,𝑥 + 𝐶𝑎𝐺𝑏𝑐
2 𝐺0𝑐(𝑅𝑑 − 𝑘𝑝,𝑥𝐶𝑎).            (20) 

Under 𝐴𝑛,𝑥 < 0, the PEP-limited photosynthesis rate can be expressed as 

𝐴̅𝑝,𝑥 =
𝑘𝑝,𝑥𝐶𝑎−𝑅𝑑

1+𝑘𝑝,𝑥(
1

𝐺𝑏𝑐
+

1
𝐺0𝑐

)
.                 (21) 155 

According to these equations, in the case of PEP-limited photosynthesis, there are three possible solutions. Following the 

criteria described by Masutomi (2023), only one analytical solution can be selected when the following requirements are 

satisfied: (i) under 𝐴𝑛,𝑥 ≥ 0, the solution must be a positive or zero real solution, and under 𝐴𝑛,𝑥 < 0, it must be a negative 

real solution; (ii) 𝐺𝑠𝑐,𝑥 > 0; and (iii) 𝐶𝑖 > 0. 

2.2 Crop-specific parameterization 160 

2.2.1 Phenology 

The crop growing period in MATCRO is controlled by 𝐷𝑣𝑠 based on Bouman et al. (2001). Here, 𝐷𝑣𝑠 = 0 means sowing, and 

𝐷𝑣𝑠 = 1 means maturity (harvesting). It is calculated from the following equations: 

𝐷𝑣𝑠,𝑖 =  𝐺𝑑𝑑,𝑖 𝐺𝑑𝑑𝑚,𝑖⁄ ,                 (22) 

𝐺𝑑𝑑 =  ∫ 𝐷𝑣𝑟 𝑑𝑡′
𝑡

0
 ,                 (23) 165 

𝐷𝑣𝑟 = {

0, 𝑇𝑡 < 𝑇𝑏 | 𝑇ℎ ≤ 𝑇𝑡 ,
𝑇𝑡 − 𝑇𝑏 , 𝑇𝑏 ≤ 𝑇𝑡 < 𝑇𝑜 ,

(𝑇𝑏−𝑇𝑜)(𝑇𝑡−𝑇ℎ)

(𝑇ℎ−𝑇𝑜)
, 𝑇𝑜 ≤ 𝑇𝑡 < 𝑇ℎ ,

               (24) 

where 𝐺𝑑𝑑,𝑖  is the growing degree days at 𝑡 (time) for specific grid cell number i, 𝐺𝑑𝑑𝑚,𝑖 is the growing degree day at maturity, 

𝐷𝑣𝑟  is the developmental rate at time 𝑡 , and 𝑇𝑡  is the temperature at time 𝑡 . 𝑇𝑏 , 𝑇ℎ , and 𝑇𝑜  are the crop-specific cardinal 

temperatures (minimum, maximum, and optimal temperatures for development, respectively, as shown in Table 1). 𝐺𝑑𝑑,𝑚 

were calibrated for each point scale simulation and global scale simulation (Section 2.3). In addition, one parameter that 170 

represents the timing of flowering (known as silking; 𝐷𝑣𝑠,𝑓𝑙𝑤) was calibrated based on observational data for the point scale 

simulation (Table 1). 

2.2.2 Leaf nitrogen and Rubisco capacity 

Maximum Rubisco carboxylation rate 
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𝑉𝑐𝑚𝑎𝑥25,𝑥 used in the photosynthesis module (Section 2.1) is obtained by dividing the maximum Rubisco carboxylation rate at 175 

a LAI depth of l (𝑉𝑐𝑚𝑎𝑥25,𝑥(𝑙)) by 𝐿𝑥  separately for sunlit and shaded leaves based on Bonan et al. (2011). The vertical 

distribution of 𝑉𝑐𝑚𝑎𝑥25(𝑙), which is the sum of 𝑉𝑐𝑚𝑎𝑥25,𝑠𝑛(𝑙) and 𝑉𝑐𝑚𝑎𝑥25,𝑠ℎ(𝑙), follows the exponential profile: 

𝑉𝑐𝑚𝑎𝑥25(𝑙) = 𝑉𝑐𝑚𝑎𝑥25(0) exp(−𝐾𝑛𝑙),               (25) 

where 𝑉𝑐𝑚𝑎𝑥25(0) is the maximum Rubisco carboxylation rate at the canopy top, 𝐾𝑛 is a parameter for the vertical distribution 

of nitrogen (Table 1), and 𝑙 represents the LAI depth from the top. The maximum Rubisco carboxylation rate in sunlit leaves 180 

(𝑉𝑐𝑚𝑎𝑥25,𝑠𝑛(𝑙)) is also calculated by the same relationship considering the light distribution: 

𝑉𝑐𝑚𝑎𝑥25,𝑠𝑛(𝑙) = 𝑉𝑐𝑚𝑎𝑥25(0)[1 − 𝑒𝑥𝑝(−𝑙(𝐾𝑛 + 𝐾))]
1

𝐾𝑛+𝐾
 ,             (26) 

where 𝐾 is the direct beam extinction coefficient (the calculation is the same as that for Masutomi et al., 2016a). 𝑉𝑐𝑚𝑎𝑥25,𝑠ℎ(𝑙) 

is given by the subtraction of Eq. (25) and Eq. (26). 

Here, while Bonan et al. (2011) uses the fixed value of 𝑉𝑐𝑚𝑎𝑥25(0) value over time, 𝑉𝑐𝑚𝑎𝑥25(0) in MATCRO is calculated 185 

dynamically as a function of specific leaf nitrogen (𝑆𝑙𝑛 [g N m-2]). The function is established based on the experimental 

literature data. Notably, we applied the relationship between 𝑆𝑙𝑛  and light-saturated CO2 assimilation (𝐴𝑚𝑎𝑥 ) from the 

literature, although MATCRO-Rice and MATCRO-Soybean utilize the direct relationship between 𝑆𝑙𝑛 and 𝑉𝑐𝑚𝑎𝑥25(0) based 

on the experimental literature data. The reasons are that we assume that 𝐴𝑚𝑎𝑥  could be used as Rubisco-limited photosynthesis 

in C4 photosynthesis and that Rubisco-limited photosynthesis could be equal to the maximum Rubisco carboxylation rate from 190 

Eq. (6). Several studies have shown that 𝐴𝑚𝑎𝑥  has a close relationship with 𝑆𝑙𝑛, as shown by the logistic equation for maize 

(Drouet and Bonhomme, 2004; Muchow and Sinclair, 1994; Paponov and Engels, 2003; Paponov et al., 2005; Sinclair and 

Horie, 1989; Vos et al., 2005). We used two functions from them for different 𝐷𝑣𝑠 as follows: 

𝑉𝑐𝑚𝑎𝑥25(0) = {
45.1 ∗ {

2

1+exp[−2.9∗(𝑆𝑙𝑛−0.25)]
− 1} , 𝐷𝑣𝑠 < 𝐷𝑣𝑠,𝑓𝑙𝑤 ,

40.2 ∗ {
2

1+exp[−1.41∗(𝑆𝑙𝑛−0.43)]
− 1} , 𝐷𝑣𝑠 ≥ 𝐷𝑣𝑠,𝑓𝑙𝑤, ,

            (27) 

where 𝐷𝑣𝑠 < 𝐷𝑣𝑠,𝑓𝑙𝑤  represents the vegetative stage at which the equation was based on Vos et al. (2005); then, for the 195 

reproductive stage, the equation was from Drouet and Bonhomme (2004). Stage-specific parameterizations were applied to 

reflect the lower photosynthetic activity observed during the reproductive phase compared to the vegetative phase since no 

single dataset adequately represents both growth phase. 

 

Specific leaf nitrogen 200 

𝑆𝑙𝑛 , which is used in the calculation of 𝑉𝑐𝑚𝑎𝑥25(0), is obtained from the function of 𝐷𝑣𝑠  in MATCRO. The function is 

established based on the observational data. We utilized the study by Muchow (1988), in which 𝑆𝑙𝑛  was measured under 

various levels of 𝑁𝑓𝑒𝑟𝑡  (0, 60, 120, 240, 420 [kg ha-1]), as follows: (i) we traced 𝑆𝑙𝑛  data using digitizer software 

(https://apps.automeris.io/wpd4/) and obtained the measurement and phenological data from the paper; and (ii) we conducted 
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the fitting based on the assumption that 𝑆𝑙𝑛  lineally increased until flowering and then decreased towards maturity. The 205 

parameterization given by Eqs. (28)-(30) is shown in Figure 1. 

𝑆𝑙𝑛 = {

𝑆𝑙𝑛,𝑚𝑥−𝑆𝑙𝑛,𝑝𝑙𝑡

𝐷𝑣𝑠,𝑓𝑙𝑤
𝐷𝑣𝑠 + 𝑆𝑙𝑛,𝑝𝑙𝑡 , 𝐷𝑣𝑠 < 𝐷𝑣𝑠,𝑓𝑙𝑤,

𝑆𝑙𝑛,𝑚𝑎𝑡𝑢−𝑆𝑙𝑛,𝑚𝑥

1−𝐷𝑣𝑠,𝑓𝑙𝑤
(𝐷𝑣𝑠 − 1) + 𝑆𝑙𝑛,𝑚𝑎𝑡𝑢 , 𝐷𝑣𝑠 ≥ 𝐷𝑣𝑠,𝑓𝑙𝑤,

             (28) 

where 𝑆𝑙𝑛,𝑚𝑎𝑡𝑢 , 𝑆𝑙𝑛,𝑚𝑥 , and 𝑆𝑙𝑛,𝑝𝑙𝑡 are 𝑆𝑙𝑛  at maturity, maximum 𝑆𝑙𝑛 , and 𝑆𝑙𝑛  at planting, respectively (Table 1). 𝑆𝑙𝑛,𝑚𝑥  and 

𝑆𝑙𝑛,𝑚𝑎𝑡𝑢 are empirically parameterized as functions of 𝑁𝑓𝑒𝑟𝑡 as follows: 

𝑆𝑙𝑛,𝑚𝑥 = {
−0.00001 𝑁𝑓𝑒𝑟𝑡

2 +  0.0064 𝑁𝑓𝑒𝑟𝑡 + 0.6891, 𝑁𝑓𝑒𝑟𝑡 ≤ 240,

1.75, 𝑁𝑓𝑒𝑟𝑡 > 240.
                  (29) 210 

𝑆𝑙𝑛,𝑚𝑎𝑡𝑢 = {
0.001 𝑁𝑓𝑒𝑟𝑡 + 0.57, 𝑁𝑓𝑒𝑟𝑡 ≤ 240,

1, 𝑁𝑓𝑒𝑟𝑡 > 240.
              (30) 

We set fixed values of 1.75 for 𝑆𝑙𝑛,𝑚𝑥 and 1.0 for 𝑆𝑙𝑛,𝑚𝑎𝑡𝑢 when 𝑁𝑓𝑒𝑟𝑡 exceeds 240 [kg ha-1], as 𝑆𝑙𝑛,𝑚𝑥 and 𝑆𝑙𝑛,𝑚𝑎𝑡𝑢 exhibit 

minimal increases beyond this threshold. 

 

Figure 1. Relationship between developmental stage (𝑫𝒗𝒔) and specific leaf nitrogen (𝑺𝒍𝒏) in MATCRO-Maize. Shapes show observational 215 
data from Muchow (1988) with the 5 types of 𝑵𝒇𝒆𝒓𝒕: 0 kg ha-1 (square), 60 kg ha-1 (cycle), 120 kg ha-1 (triangle), 240 kg ha-1 (diamond), and 

420 kg ha-1 (inverted triangle). The red lines represent the fitted line parameters used in MATCRO-Maize, while the dashed line represents 

𝑫𝒗𝒔 at flowering (𝑫𝒇𝒍𝒘). 

2.2.3 Crop growth 

Glucose partitioning 220 

MATCRO calculates crop growth by partitioning net carbon assimilation (𝐴𝑛) in the form of glucose, which is calculated in 

the photosynthesis module (Section 2.1). Partitioned glucose is supplied through photosynthesis in leaves and remobilization 

from the stem. The ratio of glucose partition to each organ (leaf, stem, root, and storage organ; ear) depends on 𝐷𝑣𝑠. The term 
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“ear” in maize represents the organ that supports the development and storage of grain. The grain developed later than the ear 

with approximately 83% of ear at maturity in this study (see Section 2.2.5). The dry matter for each organ is obtained from the 225 

partitioned glucose considering the carbon fraction for each organ (𝐶𝑔𝑙𝑢,𝑒𝑎𝑟 , 𝐶𝑔𝑙𝑢,𝑙𝑒𝑎𝑓 , 𝐶𝑔𝑙𝑢,𝑟𝑜𝑡 , 𝐶𝑔𝑙𝑢,𝑠𝑡𝑚  in Table 1). We 

calibrated the partitioning ratio to leaf and ear based on the observational biomass data from Ciampitti et al. (2013a, b), whereas 

the ratio to shoots/roots was derived from the value from Penning de Vries et al. (1989). The stem partitioning was determined 

by reducing the shoot ratio with respect to the leaf and ear. Figure 2 shows the partition ratio to the leaf (𝑃𝑟,𝑙𝑒𝑓) and ear (𝑃𝑟,𝑒𝑎𝑟) 

established via the following equations: 230 

𝑃𝑟,𝑙𝑒𝑓 = {

𝑃𝑙𝑒𝑓 , 𝐷𝑣𝑠 < 𝐷𝑣𝑠,𝑙𝑒𝑓1,
𝑃𝑙𝑒𝑓(𝐷𝑣𝑠,𝑙𝑒𝑓2−𝐷𝑣𝑠)

𝐷𝑣𝑠,𝑙𝑒𝑓2−𝐷𝑣𝑠,𝑙𝑒𝑓1
, 𝐷𝑣𝑠 < 𝐷𝑣𝑠,𝑙𝑒𝑓2

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

,               (31) 

𝑃𝑟,𝑒𝑎𝑟 = {

0, 𝐷𝑣𝑠 < 𝐷𝑣𝑠,𝑒𝑎𝑟1,
𝐷𝑣𝑠−𝐷𝑣𝑠,𝑒𝑎𝑟1

𝐷𝑣𝑠,𝑒𝑎𝑟2−𝐷𝑣𝑠,𝑒𝑎𝑟1
, 𝐷𝑣𝑠 < 𝐷𝑣𝑠,𝑙𝑒𝑓2,

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

               (32) 

where 𝐷𝑣𝑠,𝑙𝑒𝑓1, 𝐷𝑣𝑠,𝑙𝑒𝑓2, 𝐷𝑣𝑠,𝑒𝑎𝑟1 and 𝐷𝑣𝑠,𝑒𝑎𝑟2 represent the 𝐷𝑣𝑠 at which the corresponding partition changes, as determined in 

Table 1 based on Figure 2, and where 𝑃𝑙𝑒𝑓 is the ratio of glucose partitioned to glucose to the leaf from glucose partitioned to 

the shoot. 235 

 

Figure 2. The ratio of glucose partitioning to leaves (a) and ears (b). Points show the ratio of glucose partition with different 𝑵𝒇𝒆𝒓𝒕: 0 kg ha-

1 (square), 112 kg ha-1 (cycle), and 224 kg ha-1 (triangle) measured in Ciampitti et al. (2013a, b). The red lines in Figure 2 show the fitted 

line parameters used in MATCRO-Maize, while the dashed line represents 𝑫𝒗𝒔 at flowering (𝑫𝐯𝐬,𝒇𝒍𝒘).  

 240 

Specific leaf weight 

The specific leaf weight (𝑆𝑙𝑤) is used to calculate the total leaf area index (𝐿) in MATCRO. It is a function of 𝐷𝑣𝑠 and is given 

by: 
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𝑆𝑙𝑤 =  𝑆𝑙𝑤,𝑚𝑥 + (𝑆𝑙𝑤,𝑚𝑛 −  𝑆𝑙𝑤,𝑚𝑥)exp (−𝑘𝑆𝑙𝑤𝐷𝑣𝑠)              (33) 

where 𝑆𝑙𝑤,𝑚𝑛, 𝑆𝑙𝑤,𝑚𝑥, and 𝑘𝑆𝑙𝑤  are crop-specific parameters derived from the observational data expressed in Table 1. We 245 

conducted curve fitting to 𝑆𝑙𝑤  calculated from the dry weight of the leaf biomass and the leaf area index based on Ciampitti et 

al. (2013a, b) and established a relationship (Figure 3). 

 

Figure 3. Relationships between specific leaf weights and developmental stages. Similar to Fig. 2. 

2.2.4 Crop height 250 

Crop height (𝐻𝑔𝑡) is related to the calculation of evaporation in MATCRO. It assumes that the dependence of the crop height 

on 𝐷𝑣𝑠 is based on Penning de Vries et al. (1989) and is given by 

𝐻𝑔𝑡 = {
ℎ𝑎𝑎𝐷𝑣𝑠/𝐷𝑣𝑠,𝑓𝑙𝑤, 𝐷𝑣𝑠 < 𝐷𝑣𝑠,𝑓𝑙𝑤

ℎ𝑎𝑎 , 𝐷𝑣𝑠 ≥ 𝐷𝑣𝑠,𝑓𝑙𝑤
               (34) 

where ℎ𝑎𝑎  is the crop height at flowering, as shown in Table 1. 

2.2.5 Crop yield 255 

MATCRO calculates the final crop yield, 𝑌𝑙𝑑 , from the dry weight of the storage organ at maturity (𝑊𝑒𝑎𝑟,𝑚𝑡) as follows: 

𝑌𝑙𝑑 =  𝑘𝑦𝑙𝑑𝑊𝑒𝑎𝑟,𝑚𝑡.                 (35) 

Here, 𝑘𝑦𝑙𝑑 is the crop-specific parameter (Table 1), which represents the ratio of 𝑌𝑙𝑑  to 𝑊𝑒𝑎𝑟,𝑚𝑡. The dry weight of the ear is a 

consistent predictor of the plant’s potential yield at maturity. We parameterized 𝐾𝑦𝑙𝑑 based on Ciampitti et al. (2013b).  

Table 1. Parameters in MATCRO-Maize 260 

Variable Value Units Description Source 

Crop-specific (maize)    

𝑏 0.04 mol (H2O) m-2 s-1 intercept of the Ball-Berry model Sellers et al., (1996) 
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Variable Value Units Description Source 

𝐶𝑔𝑙𝑢,𝑒𝑎𝑟 0.815 ratio conversion factor of dry weight from glucose to ear Penning de Vries et al., (1989) 

𝐶𝑔𝑙𝑢,𝑙𝑒𝑎𝑓 0.871 ratio conversion factor of dry weight from glucose to leaf Penning de Vries et al., (1989) 

𝐶𝑔𝑙𝑢,𝑟𝑜𝑡 0.857 ratio conversion factor of dry weight from glucose to root Penning de Vries et al., (1989) 

𝐶𝑔𝑙𝑢,𝑠𝑡𝑚 0.810 ratio conversion factor of dry weight from glucose to stem Penning de Vries et al., (1989) 

𝐷𝑣𝑠,𝑟𝑜𝑡1 0.35 ratio 1st point of 𝐷𝑣𝑠at which the partition pattern to root changes Penning de Vries et al., (1989) 

Crop-specific (maize)    

𝐷𝑣𝑠,𝑟𝑜𝑡2 0.72 ratio 2nd point of 𝐷𝑣𝑠  at which the partition pattern to root changes Penning de Vries et al., (1989) 

𝐷𝑣𝑠,𝑒𝑎𝑟1 0.37 ratio 1st point of 𝐷𝑣𝑠  at which the partition pattern to ear changes Parameterized in this study 

𝐷𝑣𝑠,𝑒𝑎𝑟2 0.6 ratio 2nd point of 𝐷𝑣𝑠  at which the partition pattern to ear changes Parameterized in this study 

𝐷𝑣𝑠,𝑓𝑙𝑤 0.52 ratio 𝐷𝑣𝑠  at flowering Parameterized in this study 

𝐷𝑣𝑠,𝑙𝑒𝑓1 0.25 ratio 1st point of 𝐷𝑣𝑠  at which the partition pattern to leaf changes Parameterized in this study 

𝐷𝑣𝑠,𝑙𝑒𝑓2 0.48 ratio 2nd point of 𝐷𝑣𝑠  at which the partition pattern to leaf changes Parameterized in this study 

𝑓𝑠𝑡𝑐 0.35 ratio fraction of glucose allocated to starch reserves Penning de Vries et al., (1989) 

ℎ𝑎𝑎 2 m crop height at flowering Penning de Vries et al., (1989) 

𝑘𝑦𝑙𝑑 0.83 ratio ratio of crop yield to dry weight of ear at maturity Parameterized in this study 

𝑘𝑆𝑙𝑤 3 ratio parameter that represents the relationship between 𝑆𝑙𝑤 and𝐷𝑣𝑠  Parameterized in this study 

𝑚 4 ratio the slope of the Ball-Berry model Sellers et al., (1996) 

𝐺𝑑𝑑,𝑚  – K day growing degree day at maturity Parameterized in this study 

𝑃𝑙𝑒𝑓 0.49 ratio partition ratio of glucose to leaf from glucose partitioned to the shoot Parameterized in this study 

𝑃𝑟𝑜𝑡 0.25 ratio partition ratio of glucose to root Penning de Vries et al., (1989) 

𝑟𝑑𝑙,𝑙𝑒𝑓 3.0×10-7 s-1 ratio of dead leaf at harvest Masutomi et al., (2016) 

𝑟𝑟𝑡 0.06 m s-1 growth ratio of root Penning de Vries et al., (1989) 

𝑆𝑙𝑛,𝑝𝑙𝑡 0.825 g m-2 specific leaf nitrogen at planting Parameterized in this study 

𝑆𝑙𝑛,𝑚𝑥 See Eq. (29) g m-2 maximum specific leaf nitrogen Parameterized in this study 

𝑆𝑙𝑛,𝑚𝑎𝑡𝑢 See Eq. (30) g m-2 specific leaf nitrogen at maturity Parameterized in this study 

𝑆𝑙𝑤,𝑚𝑛 400 kg ha-1 minimum specific leaf weight Parameterized in this study 

𝑆𝑙𝑤,𝑚𝑥 700 kg ha-1 maximum specific leaf weight Parameterized in this study 

𝑇𝑏 8.6 ℃ minimum temperature for development Osborne et al., (2015) 

𝑇ℎ 42.0 ℃ maximum temperature for development Osborne et al., (2015) 

𝑇𝑜 30.0 ℃ optimal temperature for development Osborne et al., (2015) 

𝑧𝑟𝑡,𝑚𝑥 1.5 m maximum root depth Penning de Vries et al., (1989) 

𝛼 0.05 mol mol-1 quantum efficiency Sellers et al., (1996) 

𝛽𝑐𝑗  0.8 ratio GPP transition factor Lawrence et al., (2020) 

Others     

𝑘𝑛 0.3 ratio vertical distribution of nitrogen Oleson et al., (2013) 

𝑆1 0.3 K-1 temperature dependence of 𝑉𝑐𝑚𝑎𝑥,𝑥 Lawrence et al., (2020) 

𝑆2 313.15 K temperature dependence of 𝑉𝑐𝑚𝑎𝑥,𝑥 Lawrence et al., (2020) 

𝑆3 0.2 K-1 temperature dependence of 𝑉𝑐𝑚𝑎𝑥,𝑥 Lawrence et al., (2020) 

𝑆4 288.15 K temperature dependence of 𝑉𝑐𝑚𝑎𝑥,𝑥 Lawrence et al., (2020) 

𝛽𝑖𝑝 0.95 ratio GPP transition factor Lawrence et al., (2020) 
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2.3 Model evaluation 

MATCRO can run the simulation both at a point scale and at a global scale. The developed model was evaluated both at a 

point scale and at a global scale. For point scale levels, the two model output datasets, LAI and total aboveground were 

compared with the observation data from the four sites. Meanwhile, we use yield data for evaluation. After confirming the 

ability of the model to simulate maize growth, two types of evaluations were conducted at the global scale. First, the simulated 265 

yields at the grid cell were compared with the gridded yield data of the Global Dataset of Historical Yields (GDHY) (Iizumi 

and Sakai, 2020). Second, the simulated yields at the country and total global levels were compared with the country yield 

report and global data from the Food and Agriculture Organization (FAOSTAT, 2024). To quantify the model performance, 

four statistical values were used in this study: the Pearson correlation coefficient (COR), root mean square error (RMSE), 

relative root mean square error (RRMSE) and normalized mean absolute error (NMAE). RRMSE and NMAE were calculated 270 

as follows: 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1 ,                 (36) 

𝑅𝑅𝑀𝑆𝐸 =  
𝑅𝑀𝑆𝐸

𝑌
,                  (37) 

𝑁𝑀𝐴𝐸 =  
1

𝑛
∑

|𝑦̂𝑖−𝑦𝑖|

𝑦𝑖

𝑛
𝑖=1 ,                 (38) 

where 𝑦𝑖  is the actual value, 𝑦̂𝑖  is the predicted value, and 𝑌 is the mean of the actual value. 275 

2.3.1 Model evaluation at a point scale 

To evaluate the model performance at a field scale, we used observational data from four sites (Brazil, France, Tanzania, and 

the USA; Table 2) used in the Agricultural Model Intercomparison and Improvement Project (AgMIP) study (Bassu et al., 

2014). We used local daily climate data of precipitation, downwards shortwave radiation, air temperature, wind speed (𝑃𝑟𝑐, 

𝑅𝑠 , 𝑇𝑎 ,  𝑈 respectively), management data (𝑁𝑓𝑒𝑟𝑡  and irrigation regime) and phenological data (planting, flowering, and 280 

maturity dates) for model input data at each site. We identified the soil texture from the gridded soil texture dataset of ISIMIP 

(Volkholz and Müller, 2020). Annual CO2 data were also taken from the same data used for the global simulation. Climatic 

data were estimated from the NASA Modern Era Retrospective-Analysis for Research and Applications (AgMERRA; Ruane 

et al., 2015) when measured data were unavailable (Bassu et al., 2014).  

 285 

Table 2. Evaluation site information in the point-scale simulation 

Country Site Latitude Longitude Soil type Sowing date Hybrid 
Total N fertilizer 

[kg N ha-1] 
Irrigation 

Brazil Rio Verde 17.52°S 51.43°W Geri-Gibbsic Ferralsol Oct. 22nd 2003 Pioneer 30K75 0 No 

France Lusignan 46.25°N 00.07°E Cambisol Apr. 26th 1996 Furio 255 Yes 

Tanzania Morogoro 06.50°S 37.39°E Haplic Arenosol Oct. 26th 2009 TMV1 61 Yes 
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Notably, air pressure (𝑃𝑠) and specific humidity (𝑆ℎ) were not provided. We used the same data as the global simulation 

for the soil classification and 𝑃𝑠. 𝑆ℎ was converted from 𝑅ℎusing 𝑇𝑎 and the vapour pressure. We parameterized 𝐺𝑑𝑑,𝑚 and 

𝐷𝑣𝑠,𝑓𝑙𝑤 based on 𝑇𝑎 and phenological data (sowing, flowering, and maturity dates). 𝐺𝑑𝑑,𝑚 calibrated for each site is used for 290 

the simulations, while the average 𝐷𝑣𝑠,𝑓𝑙𝑤 over the 4 sites is used (0.52 in Table 1). As a result, the mean average errors were 

estimated as 4.25 and 7 days for flowering and maturity, respectively (Figure 4). MATCRO was run with these parameters, 

and then the model output was evaluated with the observations for the following 3 variables: seasonal change in the LAI, total 

aboveground biomass, and final yield.  

Model calibration was conducted based on phenological data (Table 2, Bassu et al., 2014) and biomass data for carbon 295 

partitioning of leaf and ear derived from Ciampitti et al. (2013a, b). In this study, a global parameter from the literature was 

applied uniformly across all regions at the grid-cell level instead of using site-specific calibrated parameters in the simulations. 

The model was then assessed at the point scale to check the calibration for phenology (flowering and maturity) and was 

evaluated against time-series data of LAI, aboveground biomass, and harvested yield (see Section 3.1) that were not included 

in the model calibration. 300 

 

 

Figure 4. Model-fit comparison of the flowering and maturity date simulations (SIM on the y-axis) and observations (OBS on the x-axis). 

DOY represents the number of days from January 1st. Shapes show each site: Brazil (square), France (circle), Tanzania (triangle), and the 

USA (diamond). The colours indicate the phenological stages: flowering (red) and maturity (blue). 305 

2.3.2 Model evaluation at a global scale 

Simulation settings 

USA Iowa 42.01°N 93.45°W Gleysols May 4th 2010 Golden Harvest GH-9014 167 No 
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For the global-scale simulation, the model was run at a spatial resolution of 0.5° × 0.5° from 1980–2010 under both rainfed 

and irrigated conditions. The required input data were as follows. (i) Crop calendar data were from the Global Gridded Crop 

Model Intercomparison (GGCMI) phase 3 protocol (Jägermeyr et al., 2021). It provides planting and maturity dates for 18 310 

different crops, including maize, separated by rainfed and irrigated systems. We parameterized the average 𝐺𝑑𝑑,𝑚 at each grid 

over the period 1980-2010 for the growing season from the planting to maturity dates for each of the rainfed and irrigated 

conditions. Both the planting date and the simulated 𝐺𝑑𝑑,𝑚 were used as the input data for the global-scale simulations. (ii) 

Water management data (i.e., irrigation regime) from the MIRCA2000 dataset (Portmann et al., 2010). In the case of irrigated 

conditions, the soil moisture was set to field capacity during the growing season. (iii) 𝑁𝑓𝑒𝑟𝑡 from the Inter-Sectoral Impact 315 

Model Intercomparison Project (ISIMIP; Volkholz and Ostberg, 2022). It provides the annual nitrogen fertilizer inputs for five 

canonical crop types, including C4 annual crops for maize. (iv) Soil texture classification from ISIMIP3a protocol soil input 

data (Volkholz and Müller, 2020). (v) Annual atmospheric CO2 data from the ISIMIP3a (Büchner and Reyer, 2022). (vi) Six 

types of daily meteorological for model inputs (𝑃𝑠 , 𝑃𝑟𝑐 , 𝑆ℎ , 𝑇𝑚𝑎𝑥 , 𝑇𝑚𝑖𝑛 , 𝑇𝑎 , 𝑈) from the GSWP3-W5E5 dataset for the 

ISIMIP3a dataset (Lange et al., 2022). We set the data from (i), (ii), and (iv) as constants across the simulation period, whereas 320 

the data from (iii), (v), and (vi) are variables. 

 

Analysis 

MATCRO-Maize was assessed for the phenological simulation of harvest time against the phenological dataset GGCMI 

(Jägermeyr et al., 2021) and global datasets of crop phenological events for agricultural and earth system modeling which was 325 

derived from various field experiments and a phenology model (GCPE; Mori et al., 2023). These datasets were compared 

under both rainfed and irrigated conditions in 0.5° × 0.5° resolution to check the model performance. The simulated final yields 

in each grid cell under irrigated and rainfed conditions then were aggregated by grid cell, country and global level with the 

harvested area from MIRCA2000 data (Portmann et al., 2010) via the following equation for each year from 1981-2010: 

𝑌𝑖𝑒𝑙𝑑𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑 =  
∑ (𝑌𝑖𝑒𝑙𝑑𝑖,𝑟𝑓×𝐴𝑟𝑒𝑎𝑖,𝑟𝑓)𝑛

𝑖=1 +∑ (𝑌𝑖𝑒𝑙𝑑𝑖,𝑖𝑟𝑟×𝐴𝑟𝑒𝑎𝑖,𝑖𝑟𝑟)𝑛
𝑖=1

∑ (𝐴𝑟𝑒𝑎𝑖,𝑟𝑓+𝐴𝑟𝑒𝑎𝑖,𝑖𝑟𝑟)𝑛
𝑖=1

            (39) 330 

where 𝑌𝑖𝑒𝑙𝑑𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑  is the aggregated yield with the total grid cells (𝑛) in grid cell 𝑖. 𝑌𝑖𝑒𝑙𝑑𝑟𝑓 and 𝑌𝑖𝑒𝑙𝑑𝑖𝑟𝑟 are the simulated 

yields under rainfed and irrigated conditions, respectively, and 𝐴𝑟𝑒𝑎𝑟𝑓  and 𝐴𝑟𝑒𝑎𝑖𝑟𝑟 are the harvested areas from MIRCA2000 

for rainfed and irrigated conditions, respectively. 

The model performance was evaluated by comparing its output with the historical yield dataset. The grid cell-level yield 

was averaged across a 30-year period and compared with the Global Dataset of Historical Yields (GDHY) (Iizumi and Sakai, 335 

2020), 290year period of GlobalCropYield (GCY, Cao et al., 2025), and the Spatial Production Allocation Model by (SPAM; 

IFPRI, 2019) at year 2010. The country- and global-level yields were compared with FAOSTAT data (FAOSTAT, 2024) for 

the average and annual variabilities over the 30 years. In the comparison at the country level, we focus on the top 20 maize-

producing countries that account for more than 85% of total maize production. 
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We focused on two perspectives for evaluation: (i) the ability of the model to capture the spatial distribution of yield in 340 

both low- and high-producing countries and (ii) the ability of the model to reproduce the climatic effect reflected in the 

interannual variability at the country and global scales. The first perspective was analysed using NMAE to quantify model 

error for both the global yield and the yield of the top 20 producing countries. The 30-year average yields were also compared 

on the basis of the statistics of COR, RMSE, and RRMSE to confirm the accuracy. The second perspective was analysed via 

the COR of the detrended deviation between the simulated and FAOSTAT yields to assess the interannual variability. 345 

 

3 Results 

3.1 Point-scale simulations 

A comparison of the time series changes in the LAI at each experimental site is shown in Figure 5. In general, MATCRO-

Maize captured the increasing trend towards flowering time and then decreasing trend towards the end of maturity. Especially 350 

during the vegetative stage (𝐷𝑣𝑠 <  𝐷𝑣𝑠,𝑓𝑙𝑤: 0.52), the simulated LAI showed relatively good agreement. However, the 

simulated LAI was notably underestimated in Brazil and France immediately before the reproductive stage (near the dashed 

black line in Fig. 5). Figure 6 compares the time series of total aboveground biomass between the simulated and experimental 

data. Except for Tanzania, MATCRO-Maize accurately estimated the increasing trend of total aboveground biomass towards 

maturity, although the simulated biomass in Brazil was underestimated at maturity. The simulated total aboveground biomass 355 

in Tanzania increased until maturity, while the observations gradually decreased towards maturity time (Fig. 6 (c)). 

Figure 7 compares the 1:1 line between the simulated and experimental data for the seasonal LAI (Fig. 7 (a)), seasonal 

total aboveground biomass (Fig. 7 (b)), and harvested yield (Fig. 7 (c)). The LAI underestimation in France and Brazil (Fig. 

5) could also be seen with a large RMSE, which is approximately 50% of the average LAI across all observational values at 3 

sites except for Tanzania, although overall, the comparison was statistically significant (p value < 0.01), with a COR of 0.762. 360 

The comparison of total aboveground biomass was statistically significant (p value < 0.001), with a COR of 0.895, although 

the RMSE was 3,628.3 [kg ha-1], which corresponds to approximately 35% of the average of all observed total aboveground 

biomass. While the comparison of the final crop yield was statistically significant (p value < 0.01), there was a relatively low 

COR compared with the LAI and total aboveground biomass due to the small sample size (N=4) and the overestimation for 

Tanzania. The RMSE was 2,575.0 [kg ha-1], which is approximately 30% of the average observational yield at all the sites. It 365 

is noted that Figures 5 − 7 present the model evaluation using independent data. Evaluation was performed using a global 

parameter from the literature to simulate the plant organs in the global-scale simulation, which may have resulted in some 

deviations.  
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 370 

Figure 5. Temporal evaluation of leaf area index (LAI) simulated by MATCRO-Maize (red line) at each site: (a) Brazil, (b) France, (c) 

Tanzania and (d) the USA across the developmental stage (𝑫𝒗𝒔). The observation data in each site is shown by black point. Notably, there 

were no observational data in Tanzania. The error bars were provided only for Brazil. The dashed black line shows the flowering time. 
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 375 

Figure 6. Temporal evaluation of total aboveground biomass (AGB) simulated by MATCRO-Maize (red line) at each site: (a) Brazil, (b) 

France, (c) Tanzania and (d) the USA across the developmental stage (𝑫𝒗𝒔). The observation data in each site is shown by black point. The 

error bars were only provided for Brazil and Tanzania. The dashed black line shows the flowering time. 
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 380 

Figure 7. Statistical comparison (COR, RMSE, and RRMSE) of maize yield. The x-axis (OBS) represents the observational data, and the 

y-axis (SIM.) is the simulated data. Shapes show each site: Brazil (square), France (circle), Tanzania (triangle), and the USA (diamond). 

Notably, there was no observed LAI in Tanzania. The symbols ***, **, indicate p values < 0.001 and 0.01, respectively. 

3.2 Global-scale simulations 

3.2.1 Phenology  385 

The timing of seasonal biological events (i.e. harvest time) has a significant impact on crop growth and yield outcomes. Global 

yield is affected by global phenology. We assessed agreement to check the model performance by comparing the difference 

between simulated global harvest time (1981–2010 mean) with gridded global dataset of phenological datasets of GGCMI 

(Jägermeyr et al., 2021; Figs. 8(a and b)), and GCPE (Mori et al., 2023; Figs. 8(c and d)). The maps show consistent spatial 

patterns for later harvest time between the simulation and the reference datasets, in parts of Brazil, USA, southern and central 390 

Africa. The discrepancies between dataset are likely produced due to the difference in phenology parameterization and 

management assumptions where GGCMI and GCPE used different methodology and data sources. Moreover, the use of the 

growing degree day method in the simulations led to year-to-year differences in harvest time compared with the reference crop 

calendar used for the input data (Figs. 8(a and b)). The mean absolute differences in harvest time (Figs. 8(e and f)) indicated 

that the largest biases occur mostly in tropical regions.  395 
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Figure 8. The difference between simulated harvest time (days) in MATCRO-Maize simulations with (a) GGCMI in the rainfed, and (b) 

irrigated conditions, (c) GCPE in the irrigated, and (d) rainfed conditions. Blue indicates underestimation, while red indicates overestimation 

between simulation and references. Panels (e) and (f) show the mean of absolute differences (days) under the rainfed (a, c) and irrigated (b, 

d) comparisons, respectively. 400 

3.2.2 Yield  

A comparison of the global distributions is shown in Figure 9 (simulation: Fig. 9(a); observation dataset: Figs. 9(b, c, and d)). 

All datasets were harmonized to a 0.5° × 0.5° resolution, including simulated yield from MATCRO-Maize (Fig. 9(a)), the 

Global Dataset of Historical Yield (GDHY; Iizumi and Sakai, 2020; Fig. 9(b)), GlobalCropYield (GCY; Cao et al., 2025; Fig. 

9(c)), and the Spatial Production Allocation Model by (SPAM; IFPRI, 2019; Fig. 9(d)). The data were averaged over 1981–405 
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2014 for GDHY, 1982–2014 for GlobalCropYield, and for the year 2010 for SPAM. While the overestimation could be seen 

mainly in tropical regions, the simulated yield could capture high-yielding regions, including the Corn Belt in the United States 

and the northern part of China, in agreement with the reference datasets.  

Temporal changes in the global yield across 30 years indicated that although the global yield had an NMAE of 0.67, 

indicating a simulation error of 67% with respect to the average FAO yield, the comparison of the interannual variability 410 

between the simulations and observations was statistically significant (p value < 0.01), with a COR of 0.549 (Figure 10). For 

the top 20 producing countries, MATCRO-Maize also tended to overestimate the yield in terms of the annual yield (Figure 11) 

and the average yield over a 30-year period (Figure 12). The overestimation was strong in Egypt, where the simulated yield 

was approximately four times greater across 30 years. In terms of interannual variability, half of the 20 countries were 

statistically significant, with p values < 0.001 for 6 countries, < 0.01 for 2 countries, and < 0.05 for 2 countries (Fig. 11). The 415 

30-year average comparison was also statistically significant (p value < 0.01), with a COR of 0.58, although the RMSE was 

4,007.7 [kg ha-1], which is almost the same as the average yield of the top 20 maize-producing countries (Fig. 12). 

 

 

Figure 9. Global distribution of the 30-year average (1981-2010) maize yield by (a) simulations from the MATCRO-Maize and (b) the 420 
GDHY dataset. For comparison, yield estimates from shorter periods are also shown from (c) GlobalCropYield for 29-year average (1982-

2014) and (d) SPAM2010 for year 2010. The yield is aggregated based on the harvested area from MIRCA2000.  
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Figure 10. Interannual variability in global maize yield from 1981 to 2010 for our simulation (red circles) and FAOSTAT (black) yields. 

COR represents the correlation coefficient of interannual variability. NMAE means normalized mean absolute error. Asterisks ** indicate p 425 

value < 0.01. 
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Figure 11. Comparison of interannual variability for the top 20 maize-producing countries. Similar to Fig. 9. Notably, the 430 

simulated yield in Egypt is not shown as it extends beyond the range of the y-axis. The symbols ***, **, and * indicate p 

values < 0.001, 0.01, and 0.05, respectively. 

  

Figure 12. Accuracy of the 30-year average of the simulated yield (SIM) to the observed yield (OBS from FAOSTAT data) for the top 20 

countries. Notably, the Egypt data points are not shown as exceeding the range of the y-axis. Asterisks ** indicate a p value < 0.01. 435 

3.3 The effects of photosynthesis and N fertilizer 

In addition to the yield comparison, we analysed the effect of nitrogen fertilizer (𝑁𝑓𝑒𝑟𝑡) on maize yield, as it is a key determinant 

of crop yield. It compared both FAOSTAT data and simulated data from 𝑁𝑓𝑒𝑟𝑡 for a 30-year average using a fitted polynomial 

curve (quadratic polynomial regression). We also conducted two tests to quantify the effects of the 𝑁𝑓𝑒𝑟𝑡-related function and 

parameters as follows: (i) Eq. (27) during the vegetative stage is derived from Drouet and Bonhomme (2004), defined as “test 440 

𝑆𝑙𝑛-𝑉𝑐𝑚𝑎𝑥”, was changed to: 

𝑉𝑐𝑚𝑎𝑥(0) = 36.8 ∗ {
2

1+exp[−2.45∗(𝑆𝑙𝑛−0.27)]
− 1} , 𝐷𝑣𝑠 < 𝐷𝑣𝑠,𝑓𝑙𝑤              (40) 

and (ii) 𝑆𝑙𝑛,𝑝𝑙𝑡 from 0.825 (Table 1) to 0.5 (defined as “test 𝑆𝑙𝑛,𝑝𝑙𝑡”). 

Figure 13 illustrates the comparison of country-level yield data with nitrogen fertilizer levels: (a) FAOSTAT data, (b) 

simulated yield by MATCRO-Maize, (c) the impact of reduced Rubisco activity on photosynthetic rates based on experimental 445 

data from Drouet and Bonhomme (2004) in the “test Sln-Vcmax” scenario, and (d) the effect of reduced photosynthetic rates 

due to lower initial specific leaf nitrogen at planting time in the “test Sln,plt” scenario. The nitrogen fertilizer values were 

derived from gridded dataset (ISIMIP; Volkholz and Ostberg, 2022). 

Figures 13 (a) and (b) show the comparisons based on 𝑁𝑓𝑒𝑟𝑡  for each FAOSTAT and simulated yield, respectively. 

MATCRO has a strong 𝑁𝑓𝑒𝑟𝑡 effect on the yield reflected in the steep upward trend of the fitted curves. This effect was scarcely 450 

alleviated by the intentionally reduced effect of photosynthesis (Figs. 13(c and d)), mainly because of the effect of Egypt as 

an outlier with higher values. Without Egypt as an outlier, the curves for FAOSTAT and MATCRO-Maize were more 
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comparable. The maize yield in Egypt shows high value compared to other countries where significant overestimation was 

observed. 

  455 

Figure 13. 𝑵𝒇𝒆𝒓𝒕 impact on yield of (a) FAOSTAT, (b) simulated yield with the original setting (Default), (c) simulated yield with the 

changed 𝑺𝒍𝒏-𝑽𝒄𝒎𝒂𝒙 relationship (test Sln-Vcmax), (d) simulated yield with the changed parameter related to the 𝑫𝒗𝒔-𝑺𝒍𝒏 function (test Sln, 

plt). 𝑵𝒇𝒆𝒓𝒕 (N fertilizer) and country yield were averaged across 30 years for each country. The legends for symbols are the same as those in 

Fig. 11. The solid lines are fitted curve for the data, while the dashed lines in (b), (c), and (d) indicate fitted curve based on the data in (a). 

All lines were fitted using a quadratic polynomial regression. 460 

4 Discussion 

4.1 Point-scale simulations 

The point-scale simulations were evaluated using global parameters to assess their ability to capture broad yield patterns across 

different regions. The simulated harvested yield showed statistically significant correlations at the point scale (Fig. 7), 

indicating that the MATCRO-Maize model could simulate maize growth and yield, but its performance was limited at the 465 

point-scale. However, there were some discrepancies between the simulations and observations remain due to the limitations 

of using global parameters, such as the underestimation of the LAI in Brazil and France, the underestimation of the total 

aboveground biomass in Brazil, and the different growth trends of the total aboveground biomass in Tanzania. The 

underestimation of LAI is primarily due to the use of global morphological parameters at the site scale. Further investigation 

will improve site-specific performance by coupling LAI to key soil properties (soil organic carbon, total nitrogen, and water-470 

holding capacity) and by incorporating canopy cover fraction following Hasegawa et al. (2008). Global parameters at the point 

scale enable testing the model's applicability across various regions, although local variations in soil, climate, or crop 
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management may not be fully captured. The MATCRO-Maize model could simulate maize growth and yield, but its 

performance was limited at the point scale. 

One potential factor contributing to the underestimation of the LAI in France might be related to the effect of plant density, 475 

which is not currently considered in MATCRO. The actual plant density [plants m-2] at each site was 9.5 (France), 7.5 (USA), 

6.6 (Brazil), and 9.5 (Tanzania) (Bassu et al., 2014). Some studies have shown that LAI trends are affected primarily by the 

plant density factor relative to 𝑁𝑓𝑒𝑟𝑡 and hybrids (Boomsma et al., 2009; Ciampitti et al., 2013a; Ciampitti and Vyn, 2011). 

This may be the reason for the underestimation that MATCRO could not reproduce the trends driven by plant density, although 

other important factors (e.g., management practices, climatic conditions), which are quite different from each site in the 480 

literature, would also affect crop growth variables, including the LAI. 

Both the underestimation of the LAI and total aboveground biomass in Brazil were probably caused by the field 

experimental conditions of 𝑁𝑓𝑒𝑟𝑡 = 0, given its effect on crop growth in MATCRO. The reason for the lack of fertilization in 

the field experiment was that sufficient N was released by organic matter mineralization (Bassu et al., 2014), which was not 

considered in the model. Moreover, 𝑁𝑓𝑒𝑟𝑡 directly affects 𝑆𝑙𝑛 in MATCRO, with an increasing trend towards flowering and 485 

then a decreasing trend towards maturity (Fig. 1). 𝑆𝑙𝑛  is related to 𝑉𝑐𝑚𝑎𝑥25(0), which in turn affects the photosynthesis 

calculation (Section 2.1 and Section 2.2.2). In particular, during the reproductive stage, we used Eq. (27), which results in a 

low 𝑉𝑐𝑚𝑎𝑥25(0) under low 𝑆𝑙𝑛 due to the more gradual slope of the curve compared with the vegetative stage (1.41 for the 

reproductive stage, and 2.9 for the vegetative stage, in Eq. (27)), indirectly leading to low biomass accumulation through 

photosynthesis. This could be attributed to the underestimation of total aboveground biomass at maturity (Fig. 6 (a)). For 490 

underestimation of the LAI, low leaf biomass accumulation, which is derived from the same mechanism, would be the reason 

considering the calculation process of the LAI in MATCRO. The LAI is determined by the division of the leaf biomass weight 

by 𝑆𝑙𝑤 , which depends on 𝐷𝑣𝑠. Because 𝑆𝑙𝑤  is calculated from the same parameter at all sites (Eq. (33) and Fig. 3), leaf weight 

is the factor that causes differences between sites, leading to the underestimation of the LAI in Brazil. Therefore, the condition 

of 𝑁𝑓𝑒𝑟𝑡 = 0 might be the reason for both underestimations. 495 

One possible reason for the difference in the growth trend of biomass in Tanzania might be related to growing season 

length. The cultivar used in Tanzania was a short season type with 99 days of observed growing season length, whereas the 

cultivars at other sites were medium or long season type with lengths ranging from 122 to 173 days (Bassu et al., 2014). 

Capristo et al. (2007) reported that, compared with medium- and long-season cultivars, short-season cultivars presented the 

lowest biomass accumulation from flowering to maturity, which was reflected in the observed biomass (Fig. 6 (c)). This might 500 

indicate that the trend of biomass accumulation differs across growing season types, although other factors, such as climatic 

conditions or biotic stresses, could also affect accumulation. While MATCRO considers the growing season length as 𝐺𝑑𝑑,𝑚 

to judge the harvesting time, this does not mean that MATCRO could capture the difference in trends due to growing season 

types, possibly leading to the gap between the simulations and observations shown in Tanzania. 
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4.2 Global-scale simulations 505 

A comparison of the global distribution of maize yield revealed that MATCRO-Maize could capture the distribution of high-

yield regions but could not capture the yield in tropical regions (Figures 8 and 9). Similar overestimations in tropical regions 

have also been reported in other global models, possibly because of the lack of representation of extreme weather or crop pests 

(Lombardozzi et al., 2020; Osborne et al., 2015). Moreover, soil fertility also an important source of model error and 

contributes to spatial variation.  510 

Notably, MATCRO-Maize tended to overestimate the absolute values for both the total global yield and the yields of the 

top 20 countries, as reflected in the NMAE and RMSE values (Figures 10, 11, and 12). The simulated total global yield is 

determined mainly by the yield of the top 3 maize-producing countries, the United States, China, and Brazil, which have large 

cultivated areas (Table 3). All three countries’ yields were overestimated, where the simulated yields were approximately 1.2, 

1.7, and 1.8 times greater for the 30-year averages in the United States, China, and Brazil, respectively, leading to 515 

overestimation of the total global yield. Such overestimations in the main producing countries, especially in China and Brazil, 

are also observed in other global crop models (Von Bloh et al., 2018; Osborne et al., 2015; Schaphoff et al., 2018). This might 

indicate that there are factors that are important for determining yields but are not considered in most crop models. 

For the top 20 producing countries, the overestimation was strong in Egypt, with an approximately fourfold greater 

simulated yield than that of FAOSTAT. This overestimation might be caused by the irrigated conditions in all grids in Egypt. 520 

Under manually changed rainfed conditions, crop growth in Egypt in the model was almost not simulated because of the 

inhibited photosynthesis rate caused by strong water stress. Under irrigated conditions, this strong water stress was alleviated. 

In addition, the radiation in Egypt was consistently strong throughout the growing period, and 𝑁𝑓𝑒𝑟𝑡 was highest among the 

top 20 countries across the 30 years simulated, increasing from approximately 180 kg ha-1 in 1980 to 360 kg ha-1 in 2010. This 

caused the colimited photosynthesis rate to be high (Eq. (4)) across the growing seasons, leading to marked overestimation. 525 

The current version of MATCRO-Maize can reproduce yield responses to nitrogen fertilization across a range of fertilizer 

levels, but it tends to overestimate yields under certain conditions (e.g., Egypt) likely because the model assumes higher 

nitrogen use efficiency and idealized irrigation conditions where actual yields are constrained by soil quality, management, 

and local cultivar traits that are not explicitly represented. This suggests that the representation of nitrogen effects in the model 

remains simplified, and further refinement is needed for region-specific scale simulation. 530 

Although the simulated yield has the large error in terms of the absolute value, the comparison of the 30-year average yield 

was statistically significant, with a COR of 0.58 (p value < 0.01) and an RMSE of 4,008 kg ha-1 (Fig. 12), showing the ability 

to capture the spatial distribution of the yield both in low- and high-producing countries from the first perspective of the 

comparison (Section 2.3.2). This result was comparable with the similar result of another model: LPJ-GUESS (Olin et al., 

2015), with a COR of 0.46 and an RMSE of 4,300 kg ha-1 (Table 4), although the targeted countries were different (top 20 535 

producing countries for MATCRO-Maize, whole countries for LPJ-GUESS). 
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In terms of interannual variability from the second perspective, the total global yield and approximately one-third of the 

top 20 producing countries were statistically significant, with p values < 0.01 (Figs. 10 and 11), indicating that MATCRO-

Maize could reproduce the climatic effect globally to some extent. This might also be supported by the similar comparisons of 

other global crop models in terms of statistics (Table 4), although it is difficult to simply compare the statistical values between 540 

the models owing to the differences in periods, input data, and methods for detrending and aggregating the yield. The COR of 

interannual variability for total global yield in MATCRO-Maize was in the range of those of the other models (0.55; 0.42~0.89, 

respectively). For the top 20 countries, almost all the COR values also ranged between those of the other models. Therefore, 

these comparisons from two perspectives might indicate that MATCRO-Maize could yield reasonable results. The moderate 

correlations observed reflect the typical influence of yield data variability and uncertainty in management practices across 545 

regions. 

 

Table 3. Maize cultivated land area for 20 major producer countries from MIRCA2000 (Portmann et al., 2010). 
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Country Total area [ha] Rainfed area [ha] Irrigated area [ha] 

Argentina 3,248,715.9 3,147,580.7 101,135.3 

Brazil 11,223,262.5 11,120,154.9 103,107.6 

Canada 1,364,585.3 1,328,206.2 36,379.1 

China 24,376,805.2 11,615,190.0 12,761,615.2 

Egypt 827,766.1 0.0 827,766.1 

Ethiopia 1,172,231.1 1,084,795.6 87,435.5 

France 3,128,401.0 2,257,380.0 871,021.0 

Hungary 1,057,610.7 1,052,622.6 4,988.1 

India 6,294,770.9 4,833,685.9 1,461,085.0 

Indonesia 3,479,825.7 3,135,443.9 344,381.8 

Italy 1,322,692.9 534,281.4 788,411.5 

Mexico 7,459,039.5 5,852,617.4 1,606,422.1 

Nigeria 3,686,757.3 3,667,564.5 19,192.8 

Philippines 2,590,081.0 2,590,081.0 0.0 

Romania 3,139,981.1 3,016,990.5 122,990.6 

Russia 4,206,747.0 3,594,403.2 612,343.9 

Serbia 1,074,614.2 1,062,985.8 11,628.4 

South Africa 3,060,053.5 2,930,208.2 129,845.4 

Ukraine 3,382,783.5 3,194,146.2 188,637.3 

United States 31,307,667.3 26,508,600.7 4,799,066.7 
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Table 4. Statics of model simulation accuracy of the MATCRO-Maize and other crop models. Notably, the asterisks for GGCMI phase I indicate the p values: *** 570 
for p values < 0.001, ** for p values < 0.05, * for p values < 0.1, whereas those of LPJmL4 and MATCRO-Maize indicate the p values: *** for p values < 0.001, 

** for p values < 0.01, * for p values < 0.05. 

   COR of interannual variability 

References Period Global USA China Brazil Mexico France Argentina 

MATCRO-Maize - 1981-2010 0.549** 0.692*** 0.518** 0.349 0.015 0.654*** 0.694*** 

JULES-crop1 Osborne et al., 2015 1961-2008 0.48 0.43 0.12 0.12 0.061 0.52 0.57 

LPJmL42 Schaphoff et al., 2018 1981-2010 – 0.675*** 0.676*** 0.169 -0.124 -0.331 0.717*** 

LPJmL53 Bloh et al., 2018 1981-2010 – 0.686*** 0.641*** 0.0591 0.0618 0.461* 0.650*** 

GGCMI phase 34 Jägermeyr et al., 2021 1981-2015 – 0.817 0.245 0.029 – 0.649 0.727 

GGCMI phase 15 Müller et al., 2017 1982-2006 0.42**~0.89*** 0.89 0.75 0.66 0.85 0.87 0.85 

   COR of interannual variability 

References Period Romania South Africa India Italy Hungary Indonesia Ukraine 

MATCRO-Maize - 1981-2010 0.719*** 0.646*** 0.046 0.276 0.900*** 0.252 0.339 

JULES-crop1 Osborne et al., 2015 1961-2008 0.32 0.41 0.34 0.34 0.33 0.065 – 

LPJmL42 Schaphoff et al., 2018 1981-2010 – 0.711*** -0.22 – – 0.124 -0.046 

LPJmL53 Bloh et al., 2018 1981-2010 – 0.667*** 0.496** – – -0.163 0.152 

GGCMI phase 34 Jägermeyr et al., 2021 1981-2015 – – – – – – – 

GGCMI phase 15 Müller et al., 2017 1982-2006 0.90 0.91 0.76 0.76 0.90 0.42 0.61 

   30-year averaged yield      

References Period COR RMSE [kg ha-1]      

MATCRO-Maize - 1981-2010 0.580** 4,008      

LPJ-GUESS6 Olin et al., 2015 1996-2005 0.46 4,300      

1 Countries-level comparison was conducted for 12 countries, which were detrended only for observation. p values are not shown. 

2,3 Countries-level comparison was conducted for the top 10 producing countries, which were detrended via a 5-year moving average. 

4 Twelve global gridded crop models were used. The COR shown here is the ensembled mean value for the 5 largest producing countries after detrending. 575 

p values are not shown. 

5 Fourteen global gridded crop models were used. The COR of the global yield shown here is the minimum and maximum value, except for one nonsignificant 

correlation with the default setting. The COR of each country is the best correlation among the 14 models, including 3 different settings with statistical significance 

(p values are not shown). For both the global and country-level comparisons, a 5-year moving average was used to remove trends. 

6 The 10-year average comparisons included all countries. p values are not shown.  580 
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4.3 Model limitations 

MATCRO-Maize currently lacks explicit simulation of soil organic carbon and soil nitrogen mineralization. Instead, the effects 

of nitrogen supply are represented by describing the relationship between a broad range of nitrogen fertilization levels 

(Muchow, 1988) and specific leaf nitrogen (SLN), which subsequently affects photosynthetic capacity (Vcmax). While this 

simplification allows for global-scale application, it limits the model ability to represent nitrogen balance in maize yield at 585 

specific sites. Yield variations can be influenced by soil organic carbon and nitrogen, which are affected by farming practices 

and contribute to soil fertility (Ma et al., 2023). Future development could involve coupling MATCRO with a mechanistic soil 

nitrogen and carbon module to dynamic plant nitrogen balance. This would enhance the model ability to capture nitrogen 

dynamics under varying soil types and management practices.  

The strong 𝑁𝑓𝑒𝑟𝑡 effect shown in the evaluation (the site in Brazil for the point scale) and comparison based on the 𝑁𝑓𝑒𝑟𝑡 590 

(Figure 13). In the model, 𝑁𝑓𝑒𝑟𝑡 has the direct relationship with 𝑆𝑙𝑛 (Eq. (28)) and consequently affects 𝑉𝑐𝑚𝑎𝑥25 (0) through 

the function 𝑆𝑙𝑛-𝑉𝑐𝑚𝑎𝑥25(0) (Eq. (27)). Therefore, the strong 𝑁𝑓𝑒𝑟𝑡 effect is caused by either the former, the latter, or both 

processes. Few studies have explicitly shown time series changes in 𝑆𝑙𝑛 and 𝑆𝑙𝑛-𝑉𝑐𝑚𝑎𝑥 relationships from experiments. We 

used some of them to establish the functions shown in Eqs. (27) and (28) (Section 2.2.2) at this stage, resulting in a strong 

𝑁𝑓𝑒𝑟𝑡 effect in the model. However, the intentional experiment indicated that the changed relationships could partly reproduce 595 

the adequate effect, which was observed in the FAOSTAT yield. This might mean that the established functions include a 

degree of uncertainty, and if we establish robust relationships based on other experimental data under more comprehensive 

conditions, it might be possible to improve the model in terms of the 𝑁𝑓𝑒𝑟𝑡 effect, leading to a more accurate simulation of 

maize yield. Nitrogen effects are represented indirectly via SLN as a function of fertilizer rate and developmental stage, which 

constrains the model ability to capture nitrogen cycling in soils and plants. 600 

In this study, we applied identical parameters to simulate the global yield across all grid cells and throughout the years 

without considering cultivar differences. As mentioned in Section 3.1.2, the trend of biomass accumulation would differ across 

growing season types. A limitation of the current study is the use of global parameters at the site scale leads to discrepancies 

between site-level and country-level simulations. It partly arises from applying global parameters across different 

environments. Although MATCRO-Maize shows relatively weak correlations at the site scale due to the use of generalized 605 

parameters that do not account for local varieties and management, the model demonstrates consistent and statistically 

significant performance at country and global levels. This indicates that MATCRO-Maize is well suited for capturing large-

scale yield patterns and for application in global gridded crop modeling, while recognizing its limited capacity for precise site-

specific prediction. However, global-scale simulation results tend to overestimate yield due to LAI being directly driven by 

carbon balance, which can create feedbacks that produce excessively high LAI. Future improvements should incorporate 610 

constraints on LAI expansion and adjust leaf partitioning when LAI exceeds realistic levels. 

Moreover, in major producing countries, such as the United States and China, some studies have shown that there is genetic 

gain in terms of maize yield (Cooper et al., 2014; Duvick et al., 2003; Liu et al., 2021). Such cultivar differences and long-
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term genetic improvements are not included in the current MATCRO-Maize. This finding indicates that the generic 

parameterization used in the model are simple in accounting for the diversity of crop cultivars (Lombardozzi et al., 2020), 615 

partly leading to a gap between the simulations and observations, which is recognized as a limitation of the global model 

(Osborne et al., 2015). In addition, other important factors that are not considered in the current MATCRO also affect crop 

growth and final yield. These factors include biotic stresses (e.g., diseases, pests) and detailed management practices (e.g., 

plant density, as mentioned in Section 4.1). Further improvement to incorporate such factors with reliable 𝑁𝑓𝑒𝑟𝑡-related 

functions could be needed to contribute to more accurate simulations and contribute to studies on the interaction between 620 

climate and agriculture. 

5 Conclusions 

We developed a process-based crop model for maize yield estimation, called MATCRO-Maize, by incorporating C4 leaf-level 

photosynthesis and some crop-specific parameters into MATCRO. The model was first evaluated at the point scale, showing 

a somewhat reasonable accuracy considered with insufficient field-based information for parameterization. The calibrated 625 

parameters were set from point-scale experimental data and used uniformly in the global-scale simulation. MATCRO-Maize 

could represent the spatial distribution well and showed reasonable responses to climatic variability, where the results were 

comparable with those of other studies in terms of statistics. The strong nitrogen fertilizer effect was one of the MATCRO 

limitations, while the established functions related to nitrogen fertilizer in the model have a degree of uncertainty. Further 

experimental data under more comprehensive conditions might improve the model. Overall, MATCRO-Maize could contribute 630 

to climate effect studies through its ability to be integrated with the LSM for crop growth and the interactions between climate 

and agriculture. 
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