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Abstract. Process-based crop models combined with land surface models are useful tools for accurately quantifying the
impacts of climate change on crops while considering the interactions between agricultural land and climate. We developed a
new process-based crop model for maize, named MATCRO-Maize, by incorporating leaf-level photosynthesis of C4 plants

and adjusting crop-specific parameters into the original MATCRO model, which is a process-based crop model initially

developed for paddy rice combined with a land surface model. The model was evaluaged at both a point scale and a global (Deleted: valida

scale through comparisons with observational values. The gvaluation at the point scale was conducted at four globally (Deleted: validation

distributed sites_based on global parameters. It showed statistically significant correlation for final yield with correlation Deleted: three variables (leaf area index: correlation coefficient
I . X X . L. (COR) of 0.76 with a p value < 0.01; total aboveground biomass:

coefficient (COR),0f 0.34 with a p value <0.01, For the global scale gvaluation, the simulated yield was statistically compared COR of 0.89 with a p value < 0.001;

with the yeference data at the country level and total global level. Although the absolute value of the simulated yield tended to ‘ CDeIeted: : COR

be overestimated, MATCRO-Maize could capture spatial variability, as indicated by a COR of 0.58 (p value < 0.01) for the . (Deleted: )
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30-year average yield comparison of the top 20 maize-producing countries. In addition, the comparisons of the interannual ( vancation
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variability derived from detrended deviation were statistically significant for the total global yield (COR of 0.54 with p value
< 0.01) and for half of the top 20 countries (COR of 0.64-0.90 with p value < 0.001 for 6 countries; COR of 0.50-0.51 with p
value < 0.01 for 2 countries; COR of 0.48-0.55 with p value < 0.05 for 2 countries), which are comparable with those of other
global crop models. One of the reasons for this overestimation could be related to the strong nitrogen fertilization effect
observed in MATCRO-Maize. With experimental field data under more comprehensive conditions, improvements in the

functions of nitrogen fertilizer in the model would be needed to simulate the maize yield more accurately.

1 Introduction

Maize (Zea mays L.) is one of the most important cereals not only because of its large production (FAO, 2022) but also because

of its various roles in human food, feed, and industrial uses. Maize has high photosynthetic efficiency as a C4 plant. It contains
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phosphoenolpyruvate (PEP) carboxylase in mesophyll cells, which concentrates CO: in bundle sheath cells. The concentrated
CO: increases the relative amount of carboxylation versus oxygenation performed by ribulose-1,5-bisphosphate
carboxylase/oxygenase (Rubisco) (Kanai and Edwards, 1999), allowing C4 plants to operate at lower stomatal conductance
rates than C3 plants (Sage, 1999). This mechanism results in high efficiencies of light, water, and nitrogen use (Knapp and
Medina, 1999; Long, 1999). These features, such as multipurpose crops and high photosynthetic efficiency, enable the
cultivated area to range over wide environments from wet to dry and from low to midlatitude. However, climate change impacts
and climate-related extremes negatively affect the productivity of the agricultural sector, which leads to negative consequences
for food security (Intergovernmental Panel on Climate Change (IPCC), 2023). Therefore, it is important to accurately quantify
the impact of climate change on crop growth and yield and to identify effective adaptation strategies to mitigate climate risk.

Process-based crop models are useful tools for climate change studies because they consider the response of the
physiological processes of crop growth and development to the environment and management (Tubiello and Ewert, 2002).
The ensemble of process-based crop model simulations has shown good agreement with observed maize yields both at the site
scale and at the global scale (Bassu et al., 2014; Jagermeyr et al., 2021), showing its potential to quantify the uncertainty in
studies on the impacts of climate change on crop yields (Asseng et al., 2013). Crop models combined with land surface models
(LSMs) or earth system models (ESMs) (as classified by Peng et al., 2017) have the ability to consider the effects of agricultural
land on the climate globally through the exchange of fluxes of heat, water, and gases, as well as the effects of climate on crops.
Some studies have revealed that agricultural land affects the climate through fluxes (Bondeau et al., 2007; Levis et al., 2012;
Maruyama and Kuwagata, 2010; Tsvetsinskaya et al., 2001) and subsequently affects crop production (Osborne et al., 2009).
This indicates the importance of considering the interaction between agricultural land and climate to accurately quantify the
impacts of climate change on crops. Despite this importance, few LSM/ESM-based crop models exist (Lin et al., 2021;
Lombardozzi et al., 2020; Osborne et al., 2015; Wu et al., 2016).

MATCRO is a process-based crop growth model developed for C3 plants (Masutomi et al., 2016a, b; Yusara et al., in
prep). It was initially combined with a land surface model of Minimal Advanced Treatments of Surface Interaction and Runoff,
called MATSIRO (Takata et al., 2003). MATSIRO is embedded in an earth system model, which is the Model for
Interdisciplinary Research on Climate, Earth System version 2 for Long-term simulations called MIROC-ES2L (Hajima et al.,
2020). MATCRO simulates crop growth based on leaf-level photosynthesis and parameterized crop-specific parameters
determined from experimental data, and can run simulations both at a point scale and at a global scale. The model was applied
to assess the impact of climate change at the country and local levels (Kinose et al., 2020; Kinose and Masutomi, 2019) and
was used in the study investigating factors to improve the simulation performance of global gridded crop models (GGCMs)
(lizumi et al., 2021). MATCRO is applicable to other crops, including maize as a C4 plant, with adjusted parameters from
experimental datasets and the literature.

We extended MATCRO for global maize yield simulation, called MATCRO-Maize, by adjusting crop-specific
parameters for maize and incorporating the C4 photosynthetic mechanism. MATCRO-Rice can simulate latent heat flux,

sensible heat flux, net carbon uptake by crops, and rice yield, indicating its application in studies on climate change impacts
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as an LSM-based model (Masutomi et al. 2016b). However, this study focused only on crop growth and yields, omitting water

and heat fluxes to increase computational efficiency. This paper aims to describe MATCRO-Maize in detail (Section 2) and

model gvaluation on simulated yields both at a point scale and at a global scale (Section 3), with a discussion of the vevaluation,

and model limitations (Section 4).

2. Model description

MATCRO consists of four modules: radiation, net carbon assimilation, crop growth, and soil water balance. It requires the
following input data: (i) phenological data (i.e., crop calendar), (ii) water management data (i.e., the land is rainfed or irrigated),
(iii) nitrogen fertilizer application data (Nf.,.) [kg N ha''], (iv) soil classification data (i.e., soil texture classification), (v)
annual CO; data [ppm], and (vi) 6 types of daily meteorological data: air pressure (P,) [Pa], precipitation (P..) [kg m? s'],
specific humidity [S, ] [kg kg™'], downwards shortwave radiation (R,) [W m™], maximum, minimum, and mean air temperature
(Trmax> Trmin» T2) [K], and wind speed (U) [m s™']. Based on input data, MATCRO simulates crop growth during a growing
period. It is controlled by the crop developmental stage (D,s) based on (Bouman et al., 2001), which is the index used to
quantify crop development. The final crop yield is determined by the dry weight of the storage organ with a parameter (K,,;4)
when D, = 1. To adapt MATCRO for maize, crop-specific parameters and equations were improved, as shown in Table 1

and Eq. (1)—(35). The details are described in the following sections.

2.1 Photosynthetic mechanism

MATCRO-Maize calculates net carbon assimilation for the entire canopy (A4,,) via the big-leaf model, where (4 leaf-level

photosynthesis is separately calculated for sunlit and shaded leaves from the coupled photosynthesis—stomatal conductance

model (Dai et al., 2004).,

A, for the entire canopy is given by:
An = Apsn Lon + Ansnlsn, M
where Zn,sn and th represent the net carbon assimilation per unit leaf area [¢ mol m s™'] and where Ly, and Lg), represent
the leaf area index (LAI) [m? (leaf) m?]. sn and sh indicate sunlit and shaded leaves, respectively. 4, s, and 4,, g, are

defined in the following equations:

Zn,)c = Ay,x - Ed,x’ (2)
where Zg'x and Ed,x represent gross carbon assimilation and dark respiration per unit leaf area [¢ mol m? s°'], respectively.
Suffix x means sn or sh. Ly, and Lg, are determined following the approach of Masutomi et al., (2016a). E,i’x is calculated

via the following equation (Bonan et al., 2011):
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— 2(Tv=298.15)/10

Rax = 0.025 chax,x( 3)

1+exp (1.3(Tv—328.15)))’
where Vg, [ mol m? s7'] is the maximum rate of carboxylation and where T, is the leaf temperature [K] (assumed to be
the same as the air temperature: Ty). ngx is determined by the smaller root of the following equations:
—2 —_ —_ — [—
Bejhix — (Ac,x + Aj,x)Ai,x + A Ajx =0, 4)
—2 — — — P
ﬂipAg,x - (Ai,x + Ap,x)Ag,x + Ai,xAp,x =0, (5)

where f; and B, are the transition factors (Table 1) and where ZLX [ mol m? s] is the carbon fixation rate. Here, we

(Deleted: colimited photosynthesis.

introduced the C4 leaf-level photosynthesis model based on Collatz et al., (1992) into MATCRO, in which some parameters
were taken from Oleson et al., (2013) and Lawrence et al., (2020) (Table 1). In C4 photosynthesis, Zm, Zj'x, and vax [ mol
m? 5] represent Rubisco-limited, RUBP-limited, and PEP-limited photosynthesis, respectively, and are given by the

following equations:

Acxe = Vemax » ©)
4y = a(4.6Qup), 0]
Zp,x = kp,xCi,x s (8)

where C;, [ppm] is the internal leaf CO> concentration, Qg [W m™] is the absorbed photosynthetically active radiation

(PAR), @ [mol mol"'] is the quantum efficiency, and k,, ., [mol m™ s'] is the initial slope of the CO2 response curve for the C4

(Deleted: n

CO: response curve. Qqp  is calculated from R via the same methods as in Masutomi et al. (2016a) and is converted to
photosynthetic photon flux by multiplying by 4.6 [ mol (photons) J"']. Vopay,» and k. are functions of T,, and are based on
Lawrence et al. (2020),

(Ty—298.15)/10

Q
Vemaxx = fo Vemaxzsx [m]a )
fu(To) = 1 +expSy(T, = S2y), (10)
fiTyy = 1+ exp[SsSa — T an
(Ty—298.15)/10 Tom

k. = kpzs,x mv e » Vemaxzsx > 0, (12) “| Deleted: kp25,xQ§(’) s, Vemaxzsx > 0,

P v 0.7, Vemaxzsx. =0, ’ ) 0.74, Vemaxasx = 0,

1S

kpzs,x = ZOOOOchaxzs,x s (13)

with Qo =2,5;, =03K™%, S, =313.15K, S; = 0.2 K™%, and S, = 288.15K (Table 1). Notably, kyx is adjusted to be<

07 mol m~2 s~* (Collatz et al., 1992) when V,,,.4x25.» = 0 because of the process of the photosynthesis calculation (Eq. (20)).

Vemaxzs,x is the maximum Rubisco carboxylation rate per unit leaf area at 25°C (the details are described in Section 2.2.2). f,,
is the water stress factor calculated in the soil water balance module, which indirectly affects A,, through V.4, (Sellers et

al., 1996). f,, is derived from the following equations:
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1+ ETF iy, FAW(i) > 045,

— NSL :
fo= 3= {% *ETF (i, otherwise, (4
0.45
i\ — . max((WSLiy-=WILT),0
FAW iy = min (—“—(—)—UFC_WILT , 1), (15)
. 3 (zrt*-2*
ETF (iy = 5%, (16)

where NSL represents the number of soil layers, ETF represents the fraction of transpiration from root distribution, FAW
represents the fraction of available water, WSL represents the soil water content [m> m], WILT represents the wilting point,
FC represents the field capacity, and z,, and z represent the root depth and the soil depth, respectively, for each layer.
MATCRO assumes NSL = 5, where each of the soil layers has thicknesses of 0.05, 0.2, 0.75, 1, and 2 [m], respectively.
MATCRO uses the soil texture data as input data, where the soil is classified into 13 types, leading to differences in WILT
and FC based on Campbell and Norman (1998). WSL is calculated considering transpiration from the canopy, evaporation
from the soil, and water flux (those calculations are the same as those of the original MATCRO). The ETF calculation
assumes that the root has no spatial orientation and is equally distributed in the soil (Masutomi et al., 2016a). z,., is
determined by the same calculation as the original MATCRO, where the crop-specific parameter (z,; ) Was changed to
maize (Table 1). The conditional branch (FAW (i) > 0.45) is based on the FAO 56 guidelines (Allen et al., 1998).
Stomatal conductance influences CO> uptake during photosynthesis. MATCRO-Maize represents stomatal conductance

for CO2, G, [ mol m™? s™'], based on Ball et al. (1987) as follows:

i —
— GOC + Glth ﬁv An,x =0,

Gscx an

Go., Otherwise,
where Cs, [ppm] is the CO2 concentration at the leaf surface and where R), [-] is the relative humidity at the leaf surface. G
and G, are derived from parameters b and m (shown in Table 1), respectively, by adjusting their ratio of 1:1.6, which is the
ratio of diffusivity of H20 to COa. Here, the leaf-level net carbon assimilation rate (Zn,x), stomatal conductance for CO2 (G ),

and boundary layer conductance for COz (G, ) were calculated to satisfy the following physical flux equations,

(ot

Anse = Goex(Cox = Cix)s (18)
Anx = Gpe(Ca = Cox), (19)
where C, [ppm] is the atmospheric CO2 concentration. G, is a function of air pressure (P, [Pa]) and the wind speed in the
canopy (U [m s7']) (Masutomi, 2023).

Here, Ty, Qap x> Ry, U, and C, are environmental variables derived from input meteorological climate data. There are
four relationships (Egs. (2), (17)-(19)) in terms of internal variables (ATM, Gcx> Csx» Cix)- MATCRO for C3 photosynthesis
obtains analytical solutions from relationships via the method shown in Masutomi (2023). For C4 photosynthesis, it is also

possible to solve these equations analytically. In the case of Rubisco-limited and RuBP-limited photosynthesis, exact

meet
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expressions for ZM and Zj,x are obtained. Under Zn,x > 0, PEP-limited photosynthesis (ZW) can be represented by
quadratic equations by the algebraic procedures as follows:

0= {G,chlth = GpcGoc = Kpx(Goc = GocGrcRy + G,,C)}Apyxz + {CaG,fCGOC — GpcGocRy + G2.G1 R Ry —

K xCa(GEcGrcRn = 26ncGoc = Ge)}px + CaGieGoc(Ra = kpaCa): 0
Under Zn}x < 0, the PEP-limited photosynthesis rate can be expressed as
_ __kpxCa—Ra

- 1*"?%(5%,5*%“)'

According to these equations, in the case of PEP-limited photosynthesis, there are three possible solutions. Following the

px (21)
criteria described by Masutomi (2023), only one analytical solution can be selected when the following requirements are

satisfied: (i) under Zm > 0, the solution must be a positive or zero real solution, and under Zn,x < 0, it must be a negative

real solution; (ii) Gy, > 0; and (iii) C; > 0.
2.2 Crop-specific parameterization

2.2.1 Phenology

The crop growing period in MATCRO is controlled by D,,; based on Bouman et al. (2001). Here, D, = 0 means sowing, and
D,s = 1 means maturity (harvesting). It is calculated from the following equations:

Pusi = Gaqi/Gagm.i (22)

¢ ,

Gaq = fo D, dt’, (23)
0, T,<Ty|Ty<T,

T,—T,, T, <T, <T,

(To=To)(Tt=Th) <
Ty T, <T, <Tp,

Dy = (24)

where (7, ; is the growing degree days at t (time) for specific grid cell number i, 7,4, ; is the growing degree day at maturity,

D, is the developmental rate at time t, and T, is the temperature at time t. T}, T, and T, are the crop-specific cardinal
temperatures (minimum, maximum, and optimal temperatures for development, respectively, as shown in Table 1). G4qm

were calibrated for each point scale simulation and global scale simulation (Section 2.3). In addition, one parameter that

represents the timing of flowering (known as silking; D, r,,) was calibrated based on observational data for the point scale

simulation (Table 1).

2.2.2 Leaf nitrogen and Rubisco capacity

Maximum Rubisco carboxylation rate
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Vemaxas,x used in the photosynthesis module (Section 2.1) is obtained by dividing the maximum Rubisco carboxylation rate at

a LAI depth of [ (Vemaxasx (D)) by Ly separately for sunlit and shaded leaves based on Bonan et al. (2011). The vertical

(Deleted: the canopy level

distribution of Ve,,4x25 (1), which is the sum of Vygx25 sn (1) and Vepaxos sn (D, follows the exponential profile:

chaxZS(l) = chaxZS(O) exp(—I(nl), (25)
where V,ax25 (0) is the maximum Rubisco carboxylation rate at the canopy top, K,, is a parameter for the vertical distribution
of nitrogen (Table 1), and [ represents the LAI depth from the top. The maximum Rubisco carboxylation rate in sunlit leaves

Vemax2 SVS,[(I)) is also calculated by the same relationship considering the light distribution:

1
Vemaxzs,sn (l) = Vemaxzs (0)[1 - exp(_l(Kn + K))] m B (26)
where K is the direct beam extinction coefficient (the calculation is the same as that for Masutomi et al., 2016a). Vypqx25,sn (1)

is given by the subtraction of Eq. (25) and Eq. (26).
Here, while Bonan et al. (2011) uses the fixed value of V4,25 (0) value pver time, V. nax25(0) in MATCRO is calculated

dynamically as a function of specific leaf nitrogen (S;,, [g¢ N m?]). The function is established based on the experimental
literature data. Notably, we applied the relationship between S, and light-saturated CO> assimilation (A, ) from the
literature, although MATCRO-Rice and MATCRO-Soybean utilize the direct relationship between S;,, and V4425 (0) based
on the experimental literature data. The reasons are that we assume that 4,,,, could be used as Rubisco-limited photosynthesis
in C4 photosynthesis and that Rubisco-limited photosynthesis could be equal to the maximum Rubisco carboxylation rate from
Eq. (6). Several studies have shown that A,,,, has a close relationship with S;,,, as shown by the logistic equation for maize
(Drouet and Bonhomme, 2004; Muchow and Sinclair, 1994; Paponov and Engels, 2003; Paponov et al., 2005; Sinclair and

Horie, 1989; Vos et al., 2005). We used two functions from them for different D, as follows:
2
1}! Dvs < Dvs,flwr

{1+exp[—2.9*(sln—0,25)] -

40.2 + (o 1},1),,5 > Dy fiwr

45.1

Vemaxas (0) = @n

where D¢ < Dy r),, Tepresents the vegetative stage at which the equation was based on Vos et al. (2005); then, for the

reproductive stage, the equation was from Drouet and Bonhomme (2004)._Stage-specific parameterizations were applied to

reflect the lower photosynthetic activity observed during the reproductive phase compared to the vegetative phase since no

single dataset adequately represents both growth phase.

Specific leaf nitrogen

Sin» Which is used in the calculation of V,,,.25(0), is obtained from the function of D,; in MATCRO. The function is
established based on the observational data. We utilized the study by Muchow (1988), in which S;,, was measured under
various levels of Ne.r, (0, 60, 120, 240, 420 [kg ha']), as follows: (i) we traced S, data using digitizer software

(https://apps.automeris.io/wpd4/) and obtained the measurement and phenological data from the paper; and (ii) we conducted
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the fitting based on the assumption that S, lineally increased until flowering and then decreased towards maturity. The
parameterization given by Egs. (28)-(30) is shown in Figure 1.

Sin,mx=Sinpit
D Dvs + Sln,plt' Dvs < Dvs,flwr

vs, flw

Sin =

Sinmatu=Sinmx
————== D, — 1y + §, Dy,s =D
1=Dys r1 (Pvs ) + Sinmatw Dvs 2 Dys piws

(28)

where S matus> Stnnxs a0d Sy i are Sy, at maturity, maximum S, and Sy, at planting, respectively (Table 1). Sy, e and
Sinmatu are empirically parameterized as functions of Ny, as follows:

S _ —0.00001 Nyere® + 0.0064 Npopp + 0.6891, Npppp < 240, 29)
tnmx = 1.75, Nyere > 240.
_ 0.001 Nyeye + 0.57, Npere < 240,
Sln,matu - { 1’ Nfert > 240. (30)
We set fixed values of 1.75 for Sy, , and 1.0 for Sy, nary When Np,e exceeds 240 [kg ha''], as Sy, mx and Spy magy exhibit

minimal increases beyond this threshold.
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Figure 1. Relationship between developmental stage (D,,¢) and specific leaf nitrogen (S,) in MATCRO-Maize. Shapes show observational
data from Muchow (1988) with the 5 types of Nyy,: 0 kg ha! (square), 60 kg ha™! (cycle), 120 kg ha™! (triangle), 240 kg ha! (diamond), and
420 kg ha! (inverted triangle). The red lines represent the fitted line parameters used in MATCRO-Maize, while the dashed line represents
Dy at flowering (D).

2.2.3 Crop growth

Glucose partitioning
MATCRO calculates crop growth by partitioning net carbon assimilation (4,) in the form of glucose, which is calculated in
the photosynthesis module (Section 2.1). Partitioned glucose is supplied through photosynthesis in leaves and remobilization

from the stem. The ratio of glucose partition to each organ (leaf, stem, root, and storage organ; ear) depends on D,;. The term

CFormatted: Font color: Text 1, English (US)
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with approximately 83% of ear at maturity in this study (see Section 2.2.5), The dry matter for each organ is obtained from the -
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partitioned glucose considering the carbon fraction for each organ (Cyiyear> Cymiear> Cguurot> Cguusem in Table 1). We

«£alibrated the partitioning ratio to leafand ear based on the observational biomass data from Ciampitti et al. (2013a, b), whereas

the ratio to shoots/roots was derived from the value from Penning de Vries et al. (1989). The stem partitioning was determined

by reducing the shoot ratio with respect to the leaf and ear. Figure 2 shows the partition ratio to the leaf (P,. ) and ear (P, cqr)

established via the following equations:

Plefv Dvs < Dvs,leflr
Plef(Dyslef2—Dys)

P, = Dys <D 31
rlef Dysef2-Dvsief1 » Pus vs,lef2 ( )
0, otherwise,
0, Dys < Dvs,eunr
_ Dys—Dys,ear1 D. D,
Pr,ear - » Pus < vs,lef2r (32)

Dys,ear2—Dvs,ear1
1, otherwise,

where Dyger15 Dys,ief2s Duseart @nd Dyg eqrp Tepresent the Dy at which the corresponding partition changes, as determined in

Table 1 based on Figure 2, and where Py is the ratio of glucose partitioned to glucose to the leaf from glucose partitioned to

the shoot.
(a) Leaves/Shoot (b) Ear/Shoot

= 8]
c c
S w© S
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Figure 2. The ratio of glucose partitioning to leaves (a) and ears (b). Points show the ratio of glucose partition with different Nep: 0 kg ha”
! (square), 112 kg ha! (cycle), and 224 kg ha'! (triangle) measured in Ciampitti et al. (2013a, b). The red lines in Figure 2 show the fitted
line parameters used in MATCRO-Maize, while the dashed line represents D, at flowering (Dys fiw)-

Specific leaf weight
The specific leaf weight (S,,,) is used to calculate the total leaf area index (L) in MATCRO. It is a function of D¢ and is given
by:
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Slw = Slw,mx + (Slw,mn - Slw,mx)exp (_kslevs) (33)
where Sy, mns Siw,mx» and Kg,, are crop-specific parameters derived from the observational data expressed in Table 1. We
conducted curve fitting to S;,, calculated from the dry weight of the leaf biomass and the leaf area index based on Ciampitti et

al. (2013a, b) and established a relationship (Figure 3).

o
=
3
o
- o4
TR
©
< L/
j=d a
-
=gl 5 o
5t #3
o
H =}
® o o
O o4
23
o
‘o
2
@ 84
<
o
=
3
0.00 025 050 0.75 1.00
DVs

Figure 3. Relationships between specific leaf weights and developmental stages. Similar to Fig. 2.
2.2.4 Crop height

Crop height (Hy,) is related to the calculation of evaporation in MATCRO. It assumes that the dependence of the crop height
on D, is based on Penning de Vries et al. (1989) and is given by

H haaDvs/Dvs,flw' Dvs < Dus,flw

= 34
gt { hau: Dvs = Dus,flw ( )

where h, is the crop height at flowering, as shown in Table 1.
2.2.5 Crop yield

MATCRO calculates the final crop yield, Y;4, from the dry weight of the storage organ at maturity (W,qy ) as follows:
Yig = kyldWear,mt~ (33

Here, k4 is the crop-specific parameter (Table 1), which represents the ratio of ¥4 to Wiy ¢ The dry weight of the ear is a

consistent predictor of the plant’s potential yield at maturity. We parameterized K,,4 based on Ciampitti et al. (2013b).

Table 1. Parameters in MATCRO-Maize

Variable Value Units Description Source «

(Formatted Table

Crop-specific (maize)

b 0.04 mol (H20) m? s intercept of the Ball-Berry model Sellers et al., (1996)
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Variable Value Units Description Source « (Formatted Table
Cotuear 0.815 ratio conversion factor of dry weight from glucose to ear Penning de Vries et al., (1989)
Cotutear 0.871 ratio conversion factor of dry weight from glucose to leaf Penning de Vries et al., (1989)
Coturot 0.857 ratio conversion factor of dry weight from glucose to root Penning de Vries et al., (1989)
Cotustm 0.810 ratio conversion factor of dry weight from glucose to stem Penning de Vries et al., (1989)
Dysrorr 0.35 ratio Ist point of Dsat which the partition pattern to root changes Penning de Vries et al., (1989)
Crop-specific (maize)
Dys otz 0.72 ratio 2nd point of D, at which the partition pattern to root changes Penning de Vries et al., (1989)
Dys eart 0.37 ratio Ist point of D,,¢ at which the partition pattern to ear changes Parameterized in this study
Dysearz 0.6 ratio 2nd point of D, at which the partition pattern to ear changes Parameterized in this study
Dis fiw 0.52 ratio D,s at flowering Parameterized in this study
Dysier1 0.25 ratio 1st point of D, at which the partition pattern to leaf changes Parameterized in this study
Dysier2 0.48 ratio 2nd point of D, at which the partition pattern to leaf changes Parameterized in this study
fste 0.35 ratio fraction of glucose allocated to starch reserves Penning de Vries et al., (1989)
Raa 2 m crop height at flowering Penning de Vries et al., (1989)
kya 0.83 ratio ratio of crop yield to dry weight of ear at maturity Parameterized in this study
ksiw 3 ratio parameter that represents the relationship between Sy, andD, Parameterized in this study
m 4 ratio the slope of the Ball-Berry model Sellers et al., (1996)
Gagm - K day growing degree day at maturity Parameterized in this study
Piey 0.49 ratio partition ratio of glucose to leaf from glucose partitioned to the shoot ~ Parameterized in this study
Prot 0.25 ratio partition ratio of glucose to root Penning de Vries et al., (1989)
Tavter 3.0x107 st ratio of dead leaf at harvest Masutomi et al., (2016)
Tt 0.06 ms! growth ratio of root Penning de Vries et al., (1989)
Sinpit 0.825 gm? specific leaf nitrogen at planting Parameterized in this study
Stnanx See Eq. (29) gm? maximum specific leaf nitrogen Parameterized in this study
Stnmatu See Eq. (30) gm? specific leaf nitrogen at maturity Parameterized in this study
Swwmn 400 kg ha! minimum specific leaf weight Parameterized in this study
Swwmx kgha! maximum specific leaf weight Parameterized in this study
T, +C P for devel Osborne et al., (2015) (,. leted: 281.75
Th ¥C maximum temperature for development Osborne et al., (2015) (Deleted: K
T, vC optimal e for develoj Osborne et al., (2015) oy
_ _ . (" leted: 315.15
Zrpmx m maximum root depth Penning de Vries et al., (1989) <« " - "
a 0.05 mol mol! quantum efficiency Sellers et al., (1996) . (l‘ K
Bej 0.8 ratio GPP transition factor Lawrence et al., (2020) (Deleted: 303.15
Others ; ‘CDeIeted: K
ky 0.3 ratio vertical distribution of nitrogen Oleson et al., (2013) (Formatted Table
Sy 0.3 K! temperature dependence of Viypax x Lawrence et al., (2020)
S, 313.15 K temperature dependence of Vopayx Lawrence et al., (2020)
S3 0.2 K! temperature dependence of Vonqyxx Lawrence et al., (2020)
Ss 288.15 K temperature dependence of Viypax x Lawrence et al., (2020)
Biw 0.95 ratio GPP transition factor Lawrence et al., (2020)
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2.3 Model gvaluation (Deleted: validation )
MATCRO can run the simulation both at a point scale and at a global scale. The developed model was gvaluated both at a CDeIeted: validated )
point scale and at a global scale. For point scale Jevels, the jwo model output datasets, LAI and total aboveground were (l‘ leted: validation )
compared with the observation data from the four sites. Meanwhile, we use vield data for gvaluation. After confirming the : : (Deleted: three )
ability of the model to simulate maize growth, two types of gvaluations were conducted at the global scale. First, the simulated - (Deleted: > )
. ( Deleted: bi , and yield,
yields at the grid cell were compared with the gridded yield data of the Global Dataset of Historical Yields (GDHY) (lizumi, ED o~ ":_";“_S aove %
", eleted: validation
and Sakai, 2020), Second, the simulated yields at the country and total global levels were compared with the country yield K (Delete d: validations )
report and global data from the Food and Agriculture Organization (FAOSTAT, 2024). To quantify the model performance, CDeIeted: 12019) )
four statistical values were used in this study: the Pearson correlation coefficient (COR), root mean square error (RMSE), CDeIeted: . )
relative root mean square error (RRMSE) and normalized mean absolute error (NMAE). RRMSE and NMAE were calculated
as follows:
1
RMSE = \/;Z?:l()’i - )"i)Z, (36)
RRMSE = 2%, G7
1 =i
NMAE = ;zhﬂ%‘, (38)
where y; is the actual value, ¥; is the predicted value, and Y is the mean of the actual value.
2.3.1 Model gvaluation at a point scale CDeIeted: validation
To gvaluate the model performance at a field scale, we used observational data from four sites (Brazil, France, Tanzania, and (l‘ leted: validate )
the USA; Table 2) used in the Agricultural Model Intercomparison and Improvement Project (AgMIP) study (Bassu et al., (Deleted: accuracy )

2014). We used local daily climate data of precipitation, downwards shortwave radiation, air temperature, wind speed (P,
Rs, Ty, U respectively), management data (N, and irrigation regime) and phenological data (planting, flowering, and

maturity dates) for model input data at each site. We identified the soil texture, from the gridded soil texture dataset of [ISIMIP

(st

There was no information on

(Volkholz and Miiller, 2020). Annual CO2 data were also taken from the same data used for the global simulation. Climatic . CDeIeted: classification of )
data were estimated from the NASA Modern Era Retrospective-Analysis for Research and Applications (AgMERRA; Ruane, : (Deleted: » 30 we extracted one grid )
. Deleted: from the same data used for the global simulation (Section
et al., 2015) when measured data were unavailable (Bassu et al., 2014). 232)....
(Deleted: MERRA; Ricnecker )
Table 2. Evaluation site information in the point-scale simulation CDeIEted: 2011 )
C" leted: Validation )
. 3 . . . . Total N fertilizer L.
Country Site Latitude  Longitude Soil type Sowing date Hybrid kg N har'] Irrigatien (Formatted Table )
Brazil Rio Verde 17.52°S 51.43°W Geri-Gibbsic Ferralsol Oct. 22" 2003 Pioneer 30K75 0 No
France Lusignan 46.25°N  00.07°E Cambisol Apr. 261996  Furio 255 Yes
Tanzania ~ Morogoro 06.50°S 37.39°E Haplic Arenosol Oct. 26" 2009 TMV1 61 Yes
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355

360

365

370 Simulation settings

USA Towa 42.01°N  93.45°W Gleysols May 42010 Golden Harvest GH-9014 167 No

Notably, air pressure (P;) and specific humidity (Sj,) were not provided. We used the same data as the global simulation

for the soil classification and P;. S, was converted from Rjusing T, and the vapour pressure. We parameterized Ggq ., and

Dy 1w based on T, and phenological data (sowing, flowering, and maturity dates). G4q4m calibrated for each site is used for (Deleted: parameterized
the simulations, while the average Dy f;,, over the 4 sites is used (0.52 in Table 1). As a result, the mean average errors were

estimated as 4.25 and 7 days for flowering and maturity, respectively (Figure 4). MATCRO was run with these parameters,

and then the model output was evaluafed with the observations for the following 3 variables: seasonal change in the LAI, total - (Deleted: valida

aboveground biomass, and final yield.

Model calibration was conducted based on phenological data (Table 2, Bassu et al., 2014) and biomass data for carbon

partitioning of leaf and ear derived from Ciampitti et al. (2013a, b). In this study, a global parameter from the literature was

od parameters in the simulations. . (Deleted: ion

across all regions at the grid-cell level instead of using site-specific calibra

applied uniforml

The model was then assessed at the point scale to check the calibration for phenology (flowering and maturity) and was

evaluated against time-series data of LAI, aboveground biomass, and harvested yield (see Section 3.1) that were not included

in the model calibration.

24 ;
o
Phendiogy
§ _ @ Flowering
— Maturity
= @ Maturity
o] Gountry
= y O Brazil
% . (] France
§ J <> Tanzania
A /\UsA
i
A
84 .
180 270 360 450
OBS.[DOY]
Figure 4. Model-fit comparison of the flowering and maturity date simulations (SIM on the y-axis) and observations (OBS on the x-axis). (l‘ leted: Comparison

DOY represents the number of days from January 1%. Shapes show each site: Brazil (square), France (circle), Tanzania (triangle), and the
USA (diamond). The colours indicate the phenological stages: flowering (red) and maturity (blue).

2.3.2 Model gvaluation at a global scale (Deleted

) (Deleted: validation

N AN
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For the global-scale simulation, the model was run at a spatial resolution of 0.5° x 0.5° from 1980-2010 under both rainfed
and irrigated conditions. The required input data were as follows. (i) Crop calendar data were from the Global Gridded Crop
Model Intercomparison (GGCMI) phase 3 protocol (Jagermeyr et al., 2021). It provides planting and maturity dates for 18
different crops, including maize, separated by rainfed and irrigated systems. We parameterized the average Guq,, at each grid
over the period 1980-2010 for the growing season from the planting to maturity dates for each of the rainfed and irrigated
conditions. Both the planting date and the simulated G 44 ,, Were used as the input data for the global-scale simulations. (ii)
Water management data (i.e., irrigation regime) from the MIRCA2000 dataset (Portmann et al., 2010). In the case of irrigated
conditions, the soil moisture was set to field capacity during the growing season. (iii) Nf,,. from the Inter-Sectoral Impact
Model Intercomparison Project (ISIMIP; Volkholz and Ostberg, 2022). It provides the annual nitrogen fertilizer inputs for five
canonical crop types, including C4 annual crops for maize. (iv) Soil texture classification from ISIMIP3a protocol soil input
data (Volkholz and Miiller, 2020). (v) Annual atmospheric CO2 data from the ISIMIP3a (Biichner and Reyer, 2022). (vi) Six
types of daily meteorological for model inputs (P, P, Sh, Tnax> Tmin»> Ta» U) from the GSWP3-WS5ES dataset for the
ISIMIP3a dataset (Lange et al., 2022). We set the data from (i), (ii), and (iv) as constants across the simulation period, whereas

the data from (iii), (v), and (vi) are variables.

Analysis

MATCRO-Maize was assessed for the phenological simulation of harvest time against the phenological dataset GGCMI

(Jagermeyr et al., 2021) and global datasets of crop phenological events for agricultural and earth system modeling which was

derived from various field experiments and a phenology model (GCPE; Mori et al., 2023). These datasets were compared

under both rainfed and irrigated conditions in 0.5° x 0.5° resolution to check the model performance. The simulated final yields

in each grid cell under irrigated and rainfed conditions_then were aggregated by grid cell, country and global level with the
harvested area from MIRCA2000 data (Portmann et al., 2010) via the following equation for each year from 1981-2010:

Z?:l(”emi,rf xAreai’rf)+ZEl:1 (YieldyjrrXAreair)

E{Lzl(Areai,rerAreai,irr)

Yiezdaggregated = (39)

where Yield,ggregatea 18 the aggregated yield with the total grid cells (n) in grid cell i. Yield,; and Yield,,, are the simulated
yields under rainfed and irrigated conditions, respectively, and Area,; and Area;,, are the harvested areas from MIRCA2000
for rainfed and irrigated conditions, respectively.

The model performance was evaluated by comparing its output with the historical yield dataset. The grid cell-level yield
was averaged across a 30-year period and compared with the Global Dataset of Historical Yields (GDHY) (lizumi,and Sakai,
2020), 290year period of GlobalCropYield (GCY, Cao et al., 2025), and the Spatial Production Allocation Model by (SPAM;
IFPRI, 2019) at year 2010, The country- and global-level yields were compared with FAOSTAT data (FAOSTAT, 2024) for

the average and annual variabilities over the 30 years. In the comparison at the country level, we focus on the top 20 maize-

producing countries that account for more than 85% of total maize production.
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We focused on two perspectives for gvaluation: (i) the ability of the model to capture the spatial distribution of yield in

both low- and high-producing countries and (ii) the ability of the model to reproduce the climatic effect reflected in the
interannual variability at the country and global scales. The first perspective was analysed using NMAE to quantify model
error for both the global yield and the yield of the top 20 producing countries. The 30-year average yields were also compared
on the basis of the statistics of COR, RMSE, and RRMSE to confirm the accuracy. The second perspective was analysed via
the COR of the detrended deviation between the simulated and FAOSTAT yields to assess the interannual variability.

3 Results

3.1 Point-scale simulations

A comparison of the time series changes in the LAI at each experimental site is shown in Figure 5. In general, MATCRO-+
Maize captured the increasing trend towards flowering time and then decreasing trend towards the end of maturity. Especially
during the vegetative stage (Dys < Dy fyy: 0.52), the simulated LAI showed relatively good agreement. However, the
simulated LAI was notably underestimated in Brazil and France immediately before the reproductive stage (near the dashed

black line in Fig. 5) Figure 6 compares the time series of total aboveground biomass between the simulated and experimental

data. Except for Tanzania, MATCRO-Maize accurately estimated the increasing trend of total aboveground biomass towards
maturity, although the simulated biomass in Brazil was underestimated at maturity. The simulated total aboveground biomass
in Tanzania increased until maturity, while the observations gradually decreased towards maturity time (Fig. 6 (c)).

Figure 7 compares the 1:1 line between the simulated and experimental data for the seasonal LAI (Fig. 7 (a)), seasonal
total aboveground biomass (Fig. 7 (b)), and harvested yield (Fig. 7 (c)). The LAI underestimation in France and Brazil (Fig.
5) could also be seen with a large RMSE, which is approximately 50% of the average LAI across all observational values at 3
sites except for Tanzania, although overall, the comparison was statistically significant (p value < 0.01), with a COR of 0.762.
The comparison of total aboveground biomass was statistically significant (p value < 0.001), with a COR of 0.895, although
the RMSE was 3,628.3 [kg ha'], which corresponds to approximately 35% of the average of all observed total aboveground
biomass. While the comparison of the final crop yield was statistically significant (p value < 0.01), there was a relatively low
COR compared with the LAI and total aboveground biomass due to the small sample size (N=4) and the overestimation for
Tanzania. The RMSE was 2,575.0 [kg ha''], which is approximately 30% of the average observational yield at all the sites. It

is noted that Figures 5 — 7 present the model evaluation using independent data. Evaluation was performed using a global

parameter from the literature to simulate the plant organs in the global-scale simulation, which may have resulted in, some

deviations.
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Moved down [1]: The effects of photosynthesis and N fertilizer
In addition to the yield comparison, we analysed the effect of
nitrogen fertilizer (Nf,¢) on maize yield, as it is a key determinant of
crop yield. This analysis compared both FAOSTAT data and

simulated data from N, for a 30-year average with simple linear
regression. We also conducted two tests to quantify the effects of the
Npere-related function and parameters as follows: (i) Eq. (27) during
the vegetative stage is derived from Drouet and Bonhomme (2004),
defined as “test Sy,-Vomay s Was changed to:
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(a) Brazil (b) France

T .

(c) Tanzania (d) USA

LAI

0.00 0.25 0.50 0.75 1.00
DVS

Figure 5. Temporal evaluation of leaf area index (LAI) simulated by MATCRO-Maize (red line) at each site: (a) Brazil, (b) France, (c)
460 Tanzania and (d) the USA across the developmental stage (D). The observation data in each site is shown by black point. Notably, there
were no observational data in Tanzania. The error bars were provided only for Brazil. The dashed black line shows the flowering time.
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Figure 6. Temporal evaluation of total aboveground biomass (AGB) simulated by MATCRO-Maize (red line) at each site: (a) Brazil, (b)
465  France, (c) Tanzania and (d) the USA across the developmental stage (D). The observation data in each site is shown by black point. The
error bars were only provided for Brazil and Tanzania. The dashed black line shows the flowering time.
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Figure 7. Statistical comparison (COR, RMSE, and RRMSE) of ynaize yield. The x-axis (OBS) represents the observational data, and the

y-axis (SIM.) is the simulated data. Shapes show each site: Brazil (square), France (circle), Tanzania (triangle), and the USA (diamond).
Notably, there was no observed LAI in Tanzania. The symbols ***, ** indicate p values < 0.001 and 0.01, respectively.

3.2 Global-scale simulations

3.2.1 Phenology

The timing of seasonal biological events (i.e. harvest time) has a significant impact on crop growth and yield outcomes. Global

yield is affected by global phenology. We assessed agreement to check the model performance by comparing the difference

between simulated global harvest time (1981-2010 mean) with gridded global dataset of phenological datasets of GGCMI

(Jagermeyr et al., 2021; Figs. 8(a and b)), and GCPE (Mori et al., 2023; Figs. 8(c and d)). The maps show consistent spatial

patterns for later harvest time between the simulation and the reference datasets, in parts of Brazil, USA, southern and central

Africa. The discrepancies between dataset are likely produced due to the difference in phenology parameterization and

management assumptions where GGCMI and GCPE used different methodology and data sources. Moreover, the use of the

growing degree day method in the simulations led to year-to-year differences in harvest time compared with the reference crop

calendar used for the input data (Figs. 8(a and b)). The mean absolute differences in harvest time (Figs. 8(e and f)) indicated

that the largest biases occur mostly in tropical regions.
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Figure 8. The difference between simulated harvest time (days) in MATCRO-Maize simulations with (a) GGCMI in the rainfed, and (b,
irrigated conditions, (¢) GCPE in the irrigated, and (d) rainfed conditions. Blue indicates underestimation, while red indicates overestimation
between simulation and references. Panels (e),and (f) show the mean of absolute differences (days) under the rainfed (a, ¢) and irrigated (b.
d) comparisons, respectively.

3.2.2 Yield

A comparison of the global distributions is shown in Figure 9 (simulation: Fig. 9(a); observation dataset: Figs. 9(b, ¢, and d)).

All datasets were harmonized to a 0.5° x 0.5° resolution, including simulated yield from MATCRO-Maize (Fig. 9(a)), the
Global Dataset of Historical Yield (GDHY'; lizumi and Sakai, 2020; Fig. 9(b)), GlobalCropYield (GCY; Cao et al., 2025; Fig.

19
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9(c)), and the Spatial Production Allocation Model by (SPAM; IFPRI, 2019; Fig. 9(d)). The data were averaged over 1981—

2014 for GDHY, 1982-2014 for GlobalCropYield, and for the year 2010 for SPAM. While the overestimation could be seen

mainly in tropical regions, the simulated yield could capture high-yielding regions, including the Corn Belt in the United States

and the northern part of China, in agreement with the reference datasets.

Temporal changes in the global yield across 30 years indicated that although the global yield had an NMAE of 0.67,«

indicating a simulation error of 67% with respect to the average FAO yield, the comparison of the interannual variability

between the simulations and observations was statistically significant (p value < 0.01), with a COR of 0.549 (Figure 1 0). For

the top 20 producing countries, MATCRO-Maize also tended to overestimate the yield in terms of the annual yield (Figure | 1)

and the average yield over a 30-year period (Figure /2). The overestimation was strong in Egypt, where the simulated yield

was approximately four times greater across 30 years. In terms of interannual variability, half of the 20 countries were

statistically significant, with p values < 0.001 for 6 countries, < 0.01 for 2 countries, and < 0.05 for 2 countries (Fig. 1 1). The

30-year average comparison was also statistically significant (p value < 0.01), with a COR of 0.58, although the RMSE was

v

510 4,007.7 [kg ha'], which is almost the same as the average yield of the top 20 maize-producing countries (Fig.l2).
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520  Figure 9. Global distribution of the 30-year average (1981-2010) maize yield by (a) simulations from the MATCRO-Maize and (b) the

GDHY dataset. For comparison, yield estimates from shorter periods are also shown from (¢) GlobalCropYield for 29-year average (1982-
2014) and (d) SPAM2010 for year 2010. The yield is aggregated based on the harvested area from MIRCA2000.
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Figure 10, Interannual variability in global maize yield from 1981 to 2010 for our simulation (red circles) and FAOSTAT (black) yields.«.

525  COR represents the correlation coefficient of interannual variability. NMAE means normalized mean absolute error. Asterisks ** indicate p

value < 0.01.
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Figure 2. Accuracy of the 30-year average of the simulated yield (SIM) to the observed yield (OBS from FAOSTAT data) for the top 20

countries. Notably, the Egypt data points are not shown as exceeding the range of the y-axis. Asterisks ** indicate a p value < 0.01.

3.3 The effects of photosynthesis an fertilizer, -
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In addition to the yield comparison, we analysed the effect of nitrogen fertilizer (Nf,,.) on maize yield, as it is a key determinant

of crop yield. It compared both FAOSTAT data and simulated data from Ny, for a 30-year average using a fitted polynomial

curve (quadratic polynomial regression). We also conducted two tests to quantify the effects of the Nfert—related function and

parameters as follows: (i) Eq. (27) during the vegetative stage is derived from Drouet and Bonhomme (2004), defined as “test

Sin-Vemax . Was changed to:

2
1+exp|—2.45a=(5m—0.27)‘

chax(o) =368+ { 1}1 Dvs < Dvs,flw (40)

and (ii) S, c_from 0.825 (Table 1) to 0.5 (defined as “test Sy, ;).

Figure 13 illustrates the comparison of country-level yield data with nitrogen fertilizer levels: (a) FAOSTAT data, (b)

simulated yield by MATCRO-Maize, (c) the impact of reduced Rubisco activity on photosynthetic rates based on experimental

data from Drouet and Bonhomme (2004) in the “test SIn-Vcmax™ scenario, and (d) the effect of reduced photosynthetic rates

due to lower initial specific leaf nitrogen at planting time in the “test Sln.plt” scenario. The nitrogen fertilizer values were

derived from gridded dataset (ISIMIP; Volkholz and Ostberg, 2022).

Figures |3 (a) and (b) show the comparisons based on Ng,,, for each FAOSTAT and simulated yield, respectively.
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Figure 3. N, impact on yield of (a) FAOSTAT, (b) simulated yield with the original setting (Default), (c) simulated yield with the<,
changed Sy,,-V cnax relationship (test Sln-Vemax), (d) simulated yield with the changed parameter related to the D,,¢-S};, function (test Sln,
plt). Nere (N fertilizer) and country yield were averaged across 30 years for each country. The legends for symbols are the same as those in
Fig. 11. The solid lines are fitted curve for the data. while the dashed lines in (b), (c), and (d) indicate fitted curve based on the data in (a).
All lines were fitted using a quadratic polynomial regression,

4 Discussion

4.1 Point-scale simulations

The point-scale simulations were evaluated using global parameters to assess their ability to capture broad yield patterns across

different regions. The simulated harvested yield showed statistically significant correlations at the point scale (Fig. 7),

indicating that the MATCRO-Maize model could simulate maize growth and yield, but its performance was limited at the

point-scale. However, there were some discrepancies between the simulations and observations remain due to the limitations |

|
of using global parameters, such as the underestimation of the LAI in Brazil and France, the underestimation of the total |

aboveground biomass in Brazil, and the different growth trends of the total aboveground biomass in Tanzania. The

underestimation of LAI is primarily due to the use of global morphological parameters at the site scale. Further investigation

will improve site-specific performance by coupling LAI to key soil properties (soil organic carbon, total nitrogen, and water-

holding capacity) and by incorporating canopy cover fraction following Hasegawa et al. (2008). Global parameters at the point

scale enable testing the model's applicability across various regions, although local variations in soil, climate, or crop
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management may not be fully captured. The MATCRO-Maize model could simulate maize growth and yield, but its

performance was limited at the point scale.

DOne potential factor contributing to the underestimation of the LAI in France might be related to the effect of plant density,

which is not currently considered in MATCRO. The actual plant density [plants m?] at each site was 9.5 (France), 7.5 (USA),
6.6 (Brazil), and 9.5 (Tanzania) (Bassu et al., 2014). Some studies have shown that LAI trends are affected primarily by the
plant density factor relative to Ny, and hybrids (Boomsma et al., 2009; Ciampitti et al., 2013a; Ciampitti and Vyn, 2011).
This may be the reason for the underestimation that MATCRO could not reproduce the trends driven by plant density, although
other important factors (e.g., management practices, climatic conditions), which are quite different from each site in the
literature, would also affect crop growth variables, including the LAL

Both the underestimation of the LAI and total aboveground biomass in Brazil were probably caused by the field
experimental conditions of Ng.,.. = 0, given its effect on crop growth in MATCRO. The reason for the lack of fertilization in
the field experiment was that sufficient N was released by organic matter mineralization (Bassu et al., 2014), which was not
considered in the model. Moreover, Ny, directly affects S;,, in MATCRO, with an increasing trend towards flowering and
then a decreasing trend towards maturity (Fig. 1). S, is related to V,,4x25(0), which in turn affects the photosynthesis
calculation (Section 2.1 and Section 2.2.2). In particular, during the reproductive stage, we used Eq. (27), which results in a
1oW Vpnax25(0) under low S;,, due to the more gradual slope of the curve compared with the vegetative stage (1.41 for the
reproductive stage, and 2.9 for the vegetative stage, in Eq. (27)), indirectly leading to low biomass accumulation through
photosynthesis. This could be attributed to the underestimation of total aboveground biomass at maturity (Fig. 6 (a)). For
underestimation of the LAI, low leaf biomass accumulation, which is derived from the same mechanism, would be the reason
considering the calculation process of the LAI in MATCRO. The LAT is determined by the division of the leaf biomass weight
by S,,,, which depends on D,,;. Because S, is calculated from the same parameter at all sites (Eq. (33) and Fig. 3), leaf weight
is the factor that causes differences between sites, leading to the underestimation of the LAI in Brazil. Therefore, the condition
of Nfere = 0 might be the reason for both underestimations.

One possible reason for the difference in the growth trend of biomass in Tanzania might be related to growing season
length. The cultivar used in Tanzania was a short season type with 99 days of observed growing season length, whereas the
cultivars at other sites were medium or long season type with lengths ranging from 122 to 173 days (Bassu et al., 2014).
Capristo et al. (2007) reported that, compared with medium- and long-season cultivars, short-season cultivars presented the
lowest biomass accumulation from flowering to maturity, which was reflected in the observed biomass (Fig. 6 (c)). This might
indicate that the trend of biomass accumulation differs across growing season types, although other factors, such as climatic
conditions or biotic stresses, could also affect accumulation. While MATCRO considers the growing season length as Ggq .,
to judge the harvesting time, this does not mean that MATCRO could capture the difference in trends due to growing season

types, possibly leading to the gap between the simulations and observations shown in Tanzania.
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4.2 Global-scale simulations

A comparison of the global distribution of maize yield revealed that MATCRO-Maize could capture the distribution of high-

yield regions but could not capture the yield in tropical regions (Figures 8 and 9). Similar overestimations in tropical regions

have also been reported in other global models, possibly because of the lack of representation of extreme weather or crop pests

(Lombardozzi et al., 2020; Osborne et al., 2015)._ Moreover, soil fertility also an important source of model error and

contributes to spatial variation.

Notably, MATCRO-Maize tended to overestimate the absolute values for both the total global yield and the yields of the
top 20 countries, as reflected in the NMAE and RMSE values (Figures 10, 11, and 12). The simulated total global yield is

(Deleted: Figure

determined mainly by the yield of the top 3 maize-producing countries, the United States, China, and Brazil, which have large
cultivated areas (Table 3). All three countries’ yields were overestimated, where the simulated yields were approximately 1.2,
1.7, and 1.8 times greater for the 30-year averages in the United States, China, and Brazil, respectively, leading to
overestimation of the total global yield. Such overestimations in the main producing countries, especially in China and Brazil,
are also observed in other global crop models (Von Bloh et al., 2018; Osborne et al., 2015; Schaphoff et al., 2018). This might
indicate that there are factors that are important for determining yields but are not considered in most crop models.

For the top 20 producing countries, the overestimation was strong in Egypt, with an approximately fourfold greater
simulated yield than that of FAOSTAT. This overestimation might be caused by the irrigated conditions in all grids in Egypt.
Under manually changed rainfed conditions, crop growth in Egypt in the model was almost not simulated because of the
inhibited photosynthesis rate caused by strong water stress. Under irrigated conditions, this strong water stress was alleviated.
In addition, the radiation in Egypt was consistently strong throughout the growing period, and Ny, was highest among the
top 20 countries across the 30 years simulated, increasing from approximately 180 kg ha™! in 1980 to 360 kg ha™! in 2010. This
caused the colimited photosynthesis rate to be high (Eq. (4)) across the growing seasons, leading to marked overestimation.

The current version of MATCRO-Maize can reproduce yield responses to nitrogen fertilization across a range of fertilizer

levels, but it tends to overestimate yields under certain conditions (e.g., Egypt) likely because the model assumes higher

nitrogen use efficiency and idealized irrigation conditions where actual yields are constrained by soil quality, management,

and local cultivar traits that are not explicitly represented. This suggests that the representation of nitrogen effects in the model

remains simplified, and further refinement is needed for region-specific scale simulation.

Although the simulated yield has the large error in terms of the absolute value, the comparison of the 30-year average yield
was statistically significant, with a COR of 0.58 (p value < 0.01) and an RMSE of 4,008 kg ha! (Fig.,12), showing the ability
to capture the spatial distribution of the yield both in low- and high-producing countries from the first perspective of the
comparison (Section 2.3.2). This result was comparable with the similar result of another model: LPJ-GUESS (Olin et al.,
2015), with a COR of 0.46 and an RMSE of 4,300 kg ha! (Table 4), although the targeted countries were different (top 20
producing countries for MATCRO-Maize, whole countries for LPJ-GUESS).
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In terms of interannual variability from the second perspective, the total global yield and approximately one-third of the

top 20 producing countries were statistically significant, with p values < 0.01 (Figs. 10 and 1), indicating that MATCRO-

Maize could reproduce the climatic effect globally to some extent. This might also be supported by the similar comparisons of
other global crop models in terms of statistics (Table 4), although it is difficult to simply compare the statistical values between
the models owing to the differences in periods, input data, and methods for detrending and aggregating the yield. The COR of
interannual variability for total global yield in MATCRO-Maize was in the range of those of the other models (0.55; 0.42~0.89,
respectively). For the top 20 countries, almost all the COR values also ranged between those of the other models. Therefore,
these comparisons from two perspectives might indicate that MATCRO-Maize could yield reasonable results. The moderate

correlations observed reflect the typical influence of yield data variability and uncertainty in management practices across

regions.

Table 3. Maize cultivated land area for 20 major producer countries from MIRCA2000 (Portmann et al., 2010).

Country Total area [ha] Rainfed area [ha] Irrigated area [ha] «
Argentina 3,248,715.9 3,147,580.7 101,135.3
Brazil 11,223,262.5 11,120,154.9 103,107.6
Canada 1,364,585.3 1,328,206.2 36,379.1
China 24,376,805.2 11,615,190.0 12,761,615.2
Egypt 827,766.1 0.0 827,766.1
Ethiopia 1,172,231.1 1,084,795.6 87,4355
France 3,128,401.0 2,257,380.0 871,021.0
Hungary 1,057,610.7 1,052,622.6 4,988.1
India 6,294,770.9 4,833,685.9 1,461,085.0
Indonesia 3,479,825.7 3,135,443.9 344,381.8
Italy 1,322,692.9 534,281.4 788,411.5
Mexico 7,459,039.5 5,852,617.4 1,606,422.1
Nigeria 3,686,757.3 3,667,564.5 19,192.8
Philippines 2,590,081.0 2,590,081.0 0.0
Romania 3,139,981.1 3,016,990.5 122,990.6
Russia 4,206,747.0 3,594,403.2 612,343.9
Serbia 1,074,614.2 1,062,985.8 11,628.4
South Africa 3,060,053.5 2,930,208.2 129,845.4
Ukraine 3,382,783.5 3,194,146.2 188,637.3
United States 31,307,667.3 26,508,600.7 4,799,066.7
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Table 4. Statics of model simulation accuracy of the MATCRO-Maize and other crop models. Notably, the asterisks for GGCMI phase I indicate the p values: ***
for p values < 0.001, ** for p values < 0.05, * for p values < 0.1, whereas those of LPJmL4 and MATCRO-Maize indicate the p values: *** for p values < 0.001,
** for p values < 0.01, * for p values < 0.05.

COR of interannual variability «

References Period Global USA China Brazil Mexico  France Argentina
MATCRO-Maize - 1981-2010 0.549™ 0.692""" 0.518™  0.349 0.015 0.654™" 0.694™"
JULES-crop! Osborne et al., 2015 1961-2008 0.48 0.43 0.12 0.12 0.061 0.52 0.57
LPJmL4? Schaphoff et al., 2018 1981-2010 - 0.675"" 0.676™  0.169 -0.124 -0.331 0.717""
LPJmL5? Bloh et al., 2018 1981-2010 - 0.686™" 0.641™™  0.0591 0.0618 0.461" 0.650""
GGCMI phase 3*  Jagermeyr etal., 2021 1981-2015 - 0.817 0.245 0.029 - 0.649 0.727
GGCMI phase 1°  Miiller et al., 2017 1982-2006 0.427°~0.89"™"  0.89 0.75 0.66 0.85 0.87 0.85

COR of interannual variability

References Period Romania South Africa India Italy Hungary Indonesia  Ukraine
MATCRO-Maize - 1981-2010 0.719™* 0.646™" 0.046 0.276 0.900™"  0.252 0.339
JULES-crop! Osborne et al., 2015 1961-2008 0.32 0.41 0.34 0.34 0.33 0.065 -
LPJmL4? Schaphoffet al., 2018 1981-2010 - 07117 -0.22 - - 0.124 -0.046
LPJmL5? Bloh et al., 2018 1981-2010 - 0.667""" 0.496™ - - -0.163 0.152
GGCMI phase 3*  Jigermeyr et al., 2021 1981-2015 - - - - - - -
GGCMI phase 1°  Miiller et al., 2017 1982-2006 0.90 0.91 0.76 0.76 0.90 0.42 0.61

30-year averaged yield

References Period COR RMSE [kg ha']
MATCRO-Maize - 1981-2010 0.580™ 4,008
LPJ-GUESS® Olin et al., 2015 1996-2005 0.46 4,300

! Countries-level comparison was conducted for 12 countries, which were detrended only for observation. p values are not shown.

23 Countries-level comparison was conducted for the top 10 producing countries, which were detrended via a 5-year moving average.

4 Twelve global gridded crop models were used. The COR shown here is the ensembled mean value for the 5 largest producing countries after detrending.
p values are not shown.

5 Fourteen global gridded crop models were used. The COR of the global yield shown here is the minimum and maximum value, except for one nonsignificant
correlation with the default setting. The COR of each country is the best correlation among the 14 models, including 3 different settings with statistical significance
(p values are not shown). For both the global and country-level comparisons, a 5-year moving average was used to remove trends.

© The 10-year average comparisons included all countries. p values are not shown.
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4.3 Model limitations

MATCRO-Maize currently lacks explicit simulation of soil organic carbon and soil nitrogen mineralization. Instead, the effects

of nitrogen supply are represented by describing the relationship between a broad range of nitrogen fertilization levels

(Muchow, 1988) and specific leaf nitrogen (SLN), which subsequently affects photosynthetic capacity (Vemax). While this

simplification allows for global-scale application, it limits the model ability to represent nitrogen balance in maize yield at

specific sites. Yield variations can be influenced by soil organic carbon and nitrogen, which are affected by farming practices

and contribute to soil fertility (Ma et al., 2023). Future development could involve coupling MATCRO with a mechanistic soil

nitrogen and carbon module to dynamic plant nitrogen balance. This would enhance the model ability to capture nitrogen

dynamics under varying soil types and management practices.

The strong Ny, effect shown in the evaluation (the site in Brazil for the point scale) and comparison based on the Ny,

(Figure 13). In the model, Ny, has the direct relationship with S;,, (Eq. (28)) and consequently affects Vpqax25 (0) through

the function S,-Vemaxzs(0) (Eq. (27)). Therefore, the strong Ny, effect is caused by either the former, the latter, or both
processes. Few studies have explicitly shown time series changes in Sy, and S;,-V, 4, relationships from experiments. We
used some of them to establish the functions shown in Egs. (27) and (28) (Section 2.2.2) at this stage, resulting in a strong
Ngey, effect in the model. However, the intentional experiment indicated that the changed relationships could partly reproduce
the adequate effect, which was observed in the FAOSTAT yield. This might mean that the established functions include a
degree of uncertainty, and if we establish robust relationships based on other experimental data under more comprehensive
conditions, it might be possible to improve the model in terms of the Ny, effect, leading to a more accurate simulation of

maize yield. Nitrogen effects are represented indirectly via SLN as a function of fertilizer rate and developmental stage, which

constrains the model ability to capture nitrogen cycling in soils and plants.

In this study, we applied identical parameters to simulate the global yield across all grid cells and throughout the years
without considering cultivar differences. As mentioned in Section 3.1.2, the trend of biomass accumulation would differ across

growing season types. A limitation of the current study is the use of global parameters at the site scale leads to discrepancies

between site-level and country-level simulations. It partly arises from applying global parameters across different

environments. Although MATCRO-Maize shows relatively weak correlations at the site scale due to the use of generalized

parameters that do not account for local varieties and management, the model demonstrates consistent and statistically

significant performance at country and global levels. This indicates that MATCRO-Maize is well suited for capturing large-

scale yield patterns and for application in global gridded crop modeling, while recognizing its limited capacity for precise site-

specific prediction. However, global-scale simulation results tend to overestimate yield due to LAI being directly driven by

carbon balance, which can create feedbacks that produce excessively high LAI. Future improvements should incorporate

constraints on LAI expansion and adjust leaf partitioning when LAI exceeds realistic levels.

Moreover, in major producing countries, such as the United States and China, some studies have shown that there is genetic

gain in terms of maize yield (Cooper et al., 2014; Duvick et al., 2003; Liu et al., 2021). Such cultivar differences and long-
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term genetic improvements are not included in the current MATCRO-Maize. This finding indicates that the generic

parameterization used in the model are simple in accounting for the diversity of crop cultivars (Lombardozzi et al., 2020),

partly leading to a gap between the simulations and observations, which is recognized as a limitation of the global model

(Osborne et al., 2015)_In addition, other important factors that are not considered in the current MATCRO also affect crop

growth and final yield. These factors include biotic stresses (e.g., diseases, pests) and detailed management practices (e.g.,
plant density, as mentioned in Section 4.1). Further improvement to incorporate such factors with reliable Ny, -related
functions could be needed to contribute to more accurate simulations and contribute to studies on the interaction between

climate and agriculture.

5 Conclusions

We developed a process-based crop model for maize yield estimation, called MATCRO-Maize, by incorporating C4 leaf-level
photosynthesis and some crop-specific parameters into MATCRO. The model was first gvaluated at the point scale, showing

a somewhat reasonable accuracy considered with insufficient field-based information for parameterization. The calibrated
parameters were set from point-scale experimental data and used uniformly in the global-scale simulation. MATCRO-Maize
could represent the spatial distribution well and showed reasonable responses to climatic variability, where the results were
comparable with those of other studies in terms of statistics. The strong nitrogen fertilizer effect was one of the MATCRO
limitations, while the established functions related to nitrogen fertilizer in the model have a degree of uncertainty. Further
experimental data under more comprehensive conditions might improve the model. Overall, MATCRO-Maize could contribute
to climate effect studies through its ability to be integrated with the LSM for crop growth and the interactions between climate

and agriculture.

Code and data availability.
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