
Dear RC2, 

We sincerely appreciate the time and effort you dedicated to reviewing our work. Below, we 

provide our detailed responses to your concerns: 

A. Model validation 

“1. It is recommended to use multiple gridded yield datasets to validate global gridded crop models 

(GGCMs) because grid-level yields can vary significantly between datasets, which is a significant 

source of uncertainty when assessing GGCM performance (Müller et al., 2017, Lin et al., 2021). 

Currently, annual gridded yield datasets are available for the globe and major producing countries 

at a 5-arcmin resolution (Su et al., 2022, Cao et al., 2025). In addition to comparing their model 

simulation with the Global Dataset of Historical Yields (GDHY), authors are encouraged to 

account for yield dataset uncertainty by comparing their model simulation with a family of recent 

gridded yield datasets.” 

Reply: Thank you for this helpful suggestion. We agree that relying on a single yield dataset can 

lead to bias evaluation. Hence, we will add the comparison with other datasets as well for figure 

8 and add the explanation “Simulated maize yields and three references in Figure 8 of MATCRO-

Maize, Global Dataset of Historical Yield (GDHY by Iizumi and Sakai, 2019), GlobalCropYield 

(Cao et al., 2025), and Spatial Production Allocation Model (SPAM by IFRI, 2019) were 

harmonized into 0.5° resolution. The value was averaged over 1981–2014 for GDHY, averaged 

over 1982-2014 for GlobalCropYield, and year 2010 for SPAM.”. In addition, we will include 

spatial distribution maps showing the differences between MATCRO-Maize yields and each 

reference dataset to make the comparison clearer in the revised manuscript.  

 

Figure 8. Global distribution of the 30-year average (1981-2010) maize yield by (a) simulations from the MATCRO-Maize and 

(b) the GDHY dataset. For comparison, yield estimates from shorter periods are also shown from (c) GlobalCropYield for 29-year 

average (1982-2014) and (d) SPAM2010 for year 2010. The simulated yield is aggregated based on the harvested area from 

MIRCA2000. 



“2. The validation of crop phenology at the global level is currently lacking. I’m happy to see the 

model validation result at the site level (Fig. 4). However, the data compared are for only four sites 

and one year, which is inadequate for concluding the model performance. Gridded crop phenology 

datasets have recently become available for the globe and some major countries (Luo et al., 2020, 

Yang et al., 2020, Mori et al., 2023). I strongly encourage the authors to compare their simulation 

with these datasets.” 

Reply: Thank you for insightful comments. In this study, we evaluated crop phenology at the point 

scale using a single growing-time dataset. As data availability is still limited for phenology, we 

focused on simulating the yield and relied on the gridded crop calendar from Jägermeyr et al. 

(2021) for planting and harvest dates. In response to your suggestion, we will expand the 

evaluation by comparing simulated phenology with recently available of global dataset of crop 

phenological events (GCPE by Mori et al., 2023) and present discrepancies in the figure for 

simulated harvest time compared with GGCMI and GCPE.  

“3. In relation to Comment#2, in the current form, it is unclear how the model parameter values 

related to crop phenology were determined before the model simulation. The authors state that 

“We used local daily climate data … and phenological data (planting, flowering, and maturity 

dates) for model input data at each site. (Line 276-278)”. Did you calibrate the parameter values 

using the site data and then run the model? If so, this does not constitute model validation because 

no independent data were used for comparison. I would ask the authors to clarify this point and 

rerun the model validation if necessary.” 

Reply: We are truly sorry for the confusion. You are correct, the current figures reflect the same 

data with parameterization which is not independent validation. We will use different term from 

“validation” and replace it with “evaluation”. Figure 4 will be described as an evaluation of 

model fit for phenology (flowering and maturity dates) with caption: ”Figure 4. Model-fit 

comparison of the flowering and maturity date simulations (SIM on the y-axis) and observations 

(OBS on the x-axis).”  

 

B. Modeling 

“1. How did you determine Gdd,m (eq.22; the growing degree days at maturity)? Is this a universal 

value across grid cells worldwide? It is well-documented that Gdd,m varies spatially, with higher 

values in warmer regions and lower values in cooler regions (Deryng et al., 2011, Mori et al., 

2023). I would ask the authors to clarify this.” 

Reply:  Pardon us for the confusion. We use different value of growing degree days in each grid 

cell as noted in Deryng et al,. (2011) and Bouman et al., (2001). We will revise the Eq. 22 with 

adding the subscript of i for each grid cell where i means the grid cell number as stated below: 

𝐷𝑣𝑠,𝑖 =  𝐺𝑑𝑑,𝑖 𝐺𝑑𝑑𝑚,𝑖⁄ ,           (22)  

“2. The leaf area index (LAI) simulated by the MATCRO-Maize model appeared to be lower than 

the site observations (Fig. 5). It is also noticed that the difference in maximum LAI between the 



sites is smaller in the simulation than in the observations (Fig. 5). It leads to the thought that the 

maximum value of the specific leaf nitrogen parameterized with annual nitrogen application rate 

(Nfert) (eq. 29) is rather site-dependent and cannot be applied universally in its current form. This 

does not mean that publishing this preprint is unjustified. However, readers at least want to know 

whether underestimation of the seasonal maximum LAI correlates with environmental conditions, 

such as soil carbon content, soil total nitrogen content, water holding capacity of the soil and so 

on, in order to seek a possible scaling factor to convert specific leaf nitrogen to LAI. The equation 

(8) of Hasegawa et al. (2008) for the fraction of canopy cover may help the authors relate specific 

leaf nitrogen to seasonal maximum LAI (though this equation was developed for rice). If such a 

correlation analysis provides no insight, then calibrating the scaling factor for each country is 

another option, as was done by Ai and Hanasaki (2023).” 

Reply: Thank you for raising this topic. We agree that the simulated LAI is lower and shows less 

variation across sites compared to observations. In Figure 5, we applied the same universal 

parameters (SLW and leaf partitioning) across all sites, as our aim was global-scale application. 

Under low nitrogen conditions (e.g., Brazil), this can lead to underestimated LAI because the 

universal parameters do not represent no-fertilizer situations in the site scale simulation, as leaf 

morphological traits are known to vary with nitrogen availability (Ciampitti et al., 2013a,b; 

Hokmalipour and Darbandi, 2011). A sensitivity test in MATCRO confirmed that varying SLW 

strongly affects simulated LAI. The SLN–Vcmax relationship itself is applied globally because site-

specific data are not available. Moreover, the soil water balance in MATCRO tends to 

underestimate water availability in deeper soil layers, which may contribute to yield 

underestimation under rainfed conditions. However, this could not be confirmed due to the limited 

availability of observational data. Other factors not considered in the current model framework 

may also contribute to this bias. We will clarify in the manuscript that the underestimation of LAI 

is more likely due to using universal morphological parameters at the site scale. 

“3. The presentation of the relationship between Nfert and yield, as presented in Fig. 12, is a bit 

misleading and could be improved. As can be seen in Fig. 12 (a), yield increases with an increase 

in Nfert, but then saturates. The yield response to Nfert, as derived from FAOSTAT, is consistent 

with literature which attributes recent maize yield growth to delayed leaf senescence (staygreen), 

morphological change from horizontal to vertical leaf type and increased drought tolerance, and 

resulting increase in planting density, rather than an increase in N input (Duvick, 2005). These 

genetics and management improvements have changed maize yield response to N input (Fig. 3 of 

DeBruin et al. 2017). Therefore, liner regression is inappropriate to describe the Nfert-yield 

relationship. Consider using a nonlinear regression or locally estimated scatterplot smoothing 

(LOWESS) instead. More importantly, the presented version of MATCRO-Maize imperfectly 

represent the Nfert-yield relationship (regardless of whether the data for Egypt is included or 

omitted). Rather than presenting Fig. 13, I would suggest the authors discuss this limitation of the 

model.” 

Reply: Thank you very much for this constructive suggestion. We agree that the relationship 

between Nfert and yield cannot be adequately described by linear regression. We will use 

nonlinear regression (or LOWESS) in the revised manuscript and remove Fig. 13. We will also 

add a statement in the limitation section noting that MATCRO-Maize can generally reproduce 



yield responses to different N fertilizer levels, but the model tends to overestimate yields under 

certain conditions (e.g., Egypt), which indicates opportunity for further improvement as follow: 

“The current version of MATCRO-Maize can reproduce yield responses to nitrogen fertilization 

across a range of fertilizer levels, but it tends to overestimate yields under certain conditions (e.g., 

Egypt) likely because the model assumes higher nitrogen use efficiency and idealized irrigation 

conditions where actual yields are constrained by soil quality, management, and local cultivar 

traits that are not explicitly represented. This suggests that the representation of nitrogen effects 

in the model remains simplified, and further refinement is needed for region-specific scale 

simulation.” 

“4. The simulated aboveground biomass was lower than the site observations (Fig. 7). However, 

the simulated yields at the country level were substantially overestimated. This discrepancy may 

be due to inaccurate partitioning to harvested organ or to stress factors reducing yield formation. I 

do understand that there are many factors not considered in the model, such as biotic stresses (pests 

and diseases, weeds, etc.), as described in Line 554. Nevertheless, recent crop models that are 

embedded in Earth system models that operate at a global level are encouraged to incorporate some 

form of parameterization to handle major drivers of historical yield growth even in a simple way 

(Lombardozzi et al., 2020). Alternatively, please consider calibrating some of the existing 

parameters to better reproduce historical yields (Ai and Hanasaki, 2023).” 

Reply: Thank you for this thoughtful comment and explanations. We acknowledge the discrepancy 

between site-level and country-level simulations due to the use of universal parameter in the site-

level simulation. While additional calibration could improve agreement with historical yields, our 

approach emphasizes physiological mechanisms and universal parameters rather than statistical 

fitting. We will clarify this distinction in the manuscript and note the limitation that stress factors 

and other drivers of yield formation are not yet explicitly represented as follow: 

“A limitation of the current study is the use of universal parameters at the site scale leads to 

discrepancies between site-level and country-level simulations. It partly arises from applying 

universal parameters across different environments. Moreover, genetic variation among cultivars 

is not considered, and key factors of yield formation are not yet explicitly represented (e.g. plant 

nitrogen balance).” 

  

C. Technical corrections 

“1. 'Production' is generally measured in tones and is calculated by multiplying yield 

(production volume per unit harvested area and cropping season) by area harvested, in the case 

of single-season maize (see Box 1 of Wei et al., 2023). However, as MATCRO-Maize does 

not harvest area, the ”'yield model” is more appropriate than the “production model”. 

“2. Line 264. I think the correct citation for the GDHY is “Iizumi and Sakai, 2020” rather than 

“Iizumi, 2019”. Please check what recent literature describes this point (for instance, Data 

Availability and references of Iizumi et al., 2025).” 



“3. Line 281. Do you mean “AgMERRA” (Ruane et al., 2015), a bias-corrected version of the 

MERRA reanalysis designed for agricultural applications, rather than the original “MERRA”?” 

“4. Line 173. In agronomic literature, the flowering of maize is generally referred to as 'silking'. 

The first time it appears, you should mention this, for example, “flowering (known as 

silking; Dvs,flw)”.” 

Reply: Thank you for clarification on the technical corrections. We agree with your review in point 

1-4 and we will adopt them in the revised manuscript.  
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