
1 

 

Assessing effects of nature-based and other municipal adaptation 

measures on insured heavy rain damages  
 

Vylon Ooms1,2, Thijs Endendijk1, Jeroen. C.J.H. Aerts1,3, W. J. Wouter Botzen1, Peter Robinson1 

 5 

1. Institute for Environmental Studies (IVM) VU Amsterdam, Amsterdam, the Netherlands.  

2. Dutch Association of Insurers, The Hague, the Netherlands. 

3. Deltares Institute, Delft, The Netherlands. 

Correspondence to: V. Ooms (v.ooms@vu.nl) 

Key words: Risk reduction – Adaptation – Nature-based – Insurance – Flooding – Rainfall 10 

 

Abstract 

Intense short duration rainfall events are expected to increase in severity and frequency due to climate change. Densely 

populated urban areas are vulnerable to these events, resulting in high losses. Implementing nature-based (e.g. green streets, 

rain gardens and green roofs) and other municipal adaptation measures (e.g. water storage facilities) can be a way to mitigate 15 
these damages. Little is known about the effectiveness of these measures combined in a municipality. This study assesses 

municipal climate adaptation measures being taken by the municipality of Amsterdam. Unique claims data of almost all Dutch 

insurers is used to understand the impact of these climate adaptation interventions. We study one neighborhood in Amsterdam 

which has been renovated using climate adaptation measures, including nature-based solutions. We implement a quasi-

experimental difference-in-Differences (DiD) analysis that compares insured rainfall damages in the area to a similar 20 
neighboring area that was not renovated with climate adaptation measures. We find a negative significant relation between 

climate adaptation measures and insured damage when comparing the area where measures were taken to the similar area were 

measures were not taken, i.e. damage is reduced by climate adaptation measures by €1375-€5648  per rain day in the treatment 

area. Furthermore, precipitation per day is positively and significantly associated with insured damage. We suggest that nature-

based and other adaptation measures can be installed by local governments and stimulated by insurers and banks to increase 25 
climate resilience in urban areas.  
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1. Introduction 35 
 

Densely built cities are vulnerable to intense short duration rainfall events, i.e. cloudbursts (Rosenzweig et al., 2019), which 

can result in pluvial flooding and high damage to buildings and infrastructure. For example, on the 2nd of July in Copenhagen 

a single cloudburst of extreme precipitation caused over €800 mln of damage (The City of Copenhagen, 2012). The rainfall 

event in Southern Germany in June 2024 reached €2-3bn of insured losses (MOODY’s, 2024). Due to climate change, 40 
cloudbursts are likely to increase in frequency and severity (IPCC, 2022).   

A wide range of resilience and additional flood adaptation measures are needed to cope with cloudbursts (Rosenzweig et al., 

2018; Busker et al., 2021). Pluvial flood resilience in urban areas is often created by Flood Damage Mitigation (FDM) measures 

(e.g. water storage, drainage systems, etc.) taken by the (local) government. Furthermore, governments play a key role in 

enhancing resilience to flood damage, for example by investing in structural protection measures, such as dikes (Filatova, 45 
2014). The traditional approach is engineering through building drainage systems, levees and dams. According to Sörensen et 

al. (2016), additional strategies are needed to enhance flood resilience such as adopting “blue-green infrastructure”, like green 

roofs, rain gardens and porous pavements. These blue-green infrastructure can be used to retain (storm)water and therefore 

reduce flood risks (Sörensen et al., 2019). 

There is also a role for households and businesses in flood damage risk reduction. For instance, they can implement emergency 50 
FDM measures (e.g. placing sandbags which act as a barrier to flood water and elevating personal possessions) and take 

structural FDM measures (e.g. making walls water-resistant and strengthening their buildings’ foundation) (Endendijk et al., 

2023). Moreover, insurance may be purchased to cover damages in cases where these measures fail. However, it has been 

shown that individuals, communities and businesses often underinvest in protection against low-probability, high-consequence 

flood events (Meyer & Kunreuther, 2017). Therefore, governments can undertake interventions to stimulate flood preparedness 55 
by households and businesses through awareness campaigns (Osberghaus & Hinrichs, 2020). Such awareness campaigns may 

focus on educating households about flood risk and potential coping strategies.  

The goal of this study is to understand the impact of nature-based and other adaptation measures measures on insured damages 

caused by cloudbursts. The innovation of our study is threefold. Firstly, we examine the impact of municipal climate adaptation 

measures on insured damages empirically. A wide body of literature has assessed flood damage using mainly flood damage 60 
modelling methods (Merz et al., 2013; Spekkers et al., 2014; Van Ootegem et al., 2015). Traditional flood damage models 

focus on simulating flood depths of riverine flooding and estimating damage based on exposure information, such as building 

classes and their vulnerability (Merz et al., 2010; Sörensen & Mobini, 2017). However, multiple studies have shown that flood 

depth and building class information cannot fully explain flood damage, since it requires an extensive dataset which is often 

not available (Wagenaar et al., 2017; Merz et al., 2010). Moreover, few studies have studied pluvial flood risk modelling (Van 65 
Ootegem et al., 2015; Porter et al., 2023), which is the hazard focus of our study. Even fewer studies have investigated the 

effect of FDM measures on reducing damage caused by pluvial flooding (Löwe et al., 2017)1. Modelling studies focus on 

situations that are modelled, and therefore not observed in real life. Empirical studies, that include real damage observations, 

are needed to better understand the effectiveness of FDM measures. That is, empirical studies are more suitable for drawing 

conclusions from actual conditions, compared to conclusions derived from modelling studies that are typically based on 70 
assumed conditions.  

The second novelty of this paper is that we use actual insurance damage data to identify causal effects of FDM measures. A 

small but expanding body of literature has focused on assessing the effectiveness of FDM measures on a household level using 

surveys as empirical methods (Endendijk et al., 2023; Kreibich et al., 2015; Poussin et al., 2015; Thieken et al., 2005). For 

example, Endendijk et al. (2023) found that household FDM measures reduced damage due to flooding by about 30% for 75 

 
1 One exception is Löwe et al. (2017), which examined the effect of 9 scenarios of urban development and 32 combinations of FDM measures on flood 

damages. They find that the effectiveness of the measures depends on climate and urban development. That is, these measures are interlinked, and the 

effectiveness can change through variations in climate, suggesting that a strategy with different measures through time is preferable to one-off investments. 
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buildings and 40% for home contents using survey data. Other studies show that FDM measures on a building level have 

substantial effects in limiting flood damage (Kreibich et al., 2015; Poussin et al., 2015; Thieken et al., 2005). In this research, 

we do not only focus on adaptation measures of individuals (e.g. green roofs), but also on spatial, neighbourhood level 

adaptation measures of the municipality. With survey data one can typically only identify correlational effects. In this study, 

we aim to identify causal effects with a quasi-experiment using real damage data from insurers. The Difference-in-Differences 80 
(DiD) method allows us to identify the causal effect of FDM measures (Angrist & Pischke, 2008). Also, in surveys it is possible 

that damages are misreported, whereas in this study we examine observed damages registered by insurance company 

professionals. The use of a DiD-method is an innovative addition to the existing literature on climate adaptation (Osberghaus 

& Hinrichs, 2020). In this study, we illustrate how a DiD-method can work in the climate adaptation field.  

The third innovation of this study is that we assess the effectiveness of a broad range of policy interventions, including nature-85 
based solutions. In the literature, most studies examine the effect of a single FDM measure or policy intervention in isolation 

(Osberghaus & Hinrichs, 2020; Sörensen & Emilsson, 2019). More comprehensive approaches may be needed for substantial 

flood risk reduction (Busker et al., 2022; Osberghaus & Hinrichs, 2020). Osberghaus & Hinrichs (2020) is, to the best of our 

knowledge, the only study that adopts a quasi-experimental design to assess the effectiveness of an FDM measure. They use a 

DiD-design to measure the impact of a large-scale flood risk awareness campaign from 2009 to 2017 on flood damage (as well 90 
as households’ adaptation behaviour and insurance penetration) in Germany. They do not find a significant effect of the 

awareness campaign on flood damages. Another study on a single FDM measure is done by Sörensen & Emilsson (2019), who 

assessed the effectiveness of a stormwater system retrofitted through climate adaptation using insurance claims data. They find 

that long term trends show less flood damage in the area with these adaptation measures compared to similar neighborhoods. 

There are studies that focus on the impact of single measures like retrofitting an old stormwater system (Sörensen & Emilsson, 95 
2019), blue-green roofs (Busker et al., 2021) or awareness campaigns (Osberghaus & Hinrichs, 2020). This paper studies a 

broader range of interventions such as awareness campaigns by adding climate adaptation measures to the study as well. In 

reality, a wide array of measures is needed to reduce damage resulting from cloudbursts (Busker et al., 2022). We lack 

understanding of the impact of a broad range of FDM measures on insured damages.  

The remainder of this paper is structured as follows. Section 2 gives an overview of the methodology. Section 3 gives the 100 
results that are discussed in Section 4. The conclusion follows in section 5. 

2. Methodology  

 

2.1 Case study description 

In this study we use insurance claims data to understand the impact of municipal adaptation interventions on pluvial flood 105 
damages in Amsterdam. We focus on parts of the city where such interventions have been implemented over time. We use 

data on the timing of specific interventions provided by the program Amsterdam Weerproof (Amsterdam Weatherproof), which 

aims to make the city more climate resilient. In this program, various structural measures have been implemented, like 

retrofitting municipality owned buildings into greener properties, creating more green areas, improving water storage locations, 

and sewer renewal. Moreover, another focus of the organization is to provide extreme weather information to raise awareness 110 
of flood risk of citizens through online and in-person information provision (Amsterdam Weerproof, 2024).  

Amsterdam Weerproof executed projects in various neighbourhoods. We compare two adjacent areas of the neighbourhood 

Rivierenbuurt with different postal codes (PC). In PC 1078, Scheldebuurt (treatment area), municipal adaptation measures 

were executed from 2018 until 2022. We compare this neighborhood to PC 1079, Rijnbuurt (control area), where no measures 

were taken. Detailed descriptions of the Rivierenbuurt neighbourhood are found in Appendix 1. Table 1 describes the climate 115 
adaptation measures that were taken in the Scheldebuurt.  
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Table 1. Adopted nature-based and other adaptation measures in the treatment area (Amsterdam Weerproof, 2025). 

Type of 

measure 

Explanation of measure 

Municipal spatial nature-based and other adaptation measures  

Renewal of the 

sewer system 

Renewal of the sewer system in the Scheldebuurt  

Extra green 

areas 

Creation of green areas next to roads 

Water storage 

squares  

Installation of water storage capacity at a square (Europaplein) and under tram lanes  

Allocated spaces 

for water to flow 

into 

Installation of water storage areas in streets and the creation of larger green spaces around 

trees for water to flow into.  

 

Household and business level nature-based measures  

Rain proofing 

advice 

Free garden advice from Amsterdam Rainproof coaches on how to make your property more 

rainproof (e.g. replacing tiles for greenery in gardens and green roofing). This was 

incentivized by a municipal subsidy, for instance for replacing tiles of 15 euro per m2.  

Additional green 

spaces 

The addition of small gardens in front of privately owned property, incentivized by the 

municipality. Inhabitants of Amsterdam can ask the municipality for a garden in front of 

their house. Then, the municipality will remove the tiles and build a small garden in front 

of the house.  

 

2.2 Data 120 

2.2.1 Pluvial flood insurance claims data and nature-based and other adaptation measures 

For this study we use claims data of rain damage of households from the Dutch Association of Insurers. The Dutch Association 

of Insurers registers claims of households filed by insurance companies that are members of the association. Since rain damage 

is covered by default in property and contents insurance products (Dutch Association of Insurers, 2025), we expect that the 

vast majority of the claims are accepted. More than 95% of the Dutch insurers market is member of the Dutch Association of 125 
Insurers (Dutch Association of Insurers, 2024). Furthermore, more than 95% of households with a contents and/or property 

insurance in the Netherlands are insured against rain damage (Dutch Association of Insurers, 2016). Therefore, almost all 

pluvial flood damages of households in the studied neighbourhoods are reflected in the insurance claims. We use aggregated 

data on postcode 4-level (PC 4)2 for the municipality of Amsterdam (2007-2024). In the Netherlands, PC 4 refers to a 

neighbourhood or a part of a district within a municipality. The damage data ranges from January 1st 2007 until March 15th 130 
2024. The rain damage claims consist of time (day), amount (damage in euros) and location (at PC 4-level).  

The treatment variable is the observed time from when nature-based and other adaptation measures were implemented. From 

November 1st 2018 onwards the municipality of Amsterdam implemented nature-based and other climate adaptation measures 

to reduce damage in the treatment area with PC 1078 (Amsterdam Weerproof, 2025).  

 
2 Due to privacy restrictions on the claims data it is not possible to look at the damages on address level.  
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Both models we use showcase the analysis without the intervention period, to make for a cleaner analysis of the comparison 135 
before and after the implementation of the measures3. This choice has been made to avoid potential bias from including the 

rollout period, when the policy’s effect was only partial. 

Table 2. Dependent variable, treatment variables and their descriptive statistics over the final sample period (excluding the 

intervention period). 

Variable Variable description Data source Mean (standard 

deviation if non-binary 

in parentheses) 

 From 2007 From 

2016  

Dependent variables 

Insured rain 

damage 

Amount of insured damage per day in the 

Rivierenbuurt caused by rain claimed at an insurer 

operating in the Netherlands in euros. 

Dutch 

Association of 

Insurers 

€198.410 

(€2,070.290) 

€242.315 

(€30.000) 

Treatment variables 

Treatment: 

Municipal 

adaptation 

measures  

Binary variable. 1 = When the observation is part 

of the treatment area where climate adaptive 

interventions have been taken. 0 = when the 

observation is in the control area, where no 

adaptation intervention took place during the study 

period.  

Amsterdam 

Weerproof 

0.500 0.500 

Post  Binary variable. 1 = Observation after end of  

intervention period of Februari 1st 2022, when 

municipal adaptation measures in the treatment 

area have been taken. 0 = observations before 

intervention period of November 1st 2018.  

Amsterdam 

Weerproof 

0.210 0.596 

 140 

2.2.2 Rain data and socio-demographic characteristics 

Control variables are added to check for neighborhood specific effects when establishing the relationship between the 

adaptation measures and the amount of damage. Two categories of variables are controlled for. Precipitation data is added on 

PC4 level over the period damage data is available from January 1st 2007 until the March 15th 2024. The nearest weather station 

of the Royal Netherlands Meteorological Institute (KNMI) is located at Schiphol airport, which is approximately 10 km from 145 
the Rivierenbuurt. Two types of data are derived from the weather station: data on amount of precipitation per day and data on 

maximum precipitation per hour. Both are included, because moderate rain over a long period within a day can cause damage 

as well as torrential rain in a short moment. The observations of the damage data are on the day on which the claim is filed. 

The claim can be filed on the same day as the event that caused the damage. However, people can also file claims one or two 

days later. Therefore, for both rain control variables we use one- and two-day lags.  150 

Additionally, data on socio-demographic characteristics of the Rivierenbuurt (e.g. average house price and average size of 

households) is used to control for neighborhood specific effects. This data is derived from public data of Statistics Netherlands 

(CBS), which is only available on a yearly basis from January 1st 2016 until December 31st 2023. Therefore, we interpolate 

between the years to create daily neighborhood characteristic data and extrapolate in the period January 1st 2024 until March 

 
3 The results with the intervention period included are used as a robustness test and can be observed in Appendix 4. An analysis with only the significant 
variables with the intervention period is included in Appendix 6. 
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15th 2024 by assuming linear trends. In Appendix 5 we show tables on the distribution of insured rain damage, a detailed 155 
description of insured rain damage data and the distribution of rain data.  

Table 3. Control variables and their descriptive statistics over the final sample period (excluding the intervention period). 

Variable Variable description Data 

source 

Mean and standard deviation if 

non-binary 

Rain Data  From 2007 From 2016 

Sum of rain 

per day 

Sum of rain in 0.1 mm at the weather 

station around Schiphol airport (the nearest 

station is approximately 10 km from 

Rivierenbuurt) 

KNMI 23.157 

(48.208) 

24.003 

(50.030) 

Max sum of 

rain in an hour 

Max sum of rain in an hour at Schiphol 

airport in 0.1 mm 

KNMI 8.793 (18.220) 8.904 (17.820) 

Area characteristics (per day from 2016)  

Population 

density  

The amount of people per km²  Statistics Netherlands 13,907.740 

(805.956) 

Building characteristics(per day from 2016) 

Value property  Average price per real estate asset based on 

the Valuation of Immovable Property Act 

(WOZ) (€x1000).”.  

Statistics Netherlands 475.500 

(133.814) 

 

2.3 Difference-in-difference method 

In this study, we use a DiD two-way fixed effects model to estimate the impact of municipal adaptation measures on rainfall 160 
damage in Amsterdam. This method compares a situation before and after an intervention period. We compare two adjacent 

areas within the Rivierenbuurt neighborhood: one where FDM measures have been implemented (Scheldebuurt) and another 

where no adaptation interventions have been implemented (Rijnbuurt). The DiD-approach allows us to compare changes in 

outcomes over time between these areas, while controlling for unobserved factors and broader trends (Card & Krueger, 1993; 

Wooldridge, 2014). By leveraging insurance claims data, we can isolate the causal impact of these measures under the 165 
assumption that both areas would have followed similar trends in the absence of interventions. We test this assumption in the 

next section. 

We expand upon a traditional DiD by employing a two-way fixed effects (TWFE-) model (Callaway & Sant’Anna, 2021). 

Using fixed effects in a DiD gives a more robust causal estimate. This approach controls for time-invariant unobserved 

differences between neighborhoods, such as historical infrastructure and socioeconomic factors, as well as time-specific 170 
shocks, like extreme weather events. By accounting for both unit (neighborhood) and time (month) fixed effects, the TWFE-

model ensures that our estimated treatment effect reflects the impact of adaptation measures rather than underlying trends or 

external influences. This strengthens the causal interpretation of the DiD-analysis. We estimate the following TWFE-model: 

𝑌𝑖𝑡  =  𝛽0  +  𝛽1𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 × 𝑝𝑜𝑠𝑡𝑡   + 𝛽2𝑋𝑖𝑡
′   +  𝛿𝑖   +  𝜃𝑡   + 𝜀𝑖𝑡   

The outcome variable Yit represents daily insured damage claims in euros. Moreover, we expect that no rain damage occurs 175 
with slight rain (<2 mm/h). Therefore, we look at cases of moderate, or higher rain (>2 mm/h) in classification (Met Office 

UK, 2012). Excess rainfall can accumulate on the surface and may cause damage to buildings. Therefore, we only include 
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damage observations linked to days when this threshold is exceeded, along with a two-day lag period to account for potential 

delays in damage claims reporting. The average treatment effect is given by β1, which captures the average impact of the policy 

interventions in the treated area in the TWFE specification (Callaway & Sant’Anna, 2021). We control for time-invariant 180 
neighborhood differences using unit (postcode 4-level) fixed effects (δi). Time-specific neighborhood-level shocks are 

controlled for through fixed effects for each month (θt). The coefficient vector of other control variables is represented by β2, 

and the error term is given by εit.  

2.4 Common trend assumption 

The central assumption for a DiD-analysis is the common trend assumption, which states that, in the absence of the treatment, 185 
the treatment and control groups would have followed a similar trend (in our case of insured damages) over time (Angrist & 

Pischke, 2008). This assumption allows for isolating the treatment effect from any other factors that may influence damage 

from rainfall. If both neighbourhoods were on different damage trajectories before the policy interventions, differences in their 

post-interventions outcomes could be attributed to these pre-treatment differences. Additionally, it is assumed that no 

significant changes in group composition occur over time. Data from Statistics Netherlands indicates that there were no shocks 190 
to the demographic composition of the neighbourhoods during the study period, supporting this assumption. Moreover, key 

demographics are controlled for in our regression model. 

The placebo test can be performed to check for the common trend assumption (Eggers et al., 2021). The placebo test checks 

the common trend assumption by creating "fake" treatment groups before and after the interventions. We select a different 

treatment timeframe and observe whether the effects are significant as well. If no effect is found in any of the placebo groups, 195 
it supports that the found treatment effect can be attributed to the treatment rather than pre-existing trends. Angrist and Pischke 

(2008) used lag and lead values of treatment status to show that no significant effects occurred in the placebo periods. In 

Appendix 2, we apply placebo tests by using one- and two-month leads and lags for the treatment variable. These placebo 

treatment variables resulted in non-significant outcomes, reinforcing the validity of the common trend assumption for causal 

inference. 200 

3. Results  

The results are shown in Table 4 for two models. The first model showcases the results of the dataset starting from 2007 until 

2024 without control variables for area characteristics, which are unavailable for this entire time period. In this model we see 

that the DiD-indicator shows a significant (p < 0.05) reduction of insured damage in the treatment compared to the control 

group. This means that in the area where nature-based and other adaptation measures were adopted, insured damage in the 205 
treatment group is on average €1,375 per day lower for rain events exceeding 2 mm per hour as compared to the control group, 

after controlling for time- and unit fixed effects. The second model presents results using damage data starting from 2016, 

when area characteristics are available as control variables. The coefficient on the interaction term shows a significant (p < 

0.05) reduction of damage in the treatment group, compared to the control group. The rain damage is, on average, lower by 

€5,648 per rain day compared to the control group. For illustration, we can see a damage reduction of 21,7% for rainy days 210 
with more than €2,500 of insured damage per year on average based on model 1 (from 2007).4 

 
4 The damage reduction could be illustrated using an example by the following steps. Firstly, there are 35 rainy days on which severe damage (more than 

€2,500 of insured damage) occurred. Second, when we divide these rainy days by the 17.21 years in the dataset (January 1, 2007 – March 15, 2024), we 
obtain 2.03 rainy days with more than €2,500 of insured damage per year on average. Third, the total damage in the treatment area on 35 rainy days with 

more that €2,500 of damage is €221,771.20. Fourth, if we divide this amount by the 17.21 years in the dataset, we obtain €12,886.18 of damage per year on 
rainy days with more than €2500 of insured damage, on average. Next, according to model 1 (from 2007), insured damage in the treatment group is on 

average €1,375 per rainy day lower compared to the control group. There are 2.03 rainy days with more than €2,500 of insured damage per year. If we 
multiply the coefficient (€1,375) times 2.03 rainy days, we obtain €2,791,25 of damage reduction on these days. Lastly, when we divide €2,791.25 by the 

total €12,886.18 of damage per year on rainy days with more than €2,500 of insured damage, obtain 0,217. Here, we can observe a damage reduction of 

21,7% for rainy days with more than €2,500 of insured damage per year on average based on model 1 (from 2007). 
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Furthermore, the variable for precipitation per day is positive and significant (p < 0.01) in model 1, indicating that an increase 

of 0.1 mm precipitation per day results in an increase of €13.75 of rain damage on average per rain day based on model 1. 

Regarding the area- and building characteristics control variables, we see that none of the variables are significantly associated 

with insured damage. According to the adjusted R-squared, model 1 explains 16.7% of the variation in insured damage and 215 
model 2 explains 17.3% of the variation.  

Table 4. Two-way fixed effects DiD regression on insured damage per day in case of maximum rain per hour exceeds 2mm 

per hour from 2007 and 2016 without observations in the intervention period. 

 (1) (2) 

Variables Model 1  Model 2  

   

Post × treatment (DiD) -1,375** -5,648** 

 (558.201) (2,512) 

Sum of rain per day (in 0.1 

mm) 

6.856*** 7.100 

 (2.308) (5.375) 

Sum of rain per day lag 1 (in 

0.1 mm) 

-2.010 -0.986 

 (3.635) (9.271) 

Sum of rain per day lag 2 (in 

0.1 mm) 

-0.083 0.624 

 (4.274) (11.800) 

Maximum rain in an hour (in 

0.1 mm) 

-3.053 -13.902 

 (6.315) (16.893) 

Maximum rain in an hour lag 1 

(in 0.1 mm) 

10.883 14.205 

 (9.674) (27.483) 

Maximum rain in an hour lag 2 

(in 0.1 mm) 

-0.665 2.483 

 (12.785) (37.700) 

Population density (per km²)  -6.391 

  (5.845) 

Value of property (in euros)  48.002 

  (56.332) 

Constant -61.365 66,643 

 (285.967) (98,878) 

   

Observations 1,416 536 

R-squared 0.259 0.271 

Adjusted R-squared 0.167 0.173 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 220 
 

4. Discussion and recommendations 

 

4.1 Discussion of findings in relation to the existing literature 

Impact nature-based and other adaptation measures measures on rain damage (post × treatment): In both models we find a 225 
significant reduction of insured damages in the treatment group compared to the control group. The interaction result of model 
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1 is impacted by high damage observations in August 2010 in the control group compared to the treatment group.5 This also 

explains why the standard deviation is very high compared to the average of damage data (Table 2) and rain data (Table 3).The 

results of the impact of nature-based and other adaptation measures on damage are in line with some previous studies on 

physical adaptation measures. Sörensen & Emilsson (2019) present trends showing less damage in areas with adaptation 230 
measures compared to similar neighbourhoods. Also, the findings are in line with studies on the stated effectiveness of FDM 

measures: Endendijk et al. (2023), Kreibich et al. (2015), Poussin et al. (2015), and Thieken et al. (2005) all confirm the 

damage reductive capacity of flood risk reduction measures. The addition of this study is the DiD-design, which allows us to 

identify the causal effect of FDM measures. To our knowledge, the method is hardly seen in the climate adaptation field. We 

illustrate with this that this method can work. Future studies could adopt this method as well in different areas.  235 

Rain control variables: Model 1 shows a significant result regarding precipitation per day. Contrastingly, the precipitation per 

day variable in model 2 is insignificant. Model 1 has 1416 observations and model 2 has 536 observations. The fact that model 

2 has less than half the number of observations could be an explanation why no significant coefficient is found for the rain 

control variables in model 2. The literature findings on the relation between rain and damage vary. Previous literature on 

pluvial floods and damage show that flood depth (among other factors) cannot fully explain damage (Wagenaar et al., 2017; 240 
Merz et al., 2010). However, Sörensen et al. (2017) do find that rainfall intensity is one of the main determinants of flood 

damage. We further do not find a significant relation between damage and maximum rain per hour.  

4.2 Policy implications 

We find that nature-based and other adaptation measures reduce rain damage. Local governments can use nature based and 

other adaptation measures (e.g. through green lanes, water storage facilities, green roofs, and greener gardens) as means to 245 
decrease rain damage in urban areas and increase livability and biodiversity in these areas (Skrydstrup et al., 2022). These 

nature-based measures often come with co-benefits like mental and physical benefits (Tzoulas et al., 2007), which can have a 

long-term impact on health by incentivizing people to exercise, for instance. Rain damage is the focus of this study. The 

measures the municipality applied could also limit impacts of other natural hazards, like drought (Ljubojević et al., 2025) and 

heat (Augusto et al., 2020). In this way, nature-based measures can limit long-term impacts of climate change in the area 250 
(Augusto et al., 2020). The benefits (in addition to the damage reducing potential of these measures) make these nature-based 

solutions attractive for designing climate resilient cities globally. The measures the city of Amsterdam implemented (e.g. water 

storage on city squares, green roofs) can be implemented in cities worldwide. The findings of this study can motivate national 

governments, building corporations, and project developers to construct buildings and infrastructure in a climate adaptive way. 

The quantification of avoided damage can also be useful for cost-benefit analyses. Measures like green roofs and rain gardens 255 
can be stimulated by governments using policy measures like subsidies. Lastly, the results of this study can motivate insurers 

to stimulate the uptake of climate adaptive measures of their customers. Insurers could stimulate these measures by providing 

flood risk information or giving premium discounts when customers take climate adaptive measures and may benefit from 

lower claims (Poussin et al., 2015; Mol et al., 2020).  

4.3 Limitations and research implications 260 
In this study we use insurance damage data. Most studies using insurance data use data of a single insurer (Cheng et al., 2012) 

or only a few insurers (Sörensen et al., 2019). A strength of this study is the use of high-resolution insurance data covering 

more than 95% of the Dutch insurance market (Dutch Association of Insurers, 2024). However, the data contains only 

household claims, and we here neglect insurance claims of businesses and uninsured damages. It would be of value to analyze 

uninsured damages (e.g., public infrastructure) and claims of businesses as well. Insured damage of households is only a part 265 
of total damage of extreme rain, but can still give valuable insights into the effectiveness of FDM measures. The fact that only 

two full years (2022-2024) had passed since the end intervention period could be a limitation. However, we do find significant 

 
5 In an additional analysis, we omitted the month August 2010, with the large damages in the treatment group and the control group.  This month is an 

outlier and seemed to impact the interaction result and the coefficient. We see some changes in the results: the interaction coefficient is -1432, compared to 

the -1375 in the model with August 2010 included, and the relation is significant on a higher level (p < 0.01).  
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effects already. Moreover, torrential rain can be a local event, whereas we used rain data measured at the nearest weather 

station of which data may deviate from the real rainfall at the case study locations. This difference in data granularity between 

local insured damages and rainfall may weaken statistical significance between these two variables and means that the rainfall 270 
data may lack precision. Additionally, it would be insightful if future research could be conducted on social vulnerability  (e.g. 

financial situation), since that could influence insurance uptake. Furthermore, this study shows the impact of all adaptation 

measures combined. Because of privacy regulations, it was not possible to localize claims on a more detailed level than PC 4-

level. This makes it difficult to attach effects of a single measure to single damage claims. It would be valuable to understand 

how much separate measures contribute to damage reduction. This would give information on which measures policymakers 275 
could prioritize. In a future study, it might be of value to understand the impact of these measures separately.  

5.  Conclusion 

In this study, we show the impact of various nature-based and other adaptation measures on insured rain damage. We add 

novel insights to the literature by using actual insurance damage data to identify causal effects of a broad range of adaptation 

measures. Our results show a robust significant reduction in damage caused by the adoption of climate adaptation measures in 280 
the city of Amsterdam. The effect of nature-based and other climate adaptation measures on rain damage suggests that 

governments, private investors, banks and insurers can stimulate and implement these measures to cope with increasing rain 

damage. Local governments can incentivize the uptake of these measures among their citizens through information provision 

and subsidization. Private investors can invest in climate adaptive real estate to finance durable, resilient real estate and 

infrastructure that can withstand heavy rain damage. Banks can stimulate climate adaptation by including adaptation measures 285 
for resilient houses in loans (e.g. climate adaptive mortgage products). Insurers can stimulate climate adaptation measures 

through information provision, premium discounts and climate adaptive retrofitting (building back better) after damage. 

Improving the understanding of the impact of climate adaptation measures is important to increase societal climate resilience. 

Cloudbursts can increase in severity and frequency, potentially causing more floods in urban areas. The implementation of 

nature-based and other adaptation measures is important to prevent urban floods and reduce damage in urban areas globally.   290 
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Appendix 1. Description Rivierenbuurt. 

In Rivierenbuurt we compare two parts of the same neighbourhood. One where measures have been executed, Scheldebuurt, 

and one where no measures have been taken, Rijnbuurt.  420 

Table 5. Description Rivierenbuurt 

 Scheldebuurt (treatment area) Rijnbuurt (control area) 

Population (in 

2024) 

14.635 people 14.580 people 

Size in 

hectares 

101  110 

Amount of 

businesses 

2990 1625 

Density area 8685 addresses per km2 6106 addresses per km2 

Average house 

price (in 2023) 

EUR 650.000 EUR 541.000 

Year of 

construction  

>80% between 1925-1950 >80% between 1925-1950 

Type of 

building 

98,3% apartments 98,9% apartments 

Amount home 

owners 

29% 20% 

Source: Statistics Netherlands, 2023 
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Appendix 2. Placebo tests. 

The goal of this placebo test is to identify whether groups were experiencing similar trends before the treatment. This can be 

done by creating ‘fake’ treatments that indicate treatment before it actually occurred (Angrist & Pischke, 2009). These placebo 

treatments should have no effect if the common trend assumption holds. If they do show significant effects, this suggests a 

violation of the assumption, as it indicates that treated and control groups were already on diverging paths prior to the 435 
interventions. 

We apply placebo tests by using one- and two-month leads and lags for the treatment variable. The lead and lagged placebo 

treatments do not show any significant outcomes, which provides evidence in favour of the common trend assumption. 

Table 6. Placebo test 2007 with lags of one month and two months. 

Variables (1) 

  

1.treatment - 

  

0bL30.placebo 0 

 (0) 

1oL30.placebo 0 

 (0) 

0b.treatment#0bL30.placebo 0 

 (0) 

0b.treatment#1oL30.placebo 0 

 (0) 

1o.treatment#0bL30.placebo 0 

 (0) 

1.treatment#1L30.placebo 220.6 

 (2,906) 

0bL60.placebo 0 

 (0) 

1oL60.placebo 0 

 (0) 

0b.treatment#0bL60.placebo 0 

 (0) 

0b.treatment#1oL60.placebo 0 

 (0) 

1o.treatment#0bL60.placebo 0 

 (0) 

1.treatment#1L60.placebo 95.85 

 (2,879) 

Raindepth 6.921*** 

 (2.352) 

lag1_Raindepth -1.991 

 (3.687) 

lag2_Raindepth -0.0509 

 (4.332) 

Rainhourmax -3.115 

 (6.411) 

lag1_Rainhourmax 10.92 
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 (9.802) 

lag2_Rainhourmax -0.687 

 (12.98) 

Constant -230.6 

 (286.1) 

  

Observations 1,388 

R-squared 0.255 

 440 
Table 7. Placebo test 2007 with leads of one month and two months. 

 (1) 

Variables  

  

1o.treatment - 

  

0bF30.placebo 0 

 (0) 

1oF30.placebo 0 

 (0) 

0b.treatment#0bF30.placebo 0 

 (0) 

0b.Rivierenbuurt#1oF30.placebo 0 

 (0) 

1o.treatment#0bF30.placebo 0 

 (0) 

1.treatment#1F30.placebo 103.7 

 (1,965) 

0bF60.placebo 0 

 (0) 

1oF60.placebo 0 

 (0) 

0b.treatment#0bF60.placebo 0 

 (0) 

0b.treatment#1oF60.placebo 0 

 (0) 

1o.treatment#0bF60.placebo 0 

 (0) 

1.treatment#1F60.placebo 280.3 

 (1,867) 

Raindepth 7.118*** 

 (2.411) 

lag1_Raindepth -2.162 

 (3.835) 

lag2_Raindepth -0.173 

 (4.533) 

Rainhourmax -3.415 

 (6.491) 

lag1_Rainhourmax 11.10 
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 (10.00) 

lag2_Rainhourmax -0.357 

 (13.11) 

Constant -236.1 

 (288.1) 

  

Observations 1,384 

R-squared 0.255 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

Table 8. Placebo test 2016 with lags of one month and two months. 445 

 (1) 

Variables  

  

1.treatment - 

  

0bL30.placebo 0 

 (0) 

1oL30.placebo 0 

 (0) 

0b.treatment#0bL30.placebo 0 

 (0) 

0b.treatment#1oL30.placebo 0 

 (0) 

1o.treatment#0bL30.placebo 0 

 (0) 

1.treatment#1L30.placebo 1,015 

 (5,998) 

0bL60.placebo 0 

 (0) 

1oL60.placebo 0 

 (0) 

0b.treatment#0bL60.placebo 0 

 (0) 

0b.treatment#1oL60.placebo 0 

 (0) 

1o.treatment#0bL60.placebo 0 

 (0) 

1.treatment#1L60.placebo 2,349 

 (5,952) 

Raindepth 7.159 

 (5.656) 

lag1_Raindepth -1.352 

 (9.680) 

lag2_Raindepth 0.545 

 (12.34) 
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Rainhourmax -13.73 

 (17.64) 

lag1_Rainhourmax 15.63 

 (28.68) 

lag2_Rainhourmax 3.387 

 (39.49) 

populationdensity -4.207 

 (7.381) 

WOZwaardewoning 10.16 

 (59.88) 

Constant 53,174 

 (126,043) 

  

Observations 504 

R-squared 0.266 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

Table 9. Placebo test 2016 with leads of one month and two months. 

 (1) 

Variables  

  

1o.treatment - 

  

0bF30.placebo 0 

 (0) 

1oF30.placebo 0 

 (0) 

0b.treatment#0bF30.placebo 0 

 (0) 

0b.Rivierenbuurt#1oF30.placebo 0 

 (0) 

1o.treatment#0bF30.placebo 0 

 (0) 

1.treatment#1F30.placebo 2,508 

 (5,993) 

0bF60.placebo 0 

 (0) 

1oF60.placebo 0 

 (0) 

0b.treatment#0bF60.placebo 0 

 (0) 

0b.treatment#1oF60.placebo 0 

 (0) 

1o.treatment#0bF60.placebo 0 

 (0) 

1.treatment#1F60.placebo 867.6 
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 (5,980) 

Raindepth 7.212 

 (5.940) 

lag1_Raindepth -1.568 

 (10.68) 

lag2_Raindepth 0.754 

 (14.18) 

Rainhourmax -13.49 

 (18.08) 

lag1_Rainhourmax 15.84 

 (30.22) 

lag2_Rainhourmax 4.035 

 (40.92) 

populationdensity -4.487 

 (6.785) 

WOZwaardewoning -0.964 

 (61.09) 

Constant 62,664 

 (117,949) 

  

Observations 504 

R-squared 0.266 

Standard errors in parentheses 450 
*** p<0.01, ** p<0.05, * p<0.1 

 

 

 

 455 

 

 

 

 

 460 

 

 

 

 

 465 
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Appendix 3. Median of rain damage per year figure. 

We use the median of observations when rain damage occurred to display the common trend assumption in the figure below, 

because the average is sensitive to outliers, and we compare only two small neighbourhoods. The intervention period is 

displayed in the figure as well. The time trends of median damages in both the control group and treatment group are similar 470 
before the interventions takes place and start to differ after the start of the intervention period. Therefore, the interventions 

seem to impact the trend of the median rain damage. After the interventions, the median rain damage rises in the control group, 

but decreases in the treatment group. Initially, the rain damage of the treatment group is higher than the damage of the control 

group. Over time, more measures have been implemented. After most of the interventions have finished, the damage of the 

treatment group decreases and becomes less compared to the control group. 475 

 

 

Figure 1. Median insured rain damage per year in treatment area and control area. 

Note: The interventions began in November 2018 and was finished January 31st 2022. To be closest to this, we drew the lines of the start of the intervention 

in 2018 (in grey). The end of the intervention is drawn in 2021 (in black), since 11 out of 12 months of 2022 have taken place after the intervention period. 480 
Also, in the figure above there is no datapoint for 2024, because there are no observations of damages and rainfall exceeding 2 mm per hour in 2024 (until 

15th of March).  

 

 

 485 
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Appendix 4. DiD regression with intervention period. 

Table 10. Two-way fixed effects DiD regression on insured damage per day in case of maximum rain per hour exceeds 2mm 

per hour with observations in the intervention period. 

 (3) (4) 

Variables  Model 3 

(results from 

2007 with 

intervention 

period) 

Model 4 

(results from 

2016 with 

intervention 

period) 

   

Post × treatment (DiD) -646.963* -5,017*** 

 (392.473) (1,863) 

Sum of rain per day (in 0.1 

mm) 

6.267*** 5.405 

 (1.949) (3.650) 

Sum of rain per day lag 1 (in 

0.1 mm) 

-2.158 -1.136 

 (3.004) (5.774) 

Sum of rain per day lag 2 (in 

0.1 mm) 

0.434 2.537 

 (3.423) (6.711) 

Maximum rain in an hour (in 

0.1 mm) 

-2.679 -8.205 

 (5.075) (9.669) 

Maximum rain in an hour lag 1 

(in 0.1 mm) 

10.618 11.500 

 (7.733) (15.412) 

Maximum rain in an hour lag 2 

(in 0.1 mm) 

-2.997 -8.074 

 (9.572) (18.218) 

Population density (per km²)  -7.325*** 

  (2.827) 

Value of property (in euros)  24.671 

  (27.787) 

Constant -62.000 91,656** 

 (240.200) (40,384) 

   

Observations 1,766 886 

R-squared 0.254 0.269 

Adjusted R-squared 0.162 0.174 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 490 
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Appendix 5. Distributions and descriptions of data 

Table 11. Distribution insured rain damage data full dataset (from 2007). 

 1% 5% 10% 25% 50% 75% 90% 95% 99% Largest 

All 

observation

s 

(n=12568) 

€0.00 €0.00 €0.00 €0.00 €0.00 €0.00 €169.00 €1,000.

00 

€3,761.00 €169,305.

000 

Only 

damages 

(n=1360) 

€1.00 €119.

13 

€202.

57 

€498.

23 

€956.

75 

€1,72

7.25 

€3,470.

00 

€5,325.

44 

€17,703.4

4 

€169,305.

000 

 

Table 12. Detailed description insured rain damage data full dataset (from 2007). 500 

Variable Mean (standard 

deviation if non-binary in 

parentheses) 

Median Range 

From 2007 From 2007  From 2016 From 2007 From 2016 From 2007  From 2016  

Insured rain 

damage 

€202.12 

(€1928.92) 

€242.32 

(€3029.46) 

€0.00 €0 .00 €0 – 

€169,305.00 

€0 – €169,305.00 

Insured rain 

damage 

(damages 

only) 

€1867.82 

(€5594.01) 

€2191.74 

(€8883.30) 

€956.73 €1000.00 €1 – 

€169,305.00 

€1 – €169,305.00 

 

Table 13. Distribution of rain data (from 2007). 

 1% 5% 10% 25% 50% 75% 90% 95% 99% Largest 

Sum of 

rain per 

day (in 0.1 

mm, 

n=12568) 

0 0 0 0 1 26 76 115 202 672 

Maximum 

rain in an 

hour (in 

0.1 mm, 

n=12568) 

0 0 0 0 1 11 26 39 89 281 
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Appendix 6. DiD regression with only significant variables. 

Table 14. Two-way fixed effects DiD regression on insured damage per day in case of maximum rain per hour exceeds 2mm 510 
per hour from 2016 with only significant variables.  

 (1) (2) 

Variables Model 1 with 

intervention period 

(2007-2024) 

Model 2 with 

intervention period 

(2016 – 2024) 

   

Post × treatment (DiD) -646.6* -4,188** 

 (392.3) (1,626) 

Sum of rain per day (in 0.1 mm) 5.562***  

 (1.424)  

Population density  -6.961** 

  (2.798) 

Constant -35.75 98,843** 

 (196.0) (39,437) 

   

Observations 1,766 886 

R-squared 0.253 0.266 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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