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Response to Reviewer #2 
We thank the reviewer for the positive evaluation of the paper and the feedback. We 
address each comment separately and in detail below. The original comments of 
the reviewers are given in italics, followed by our response in normal letter type. 

General comments 
General comments The manuscript evaluated the aggregated impact of a bundle of 
nature-based and other municipal adaptation measures on insured rain damages by 
comparing the insured data from two adjacent areas within the Rivierenbuurt 
neighbourhood, one with flood damage mitigation (FDM) measures and one without 
intervention. Using the statistical difference-in-difference method, the authors identified 
significant relations in some variables, highlighting the causal effect of FDM measures. 
The discussion and conclusions were valid and supported by data evidence.  

The manuscript proposes a research initiative on a topic within the scope of Natural 
Hazards and Earth System Sciences (NHESS). I would recommend this manuscript for 
publication with the following suggestions, particularly regarding data processing, model 
interpretation, and widening the discussion. 

Specific comments 

Data heterogeneity and process 
The listed adaptation measures in Table 1 may be applied to a specific area instead of 
the whole region. It is unclear how the local effects are translated to the larger treatment 
or local area. Moreover, given the spatial-temporal distribution of insured damage, is it 
possible to identify the relationship between adaptation measures and the observed 
reduced damages?  

We account for this relationship by selecting the Difference-in-Difference method. 
This method controls time-invariant unobserved differences between 
neighborhoods (in this case the treatment and control neighborhood), such as 
historical infrastructure and socioeconomic factors, as well as time-specific 
shocks, like extreme weather events. 

Furthermore, due to privacy restrictions we are not allowed to look at the damages 
at the address level. It is therefore difficult to estimate the local effect of a measure, 
more detailed than neighborhood level (PC4). We plan to add a footnote in section 
2.2.1. 

‘Due to privacy restrictions on the claims data it is not possible to 
analyze the damages on address level.’ 
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The study collected heterogeneous data (e.g., hydro-meteorological data and 
demographic characteristics) in space and time. It is unclear how authors address the 
heterogeneity and aggregate across the areas. 

See response directly above. We discuss the characteristics of both 
neighborhoods in appendix 1.  

In the data description section (table 2 and 3) we describe for each variable (1) 
the time period between which the data is recorded; and (2) the level of 
aggregation, e.g. average at postcode or neighbourhood level. 

Data distribution  
It is noted in Table 2, the standard deviation of insured rain damage was much higher 
than the mean. Is it driven by some extreme events that cause extensive insured rain 
damage? The same comment applies to “Rain data” in Table 3.  

This is indeed driven by extreme events. Specifically, August 2010 was a month 
where extreme damages occurred. We performed a robustness test by deleting 
this month and rerunning the analysis again. However, this caused only minor 
changes to the results. We plan to add a footnote to describe this in section 4.1: 

‘In an additional analysis, we omitted the month August 2010, 
where large damages occurred in the treatment group and the 
control group.  We observe minor changes to the results: the 
interaction coefficient is -704.461, compared to the -646.963 in 
the model with August 2010 included, and the relation is 
significant at the same level (p < 0.01).’ 

We also plan to add a sentence in section 4.1 linking the additional analysis, with 
the omission of August 2010, to the high standard deviation compared to the 
average damages (table 2) and rain data (table 3). We plan to add the following 
sentence: 

‘This also explains why the standard deviation is very high 
compared to the average of damage data (table 2) and rain 
data (table 3).’ 

Related to Figure 1, the highest peak occurred in 2010. Was it due to any specific event 
or insurance claim?  

This was due to the damages in the month of August 2010. See response to the 
previous comment on how we addressed this.  

Related to Tables 2 and 3, it will be nice, if possible, to visualise the data distribution 
through histograms. 
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We agree with the reviewer that more detailed information would be an addition 
to the paper. However, since it is damage data that is guided by extremes, the 
dataset contains large outliers. Distributions shown via histograms are then not 
too helpful, because these are far apart and low damage observations are highly 
clustered. We instead plan to show how the data is distributed via tables showing 
the damage percentiles. We plan to include the following tables in the paper in 
appendix 4: 

Table 1: Distribution insured rain damage data full dataset (from 2007) 

 1% 5% 10% 25% 50% 75% 90% 95% 99% Largest 

All 

observation

s 

(n=12568) 

€0.00 €0.00 €0.00 €0.00 €0.00 €0.00 €169.00 €1000.0

0 

€3761.00 €169305.

00 

Only 

damages 

(n=1360) 

€1.00 €119.

13 

€202.

57 

€498.

23 

€956.

75 

€1727

.25 

€3470.0

0 

€5325.4

4 

€17703.44 €169305.

00 

 

Table 2: Detailed description insured rain damage data full dataset (from 2007) 

Variable Mean (standard 

deviation if non-binary 

in parentheses) 

Median Range 

From 2007 From 2007  From 2016 From 

2007 

From 

2016 

From 2007  From 2016  

Insured rain 

damage 

€202.12 

(€1928.92) 

€242.32 

(€3029.46) 

€0.00 €0 .00 €0 – 

€169305.00 

€0 – 

€169305.00 

Insured rain 

damage 

(damages 

only) 

€1867.82 

(€5594.01) 

€2191.74 

(€8883.30) 

€956.73 €1000.00 €1 – 

€169305.00 

€1 – 

€169305.00 

 

Table 3: Distribution of rain data (from 2007) 

 1% 5% 10% 25% 50% 75% 90% 95% 99% Largest 

Sum of 

rain per 

day (in 

0.1 mm, 

n=12568) 

0 0 0 0 1 26 76 115 202 672 

Maximum 

rain in an 

hour (in 

0.1 mm, 

n=12568) 

0 0 0 0 1 11 26 39 89 281 

 

Model development  
Based on the results in Table 4, some variables which were conceived to be significant 
turned out to be not so significant (e.g., p-value >0.1) statistically in both models. Why 
the authors choose to keep these variables?  
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We believe it is important to hold certain control variables constant when 
analyzing the intervention effect. We describe in section 2.2.2 the addition of the 
lag variables to account for the fact that the claims data consists of observations 
where the claim was filed by the insurer. This is often the same day, but can also 
be one or two days later. We account for this by adding the lags of one and two 
days in the analysis of the variables ‘maximum rain in an hour’ and ‘um of rain per 
day of one and two days in the analysis’.  

If we only include the significant variables in model 1, we obtain the results 
below. We plan to add this result as a robustness test to appendix 5.  

Table 4: Two-way fixed effects DiD regression on insured damage per day in case of maximum rain 

per hour exceeds 2mm per hour from 2016 with only significant variables  

 (1) (2) 

Variables Model 1 with 

intervention period 

(2007-2024) 

Model 2 with 

intervention period 

(2016 – 2024) 

   

Post × treatment (DiD) -646.6* -4,188** 

 (392.3) (1,626) 

Sum of rain per day (in 0.1 mm) 5.562***  

 (1.424)  

Population density  -6.961** 

  (2.798) 

Constant -35.75 98,843** 

 (196.0) (39,437) 

   

Observations 1,766 886 

R-squared 0.253 0.266 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

Some variables were correlated to some extent, e.g., three variables related to the sum 
of rain per day. Can this statistical modelling handle correlated variables? It will be nice 
to clarify the statistical assumptions.  

We tested for multicollinearity through the use of the Variance Inflation Factor 
(VIF) method. VIF is commonly used in econometric analyses (Woolridge, 2016). 
If a VIF-value is between 1 and 5, it is deemed as acceptable collinearity. If a VIF-
value is above 10, we can conclude that multicollinearity is problematic for that 
variable (Woolridge, 2016). We performed a VIF-test for the models in the 
manuscript: model 1 and model 2. For model 1 we observe no issues (VIF-scores 
below 5). However, for model 2 we observe high VIF-values (>10) for the variables 
‘percentage of real estate built before 1945’, ‘Address density’ and ‘Average 
number of people per household per address’. We therefore plan to delete these 
variables from the previous model 2. The first reviewer commented that it would 
be cleaner to do the analysis with omitting the intervention period. We plan to 
follow this comment. The results of model 2, which we include in two models, 
with and without the intervention period,  are now as follows: 
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Table 5: Two-way fixed effects DiD regression on insured damage per day in case of maximum rain 

per hour exceeds 2mm per hour from 2016 with and without observations in the intervention period  

 (3) (4) 

Variables  Model 3 

(results from 

2016 with 

intervention 

period) 

Model 4 

(results from 

2016 without 

intervention 

period) 

   

Post × treatment (DiD) -5,017*** -5,648** 

 (1,863) (2,512) 

Sum of rain per day (in 0.1 

mm) 

5.405 7.100 

 (3.650) (5.375) 

Sum of rain per day lag 1 (in 

0.1 mm) 

-1.136 -0.986 

 (5.774) (9.271) 

Sum of rain per day lag 2 (in 

0.1 mm) 

2.537 0.624 

 (6.711) (11.80) 

Maximum rain in an hour (in 

0.1 mm) 

-8.205 -13.90 

 (9.669) (16.89) 

Maximum rain in an hour lag 

1 (in 0.1 mm) 

11.49 14.21 

 (15.41) (27.48) 

Maximum rain in an hour lag 

2 (in 0.1 mm) 

-8.074 2.483 

 (18.22) (37.70) 

Population density (per km²) -7.325*** -6.391 

 (2.827) (5.845) 

Value of property (in euros) 24.67 48.00 

 (27.79) (56.33) 

Constant 91,656** 66,643 

 (40,384) (98,878) 

   

Observations 886 536 

R-squared 0.269 0.271 

Adjusted R-squared 0.174 0.173 

 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 

 

With changing the variables, we also changed the variable description table of the 
control variables. We plan to add the description below.  

Table 6: Added control variable 

Variable Variable 

description 

Data source Mean and standard deviation if non-binary 

Area characteristics (per day from 2016)  

Population 

density  

The amount 

of people 

per km²  

CBS 13897.77 (744.84) 

 

There are other factors related to disaster management and capacity building (e.g., 
social vulnerability and infrastructure interruption) which is not considered in this study. 
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If these factors were included, what would be the potential impact on the developed 
model and its implications? 

We understand the comment of the reviewer. To examine social vulnerability, one 
would probably need to collect and couple survey data on individual socio-
economic characteristics and combine it with damage and rainfall data. This is 
practically difficult, given the level of aggregation of the damage (pc4) and rainfall 
data. For a future study, it could be interesting to understand social vulnerability 
as well. Given that social vulnerability might influence insurance uptake. In the 
discussion, under section 4.3 ‘Limitations and research implications’ we plan to 
add the following sentence: 

‘Additionally, it would be insightful to look at social vulnerability, since that could 
influence insurance uptake.’ 

However, this should not impact the results, since external developments are the 
same in both neighborhoods. Socio-economic characteristics are likely similar 
across both neighborhoods. The DiD two-way fixed effects approach controls for 
socioeconomic differences. We test for the common trend assumption using a 
placebo test. We show the results of these tests in appendix 2. We explain the 
placebo tests in section 2.4. We see no influence of the factors mentioned by the 
reviewer, because the treatment and control groups follow a similar trend before 
the interventions (see placebo tests in appendix 2).  

Results  
In the DiD model, the time and unit fixed effect is not well discussed. It would be nice to 
understand its implications.  

We agree with the reviewer that we could expand on the time and unit fixed 
effects explanation. The main implication is that fixed effects in a DiD are used to 
give a more robust causal estimate, controlling for time-invariant unobserved 
differences like socioeconomic factors (on unit) or extreme weather events (on 
time). We plan to alter the text in the manuscript as follows: 

‘In this study, we use a DiD two-way fixed effects model to estimate the impact of 
municipal adaptation measures on rainfall damage in Amsterdam. One can 
compare a situation before and after an intervention. We compare two adjacent 
areas within the Rivierenbuurt neighborhood: one where flood damage mitigation 
(FDM) measures have been implemented (Scheldebuurt) and another where no 
interventions have been implemented (Rijnbuurt). The DiD approach allows us to 
compare changes in outcomes over time between these areas, while controlling 
for unobserved factors and broader trends (Card & Krueger, 1993; Wooldridge, 
2014). By leveraging insurance claims data, we can isolate the causal impact of 
these measures under the assumption that both areas would have followed 
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similar trends in the absence of interventions. We test this assumption in the next 
section. 

We expand upon a traditional DiD by employing a two-way fixed effects (TWFE) 
model (Callaway & Sant’Anna, 2021). Using fixed effects in a DiD gives a more 
robust causal estimate. This approach controls for time-invariant unobserved 
differences between neighborhoods, such as historical infrastructure and 
socioeconomic factors, as well as time-specific shocks, like extreme weather 
events. By accounting for both unit (neighborhood) and time (month) fixed 
effects, the TWFE model ensures that our estimated treatment effect reflects the 
impact of adaptation measures rather than underlying trends or external 
influences. This strengthens the causal interpretation of the DiD analysis.’ 

DiD with time and unit fixed effects is an econometric method that is used to 
estimate causal effects. You compare a situation before and after a policy 
intervention. Fixed effects help to control for unobserved time-invariant 
heterogeneity. Unit fixed effects control for time-invariant characteristics of a 
unit, for instance geography of a location or individual differences.  

Time fixed effects control for shocks that equally affect the units. For instance a 
recession, policy changes, or, in this case, extreme weather events for the whole 
group. Using fixed effects in a DiD gives a more robust causal estimate.  

Though the variables were discussed regarding their significance levels, the model 
performance (e.g., how well it fit the dependent variables) was not shown to visualise the 
goodness of fit and uncertainty.  

We show the Adjusted R² in table 4. We highlight this in the text by the following 
sentence in chapter 3, which we plan to change with the updated results:  

‘According to the adjusted R², Model 1 explains 16.7% of the variation in insured 
damage and model 2 explains 17.3% of the variation.’ 

 

It is important to extend the discussion on the discussion, such as what other factors 
should be considered.  

We agree with the reviewer that this could be done more extensively. In the 
discussion, under section 4.3 ‘Limitations and research implications’ we plan to 
add the following sentences: 

‘It would be of value to analyze uninsured damages and claims of businesses as 
well, to present a more complete picture of the effectiveness of FDM.’ 

‘Furthermore, it would be valuable to understand how much separate measures 
contribute to damage reduction.’ 
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Also, related to social vulnerability, we plan to add the following:  

‘Additionally, it would be insightful to look at social vulnerability, since that could 
influence insurance uptake.’ 

The placebo results in Appendix B it is hard to understand for a reader without a 
statistical background. A short description to guide readers through the results is 
necessary.  

We agree it is useful to clarify these test results. We plan to add the following 
sentences to appendix 2 to guide the reader through the results shown in the 
tables of appendix 2: 

The goal of this placebo test is to identify whether the treatment and control 
groups were experiencing similar trends before the treatment. This can be done 
by creating ‘fake’ treatments that indicate treatment before it actually occurred 
(Angrist & Pischke, 2009). These placebo treatments should have no effect if the 
common trend assumption holds. If they do show significant effects, this 
suggests a violation of the assumption, as it indicates that treated and control 
groups were already on diverging paths prior to the intervention. 

We apply placebo tests by using one- and two-month leads and lags for the 
treatment variable. The lead and lagged placebo treatments do not show any 
significant outcomes, which provides evidence in favour of the common trend 
assumption. 

It is interesting to see the different trend patterns during the implementation of the 
adaptation measures. However, it is unclear whether it is due to the implementation 
temporarily reducing the overall adaptation effect or other reasons. 

We account for this in our method. The difference-in-difference (DiD) approach 
controls for time-invariant unobserved differences between neighborhoods, such 
as historical infrastructure and socioeconomic factors, as well as time-specific 
shocks, like extreme weather events. Homogenous shocks are experienced in 
both neighborhoods. The use of the DID approach makes it possible to only  
estimate the effect of the intervention.  

Discussion  
This study evaluated the effectiveness of these measures combined in a municipality, 
only measured in terms of insured rain damage. However, it is worth providing insights 
regarding the long-term climate-adaptive benefit as well as the non-monetary impact.  

We agree with the reviewer that there are other benefits of these FDM measures 
next to rain damage reduction. Measures like water storage can be used against 
drought, green roofs and greener areas can mitigate heat and these areas can 
also be used for recreational purposes. These measures can limit long-term 
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impacts of climate change. We touch upon this in section 4.2 by the following 
sentences:  

‘Local governments can use nature based and other adaptation measures (e.g. 
through green lanes, water storage facilities, green roofs, and greener gardens) as 
means to decrease rain damage in urban areas and increase livability and 
biodiversity in these areas (Skrydstrup et al., 2022). These nature based 
measures often come with co-benefits like mental and physical benefits (Tzoulas 
et al., 2007).’ 

However, an example of a long term benefit is less taken into consideration. 
Therefore, we plan to add the following sentence: 

‘(… ), which can have a long term impact on health as well by incentivizing people 
to exercise for instance.’ 

In the current text we do not yet point out that the municipal climate adaptation 
measures not only limit rain damage, but also limit impacts of other natural 
hazards like drought and heat. We plan to add the following sentence to section 
4.2: 

‘Rain damage is the focus of this study. The measures the municipality applied 
can also limit impacts of other natural hazards, like drought and heat. These 
measures can limit long-term impacts of climate change in the area.’ 

A broad range of adaptation measures was studied as a whole. Can the data show the 
single contribution of respective measures to the overall climate-adaptation effect? Can 
the authors identify the most effective adaptation measures among all the considered 
measures? 

The reviewer is correct that it would be interesting to look at individual measures. 
We now point this out in the limitations section, where we plan to add the 
following text:  

‘Lastly, this study shows the impact of all adaptation measures combined. 
Because of privacy regulations, it was not possible to localize claims on a more 
detailed level than PC4-level. This makes it difficult to attach effects of local 
measures to single damage claims. In a future study, it might be of value to 
understand the impact of these measures separately.’ 

There are papers that assesses the risk reduction of a single measure, for 
instance an old stormwater system (Sörensen & Emilsson, 2019), blue-green 
roofs (Busker et al., 2021) or awareness campaigns (Osberghaus & Hinrichs, 
2020). A unique characteristic of this paper is that we look at all the measures 
combined. Given how the measures were implemented, we cannot research the 
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impact of a measure individually. Therefore, we plan to add the following 
sentence to the limitations section: 

‘Further, it would be valuable to understand how much separate measures 
contribute to damage reduction.’ 
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