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Abstract. China has witnessed notable increases in surface ozone (O3) concentrations since 2013, with meteorology identified
as a critical driver. However, meteorological contributions vary with different meteorological datasets and analytical methods,
and their uncertainties remain unassessed. This study leveraged decadal observational maximum daily 8-hour average O;
records (2013-2022) across China, revealing intensified nationwide O3 pollution with increasing O3 trends of 0.79—1.31 ppb
yr! during four seasons. We gave special focus on uncertainties of meteorology-driven Os trends by using diverse
meteorological datasets (ERAS, MERRA2, FNL) and diverse analytical methods (Multiple Linear Regression, Random Forest,
GEOS-Chem model). A useful statistic (coefficient of variation, CV) was adopted as an uncertainty quantification metric. For
multi-dataset analysis, models driven by different meteorological datasets exhibited the maximum meteorology-driven O;
trend (+0.55 ppb yr~!, multi-dataset mean) with the highest consistency (CV=0.25) in spring. The FNL-driven model always
obtained larger trends compared to ERAS5 and MERRAZ2, which could be attributed to inability to accurately evaluate planetary
boundary layer height in FNL dataset. For multi-method analysis, three methods demonstrated optimal consistency in winter
(CV=0.40) and the worst consistency in summer (CV=2.00). The meteorology-driven Os trends obtained from GEOS-Chem
model were almost smaller than those obtained by other two methods, partly resulting from higher simulated O3 values before
2018. Overall, all analyses driven by diverse meteorological datasets and analytical methods drew a robust conclusion that
meteorological conditions almost boosted O3 increases during all seasons; the uncertainties caused by different analytical

methods were larger than those caused by diverse meteorological datasets.

Keywords: Meteorological impact, O3 trend, Uncertainty
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1 Introduction

Since 2013, the Chinese government has implemented a series of policies to mitigate air pollution resulting from the rapid
industrial and urban expansion, such as the “Air Pollution Prevention and Control Action Plan” (Wang, 2021). Several criteria
air pollutants exhibited decreases due to the emission control efforts, but not ozone (O3) (Qi et al., 2023; Shen et al., 2020).In
China, O3 concentrations were increased by 50-124 ug m= from 2015 to 2022 (Yao et al., 2024). The formation of surface O3
depends nonlinearly on its precursors and is strongly influenced by meteorological conditions and anthropogenic emissions
(Wang et al., 2017). The impact of emission-related factors on Os increases in China over the past decade has been extensively
debated, including the ineffective control of volatile organic compounds (VOCs) emissions, the heightened O3 photochemical
production due to the rapid decrease in PMa s, and the reduced nitric oxide (NO) titration effect (Li et al., 2019, 2022; Lin et
al., 2021a; Liu and Wang, 2020b; Ren et al., 2022).

Meteorological conditions also play a crucial role in shaping surface O3 trends (Liu et al., 2023; Lu et al., 2019b), resulting in
increased O; concentrations during warm seasons over most of the United States, the European Union, and China from 2014
to 2019 (Lyu et al., 2023). In China, the meteorological impacts on O3 levels may be comparable to the anthropogenic
contributions (Li et al., 2020; Liu and Wang, 2020a). From 2013 to 2018, meteorology could account for 43% of the daily
variability in summer surface O3 concentrations in eastern China (Han et al., 2020). Adverse meteorological conditions were
identified as the cause of the worsening O3 trends during 2015-2020 in Beijing-Tianjin-Hebei (BTH), Yangtze River Delta
(YRD), and Pearl River Delta (PRD) regions (Hu et al., 2024b). In YRD, Dang et al. (2021) found that meteorological factors
contributed 84% of the O3 increase during the summers of 2012-2017. In PRD, meteorological conditions contributed 83% of
the increasing Os trends during the summers of 2015-2019 (Mousavinezhad et al., 2021). After 2019, meteorological
conditions tended to improve O3 air quality (Liu et al., 2023; Wang et al., 2023). Compared to 2019, the wetter and cooler
meteorological conditions in 2020 reduced O3 concentrations by 2.9 ppb in eastern China (Yin et al., 2021). However, during
2022’s summer, a notable rebound in O3 levels occurred with O3 concentrations rising by 12—15 ppb in China compared to
2021, which was attributable to the extreme heatwave events (Qiao et al., 2024). With climate change, the frequency of extreme
O3 pollution events is expected to increase (Gao et al., 2023; Ji et al., 2024). Given the shifted meteorological effects on O;
and climate change, it is imperative to conduct Os3-Meteorology research focusing on longer time frames to gain deeper insights

into the long-term changes in O3 concentrations (Wang et al., 2024a).

Studies conducted over the past six years to determine the meteorological influence on the surface O; trend have been
systematically reviewed, as documented in Table S1. The meteorological influence on surface O3 concentrations is commonly
assessed by using the traditional statistical model (TSM), machine learning model (MLM), and chemical transport model
(CTM), driven by reanalysis meteorological products such as the fifth-generation European Centre for Medium-Range
Weather Forecasts atmospheric reanalysis of the global climate (ERAS), the Modern-Era Retrospective Analysis for Research

and Applications, version 2 (MERRA?2), and the National Centres for Environmental Prediction (NCEP) Final Operational
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Global Analysis data (FNL). Although several studies have demonstrated that meteorological impacts derived from CTM
results can corroborate the results of TSM (Liu et al., 2023; Yan et al., 2024) or MLM (Ni et al., 2024; Yin et al., 2021),
uncertainties in the determination of meteorological effects on surface O3 concentrations cannot be neglected. For example,
Pan et al. (2023) reported that the meteorological impact on O3 trends in Beijing during 2013-2020 was +0.52 ppb yr~!, which
is only half of the value estimated by Gong et al. (2022).

Uncertainties in quantifying the drivers of O3 trends can be ascribed to the discrepancies between different meteorological
datasets and between different methods (Guo et al., 2021; Weng et al., 2022; Yao et al., 2024). Regarding the uncertainty
caused by different meteorological datasets, the meteorologically driven annual variations of O3 concentrations from 2017 to
2019 identified by the MERRA2-driven TSM are not consistent with the ERA5-driven TSM during the summer of YRD (Hu
et al., 2024a; Qian et al., 2022). During the summers of 2013-2019 in YRD, Li et al. (2019) reported a trend of +0.7 ppb yr!
in meteorology-driven O3z concentrations using the MERRA2-driven TSM, while the trend of Yan et al. (2024) was —0.3 pg
m~ yr! using the ERAS5-driven TSM. Regarding the uncertainty caused by different methods, the meteorology-driven O3 trend
identified by MLM for 20192021 was 2.4 times larger than that identified by CTM based on the same meteorological dataset
input (MERRA?2) in the North China Plain (NCP) during summer (Wang et al., 2024a). In BTH, from 2021 to 2022, Luo et al.
(2024) identified a negative meteorological contribution based on the ERAS5-driven MLM, while Yan et al. (2024) suggested

a positive contribution (+4.3 pg m=) based on the ERA5-driven TSM during summer.

On the basis of the above-mentioned, large uncertainties caused by multi-dataset or multi-method exist in Os3-Meteorology
analyses. However, available intercomparisons of Oz analyses mainly focused on predicting the O3 concentrations. For
example, Wang et al. (2024b) and Weng et al. (2023) compared the differences in O3 concentration prediction caused by
different datasets and models, respectively. The uncertainties in quantifying the meteorological contributions to O3 trends
caused by multi-dataset and multi-method remain unassessed. In addition, previous studies have predominantly focused on
summer Oj; pollution, although reports indicate an extension of the Oz pollution season to winter and spring across major
clusters in China (Cao et al., 2024a; Li et al., 2021) and an unfavourable meteorological impact on Oj air quality in spring and
winter in BTH (Luo et al., 2024). It is essential to conduct an intercomparison of meteorology-driven O3 quantification using

multi-dataset and multi-method across all seasons.

This study utilised 10-year (2013-2022) surface O3 observations in China to investigate long-term O; trends and quantify the
meteorological influence on O3 trends using diverse meteorological datasets and analytical methods. Figure 1 shows the
framework, and the main objectives were: (1) to assess uncertainties in identifying the meteorological influences caused by
multi-dataset. This was achieved by employing the TSM (i.e. multiple linear regression, MLR) driven by different reanalysis
meteorological products (i.e. ERAS5, MERRA2, and FNL); (2) to assess uncertainties in identifying meteorological effects
caused by multi-method. This was achieved by establishing three models corresponding to TSM (i.e. MLR), MLM (i.e. random
forest, RF), and CTM (i.e. GEOS-Chem, GC), each driven by the MERRAZ2 product; (3) to calculate the mean of meteorology-
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driven Os trends driven by three datasets (multi-dataset mean) and three methods (multi-method mean), so as to to derive

relatively robust results.

Our paper is structured as follows: Section 2 briefly introduces the details of surface Oz observations and different
meteorological datasets, as well as the framework of three methods, namely MLR, RF, and GC. The quantification of the
uncertainties in meteorology-driven Os trends caused by multi-dataset and multi-method is presented in Section 3. Section 4
concludes the paper. The findings of this study provide a scientific foundation for developing regional and seasonal strategies

to mitigate and manage O3 pollution in China.

1. O;-Meteorology analyses based on different datasets
_| Multiple Linear Regression l- Assessment of uncertainties in
(MLR)  O,-Meteorology analyses caused
s @ MERRA2 | AT Traditional stafistics by multi-dataset/multi-method
Variations
in observed [ : Random Forest ™
MDAS O, emporil | =g (RF)
. variabnles
concentrations Machine learning Quantification of meteorological
=» influence on the surface MDAS
_| ] GEOS-Chem f‘ O, trends in all seasons
iy MEIC (GO)
et Inv Lllﬂ()l'}
== Chemical transport model
2. O;-Meteorology analyses based on different methods

Figure 1. The framework of the uncertainty assessment in this study.

2 Data and Methods
2.1 Surface O3 and meteorological data sources

Hourly surface Oz observations from over 1000 state-controlled stations operated by the China National Environmental
Monitoring Centre from 2013 to 2022 were used to analyse the long-term Os trends across all seasons: spring (March-April-
May), summer (June-July-August), autumn (September-October-November), and winter (December-January-February). The
maximum daily 8-hour average (MDAS) O3 was calculated as an air quality indicator after filtering out abnormal data using

the z-scores method. For detailed information on data quality control, refer to He et al. (2017).

In this study, we selected three widely used reanalysis products to assess the uncertainties caused by different meteorological
datasets. Variables during 2013-2022 from ERAS, MERRA2, and FNL, as detailed in Table S2, were selected as

meteorological inputs for building MLR models. These reanalyses have spatial resolutions of 0.25°x0.25°, 0.625°x0.5°, and
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1°x1° on a global latitude-longitude grid, respectively. In Section 3.2, we also incorporate the NCEP FNL reanalysis product
with a spatial resolution of 0.25°%0.25° (FNLO025) for the period 20162022 to explore the effect of spatial resolution on the

analysis of uncertainties caused by multi-dataset.
2.2 Methods for obtaining long-term series and meteorological influence

2.2.1 Kolmogorov—Zurbenko (KZ) filter

The KZ filter, known for its ability to extract low frequency signals from time series data and handle missing values, has been
extensively applied to analysing air quality variations (Eskridge et al., 1997; Rao and Zurbenko, 1994; Wise and Comirie,
2005). This filter is particularly useful in studying variations in air quality over time. The original time series of air pollutants

or meteorological variables (X (t)) can be decomposed by the KZ filter into the following form:

X(t) = Xsr (£) + Xon (1) + Xppr (1) (1)
Xir () = KZ (3653 X(t) )

Xpy (6) = KZ (155X (1) 3)

Xsr (t) = X(t) — Xp,, (1) 4)

In the decomposition process, X (t) represents the original daily time series, while X¢7 (t), Xgy (t), and X7 (t) denote the
short-term, seasonal, and long-term components, respectively. The baseline component, Xg; (t), is defined as the sum of
Xsy (t) and X;7 (t). The KZ(, 4 filter executes q iterations with p as the moving average window length of X (t) series.
Specially, X7 (t) is derived using the KZ 3¢5 3) filter, capturing long-term changes with periods exceeding 1.7 years. Xp, (t)
is obtained through the KZ ;55 filter, encompassing both seasonal and long-term components. Xgr (t) represents short-term
fluctuations with period less than 33 days in the original time series. Xgy (t) is derived as the difference between Xg; (t) and
X,r (t), corresponding to seasonal variation on a timescale of months. The KZ filter can fill in missing values by using iterated
moving average technique. Although not all of the ozone measurement sites were active over the entire period 20132022,

missing value problems can be handled for most stations after we conduct three iterations with 365-day moving average.

In this study, all statistical analyses were performed at the seasonal scale (spring: March-April-May; summer: June-July-
August; autumn: September-October-November; winter: December-January-February). For each season, the KZ (345 3y filter

was applied to extract the long-term trends in observed, meteorology-driven, and emission-driven MDAS O3 concentrations

(see details in Fig. S1) during 2013-2022, as detailed in Sections 2.2.2, 2.2.3, and 2.2.4.

2.2.2 Stepwise MLR for separating meteorological influence

As vividly illustrated in Fig. S1, a data-based TSM (i.e., MLR integrating the KZ filter) was employed to separate the observed
MDAS Oj; concentrations into meteorology-driven and emission-driven concentrations (Sadeghi et al., 2022; Shang et al., 2023;

Zhang et al., 2022a). We initially applied the KZ filter to disassemble the MDAS O3 time series and all meteorological variables
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listed in Table S2 into short-term, baseline, and long-term components at individual state-controlled stations for each season.
Subsequently, a series of screening processes aligned with our previous research (Wang et al., 2024c¢) were executed to perform
stepwise MLR on the short-term/baseline MDA O3 concentrations and a group of meteorological variables series, respectively.
The established MLR model is presented herein:
Cor(t) = bosy +Zfibisy X Mety(t) + & (5)

Here, C;,(t) represents the MDAS O; concentration for season s and monitoring station r, while Met;(t) signifies the i-th
meteorological variable out of a total of k, and b; s, is the corresponding regression coefficient. by s, denotes the intercept
term, and ¢ is the residual term. After establishing MLR models for the short-term and baseline components in each season,
we obtain their respective residual terms. The total residuals, which represent the sum of residuals from baseline variables and
short-term variables, primarily reflect anthropogenic influences. We then applied a KZ(3453) filter to these aggregated
residuals to derive long-term emission-driven and meteorology-driven Oj3 variations. Finally, the meteorology-driven Os trends

and emission-driven O3 trends were obtained through Least Square Method.

The constructed MLR models driven by meteorological variables from ERAS5, MERRAZ2, or FNL in each season will allow a
comprehensive analysis of multi-dataset uncertainties. The meteorological impact on O3 trends derived from the MERRA2-
driven MLR model will also be integrated into the analysis of multi-method uncertainties to improve the comparability of

results.

2.2.3 Random forest (RF) for deriving meteorological influence

The application of MLM in Os air quality research is becoming increasingly prevalent due to its superior accuracy, user-
friendly nature, and capability to capture nonlinear relationships (Ni et al., 2024; Yao et al., 2024; Zhang et al., 2022b).
Considering the limited influence of discrepancy in Os-Meteorology analyses stemming from different machine learning
algorithms (Wang et al., 2024a), we opted to build a representative MLM known as the meteorological normalisation model
based on the RF algorithm (Ding et al., 2023; Ji et al., 2024; Zhang et al., 2023), to delineate meteorology- and emission-

driven O3 concentrations.

RF stands out as a tree-based ensemble learning algorithm adept at handling nonlinear issues and reducing overfitting (Breiman,
2001). An RF model was developed for each state-controlled station in each season to predict the MDAS O3 concentration
using the Python package “Sklearn-RandomForestRegressor”. The predictors included six temporal variables (year, month of
a year, day of a week, day of a month, day of a year, Unix time), serving as proxies for anthropogenic emission intensity
(Grange et al., 2018), alongside six MERRA2 meteorological variables as listed in Table S2 (i.e. SLP, T2max, U10, V10,
RH2, PBLHday). The training dataset comprised 70% of the data, while the remaining 30% was reserved for model evaluation.
A statistical cross-validation technique was employed to determine optimal hyperparameters for enhancing RF prediction

performance (Weng et al., 2022). Coefficient of determination (R?) values were utilised to assess model performance for each
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station. Over 70% of state-controlled stations showed R? > 0.5 in all seasons (Fig. S2b), which is consistent with the 0.4-0.6
range reported in comparable studies (Weng et al., 2022; Lu et al., 2024). Stations with R? < 0.5 were excluded to avoid
significant attribution uncertainty that could be introduced by the RF performance. To evaluate the robustness of the R? > 0.5
criterion, we performed sensitivity analyses using thresholds of R? > 0.6 and R? > 0.4, to ensure that our conclusions are not

an artifact of an arbitrary cutoff (Table S3).

After establishing the RF model, both the original time variables and resampled meteorological variables were utilised as input
data. For meteorological normalisation, we implemented the protocol of Vu et al. (2019). Meteorological variables were
resampled by randomly selecting data from the two weeks before and after the specified date, while temporal proxies remained
fixed. To derive the de-weathered MDAS O3 concentration for a given day (e.g. March 1, 2013), the random resampling
process was iterated 1000 times. The mean predicted O3 under average meteorological conditions, which refers to de-weathered
03, corresponds to the emission-driven O3 concentration. The meteorology-driven MDAS8 O3 concentrations for each season
were computed as the difference between observed concentrations and de-weathered concentrations. Detailed processes are
shown in Fig. S2(a). The KZ 345 3) filter was then applied to obtain long-term components, and meteorology-driven Os trends

were derived using Least Square Method.

2.2.4 GEOS-Chem (GC) simulation for quantifying meteorological influence

The numerical analysis of surface O; in China was performed with the GC classic version 13.3.3
(https://github.com/geoschem/GCClassic/releases/tag/13.3.3). Developed as a global 3-D model, GC incorporates a fully
coupled Os3—NOx—VOCs—aerosol-halogen chemical mechanism, driven by the MERRA2 meteorological input. Numerous
studies have leveraged GC to simulate O3 air quality in China, demonstrating alignment between observational data and model
outcomes (Dai et al., 2024; Dang et al., 2021; Li et al., 2019; Lu et al., 2019a). We employed the nested-grid GC to simulate
the long-term surface O3 concentrations and to quantify the meteorology-driven MDAS Oj trends over China. The nested-grid
domain was set over China’s mainland (15—-55°N, 70-140°E) with a horizontal resolution of 0.5° latitude by 0.625° longitude
and 47 vertical layers extending up to an altitude of 0.01 hPa. A global simulation with a horizontal resolution of 2°%2.5°
provided the chemical boundary conditions for the nested-grid simulation every 3 hours. To ensure model stability and
accuracy, a 6-month spin-up simulation was conducted before the commencement of the targeted 10-year period from March

2013 to February 2023.

Emissions management within GC is facilitated by the Harmonized Emissions Component, a system introduced by (Lin et al.,
2021b). Anthropogenic emissions are sourced from the Community Emissions Data System (CEDS) inventory globally, with
specific overwriting by the Multi-resolution Emission Inventory for China (MEIC) within the Chinese region. The simulations
for 2021-2022 adopt a similar approach to Zhai et al. (2021), using 2019 MEIC emissions with NOx emissions reduced by 8
~13% and 2017 MEIC with VOCs emissions reduced by 10 ~ 14%, based on the policy released by Ministry of Ecology and
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Environment of the People's Republic of China. For natural emissions, biogenic VOCs, soil, and lightning NOx were calculated
online in the model. Emissions from biomass burning, ships, and aircraft are sourced from the Global Fire Emissions Database,

the CEDS inventory, and the 2019 Aircraft Emissions Inventory Code, respectively.

In order to assess the model’s performance and to get a quantification of meteorology-driven O3 trends during the period of
2013-2022, two sets of simulations were conducted: (1) BASE: the standard simulation of O3 concentrations from 2013 to
2022, where both meteorological fields and emissions (including anthropogenic, natural, and biomass emissions) vary year by
year from 2013 to 2022; (2) FixE2013: a “fixed-emission simulation” where meteorological conditions vary from 2013 to
2022 while anthropogenic emissions remain constant at 2013 levels. The FixE2013 simulation is designed to quantify the
meteorological influence on Os variations. The FixE2013 simulation is designed to obtain the MDAS O3 concentrations driven
solely by meteorological changes and further quantify the meteorological influence on O3 variations in four seasons. After
applying the KZ 545 3y filter to derive the long-term meteorology-driven series, trends were calculated through Least Square
Method. Figure S3 evaluates the performance of the GC simulation for 2013-2022. The GC model generally captures the
monthly variability in MDAS O3 over China and three megacity clusters, with the correlation coefficients greater than 0.80,
although it always shows a high bias of surface O3 in warm seasons (Dai et al., 2024), which can be attributed to its inability
to capture the complex terrain, local pollution sources and meteorological conditions, or overestimates of the correlations

between the surface Os concentration and temperature (Shen et al., 2022; Sun et al., 2021).

2.3 Assessment of uncertainties caused by multi-dataset and multi-method

In this study, the coefficient of variation (CV) is applied to assess the uncertainties in Os-Meteorology analyses caused by
different meteorological datasets or methods. The CV, calculated as the ratio of the standard deviation (SD) to the mean, serves
as a statistical metric commonly utilised to measure the diversity within datasets or models (Bedeian and Mossholder, 2000;
Chen et al., 2019). Compared to other comparators (e.g. range, inter-quartile range, and SD), the CV is a unit-free measure
that quantifies percentage variation relative to the mean and is less sensitive to outliers and heavy-tailed distributions (Hogel
et al., 1994; Chattamvelli and Shanmugam, 2023). In this study, higher CVs indicate lower consistency of meteorologically
driven Oj trends derived from different datasets or methods. To give a more quantitative assessment, consistency levels were
classified as strong and weak with CV<0.5 and CV>1.0, respectively (Wang et al., 2022a). Given the possibility of disparate
meteorology-driven O; trends detected by different datasets or methods, we consider the absolute value of the CV as a
quantitative indicator of the uncertainties. For each season, when examining the uncertainties arising from different datasets,
the CV represents the SD of trends derived from the ERAS5, MERRA2, and FNL-driven MLR models divided by the mean.
Similarly, in the context of multi-method uncertainties, the CV is the SD of trends identified by the MLR, RF, and GC models
divided by the mean.
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3 Results
3.1 Observed trends in surface O3 concentration

Figure 2 shows the trends in observed MDAS8 O3 concentrations over a 10-year period during four seasons. Noteworthy
increases in O3 concentrations were observed at 78 ~ 93% of state-controlled stations over the years, with the national trend

being +1.31 ppb yr!, +0.93 ppb yr!, +0.79 ppb yr!, and +0.80 ppb yr! in spring, summer, autumn, and winter, respectively.

The major eastern megacity clusters in China also displayed their highest MDAS8 O3 increase trends in spring, with trends of
+1.16 ppb yr ! in BTH, +1.61 ppb yr! in YRD, and +1.48 ppb yr~! in PRD, which has been reported in previous studies (Cao
et al., 2024b; Chen et al., 2020; Wang et al., 2022b). During summer, BTH and YRD faced more severe challenges in O3
prevention and control compared to PRD, with rising MDAS8 O; trends in the former two regions being about three times

higher than that in PRD (Fig. 2b).

In terms of O3 growth rates, Shanxi province and Anhui province ranked the top two provinces in China over the past decade
in all seasons except for winter, consistent with Zhao et al. (2020). In spring and winter, O3 concentrations increased in all
provinces, with trends of +0.39 ~+2.75 ppb yr! and +0.42 ~ +1.30 ppb yr!, respectively. Notably, Jilin province experienced
an obvious improvement in Oj air quality during summer and autumn, with decreasing trends of —0.74 ppb yr~! and —0.38 ppb
yr !, respectively, which was also confirmed by Gong et al. (2022). As mentioned in Section 1, variations in O3 concentrations
are fundamentally modulated by emissions and meteorology. This section mainly documents observed O3 trends, and the

quantitative contributions of emissions and meteorology to MDAS8 O3 variations will be discussed in Section 3.2.

The annual and seasonal mean MDAS8 O3 concentrations across China are detailed in Fig. S4 and Fig. S5, providing a holistic
depiction of the persisting spread of O3 pollution since 2013. On a national average, the Os air quality was worst in summer,
with the average O3 levels exceeding the air quality standard Grade I limit of 50 ppb almost every year. Notably, the summer
of 2019 marked a peak period for O3 pollution, with an average concentration of 59.7 ppb (Fig. SSb).



251
252

253

254

255
256
257
258
259
260
261
262
263
264
265
266
267
268

(a) Spring

China: 1.31
BTH: 1.16
YRD: 1.61

5 d’/ BTH: 1.11
3 p YRD: 1.21

(b) Summer

F S0°N A

I 40°N

F 30°N A
China: 0.93

PRD: 1.48 F20°N 4 PRD: 0.38
T T T T T T T T

75°E 90°E 105°E 120°E 135°E 5°E 90" E 105°E 120°E 135°E

(Id) Winter I

(¢) Autumn

F 50°N o

I 40°N -

I 30°N

China: 0.79
BTH: 0.88
YRD: 1.05
PRD: 1.25

China: 0.80
BTH: 0.97
YRD: 081
[ 20°N 4 PRD: 0.84

[ [
2 15 4 05 0 05 1 15 2 25 3

Observed MDA8 O, trend (ppb yr")

[T
[ 4% )
x d’ e
2 S
7 2 & i ,,{;'-?'

Figure 2. Trends in observed MDAS O3 concentrations in China from 2013 to 2022 during (a) spring, (b) summer, (c) autumn, and (d)
winter. Values in black, purple, blue, and green represent the mean trends for the whole China, BTH, YRD, and PRD, respectively.

3.2 Uncertainty in meteorology-driven Os trends caused by multi-dataset

The traditional statistical method (the MLR model), which has a relatively low computational cost but can provide valuable
insights into the quantification of meteorological contributions to O3 trends, was used to investigate the uncertainties in Os-
Meteorology analyses caused by different meteorological datasets. As shown in Fig. 3(a), meteorological conditions contribute
to an increase in MDAS O3 concentrations across all seasons in China, with the multi-dataset mean trends ranging from +0.19
(£0.47) ppb yr! to +0.55 (+0.45) ppb yr!. All three dataset-driven MLR models indicate that meteorology leads to the most
rapid increase in MDAS8 Oj; concentrations in spring, with trends ranging from +0.47 (£0.47) ppb yr! to +0.71 (£0.59) ppb
yr!, and a low CV of 0.25. This suggests a high consistency among the three datasets in assessing the meteorological influence
on surface O3 concentrations. During summer and autumn, meteorological influences on O3 show greater spatial heterogeneity
(with higher SD) and larger variability among multi-datasets (with higher CV). Specifically in autumn, the meteorology-driven

O3 trend derived from the FNL-driven MLR model is 4.1 times larger than that derived from the ERA5-driven MLR model.
Lu et al. (2024) compared meteorology-driven O3 trends derived from ERAS- and MERRA2-driven MLR models during the
summers of 2013-2019. Their findings revealed that ERAS5-derived trends were lower than those from MERRA2 in YRD and
PRD, whereas trends derived from ERAS were comparable to those from MERRA?2 in BTH. This inter-study consensus further

validates the robustness of our methodological framework.
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Figure 3(b-d) depicts the meteorological impact on the MDAS O3 trends in the three megacity clusters (BTH, YRD, and PRD).
Meteorology caused the MDAS O3 increase in most of the megacity clusters and seasons, except for BTH during autumn. In
seasons where the meteorological effects derived from the three MLR models are all positive, the multi-dataset mean trends
ranged from +0.09 (£0.38) to +0.33 (£0.13) ppb yr!' in BTH, +0.18 (£0.20) to +0.68 (£0.56) ppb yr! in YRD, and +0.73
(£0.36) to +1.13 (£0.45) ppb yr! in PRD. Consistent with Fig. 3(a), meteorology triggered the most rapid increase in MDAS
O3 concentrations in spring across the three megacity clusters. The largest meteorological impact in BTH during spring was
also revealed by Luo et al. (2024). Large CVs (>1.0) were observed in BTH during summer and autumn. Notably, the
meteorological influence calculated by the three dataset-driven MLR models even showed opposite trends in BTH during
autumn, indicating challenges in assessing the meteorological impacts on surface O3 concentrations. In contrast, in YRD and
PRD, the three MLR models demonstrated high consistency across almost all seasons. Although the largest CV reached 4.40
in PRD during summer, it was considered acceptable because the three MLR models indicated that meteorology had a minor

influence (less than +0.1 ppb yr ') on O; trends.
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Figure 3. Meteorology-driven MDAS Os trends in (a) the whole China, (b) BTH, (c) YRD, and (d) PRD during four seasons. Values in red,
blue, and purple represent trends calculated by ERAS-, MERRA2-, and FNL-driven multiple linear regression (MLR) models, respectively.
The fourth black bar represents the multi-dataset mean trend. Error bars indicate +1 standard deviation (SD) of site-level trends calculated
from all available monitoring stations within each region. The absolute value of the coefficient of variation (CV) for each season is also

shown.
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From a provincial perspective in Fig. S6, we can also see that the meteorological contributions to O3 trends are positive during
spring and winter. Large uncertainties in O3-Meteorology analyses were identified during summer and autumn. There were 7
and 12 provinces with controversial meteorological contributions identified by the three dataset-driven MLR models in

summer and autumn, respectively.

Figure 4 displays the spatial distribution of the CV values from the perspective of state-controlled stations in four seasons.
Consistent with the national and provincial perspectives, the least uncertainties in O3-Meteorology analyses were observed in
spring, with CVs less than 0.5 at 45% of stations. Obvious discrepancies in meteorology-driven O3 trends are found in summer
and autumn, particularly in the NCP and northwestern China, with CVs greater than 1.0 at 33 ~ 40% of the stations. In autumn,
it is noteworthy that the uncertainties caused by multi-dataset are lower in the south than in the north. Previous studies that
employed MLR models to predict O3 concentration also revealed that the MLR had better performance in the south than in the
north (Han et al., 2020; Lu et al., 2024).
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Figure 4. The absolute value of the coefficient of variation (CV) for each state-controlled monitoring station in China during (a) spring, (b)
summer, (c¢) autumn, and (d) winter. The CV is calculated by the standard deviation (SD) of the trends derived from ERAS-, MERRA2-, and
FNL-driven MLR models divided by the mean. The darker colour means the larger uncertainty in quantifying the meteorological impact on
observed Os trends. The proportion of state-control stations with CV less than 0.5 and greater than 1.0 is also shown. The outline marked in

purple, blue, and green represents the region of BTH, YRD, and PRD, respectively.

Based on the three dataset-driven MLR models, the meteorological and anthropogenic contributions to the MDAS O3 trends

in China during 2013-2022 were further examined. As presented in Fig. 5, both meteorological conditions and anthropogenic
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emissions lead to Os increases. According to the ERAS- and MERRA2-driven MLR models, variations in anthropogenic
emissions were identified as the dominant factor driving the increase in MDAS O3 concentrations across all seasons, with
anthropogenic contributions ranging from 63.2% to 90.4%. The results suggest that more stringent emission control policies

should be implemented to counteract the adverse effects of meteorological influences on O3 concentrations.

(a) Spring (b) Summer

Obs: 0.93

Obs: 1.31

(¢) Autumn (d) Winter

Obs: 0.80

Obs: 0.79

Meteorology-driven trend o W et ynit: ppb yrt

Emission-driven trend [l e

Figure 5. Percentage contributions of meteorological conditions (blue) and anthropogenic emissions (red) to the trends in observed MDAS
O3 concentrations calculated by ERAS-, MERRA2-, and FNL-driven multiple linear regression (MLR) models in China during (a) spring,

(b) summer, (c) autumn, and (d) winter. Values in black represent the observed MDAS O3 trends averaged over the whole China.

It is interesting to note that the FNL-driven model almost always gave relatively larger predictions of meteorologically driven
O3 trends compared to the models driven by ERAS5 and MERRA?2. To investigate whether this discrepancy was due to the
coarser spatial resolution of the FNL dataset, a comparison was made between the FNL025-driven MLR model (0.25°%0.25°)
and the FNL-driven MLR model (1.0°%1.0°). As depicted in Fig. S7, the deviation of the meteorology-driven trends calculated
by the two MLR models was less than 0.1 in China and three megacity clusters across four seasons, indicating that different
spatial resolutions have little effect on O3-Meteorology analyses. Further examination was conducted to assess the influence
of meteorological variables on O3-Meteorology analyses. Table S4 lists the 10-year trends in each meteorological factor and
shows a great discrepancy in the variable “PBLHday”. Zuo et al. (2023) also reported that FNL exhibited the highest
uncertainty for the evaluation of PBLH compared to ERAS and MERRAZ2, and that its performance may be constrained by
complex underlying terrain and static instability (Guo et al., 2021). As Fig. S8 shows, constructing the FNL-driven MLR
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models using six meteorological variables without “PBLHday” can reduce the estimated meteorological impact by 0.08 to
0.20 ppb yr'!. To obtain a more reliable estimate, it is recommended to use MERRA?2 reanalysis dataset due to its eclectic
result (Fig. 3) and avoid using FNL because of the uncertainty brought by PBLH when separating meteorological and

anthropogenic influences on O3 concentrations in China.

3.3 Uncertainty in meteorology-driven O3 trends caused by multi-method

This section discusses the uncertainties caused by multi-method (i.e. MLR, RF, GC), all of which are driven by the MERRA?2
dataset. Figure 6 illustrates the meteorology-driven MDAS8 Oj; trends calculated by the MLR, RF, and GC models. For the
whole of China, the large uncertainties are evident during summer, when the meteorology-driven Oj; trends derived from the
MLR model are notably larger than those from the RF and GC models, with a CV of 2.00 (Fig. 6a). In the other three seasons,
the multi-method mean trends, ranging from +0.17 (£0.37) to +0.26 (+0.27) ppb yr'!, are 1.1 to 2.1 times lower than those
computed by the three dataset-driven MLR models (Fig. 3a), all models converge on the conclusion that meteorological
conditions contribute to the deterioration of O3 air quality. Meteorology-driven MDAS8 O3 trends exhibited minor variations

across different R? thresholds (Table S3), indicating that the trends are not an artifact of an arbitrary cutoff.
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Figure 6. Meteorology-driven MDAS Os trends in (a) the whole China, (b) BTH, (c¢) YRD, and (d) PRD during four seasons. Values in red,
blue, and purple represent trends calculated by multiple linear regression (MLR), random forest (RF), and GEOS-Chem (GC) models,

respectively. The fourth black bar represents the multi-method mean trend. Error bars indicate +1 standard deviation (SD) of site-level trends

14



341
342

343
344
345
346
347
348
349
350
351
352
353
354
355

356
357

358

calculated from all available monitoring stations within each region. The absolute value of the coefficient of variation (CV) for each season

is also shown.

In YRD and PRD, the three models exhibit strong agreement across all seasons, with a maximum CV of 0.61. The low
uncertainties are further corroborated by consistent CV estimates derived under different RF’s R? thresholds (Table S3).
Across these regions, where meteorology leads to an increase in O3 concentrations with multi-method mean trends of +0.17
(£0.08) to +0.47 (£0.22) ppb yr! in YRD and +0.10 (£0.12) to +0.83 (F0.19) ppb yr' in PRD. Notably, the most rapid
meteorology-driven O3 increase is also observed in spring (Fig. 6¢ and Fig. 6d), which is consistent with Fig. 3¢ and Fig. 3d.
Lu et al. (2024) also demonstrated a high degree of consistency among the MLR, ML, and GC models in PRD during summer.
Specifically, all three models indicated that meteorology contributed approximately 25% of O3 variability over the period
2013-2019. In BTH, the three models perform consistently well only in winter, with meteorology-driven Os trends ranging
from +0.09 (£0.07) to +0.26 (£0.15) ppb yr! and a CV of 0.55. It is also observed that in summer and autumn, meteorology
plays a relatively small role in influencing O3 air quality despite the controversial results obtained by the three models (Fig.
6b). This finding aligns with a study focusing on the O3 air quality in BTH from 2015 to 2022 (Luo et al., 2024), which
suggested that meteorological conditions tend to increase MDAS8 O3 concentration by only 0.01 pg m™ in summer and decrease

MDAS Oj; concentration by 0.3 pg m™ in autumn from 2015 to 2022.
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Figure 7. The absolute value of the coefficient of variation (CV) for each state-controlled monitoring station in China during (a) spring, (b)

summer, (c¢) autumn, and (d) winter. The CV is calculated by the standard deviation (SD) of the trends derived from multiple linear regression
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(MLR), random forest (RF), and GEOS-Chem (GC) models divided by the mean. The darker colour means the larger uncertainty in
quantifying the meteorological impact on observed Os trends. The proportion of state-control stations with CV less than 0.5 and greater than

1.0 is also presented. The outline marked in purple, blue, and green represents the region of BTH, YRD, and PRD, respectively.

In addition, Fig. 6 illustrates that the meteorology-driven Oj; trends obtained from GC are relatively smaller. As shown in Fig.
S3 and Table SS, this difference could partly be attributed to the higher O3 levels and lower O3 increases simulated by the GC
model before 2018. The GC’s systematic overestimation of O3 concentrations, as well as underestimation of O3 increases, was
also reported by Lu et al. (2024), in which the GC captured 13.6 ~ 81.1% of the observed O3 increases in China during the
summer of 2000-2019. It is crucial to take into account the overestimation of low-level Oz observations, as noted in previous
studies (Hu et al., 2024c; Mao et al., 2024). To validate this hypothesis, we compared the meteorology-driven O3 trends
calculated by MLR with those calculated by GC from 2018 to 2022, and a higher agreement was found over 2018-2022
compared to the 2013-2022 period in Fig. S9. The trends driven by RF model are eclectic in more cases (Fig. 6) and

recommended to isolate meteorological and anthropogenic drivers.

From a provincial perspective, as depicted in Fig. S10, the three models together indicate that meteorology causes an O;
increase in winter across almost all provinces except for Guizhou and Sichuan. In summer and autumn, meteorology leads to
a decrease in 5 provinces, mainly in northeastern China, with trends ranging from —0.42 to —0.11 ppb yr. Interestingly, across
all seasons, the three models introduce less uncertainty in the developed east coast regions such as Jiangsu, Fujian, and
Guangdong compared to other provinces. This suggests that quantifying meteorological impact on O3 levels in these developed

regions along the east coast of China is relatively reliable.

From the perspective of state-controlled stations, Fig. 7 shows the spatial distribution of the CV during four seasons. The
lowest disparities in the meteorology-driven MDAS Oj trends persist in winter, with CVs of less than 0.5 recorded at 29% of
the stations. In the other three seasons, however, significant discrepancies in meteorology-driven O3 trends are prominent, with
CVs greater than 1.0 at least 48% of the stations. Similar to Fig. 4, it is noteworthy that in autumn, the uncertainties caused by

multi-method are more pronounced in the northern regions compared to the southern regions.

4 Limitations

While this study advances understanding of meteorological contributions to O3 trends, several limitations warrant attention in
future work. Though the reanalysis meteorological dataset is generated observationally, inherent constraints exist, including
parameterization uncertainties affecting Os-relevant physical processes (Janji¢ et al., 2018; Davidson and Millstein, 2022) and

resolution constraints.

Regarding analytical approaches, machine learning efficiently captures nonlinear Os-meteorology relationships without

requiring explicit physicochemical parameterizations, enabling scalable multi-site analysis. However, its inability to resolve
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chemical mechanisms and sensitivity to predictor selection remain key constraints. Conversely, while GC mechanistically
resolves chemistry-transport interactions and enables source attribution, it propagates uncertainties from emission inventories

and chemical mechanisms into trend estimates.

Future studies could be improved in the following ways: First, more meteorological datasets and methods should be used to
provide more robust uncertainty quantification in Os-meteorology analyses. Second, implementing clustering techniques (e.g.
K-means algorithm) could identify sub-regional drivers at ecotones, enhancing spatial resolution beyond our regional
framework. Finally, the Lindeman-Merenda-Gold indices can be employed to quantitatively resolve the contributions of
specific meteorological variables. The mechanistic understanding of O3 drivers would be improved by integrating additional
variables, such as solar radiation, soil moisture, and climate indices (e.g. El Niflo-Southern Oscillation). Clustering techniques
would be valuable to augment the region-based approach and would provide better understanding of the similarity between

stations.

5 Conclusions and Discussions

This study used the 10-year (2013-2022) surface O3 observations to clarify O3 variations during four seasons in China, and
quantify the meteorological impacts on O; trends, with a special focus on the uncertainties of meteorology-driven O3 trends.
Diverse meteorological datasets (ERAS, MERRA2, FNL) and analytical methods (MLR, RF, GEOS-Chem) were employed
to systematically analyse the uncertainties in meteorology-driven O3 trends caused by multi-dataset and multi-method which
have not been assessed before. The coefficient of variation (CV) was adopted as a metric to assess the uncertainty. The main

conclusions are as follows:

Over the past decade, increasing trends in MDAS8 O3 were observed at over 78% of state-controlled stations across all seasons,
with the national trend of +1.31 ppb yr!, +0.93 ppb yr!, +0.79 ppb yr!, and +0.80 ppb yr! in spring, summer, autumn, and

winter, respectively.

We first applied the MLR model (driven by ERAS, MERRA?2, and FNL, respectively), which has proven its usefulness and
reliability in Os-Meteorology analyses, to assess uncertainties caused by multi-dataset. For the whole China, all three dataset-
driven MLR models indicate that meteorological conditions have led to an increase in MDAS O3 concentrations in four seasons,
with multi-dataset mean trends ranging from +0.19 ppb yr! to +0.55 ppb yr~'. The models driven by different meteorological
datasets showed a maximum meteorology-driven Os trend of +0.55 ppb yr~! with the highest consistency (CV=0.25) in spring.
The FNL-driven model always obtained larger meteorology-driven O3 trends compared to the models driven by ERAS and
MERRA2, which could be attributed to the inability to accurately evaluate PBLH in the FNL dataset. The dominant influence
of anthropogenic emissions on O3 increase was also identified, highlighting the need for more stringent emission control

policies to mitigate the adverse effects of meteorological conditions.

17



419
420
421
422
423
424
425
426
427

428
429
430
431
432
433

434
435
436
437
438
439

440
441
442

443

444
445
446
447

We further applied the MLR, RF, and GEOS-Chem models to obtain the meteorological influence on O3 trends to explore the
uncertainties caused by multi-method. In China and three megacity clusters, the three methods consistently indicated positive
meteorological contributions to O3 increases during spring and winter, with multi-method mean trends ranging from +0.12 to
+0.83 ppb yr! and +0.17 to +0.70 ppb yr!, respectively. In summer and autumn, especially in BTH, where the meteorological
influence was relatively lower, three methods gave conflicting predictions of meteorological influence on O3 with CVs greater
than 1.08. For the whole China, three different methods demonstrated optimal consistency in winter with a CV of 0.40 and the
worst consistency in summer with a CV of 2.00. The meteorology-driven Oj; trends obtained from GEOS-Chem model were
almost relatively smaller than those obtained by other two methods, which could partly be attributed to the higher O3 values

simulated by the GEOS-Chem model before 2018.

All analyses driven by diverse meteorological datasets and analytical methods drew a consistent finding: meteorological
conditions almost contribute to O3 increase across all seasons. The uncertainties of meteorology-driven O3 trends caused by
different analytical methods were larger than those caused by diverse meteorological datasets. Considering that the favourable
effects of meteorology on O3 pollution tend to be weaker after 2019 and the effects of COVID-19, it is necessary to conduct
research over different periods and longer periods. In addition, further research is needed to focus on the meteorological

contributions to O3 trends in northern China due to larger uncertainties.

Data availability. The surface O; observations are obtained from https://quotsoft.net/air/. The ERAS5, MERRA2, FNL, and
FNLO025 reanalysis meteorological data are taken from  https://cds.climate.copernicus.eu/datasets,
http://geoschemdata.wustl.edu/ExtData/GEOS_0.5x0.625 AS/MERRA-2/,  https://rda.ucar.edu/datasets/d083002/,  and
https://rda.ucar.edu/datasets/ds083-3/, respectively. The code of the GEOS-Chem (version 13.3.3) model is available at
https://zenodo.org/records/5748260. The MDAS Oj; observations and analytical results derived from MLR, RF, and GEOS-
Chem can be obtained from https://doi.org/10.5281/zenodo.15859027.
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