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Abstract. China has witnessed notable increases in surface ozone (O3) concentrations since 2013, with meteorology identified 12 

as a critical driver. However, meteorological contributions vary with different meteorological datasets and analytical methods, 13 

and their uncertainties remain unassessed. This study leveraged decadal observational maximum daily 8-hour average O3 14 

records (2013–2022) across China, revealing intensified nationwide O3 pollution with increasing O3 trends of 0.79–1.31 ppb 15 

yr–1 during four seasons. We gave special focus on uncertainties of meteorology-driven O3 trends by using diverse 16 

meteorological datasets (ERA5, MERRA2, FNL) and diverse analytical methods (Multiple Linear Regression, Random Forest, 17 

GEOS-Chem model). A useful statistic (coefficient of variation, CV) was adopted as an uncertainty quantification metric. For 18 

multi-dataset analysis, models driven by different meteorological datasets exhibited the maximum meteorology-driven O3 19 

trend (+0.55 ppb yr–1, multi-dataset mean) with the highest consistency (CV=0.25) in spring. The FNL-driven model always 20 

obtained larger trends compared to ERA5 and MERRA2, which could be attributed to inability to accurately evaluate planetary 21 

boundary layer height in FNL dataset. For multi-method analysis, three methods demonstrated optimal consistency in winter 22 

(CV=0.40) and the worst consistency in summer (CV=2.00). The meteorology-driven O3 trends obtained from GEOS-Chem 23 

model were almost smaller than those obtained by other two methods, partly resulting from higher simulated O3 values before 24 

2018. Overall, all analyses driven by diverse meteorological datasets and analytical methods drew a robust conclusion that 25 

meteorological conditions almost boosted O3 increases during all seasons; the uncertainties caused by different analytical 26 

methods were larger than those caused by diverse meteorological datasets. 27 
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1 Introduction 30 

Since 2013, the Chinese government has implemented a series of policies to mitigate air pollution resulting from the rapid 31 

industrial and urban expansion, such as the “Air Pollution Prevention and Control Action Plan” (Wang, 2021). Several criteria 32 

air pollutants exhibited decreases due to the emission control efforts, but not ozone (O3) (Qi et al., 2023; Shen et al., 2020).In 33 

China, O3 concentrations were increased by 50–124 μg m–3 from 2015 to 2022 (Yao et al., 2024). The formation of surface O3 34 

depends nonlinearly on its precursors and is strongly influenced by meteorological conditions and anthropogenic emissions 35 

(Wang et al., 2017). The impact of emission-related factors on O3 increases in China over the past decade has been extensively 36 

debated, including the ineffective control of volatile organic compounds (VOCs) emissions, the heightened O3 photochemical 37 

production due to the rapid decrease in PM2.5, and the reduced nitric oxide (NO) titration effect (Li et al., 2019, 2022; Lin et 38 

al., 2021a; Liu and Wang, 2020b; Ren et al., 2022).  39 

Meteorological conditions also play a crucial role in shaping surface O3 trends (Liu et al., 2023; Lu et al., 2019b), resulting in 40 

increased O3 concentrations during warm seasons over most of the United States, the European Union, and China from 2014 41 

to 2019 (Lyu et al., 2023). In China, the meteorological impacts on O3 levels may be comparable to the anthropogenic 42 

contributions (Li et al., 2020; Liu and Wang, 2020a). From 2013 to 2018, meteorology could account for 43% of the daily 43 

variability in summer surface O3 concentrations in eastern China (Han et al., 2020). Adverse meteorological conditions were 44 

identified as the cause of the worsening O3 trends during 2015–2020 in Beijing-Tianjin-Hebei (BTH), Yangtze River Delta 45 

(YRD), and Pearl River Delta (PRD) regions (Hu et al., 2024b). In YRD, Dang et al. (2021) found that meteorological factors 46 

contributed 84% of the O3 increase during the summers of 2012–2017. In PRD, meteorological conditions contributed 83% of 47 

the increasing O3 trends during the summers of 2015–2019 (Mousavinezhad et al., 2021). After 2019, meteorological 48 

conditions tended to improve O3 air quality (Liu et al., 2023; Wang et al., 2023). Compared to 2019, the wetter and cooler 49 

meteorological conditions in 2020 reduced O3 concentrations by 2.9 ppb in eastern China (Yin et al., 2021). However, during 50 

2022’s summer, a notable rebound in O3 levels occurred with O3 concentrations rising by 12–15 ppb in China compared to 51 

2021, which was attributable to the extreme heatwave events (Qiao et al., 2024). With climate change, the frequency of extreme 52 

O3 pollution events is expected to increase (Gao et al., 2023; Ji et al., 2024). Given the shifted meteorological effects on O3 53 

and climate change, it is imperative to conduct O3-Meteorology researches focusing on longer time frames to gain deeper 54 

insights into the long-term changes in O3 concentrations (Wang et al., 2024a).  55 

Studies conducted over the past six years to determine the meteorological influence on the surface O3 trend have been 56 

systematically reviewed, as documented in Table S1. The meteorological influence on surface O3 concentrations is commonly 57 

assessed by using the traditional statistical model (TSM), machine learning model (MLM), and chemical transport model 58 

(CTM), driven by reanalysis meteorological products such as the fifth-generation European Centre for Medium-Range 59 

Weather Forecasts atmospheric reanalysis of the global climate (ERA5), the Modern-Era Retrospective Analysis for Research 60 

and Applications, version 2 (MERRA2), and the National Centres for Environmental Prediction (NCEP) Final Operational 61 
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Global Analysis data (FNL). Although several studies have demonstrated that meteorological impacts derived from CTM 62 

results can corroborate the results of TSM (Liu et al., 2023; Yan et al., 2024) or MLM (Ni et al., 2024; Yin et al., 2021), 63 

uncertainties in the determination of meteorological effects on surface O3 concentrations cannot be neglected. For example, 64 

Pan et al. (2023) reported that the meteorological impact on O3 trends in Beijing during 2013–2020 was +0.52 ppb yr–1, which 65 

is only half of the value estimated by Gong et al. (2022).  66 

Uncertainties in quantifying the drivers of O3 trends can be ascribed to the discrepancies between different meteorological 67 

datasets and between different methods (Guo et al., 2021; Weng et al., 2022; Yao et al., 2024). Regarding the uncertainty 68 

caused by different meteorological datasets, the meteorologically driven annual variations of O3 concentrations from 2017 to 69 

2019 identified by the MERRA2-driven TSM are not consistent with the ERA5-driven TSM during the summer of YRD (Hu 70 

et al., 2024a; Qian et al., 2022). During the summers of 2013–2019 in YRD, Li et al. (2019) reported a trend of +0.7 ppb yr–1 71 

in meteorology-driven O3 concentrations using the MERRA2-driven TSM, while the trend of Yan et al. (2024) was –0.3 μg 72 

m–3 yr–1 using the ERA5-driven TSM. Regarding the uncertainty caused by different methods, the meteorology-driven O3 trend 73 

identified by MLM for 2019–2021 was 2.4 times larger than that identified by CTM based on the same meteorological dataset 74 

input (MERRA2) in the North China Plain (NCP) during summer (Wang et al., 2024a). In BTH, from 2021 to 2022, Luo et al. 75 

(2024) identified a negative meteorological contribution based on the ERA5-driven MLM, while Yan et al. (2024) suggested 76 

a positive contribution (+4.3 μg m–3) based on the ERA5-driven TSM during summer.  77 

On the basis of the above-mentioned, large uncertainties caused by multi-dataset or multi-method exist in O3-Meteorology 78 

analyses. However, available intercomparisons of O3 analyses mainly focused on predicting the O3 concentrations. For 79 

example, Wang et al. (2024b) and Weng et al. (2023) compared the differences in O3 concentration prediction caused by 80 

different datasets and models, respectively. The uncertainties in quantifying the meteorological contributions to O3 trends 81 

caused by multi-dataset and multi-method remain unassessed. In addition, previous studies have predominantly focused on 82 

summer O3 pollution, although reports indicate an extension of the O3 pollution season to winter and spring across major 83 

clusters in China (Cao et al., 2024a; Li et al., 2021) and an unfavourable meteorological impact on O3 air quality in spring and 84 

winter in BTH (Luo et al., 2024). It is essential to conduct an intercomparison of meteorology-driven O3 quantification using 85 

multi-dataset and multi-method across all seasons. 86 

This study utilised 10-year (2013–2022) surface O3 observations in China to investigate long-term O3 trends and quantify the 87 

meteorological influence on O3 trends using diverse meteorological datasets and analytical methods. Figure 1 shows the 88 

framework, and the main objectives were: (1) to assess uncertainties in identifying the meteorological influences caused by 89 

multi-dataset. This was achieved by employing the TSM (i.e. multiple linear regression, MLR) driven by different reanalysis 90 

meteorological products (i.e. ERA5, MERRA2, and FNL); (2) to assess uncertainties in identifying meteorological effects 91 

caused by multi-method. This was achieved by establishing three models corresponding to TSM (i.e. MLR), MLM (i.e. random 92 

forest, RF), and CTM (i.e. GEOS-Chem, GC), each driven by the MERRA2 product; (3) to calculate the mean of meteorology-93 
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driven O3 trends driven by three datasets (multi-dataset mean) and three methods (multi-method mean), so as to to derive 94 

relatively robust results.  95 

Our paper is structured as follows: Section 2 briefly introduces the details of surface O3 observations and different 96 

meteorological datasets, as well as the framework of three methods, namely MLR, RF, and GC. The quantification of the 97 

uncertainties in the meteorology-driven O3 trends caused by multi-dataset and multi-method is presented in Section 3. Section 98 

4 concludes the paper. The findings of this study provide a scientific foundation for developing regional and seasonal strategies 99 

to mitigate and manage O3 pollution in China.  100 

 101 

Figure 1. The framework of the uncertainty assessment in this study. 102 

2 Data and Methods  103 

2.1 Surface O3 and meteorological data sources  104 

Hourly surface O3 observations from over 1000 state-controlled stations operated by the China National Environmental 105 

Monitoring Centre from 2013 to 2022 were used to analyse the long-term O3 trends across all seasons: spring (March-April-106 

May), summer (June-July-August), autumn (September-October-November), and winter (December-January-February). The 107 

maximum daily 8-hour average (MDA8) O3 was calculated as an air quality indicator after filtering out abnormal data using 108 

the z-scores method. For detailed information on data quality control, refer to He et al. (2017).  109 

In this study, we selected three widely used reanalysis products to assess the uncertainties caused by different meteorological 110 

datasets. Variables during 2013–2022 from ERA5, MERRA2, and FNL, as detailed in Table S2, were selected as 111 

meteorological inputs for building MLR models. These reanalyses have spatial resolutions of 0.25°×0.25°, 0.625°×0.5°, and 112 
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1°×1° on a global latitude-longitude grid, respectively. In Section 3.2, we have also incorporated the NCEP FNL reanalysis 113 

product with a spatial resolution of 0.25°×0.25° (FNL025) for the period 2016–2022 to explore the effect of spatial resolution 114 

on the analysis of uncertainties caused by multi-dataset. 115 

2.2 Methods for obtaining long-term series and meteorological influence  116 

2.2.1 Kolmogorov–Zurbenko (KZ) filter 117 

The KZ filter, known for its ability to extract low frequency signals from time series data and handle missing values, has been 118 

extensively applied in to analysing air quality variations (Eskridge et al., 1997; Rao and Zurbenko, 1994; Wise and Comrie, 119 

2005). This filter is particularly useful in studying variations in air quality over time. The original time series of air pollutants 120 

or meteorological variables (𝑋(𝑡)) can be decomposed by the KZ filter into the following form:  121 

 𝑋(𝑡) = 𝑋𝑆𝑇 (𝑡) + 𝑋𝑆𝑁 (𝑡) + 𝑋𝐿𝑇 (𝑡) (1) 

 𝑋𝐿𝑇 (𝑡) = 𝐾𝑍(365,3)𝑋(𝑡) (2) 

 𝑋𝐵𝐿 (𝑡) = 𝐾𝑍(15,5)𝑋(𝑡) (3) 

 𝑋𝑆𝑇 (𝑡) = 𝑋(𝑡) − 𝑋𝐵𝐿 (𝑡) (4) 

In the decomposition process, 𝑋(𝑡) represents the original daily time series, while 𝑋𝑆𝑇 (𝑡), 𝑋𝑆𝑁 (𝑡), and 𝑋𝐿𝑇 (𝑡) denote the 122 

short-term, seasonal, and long-term components, respectively. The baseline component, 𝑋𝐵𝐿(𝑡), is defined as the sum of 123 

𝑋𝑆𝑁 (𝑡) and 𝑋𝐿𝑇 (𝑡). The 𝐾𝑍(𝑝,𝑞)  filter executes 𝑞  iterations with 𝑝 as the moving average window length of 𝑋(𝑡) series. 124 

Specially, 𝑋𝐿𝑇 (𝑡) is derived using the 𝐾𝑍(365,3) filter, capturing long-term changes with periods exceeding 1.7 years. 𝑋𝐵𝐿 (𝑡) 125 

is obtained through the 𝐾𝑍(15,5)  filter, encompassing both seasonal and long-term components. 𝑋𝑆𝑇 (𝑡) represents short-term 126 

fluctuations with period less than 33 days in the original time series. 𝑋𝑆𝑁 (𝑡) is derived as the difference between 𝑋𝐵𝐿 (𝑡) and 127 

𝑋𝐿𝑇 (𝑡), corresponding to seasonal variation on a timescale of months. The KZ filter can fill in missing values by using iterated 128 

moving average technique. Although not all of the ozone measurement sites were active over the entire period 2013–2022, 129 

missing value problems can be handled for most stations after we conduct three iterations with 365-day moving average. 130 

In this study, all statistical analyses were performed at the seasonal scale (spring: March-April-May; summer: June-July-131 

August; autumn: September-October-November; winter: December-January-February). For each season, the 𝐾𝑍(365,3) filter 132 

was applied to extract the long-term trends in observed, meteorology-driven, and emission-driven MDA8 O3 concentrations 133 

(see details in Fig. S1) during 2013–2022, as detailed in Sections 2.2.2, 2.2.3, and 2.2.4. 134 

2.2.2 Stepwise MLR for separating meteorological influence  135 

As vividly illustrated in Fig. S1, a data-based TSM (i.e., MLR integrating the KZ filter) was employed to separate the observed 136 

MDA8 O3 concentrations into meteorology-driven and emission-driven concentrations (Sadeghi et al., 2022; Shang et al., 2023; 137 

Zhang et al., 2022a). We initially applied the KZ filter to disassemble the MDA8 O3 time series and all meteorological variables 138 
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listed in Table S2 into short-term, baseline, and long-term components at individual state-controlled stations for each season. 139 

Subsequently, a series of screening processes aligned with our previous research (Wang et al., 2024c), were executed to 140 

perform stepwise MLR on the short-term/baseline MDA8 O3 concentrations and a group of meteorological variables series, 141 

respectively. The established MLR model is presented herein:  142 

 𝐶𝑠,𝑟(𝑡) = 𝑏0,𝑠,𝑟 + Σ𝑖=1
𝑘 𝑏𝑖,𝑠,𝑟 × 𝑀𝑒𝑡𝑖(𝑡) + 𝜀 (5) 

Here, 𝐶𝑠,𝑟(𝑡) represents the MDA8 O3 concentration for season 𝑠 and monitoring station 𝑟, while 𝑀𝑒𝑡𝑖(𝑡) signifies the 𝑖-th 143 

meteorological variable out of a total of 𝑘, and 𝑏𝑖,𝑠,𝑟 is the corresponding regression coefficient. 𝑏0,𝑠,𝑟 denotes the intercept 144 

term, and 𝜀 is the residual term. After establishing MLR models for the short-term and baseline components in each season, 145 

we obtain their respective residual terms. The total residuals, which represent the sum of residuals from baseline variables and 146 

short-term variables, primarily reflect anthropogenic influences. We then applied a 𝐾𝑍(365,3)  filter to these aggregated 147 

residuals to derive long-term emission-driven and meteorology-driven O3 variations. Finally, the meteorology-driven O3 trends 148 

and emission-driven O3 trends were obtained through Least Square Method.  149 

The constructed MLR models driven by meteorological variables from ERA5, MERRA2, or FNL in each season will allow a 150 

comprehensive analysis of multi-dataset uncertainties. The meteorological impact on O3 trends derived from the MERRA2-151 

driven MLR model will also be integrated into the analysis of multi-method uncertainties to improve the comparability of 152 

results.  153 

2.2.3 Random forest (RF) for deriving meteorological influence  154 

The application of MLM in O3 air quality research is becoming increasingly prevalent due to its superior accuracy, user-155 

friendly nature, and capability to capture nonlinear relationships (Ni et al., 2024; Yao et al., 2024; Zhang et al., 2022b). 156 

Considering the limited influence of discrepancy in O3-Meteorology analyses stemming from different machine learning 157 

algorithms (Wang et al., 2024a), we opted to build a representative MLM known as the meteorological normalisation model 158 

based on the RF algorithm (Ding et al., 2023; Ji et al., 2024; Zhang et al., 2023), to delineate meteorology- and emission-159 

driven O3 concentrations.  160 

RF stands out as a tree-based ensemble learning algorithm adept at handling nonlinear issues and reducing overfitting (Breiman, 161 

2001). An RF model was developed for each state-controlled station in each season to predict the MDA8 O3 concentration 162 

using the Python package “Sklearn-RandomForestRegressor”. The predictors included six temporal variables (year, month of 163 

a year, day of a week, day of a month, day of a year, Unix time), serving as proxies for anthropogenic emission intensity 164 

(Grange et al., 2018), alongside six MERRA2 meteorological variables as listed in Table S2 (i.e. SLP, T2max, U10, V10, 165 

RH2, PBLHday). The training dataset comprised 70% of the data, while the remaining 30% was reserved for model evaluation. 166 

A statistical cross-validation technique was employed to determine optimal hyperparameters for enhancing RF prediction 167 

performance (Weng et al., 2022). Coefficient of determination (R2) values were utilised to assess model performance for each 168 
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station. Over 70% of state-controlled stations showed R2 >≥ 0.5 in all seasons (Fig. S2b), which is consistent with the 0.4–0.6 169 

range reported in comparable studies (Weng et al., 2022; Lu et al., 2024). Stations with R2 < 0.5 were excluded to avoid 170 

significant attribution uncertainty that could be introduced by the RF performance. To evaluate the robustness of the R2 ≥ 0.5 171 

criterion, we performed sensitivity analyses using thresholds of R2 ≥ 0.6 and R2 ≥ 0.4, to ensure that our conclusions are not 172 

an artifact of an arbitrary cutoff (Table S3). 173 

After establishing the RF model, both the original time variables and resampled meteorological variables were utilised as input 174 

data. For meteorological normalisation, we implemented the protocol of Vu et al. (2019). Meteorological variables were 175 

resampled by randomly selecting data from the two weeks before and after the specified date, while temporal proxies remained 176 

fixed. To derive the de-weathered MDA8 O3 concentration for a given day (e.g. March 1, 2013), the random resampling 177 

process was iterated 1000 times. The mean predicted O3 under average meteorological conditions, which refers to de-weathered 178 

O3, corresponds to the emission-driven O3 concentration. The meteorology-driven MDA8 O3 concentrations for each season 179 

were computed as the difference between observed concentrations and de-weathered concentrations. Detailed processes were 180 

are shown in Fig. S2(a). The 𝐾𝑍(365,3) filter was then applied to obtain long-term components, and meteorology-driven O3 181 

trends were derived using Least Square Method. 182 

2.2.4 GEOS-Chem (GC) simulation for quantifying meteorological influence 183 

The numerical analysis of surface O3 in China was performed with the GC classic version 13.3.3 184 

(https://github.com/geoschem/GCClassic/releases/tag/13.3.3). Developed as a global 3-D model, GC incorporates a fully 185 

coupled O3–NOx–VOCs–aerosol–halogen chemical mechanism, driven by the MERRA2 meteorological input. Numerous 186 

studies have leveraged GC to simulate O3 air quality in China, demonstrating alignment between observational data and model 187 

outcomes (Dai et al., 2024; Dang et al., 2021; Li et al., 2019; Lu et al., 2019a). We employed the nested-grid GC to simulate 188 

the long-term surface O3 concentrations and to quantify the meteorology-driven MDA8 O3 trends over China. The nested-grid 189 

domain was set over China’s mainland (15–55°N, 70–140°E) with a horizontal resolution of 0.5° latitude by 0.625° longitude 190 

and 47 vertical layers extending up to an altitude of 0.01 hPa. A global simulation with a horizontal resolution of 2°×2.5° 191 

provided the chemical boundary conditions for the nested-grid simulation every 3 hours. To ensure model stability and 192 

accuracy, a 6-month spin-up simulation was conducted before the commencement of the targeted 10-year period from March 193 

2013 to February 2023.  194 

Emissions management within GC is facilitated by the Harmonized Emissions Component, a system introduced by (Lin et al., 195 

2021b). Anthropogenic emissions are sourced from the Community Emissions Data System (CEDS) inventory globally, with 196 

specific overwriting by the Multi-resolution Emission Inventory for China (MEIC) within the Chinese region. The simulations 197 

for 2021–2022 adopt a similar approach to Zhai et al. (2021), using 2019 MEIC emissions with NOx emissions reduced by 8 198 

~ 13% and 2017 MEIC with VOCs emissions reduced by 10 ~ 14%, based on the policy released by Ministry of Ecology and 199 

https://github.com/geoschem/GCClassic/releases/tag/13.3.3
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Environment of the People's Republic of China. For natural emissions, biogenic VOCs, soil, and lightning NOx were calculated 200 

online in the model. Emissions from biomass burning, ships, and aircraft are sourced from the Global Fire Emissions Database, 201 

the CEDS inventory, and the 2019 Aircraft Emissions Inventory Code, respectively.  202 

In order to assess the model’s performance and to get a quantification of meteorology-driven O3 trends during the period of 203 

2013–2022, two sets of simulations were conducted: (1) BASE: the standard simulation of O3 concentrations from 2013 to 204 

2022, where both meteorological fields and emissions (including anthropogenic, natural, and biomass emissions) vary year by 205 

year from 2013 to 2022; (2) FixE2013: a “fixed-emission simulation” where meteorological conditions vary from 2013 to 206 

2022 while anthropogenic emissions remain constant at 2013 levels. The FixE2013 simulation is designed to quantify the 207 

meteorological influence on O3 variations. The FixE2013 simulation is designed to obtain the MDA8 O3 concentrations driven 208 

solely by meteorological changes and further quantify the meteorological influence on O3 variations in four seasons. After 209 

applying the 𝐾𝑍(365,3) filter to derive the long-term meteorology-driven series, trends were calculated through Least Square 210 

Method. Figure S3 evaluates the performance of the GC simulation for 2013–2022. The GC model generally captures the 211 

monthly variability in MDA8 O3 over China and three cluster megacity clustersties, with the correlation coefficients greater 212 

than 0.80, although it always shows a high bias of surface O3 in warm seasons (Dai et al., 2024), which can be attributed to its 213 

inability to capture the complex terrain, local pollution sources and meteorological conditions, or overestimates of the 214 

correlations between the surface O3 concentration and temperature (Shen et al., 2022; Sun et al., 2021). 215 

2.3 Assessment of uncertainties caused by multi-dataset and multi-method 216 

In this study, the coefficient of variation (CV) is applied to assess the uncertainties in O3-Meteorology analyses caused by 217 

different meteorological datasets or methods. The CV, calculated as the ratio of the standard deviation (SD) to the mean, serves 218 

as a statistical metric commonly utilised to measure the diversity within datasets or models (Bedeian and Mossholder, 2000; 219 

Chen et al., 2019). Compared to other comparators (e.g. range, inter-quartile range, and SD), the CV is a unit-free measure 220 

that quantifies percentage variation relative to the mean and is less sensitive to outliers and heavy-tailed distributions (Högel 221 

et al., 1994; Chattamvelli and Shanmugam, 2023). In this study, higher CVs indicate lower consistency of meteorologically 222 

driven O3 trends derived from different datasets or methods. To give a more quantitative assessment, consistency levels were 223 

classified as strong and weak with CV<0.5 and CV>1.0, respectively (Wang et al., 2022a). Given the possibility of disparate 224 

meteorology-driven O3 trends detected by different datasets or methods, we consider the absolute value of the CV as a 225 

quantitative indicator of the uncertainties. For each season, when examining the uncertainties arising from different datasets, 226 

the CV represents the SD of trends derived from the ERA5, MERRA2, and FNL-driven MLR models divided by the mean. 227 

Similarly, in the context of multi-method uncertainties, the CV is the SD of trends identified by the MLR, RF, and GC models 228 

divided by the mean. 229 
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3 Results 230 

3.1 Observed trends in surface O3 concentration 231 

Figure 2 shows the trends in observed MDA8 O3 concentrations over a 10-year period during four seasons. Noteworthy 232 

increases in O3 concentrations were observed at 78 ~ 93% of state-controlled stations over the years, with the national trend 233 

being +1.31 ppb yr–1, +0.93 ppb yr–1, +0.79 ppb yr–1, and +0.80 ppb yr–1 in spring, summer, autumn, and winter, respectively.  234 

The major eastern megacity clusters in China also displayed their highest MDA8 O3 increase trends in spring, with trends of 235 

+1.16 ppb yr–1 in BTH, +1.61 ppb yr–1 in YRD, and +1.48 ppb yr–1 in PRD, which has been reported in previous studies (Cao 236 

et al., 2024b; Chen et al., 2020; Wang et al., 2022b). During summer, BTH and YRD faced more severe challenges in O3 237 

prevention and control compared to PRD, with rising MDA8 O3 trends in the former two regions being about three times 238 

higher than that in PRD (Fig. 2b).  239 

In terms of O3 growth rates, Shanxi province and Anhui province ranked the top two provinces in China over the past decade 240 

in all seasons except for winter, consistent with Zhao et al. (2020). In spring and winter, O3 concentrations increased in all 241 

provinces, with trends of +0.39 ~ +2.75 ppb yr–1 and +0.42 ~ +1.30 ppb yr–1, respectively. Notably, Jilin province experienced 242 

an obvious improvement in O3 air quality during summer and autumn, with decreasing trends of –0.74 ppb yr–1 and –0.38 ppb 243 

yr–1, respectively, which was also confirmed by Gong et al. (2022). As mentioned in Section 1, variations in O3 concentrations 244 

are fundamentally modulated by emissions and meteorology. This section mainly documents observed O3 trends, and the 245 

quantitative contributions of emissions and meteorology to MDA8 O3 variations will be discussed in Section 3.2. 246 

The annual and seasonal mean MDA8 O3 concentrations across China are detailed in Fig. S4 and Fig. S5, providing a holistic 247 

depiction of the persisting spread of O3 pollution since 2013. On a national average, the O3 air quality was worst in summer, 248 

with the average O3 levels exceeding the air quality standard Grade I limit of 50 ppb almost every year. Notably, the summer 249 

of 2019 marked a peak period for O3 pollution, with an average concentration of 59.7 ppb (Fig. S5b). 250 
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 251 
Figure 2. Trends in observed MDA8 O3 concentrations in China from 2013 to 2022 during (a) spring, (b) summer, (c) autumn, and (d) 252 

winter. Values in black, purple, blue, and green represent the mean trends for the whole China, BTH, YRD, and PRD, respectively.  253 

3.2 Uncertainty in meteorology-driven O3 trends caused by multi-dataset 254 

The traditional statistical method (the MLR model), which has a relatively low computational cost but can provide valuable 255 

insights into the quantification of meteorological contributions to O3 trends, was used to investigate the uncertainties in O3-256 

Meteorology analyses caused by different meteorological datasets. As shown in Fig. 3(a), meteorological conditions contribute 257 

to an increase in MDA8 O3 concentrations across all seasons in China, with the multi-dataset mean trends ranging from +0.19 258 

(±0.47) ppb yr–1 to +0.55 (±0.45) ppb yr–1. All three dataset-driven MLR models indicate that meteorology leads to the most 259 

rapid increase in MDA8 O3 concentrations in spring, with trends ranging from +0.47 (±0.47) ppb yr–1 to +0.71 (±0.59) ppb 260 

yr–1, and a low CV of 0.25. This suggests a high consistency among the three datasets in assessing the meteorological influence 261 

on surface O3 concentrations. During summer and autumn, meteorological influences on O3 show the greater spatial 262 

heterogeneity (with higher SD) and larger variability among multi-datasets (with higher CV). Specifically in autumn, the 263 

meteorology-driven O3 trend derived from the FNL-driven MLR model is 4.1 times larger than that derived from the ERA5-264 

driven MLR model. Lu et al. (2024) compared meteorology-driven O3 trends derived from ERA5- and MERRA2-driven MLR 265 

models during the summers of 2013–2019. Their findings revealed that ERA5-derived trends were lower than those from 266 

MERRA2 in YRD and PRD, whereas trends derived from ERA5 were comparable to those from MERRA2 in BTH. This inter-267 

study consensus further validates the robustness of our methodological framework. 268 
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Figure 3(b-d) depicts the meteorological impact on the MDA8 O3 trends in the three megacity clusters (BTH, YRD, and PRD). 269 

Meteorology caused the MDA8 O3 increase in most of the megacity clusters and seasons, except for BTH during autumn. In 270 

seasons where the meteorological effects derived from the three MLR models are all positive, the multi-dataset mean trends 271 

ranged from +0.09 (±0.38) to +0.33 (±0.13) ppb yr–1 in BTH, +0.18 (±0.20) to +0.68 (±0.56) ppb yr–1 in YRD, and +0.73 272 

(±0.36) to +1.13 (±0.45) ppb yr–1 in PRD. Consistent with Fig. 3(a), meteorology triggered the most rapid increase in MDA8 273 

O3 concentrations in spring across the three megacity clusters. The largest meteorological impact in BTH during spring was 274 

also revealed by Luo et al. (2024). Large CVs (>1.0) were observed in BTH during summer and autumn. Notably, the 275 

meteorological influence calculated by the three dataset-driven MLR models even showed opposite trends in BTH during 276 

autumn, indicating challenges in assessing the meteorological impacts on surface O3 concentrations. In contrast, in YRD and 277 

PRD, the three MLR models demonstrated high consistency across almost all seasons. Although the largest CV reached 4.40 278 

in PRD during summer, it was considered acceptable because the three MLR models indicated that meteorology had a minor 279 

influence (less than +0.1 ppb yr–1) on O3 trends. 280 

 281 

Figure 3. Meteorology-driven MDA8 O3 trends in (a) the whole China, (b) BTH, (c) YRD, and (d) PRD during four seasons. Values in red, 282 

blue, and purple represent trends calculated by ERA5-, MERRA2-, and FNL-driven multiple linear regression (MLR) models, respectively. 283 

The fourth black bar represents the multi-dataset mean trend. Error bars indicate ±1 standard deviation (SD) of site-level trends calculated 284 

from all available monitoring stations within each region. The absolute value of the coefficient of variation (CV) for each season is also 285 

shown.  286 
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From a provincial perspective in Fig. S6, we can also see that the meteorological contributions to O3 trends are positive during 287 

spring and winter. Large uncertainties in O3-Meteorology analyses were identified during summer and autumn. There were 7 288 

and 12 provinces with controversial meteorological contributions identified by the three dataset-driven MLR models in 289 

summer and autumn, respectively. 290 

Figure 4 displays the spatial distribution of the CV values from the perspective of state-controlled stations in four seasons. 291 

Consistent with the national and provincial perspectives, the least uncertainties in O3-Meteorology analyses were observed in 292 

spring, with CVs less than 0.5 at 45% of stations. Obvious discrepancies in meteorology-driven O3 trends are found in summer 293 

and autumn, particularly in the NCP and northwestern China, with CVs greater than 1.0 at 33 ~ 40% of the stations. In autumn, 294 

it is noteworthy that the uncertainties caused by multi-dataset are lower in the south than in the north. Previous studies that 295 

employed MLR models to predict O3 concentration also revealed that the MLR had better performance in the south than in the 296 

north (Han et al., 2020; Lu et al., 2024).  297 

  298 

Figure 4. The absolute value of the coefficient of variation (CV) for each state-controlled monitoring station in China during (a) spring, (b) 299 

summer, (c) autumn, and (d) winter. The CV is calculated by the standard deviation (SD) of the trends derived from ERA5-, MERRA2-, and 300 

FNL-driven MLR models divided by the mean. The darker colour means the larger uncertainty in quantifying the meteorological impact on 301 

observed O3 trends. The proportion of state-control stations with CV less than 0.5 and greater than 1.0 is also shown. The outline marked in 302 

purple, blue, and green represents the region of BTH, YRD, and PRD, respectively. 303 

Based on the three dataset-driven MLR models, the meteorological and anthropogenic contributions to the MDA8 O3 trends 304 

in China during 2013–2022 were further examined. As presented in Fig. 5, both meteorological conditions and anthropogenic 305 
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emissions lead to O3 increases. According to the ERA5- and MERRA2-driven MLR models, variations in anthropogenic 306 

emissions were identified as the dominant factor driving the increase in MDA8 O3 concentrations across all seasons, with 307 

anthropogenic contributions ranging from 63.2% to 90.4%. The results suggest that more stringent emission control policies 308 

should be implemented to counteract the adverse effects of meteorological influences on O3 concentrations.  309 

 310 

Figure 5. Percentage contributions of meteorological conditions (blue) and anthropogenic emissions (red) to the trends in observed MDA8 311 

O3 concentrations calculated by ERA5-, MERRA2-, and FNL-driven multiple linear regression (MLR) models in China during (a) spring, 312 

(b) summer, (c) autumn, and (d) winter. Values in black represent the observed MDA8 O3 trends averaged over the whole China.  313 

It is interesting to note that the FNL-driven model almost always gave relatively larger predictions of meteorologically driven 314 

O3 trends compared to the models driven by ERA5 and MERRA2. To investigate whether this discrepancy was due to the 315 

coarser spatial resolution of the FNL dataset, a comparison was made between the FNL025-driven MLR model (0.25°×0.25°) 316 

and the FNL-driven MLR model (1.0°×1.0°). As depicted in Fig. S7, the deviation of the meteorology-driven trends calculated 317 

by the two MLR models was less than 0.1 in China and three megacity clusters across four seasons, indicating that different 318 

spatial resolutions have little effect on O3-Meteorology analyses. Further examination was conducted to assess the influence 319 

of meteorological variables on O3-Meteorology analyses. Table S3 S4 lists the 10-year trends in each meteorological factor 320 

and shows a great discrepancy in the variable “PBLHday”. Zuo et al. (2023) also reported that FNL exhibited the highest 321 

uncertainty for the evaluation of PBLH compared to ERA5 and MERRA2, and that its performance may be constrained by 322 

complex underlying terrain and static instability (Guo et al., 2021). As Fig. S8 shows, constructing the FNL-driven MLR 323 
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models using six meteorological variables without “PBLHday” can reduce the estimated meteorological impact by 0.08 to 324 

0.20 ppb yr–1. To obtain a more reliable estimate, it is recommended to use MERRA2 reanalysis dataset due to its eclectic 325 

result (Fig. 3) and avoid using FNL because of the uncertainty brought by PBLH when separating meteorological and 326 

anthropogenic influences on O3 concentrations in China.  327 

3.3 Uncertainty in meteorology-driven O3 trends caused by multi-method 328 

This section discusses the uncertainties caused by multi-method (i.e. MLR, RF, GC), all of which are driven by the MERRA2 329 

dataset. Figure 6 illustrates the meteorology-driven MDA8 O3 trends calculated by the MLR, RF, and GC models. For the 330 

whole of China, the large uncertainties were are evident during summer, when the meteorology-driven O3 trends derived from 331 

the MLR model are notably larger than those from the RF and GC models, with a CV of 2.00 (Fig. 6a). In the other three 332 

seasons, the multi-method mean trends, ranging from +0.17 (±0.37) to +0.26 (±0.27) ppb yr–1, are 1.1 to 2.1 times lower 333 

than those computed by the three dataset-driven MLR models (Fig. 3a), all models converge on the conclusion that 334 

meteorological conditions contribute to the deterioration of O3 air quality. Meteorology-driven MDA8 O3 trends exhibited 335 

minor variations across different R2 thresholds (Table S3), indicating that the trends are not an artifact of an arbitrary cutoff. 336 

 337 

Figure 6. Meteorology-driven MDA8 O3 trends in (a) the whole China, (b) BTH, (c) YRD, and (d) PRD during four seasons. Values in red, 338 

blue, and purple represent trends calculated by multiple linear regression (MLR), random forest (RF), and GEOS-Chem (GC) models, 339 

respectively. The fourth black bar represents the multi-method mean trend. Error bars indicate ±1 standard deviation (SD) of site-level trends 340 
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calculated from all available monitoring stations within each region.  The absolute value of the coefficient of variation (CV) for each season 341 

is also shown. 342 

In YRD and PRD, the three models exhibit strong agreement inacross all seasons, with the largesta maximum CV of 0.61, . 343 

The low uncertainties are further corroborated by consistent CV estimates derived under different RF’s R2 thresholds (Table 344 

S3). Across these regions, where meteorology leads to an increase in O3 concentrations with multi-method mean trends of 345 

+0.17 (±0.08) to +0.47 (±0.22) ppb yr–1 in YRD and +0.10  (±0.12) to +0.83 (±0.19) ppb yr–1 in PRD, respectively. Notably, 346 

the most rapid meteorology-driven O3 increase is also observed in spring (Fig. 6c and Fig. 6d), which is consistent with Fig. 347 

3c and Fig. 3d. Lu et al. (2024) also demonstrated a high degree of consistency among the MLR, ML, and GC models in PRD 348 

during summer. Specifically, all three models indicated that meteorology contributed approximately 25% of O3 variability 349 

over the period 2013–2019. In BTH, the three models perform consistently well only in winter, with meteorology-driven O3 350 

trends ranging from +0.09 (±0.07) to +0.26 (±0.15) ppb yr–1 and a CV of 0.55. It is also observed that in summer and autumn, 351 

meteorology plays a relatively small role in influencing O3 air quality despite the controversial results obtained by the three 352 

models (Fig. 6b). This finding aligns with a study focusing on the O3 air quality in BTH from 2015 to 2022 (Luo et al., 2024), 353 

which suggested that meteorological conditions tend to increase MDA8 O3 concentration by only 0.01 μg m–3 in summer and 354 

decrease MDA8 O3 concentration by 0.3 μg m–3 in autumn from 2015 to 2022. 355 

 356 
Figure 7. The absolute value of the coefficient of variation (CV) for each state-controlled monitoring station in China during (a) spring, (b) 357 

summer, (c) autumn, and (d) winter. The CV is calculated by the standard deviation (SD) of the trends derived from multiple linear regression 358 
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(MLR), random forest (RF), and GEOS-Chem (GC) models divided by the mean. The darker colour means the larger uncertainty in 359 

quantifying the meteorological impact on observed O3 trends. The proportion of state-control stations with CV less than 0.5 and greater than 360 

1.0 is also presented. The outline marked in purple, blue, and green represents the region of BTH, YRD, and PRD, respectively. 361 

In addition, Fig. 6 illustrates that the meteorology-driven O3 trends obtained from GC are relatively smaller. As shown in Fig. 362 

S3 and Table S4S5, this difference could partly be attributed to the higher O3 levels and lower O3 increases simulated by the 363 

GC model before 2018. The GC’s systematic overestimation of O3 concentrations, as well as underestimation of O3 increases, 364 

were was also reported by Lu et al. (2024), in which the GC captured 13.6 ~ 81.1% of the observed O3 increases in China 365 

during the summer of 2000–2019. It is crucial to take into account the overestimation of low-level O3 observations, as noted 366 

in previous studies (Hu et al., 2024c; Mao et al., 2024). To validate this hypothesis, we compared the meteorology-driven O3 367 

trends calculated by MLR with those calculated by GC from 2018 to 2022, and a higher agreement was found over 2018–2022 368 

compared to the 2013–2022 period in Fig. S9. The trends driven by RF model are eclectic in more cases (Fig. 6) and 369 

recommended to isolate meteorological and anthropogenic drivers. 370 

From a provincial perspective, as depicted in Fig. S10, the three models together indicate that meteorology causes an O3 371 

increase in winter across almost all provinces except for Guizhou and Sichuan. In summer and autumn, meteorology leads to 372 

a decrease in 5 provinces, mainly in northeastern China, with trends ranging from –0.42 to –0.11 ppb yr–1. Interestingly, across 373 

all seasons, the three models introduce less uncertainty in the developed east coast regions such as Jiangsu, Fujian, and 374 

Guangdong compared to other provinces. This suggests that quantifying meteorological impact on O3 levels in these developed 375 

regions along the east coast of China is relatively reliable.  376 

From the perspective of state-controlled stations, Fig. 7 shows the spatial distribution of the CV during four seasons. The 377 

lowest disparities in the meteorology-driven MDA8 O3 trends persist in winter, with CVs of less than 0.5 recorded at 29% of 378 

the stations. In the other three seasons, however, significant discrepancies in meteorology-driven O3 trends are prominent, with 379 

a CVs greater than 1.0 at least 48% of the stations. Similar to Fig. 4, it is noteworthy that in autumn, the uncertainties caused 380 

by multi-method are more pronounced in the northern regions compared to the southern regions. 381 

4 Limitations 382 

While this study advances understanding of meteorological contributions to O3 trends, several limitations warrant attention in 383 

future work. Though the reanalysis meteorological dataset is generated observationally, inherent constraints exist, including 384 

parameterization uncertainties affecting O3-relevant physical processes (Janjić et al., 2018; Davidson and Millstein, 2022) and 385 

resolution constraints. 386 

Regarding analytical approaches, machine learning efficiently captures nonlinear O3-meteorology relationships without 387 

requiring explicit physicochemical parameterizations, enabling scalable multi-site analysis. However, its inability to resolve 388 
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chemical mechanisms and sensitivity to predictor selection remain key constraints. Conversely, while GEOS-ChemGC 389 

mechanistically resolves chemistry-transport interactions and enables source attribution, it propagates uncertainties from 390 

emission inventories and chemical mechanisms into trend estimates. 391 

Future studies could be improved in the following ways: First, more meteorological datasets and methods should be used to 392 

provide more robust uncertainty quantification in O3-meteorology analyses. Second, implementing clustering techniques (e.g. 393 

K-means algorithm) could identify sub-regional drivers at ecotones, enhancing spatial resolution beyond our regional 394 

framework. Finally, the Lindeman-Merenda-Gold indices can be employed to quantitatively resolve the contributions of 395 

specific meteorological variables. The mechanistic understanding of O3 drivers would be improved by integrating additional 396 

variables, such as solar radiation, soil moisture, and climate indices (e.g. El Niño-Southern Oscillation). Clustering techniques 397 

would be valuable to augment the region-based approach and would provide better understanding of the similarity between 398 

stations. 399 

5 Conclusions and Discussions 400 

This study used the 10-year (2013–2022) surface O3 observations to clarify O3 variations during four seasons in China, and 401 

quantify the meteorological impacts on O3 trends, with a special focus on the uncertainties of meteorology-driven O3 trends. 402 

Diverse meteorological datasets (ERA5, MERRA2, FNL) and analytical methods (MLR, RF, GEOS-Chem) were employed 403 

to systematically analyse the uncertainties in meteorology-driven O3 trends caused by multi-dataset and multi-method which 404 

have not been assessed before. The coefficient of variation (CV) was adopted as a metric to assess the uncertainty. The main 405 

conclusions are as follows:  406 

Over the past decade, increasing trends in MDA8 O3 were observed at over 78% of state-controlled stations across all seasons, 407 

with the national trend of +1.31 ppb yr–1, +0.93 ppb yr–1, +0.79 ppb yr–1, and +0.80 ppb yr–1 in spring, summer, autumn, and 408 

winter, respectively.  409 

We first applied the MLR model (driven by ERA5, MERRA2, and FNL, respectively), which has proven its usefulness and 410 

reliability in O3-Meteorology analyses, to assess uncertainties caused by multi-dataset. For the whole China, all three dataset-411 

driven MLR models indicate that meteorological conditions have led to an increase in MDA8 O3 concentrations in four seasons, 412 

with multi-dataset mean trends ranging from +0.19 ppb yr–1 to +0.55 ppb yr–1. The models driven by different meteorological 413 

datasets showed a maximum meteorology-driven O3 trend of +0.55 ppb yr–1 with the highest consistency (CV=0.25) in spring. 414 

The FNL-driven model always obtained larger meteorology-driven O3 trends compared to the models driven by ERA5 and 415 

MERRA2, which could be attributed to the inability to accurately evaluate PBLH in the FNL dataset. The dominant influence 416 

of anthropogenic emissions on O3 increase was also identified, highlighting the need for more stringent emission control 417 

policies to mitigate the adverse effects of meteorological conditions.  418 
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We further applied the MLR, RF, and GEOS-Chem models to obtain the meteorological influence on O3 trends to explore the 419 

uncertainties caused by multi-method. In China and three megacity clusters, the three methods consistently indicated positive 420 

meteorological contributions to O3 increases during spring and winter, with multi-method mean trends ranging from +0.12 to 421 

+0.83 ppb yr–1 and +0.17 to +0.70 ppb yr–1, respectively. In summer and autumn, especially in BTH, where the meteorological 422 

influence was relatively lower, three methods gave conflicting predictions of meteorological influence on O3 with CVs greater 423 

than 1.08. For the whole China, three different methods demonstrated optimal consistency in winter with a CV of 0.40 and the 424 

worst consistency in summer with a CV of 2.00. The meteorology-driven O3 trends obtained from GEOS-Chem model were 425 

almost relatively smaller than those obtained by other two methods, which could partly be attributed to the higher O3 values 426 

simulated by the GEOS-Chem model before 2018. 427 

All analyses driven by diverse meteorological datasets and analytical methods drew a consistent finding: meteorological 428 

conditions almost contribute to O3 increase across all seasons. The uncertainties of meteorology-driven O3 trends caused by 429 

different analytical methods were larger than those caused by diverse meteorological datasets. Considering that the favourable 430 

effects of meteorology on O3 pollution tend to be weaker after 2019 and the effects of COVID-19, it is necessary to conduct 431 

research over different periods and longer periods. In addition, further research is needed to focus on the meteorological 432 

contributions to O3 trends in northern China due to larger uncertainties.  433 
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