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Abstract 

Global hydrological models are essential tools for understanding water resources and assessing Climate Change (CC) 

impacts at planetary scales, supporting water management, flood risk assessment, and sustainable development initiatives 15 

worldwide. The Soil and Water Assessment Tool (SWAT+) has demonstrated robust performance across various 

environments and scales, from local to continental applications. However, despite its widespread use, a global 

implementation of SWAT+ is currently lacking due to computational demands and data management challenges, while 

existing global models often lack the detailed process representation and high spatial resolution needed for comprehensive 

hydrological analysis. A global SWAT+ model would offer unique advantages through its integrated simulation of water 20 

quantity, quality, and land management processes, while supporting multiple UN Sustainable Development Goals and 

enhancing research opportunities in global hydrology. This study aimed to develop a High-resolution Global SWAT+ Model 

and establish a reproducible framework for large-scale SWAT+ applications. We developed the Community SWAT 

(CoSWAT) modeling framework, an open-source solution that automates data retrieval, preprocessing, and model 

configuration using Python, while maximizing parallel processing for computational efficiency. The global model was then 25 

set up using the framework at 2km resolution using ASTER DEM, ESA land use data, FAO soil data, and ISIMIP climate 

data, with performance evaluated against GRDC flow data and GLEAM evapotranspiration dataset. Results without 

calibration showed reasonable spatial patterns in evapotranspiration simulation with 78.54% of sampled points showing 

differences within ±100mm compared to GLEAM data, though river discharge performance was limited due to lack of 

reservoir implementation with 23.02% of stations showing positive Kling-Gupta Efficiency values. The development of this 30 

first global SWAT+ model demonstrates the feasibility of high-resolution global hydrological modeling using SWAT+, while 



2 

 

the CoSWAT framework provides a robust foundation for reproducible large-scale modeling. These advances enable more 

detailed analysis of global water resources and CC impacts, though future work should focus on incorporating water 

management practices, improving process representation with calibration, and enhancing computational efficiency. 

1. Introduction 35 

Global water models aim to simulate phenomena at planetary scale. There are several global models that simulate the water 

cycle such as Global Hydrological Models (GHMs), Land Surface Models (LSMs), and Global Dynamic Vegetation Models 

(GDVMs), each of them with different approaches and purposes. Most models are based on a gridded structure and vary in 

how they represent water storage components and terrestrial processes. Nearly all models incorporate canopy, snow, and soil 

water storage to some degree. Surface runoff is estimated by most models, while only a smaller group—specifically GHMs 40 

and a number of LSMs—include river routing to enable streamflow simulations. Additionally, only a small fraction of 

models account for reservoirs, with an even smaller subset incorporating lake and wetland storage (Telteu et al., 2021). 

 

In order to assess water resources on a global scale, multi-model comparisons exist due to the differences in structures and 

approaches of global water models. There are some  Model Intercomparison Projects (MIPs) that focus on global water 45 

models such as the WaterMIP (Haddeland et al., 2011), and the Inter-Sectoral Impact Model Inter-Comparison Project 

(ISIMIP) that, on the ISIMIP 2 and 3 simulation rounds(Gosling et al., 2023a, b, 2024a, b), involves several models 

including GHMs, LSMs and DGVMs, as shown in Table 1. 

 

Table 1: Global Water Models utilized in the global water sector of ISIMIP 50 

Nr Name Category Reference 
1 CWatM GHM (Burek et al., 2020) 
2 DBH GHM (Tang et al., 2007) 
3 H08 GHM (Hanasaki et al., 2018a) 
4 HydroPy GHM (Stacke and Hagemann, 2021) 
5 MPI-HM GHM (Stacke and Hagemann, 2012) 
6 PCR-GLOBWB GHM (Sutanudjaja et al., 2018) 
7 VIC GHM (Liang et al., 1994) 
8 WaterGAP2 GHM (Müller Schmied et al., 2021) 
9 WAYS GHM (Mao and Liu, 2019) 

10 WEB-DHM-SG GHM/LSM (Qi et al., 2022b) 
11 CLASSIC LSM (Melton et al., 2020) 
12 CLM 4.5 LSM (Oleson et al., 2013) 
13 CLM 5.0 LSM (Lawrence et al., 2019) 
14 ELM-ECA LSM (Zhu et al., 2019) 
15 JULES LSM (Best et al., 2011) 
16 MATSIRO LSM (Takata et al., 2003) 
17 ORCHIDEE LSM (Guimberteau et al., 2014, 2017) 
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18 SWBM LSM (Rene Orth and Seneviratne, 2015) 
19 SSiB4/TRIFFID LSM/DGVM (Huang et al., 2020) 
20 LPJmL DGVM (Sitch et al., 2003) 

 

Among these models, generally, GHMs focus on representing the land water balance, with particular emphasis on 

streamflow for model evaluation, while LSMs focus on the vertical exchange of energy and water between land and 

atmosphere, and DGVMs simulate global vegetation dynamics, where hydrological processes play an important role (Telteu 

et al., 2021). 55 

 

Within the ISIMIP ensemble (Table 1), various models exemplify different categories. For instance, GHMs like (Burek et al., 

2020) focus on water quantity assessment across sectors (Becher et al., 2024; Palazzo et al., 2024), H08 (Hanasaki et al., 

2018a) maps water abstractions and availability, PCR-GLOBWB (Sutanudjaja et al., 2018) simulates the terrestrial water 

cycle including human influences (Becher et al., 2024; Burek et al., 2020; Palazzo et al., 2024), The Variable Infiltration 60 

Capacity (VIC)  assesses human impacts on water resources (Liang et al., 1994), and WaterGAP (Müller Schmied et al., 

2021) simulates runoff, recharge, and streamflow considering various storages. LSMs such as CLM, CLASSIC, JULES, and 

MATSIRO (Best et al., 2011; Lawrence et al., 2019; Melton et al., 2020; Takata et al., 2003) simulate broader land surface 

processes including energy, water, carbon fluxes, and vegetation dynamics, often incorporating hydrological components. 

DGVMs like LPJmL (Sitch et al., 2003) simulate vegetation dynamics and surface water balance, including human 65 

influences like irrigation. Despite differing primary objectives, these models are often used collectively in ensemble studies 

to assess Climate Change (CC) impacts on various hydrological aspects like groundwater recharge (Reinecke et al., 2021), 

river flow (Gudmundsson et al., 2021) and soil moisture (Porkka et al., 2024), river ecological functioning (Thompson et al., 

2021), droughts (Kew et al., 2021; Pokhrel et al., 2021), and floods (Dottori et al., 2018; Tabari et al., 2021; Zhou et al., 

2023), both globally and regionally. 70 

Despite the differences in general purposes and focus for model development between LSMs, GHMs and DGVMs, as part as 

the model ensemble for the global water sector from ISIMIP (Table 1), they have been used together for several studies.  On 

a global scale, model ensembles were used to study the future changes in groundwater recharge (Reinecke et al., 2021). They 

were applied to assess the historical and future impacts of CC on river flow trend and soil moisture(Gudmundsson et al., 

2021; Porkka et al., 2024; Thompson et al., 2021). Moreover, others have studied historical and future changes in drought 75 

and flood risks, trends and impacts (Dottori et al., 2018; Kew et al., 2021; Pokhrel et al., 2021; Tabari et al., 2021; Zhou et 

al., 2023). On a regional scale, ensembles of models were used to study compound extreme climate events (Muheki et al., 

2024), and project future indices regarding water scarcity in the context of CC and societal changes (Yin et al., 2020). 

 

The ability to simulate water resources and the impacts of CC and other human induced environmental changes is 80 

indispensable in planning for and management of water resources (Ramteke et al., 2020; Soltani et al., 2023; Zhuang et al., 
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2018). This is true for both small scales and large scales (Chawanda et al., 2024; Fu et al., 2019).  By predicting how CC and 

other human drivers affect the water cycle, the models help in developing strategies to cope with droughts, floods and other 

water-related challenges (Brunner et al., 2021). Hydrological models also enable more effective management of water 

resources to optimize the use of water for agriculture (Li et al., 2020; Srivastava et al., 2020), industry, and human 85 

consumption, especially in regions where water is scarce (Hanasaki et al., 2018b). These models at a global level can also 

support global sustainable initiatives by ensuring that development projects align with long-term water availability (Amjath-

Babu et al., 2019). At the same time, they can also offer means for forecasting extreme events like floods and droughts in any 

region of the world, thereby enhancing preparedness and allowing timely warning for disaster response efforts. 

SWAT+ (Soil and Water Assessment Tool) is a completely revised version of the original SWAT model (Arnold et al., 2018; 90 

Bieger et al., 2017). It performs hydrological simulations at the Hydrologic Response Units (HRU) scale. HRUs represent 

unique combinations of land use, soil, and slope characteristics within each landscape unit or subbasin.  The SWAT+ model 

can simulate a wide range of processes including surface runoff and infiltration, evapotranspiration (ET) and other water 

balance components (Pandi et al., 2023). SWAT+ also simulates Soil Erosion and Sediment Transport, Nutrient Cycle and 

Land Use and Management Practices (Arnold et al., 2018). SWAT has been applied all over the world in various 95 

environments including in Temperate (Qi et al., 2019), Tropical and Subtropical (Alemayehu et al., 2017; Ma et al., 2019), 

Arid and Semi-Arid (Samimi et al., 2020), Mediterranean Climates, Cold and Mountainous Regions, Wetlands and even 

Coastal Environments (Peker and Sorman, 2021; Pulighe et al., 2021; Upadhyay et al., 2022). SWAT+ has also been applied 

at small scales (Qi et al., 2022a), regional scale (Chawanda et al., 2020a; Nkwasa et al., 2022b) and even continental scale 

(Abbaspour et al., 2015; Chawanda et al., 2024; Nkwasa et al., 2024). 100 

Despite such applications, there are no global applications at present because as with other global modelling efforts, large-

scale SWAT+ applications face several significant challenges. Data availability and quality remain a challenge (Crochemore 

et al., 2020). High-resolution, consistent, and up-to-date datasets for land use, soil properties, and climate variables are often 

lacking or incomplete (Chawanda et al., 2024; Döll et al., 2016), particularly in developing regions which can lead to 

increased uncertainty in model outputs (Sood & Smakhtin, 2015) and limit the model's applicability. Computational demands 105 

pose another challenge (Ma et al., 2023; Zhang et al., 2016). The computational requirements of setting up fine resolution 

SWAT+ model, running, calibrating and validating it, coupled with the storage resources required for the input and output 

data, necessitates significant computational resources. These two in addition to data processing methods used in global 

applications, can make it challenging to replicate and reuse any model set-ups available in a study area (Chawanda et al., 

2020b). This issue may be compounded by frequent updates to model structure and parameters (Smith et al., 2020), which 110 

can lead to inconsistencies between studies conducted at different times. This calls for archiving and versioning systems in 

workflows for better reproducibility (Knoben et al., 2022). 
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While challenges persist, a global SWAT+ model is in a unique position to provide comprehensive insights into large-scale 

processes across diverse ecosystems worldwide. To begin with, a global SWAT+ model offers a holistic approach in 115 

simulation of water quantity and quality, integrating detailed hydrological processes, nutrient cycling, and sediment transport 

(Abbaspour et al., 2015; Liu et al., 2017). The model also would enable high-resolution projections of climate change 

impacts on global water systems, critical for contributing to international assessments like Intergovernmental Panel on 

Climate Change (IPCC) reports. In addition, the global SWAT+ model directly supports multiple United Nations Sustainable 

Development Goals (SDGs), by providing data crucial for balancing development with environmental conservation through 120 

simulation of Land Use and Land Cover Change (LULCC) and nutrients in water bodies. Implementing a global SWAT+ 

model also creates a standardised dataset for cutting-edge international research in hydrology, thereby enhancing research 

and educational opportunities. The model has significant implications in designing and enhancing the effectiveness of long-

term global water and land management practices by allowing detailed simulations of global agricultural practices, land use 

changes, and their water resource impacts. 125 

 

The primary aim of this study was to develop a High-resolution Global SWAT+ Model, addressing the growing need for 

comprehensive, large-scale hydrological simulations. To achieve this overarching goal, we first establish a robust framework 

for setting up a high-resolution global SWAT+ model based on the study by Chawanda et. al., (2020b), ensuring 

reproducibility and scalability of the model. This framework integrates global data processing methods and computational 130 

strategies that overcome the challenges inherent in global-scale modelling. Subsequently, we evaluate the model's 

performance against observed data. This evaluation not only benchmarks the Global SWAT+ Model's capabilities, but also 

identifies areas for potential refinement, contributing to the advancement of global hydrological modelling techniques. 
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2. Methodology 135 

2.1 Global Datasets for SWAT+ 

While setting up the global SWAT+ model, global data sources were used as input and for model evaluation. 

2.1.1 Digital Elevation Model 

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) global DEM (Abrams, 2016) was 

preferred over the Shuttle Radar Topography Mission (SRTM) global DEM (Farr et al., 2007) primarily due to its more 140 

complete global spatial coverage (Fig. 1), which is essential for this study's domain. SRTM data only cover over 80% of the 

Earth's land surface (60°N–56°S), while ASTER goes further North and South covering 99% of land surface (Yue et al., 

2017). 

 

 145 
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a) ASTER DEM b) SRTM DEM 
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Figure 1: Spatial coverage of ASTER Global DEM Excluding Antarctica (mapped at 2km resolution) vs SRTM. SRTM data only 

cover over 80% of the Earth's land surface (60°N–56°S), while ASTER goes further North and South (Yue et al., 2017). 

While potential differences in DEM quality exist between the datasets, particularly in mountainous regions at finer native 160 

resolutions of 30m, these differences are considered less critical at the 2km resolution used for deriving topographic 

parameters in this global model setup. 

2.1.2 Land Use Map 

The lThe land use data (Fig. 2)  from from the European Space Agency (ESA) is available at 300m resolution was 

downloaded from the ESA website (Defourny et al., 2017). The 2007 ESA land use map used for this study indicates that, 165 

excluding Antarctica, barren and sparsely vegetated areas dominate, accounting for over 32% of the global land surface. 

Grasslands and shrublands cover approximately 27%, while forests account for about 31%. Cropland represents around 7% 

of the global landmass.(ESA. Land Cover CCI Product User Guide Version 2. Tech. Rep. (2017). Available 

at: maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf) 
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Figure 2: Major Land Use Categories from based on European Space Agency (ESA) 2007 Land Use Map  

2.1.3 Soil Map 

The FAO soil data (Fischer et al., 2008) was used in this study. The FAO soil data, particularly from the Harmonized World 

Soil Database (HWSD), provides global coverage of soil properties (Fig. 3) at a 1 km² resolution. The data is derived from 175 

multiple sources and is widely used in global and regional environmental studies, though it may lack precision for local-scale 

analysis due to the generalised nature of its source material. 
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Figure 3: Global extent of FAO soil typesMajor soil typ (Fischer et al., 2008)es from FAO Soil Map 180 

2.1.4 Climate Data 

Climate data was acquired from the GSWP3-EWEMBI reanalysis dataset (Lange and Büchner, 2020) through the Inter-

Sectoral Impact Model Intercomparison (ISIMIP) project. The dataset contains historical climate data including daily 

minimum and maximum air temperature (tasmin and tasmax, respectively), precipitation (pr), relative humidity (rhs), solar 

radiation (rlds), and near-surface wind speed (wind) at 0.5 decimal degrees which corresponds to about 55.66 km along the 185 

equator. 

2.1.5 River Flow Data 

The monthly river flow for evaluation was acquired from The Global Runoff Data Centre (GRDC, 

https://portal.grdc.bafg.de/applications/public.htm). The gauging station location data was also used in the delineation to 

create outlets in the model setups.  190 

2.1.6 ET Data 

GLEAM v4 dataset available at 0.1o resolution was used for evaluating ET (Miralles et al., 2025). The datasets require pre-

processing to be used by the SWAT+ model. In our model set up, the preprocessing was done in the scripted workflow 

described in the next section.  

Formatted: Indent: Left:  0"
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2.2 Scripted WorkflowModelling Framework for Global SWAT+ Setup 195 

To facilitate the setup of a global SWAT+ model, we developed a python based scripted workflow based on SWAT+ AW 

(Chawanda et al., 2020b). This new workflow, named the Community SWAT (CoSWAT) modelling framework (Fig. 4), is a 

free and open-source solution designed for large-scale modelling using SWAT+.  

The framework simplifies the setup process for global SWAT+ models by automating data retrieval, pre-processing, and 

model configuration. The user is required to define regions of interest using box coordinates. Settings for model set up are 200 

saved in one file referred to as the ‘configuration file’.  Having model setup settings in one file ensures consistency across 

the global model. To ensure reproducibility and ease of use, the workflow includes stages for retrieving and preparing 

essential input datasets. These stages are automated and controlled by the configuration file settings: 

▪ Digital Elevation Model (DEM): The CoSWAT framework downloads ASTER DEM tiles, mosaics them into a 

continuous surface, and resamples and reprojects them as per the configuration file. 205 

▪ Land Use Data: The framework automatically retrieves land use maps from the European Space Agency (ESA) and 

processes them. The data is resampled, and reprojected. The lookup file is manually prepared once. This is done by 

matching ESA land use classification to equivalent land use types in the SWAT+ land use database.  

▪ Soil Data: Soil data from the FAO Harmonized World Soil Database (HWSD) is downloaded and transformed into the 

format required by SWAT+. The framework handles rasterization and reprojection to prepare the soil data into a format 210 

required by SWAT+. FAO soil lookup and soil properties database are readily available from the SWAT+ website 

(SWAT Global Data, 2025) through QSWAT+ Software and are used by the workflow. 

▪ Climate Data: Climate inputs are downloaded from the ISIMIP dataset servers. The workflow processes historical and 

scenario-based climate data, including variables such as precipitation, temperature, wind speed, solar radiation and 

relative humidity and formats them for use in SWAT+ simulations. The downloaded files are in NetCDF format and are 215 

read and written using the xarray python library. Users can customise climate scenarios using the configuration file. It is 

also possible to specify the spatial resolution of the points at which climate time series are created. 
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Figure 4: Schematic of the Community SWAT (CoSWAT) modelling framework. The flowchart illustrates the scripted workflow 220 
designed to automate the setup, execution, and evaluation of large-scale SWAT+ models. The entire process is controlled by a sin-

gle configuration file, ensuring consistency and reproducibility. 

The framework simplifies the setup process for global SWAT+ models by automating data retrieval, pre-processing, and 

model configuration. The user is required to define regions of interest using box coordinates. Settings for model set up are 

saved in one file referred to as the ‘configuration file’.  Having model setup settings in one file ensures consistency across 225 
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the global model. To ensure reproducibility and ease of use, the workflow includes stages for retrieving and preparing 

essential input datasets. These stages are automated and controlled by the configuration file settings: 

▪ Digital Elevation Model (DEM): The CoSWAT framework downloads ASTER DEM tiles, mosaics them into a 

continuous surface, and resamples and reprojects them as per the configuration file. 

▪ Land Use Data: The framework automatically retrieves land use maps from the European Space Agency (ESA) and 230 

processes them. The data is resampled, and reprojected. The lookup file is manually prepared once. This is done by 

matching ESA land use classification to equivalent land use types in the SWAT+ land use database.  

▪ Soil Data: Soil data from the FAO Harmonized World Soil Database (HWSD) is downloaded and transformed into the 

format required by SWAT+. The framework handles rasterization and reprojection to prepare the soil data into a format 

required by SWAT+. FAO soil lookup and soil properties database are readily available from the SWAT+ website(SWAT 235 

Global Data, 2025) and are used by the workflow. 

▪ Climate Data: Climate inputs are downloaded from the ISIMIP dataset servers. The workflow processes historical and 

scenario-based climate data, including variables such as precipitation, temperature, wind speed, solar radiation and 

relative humidity and formats them for use in SWAT+ simulations. The downloaded files are in NetCDF format and are 

read and written using the xarray python library. Users can customise climate scenarios using the configuration file. It is 240 

also possible to specify the spatial resolution of the points at which climate time series are created. 

 

The flexibility of the CoSWAT Framework allows users to easily switch data sources, depending on the project's 

requirements or data availability which makes the framework a robust and adaptable tool for large-scale modelling.  

In addition to the model setup, the CoSWAT framework integrates evaluation and visualisation tools. A local web application 245 

was developed to serve as an interactive portal, allowing users to visualise model results and outputs in a user-friendly 

environment. This platform enhances the accessibility and interpretation of model results. The CoSWAT framework was 

optimised by iteratively implementing parallel processing wherever possible and feasible. This reduces the time required for 

data processing and model setup, making large-scale simulations feasible by leveraging High Performance Computing 

(HPC) environments which often allow highly parallelised workflows (Chawanda et al., 2020b). 250 

 The efficiency gains from parallel processing significantly reduce computation time, though actual runtimes depend heavily 

on the specific HPC hardware (CPU cores, clock speed, Input/Output (I/O) speed) and parallel configurations used. For 

context, using the 64-core, 3.00 GHz, 128 GB RAM Linux environment described below (Section 2.3), the CoSWAT 

framework setup phase (including data preprocessing, watershed delineation, HRU generation, and file writing – not 

including data download times) required approximately 12 minutes for a moderately sized region such as Save Basin in 255 

Africa, and about 1 hour 49 minutes for a large, complex region such as the Nile Basin. Executing a 10-year SWAT+ 

simulation for very large basins like the Amazon could take over 24 hours, with runtime strongly influenced by the requested 

output frequency (e.g., daily outputs requiring significantly more time due to I/O demands). 
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2.3 Global SWAT+ Model Implementation and Evaluation 

The data resolution for DEM, land use and soil maps were set to 2km projected in ESRI:54003 (Miller World Cylindrical) 260 

projection. Climate data resolution was however set to 0.5 decimal degrees due to limitations on the number of files the 

operating system allowed (<= 10,000,000 files). The thresholds for stream and channel were set to 44 cells – an equivalent of 

177.7 km2. 

 

The model was setup in a 64-core HPC Environment running at 3.00 GHz, with 128 GB Memory running Linux. To take 265 

advantage of parallel processing and easy data handling, the global model was setup by combining regions defined based on 

major river basins (Fig. 5). However, Greenland was not included in this version.  

 

Figure 5: Partitioning of the world land mass into regions based on main river basins. 

Using the CoSWAT framework, data was prepared, and a model set up for each of these regions using the configuration file 270 

options. Slope classes were not considered in creation of HRUs.  The Model Files were written with the following options: 

the Muskingum method was applied for channel routing, and Penman–Monteith was used for potential evapotranspiration 

estimation. A five-year warm-up period was set, and the model was run for the simulation period 1977–1990. 

 

 275 

Table 2: Model configuration options used when writing model files. 

Routing Method Muskingum 

PET Estimation Method Penman-Monteith 

Warm up Period 5 years 

Simulation Period 1977 - 1990 

Formatted: Space Before:  12 pt
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The version of SWAT+ used to run the global SWAT+ model setup is 60.5.7. The global model was not calibrated as that was 

beyond the scope of this study. We used the Kling-Gupta Efficiency (KGE) metric (Gupta et al., 2009) to evaluate the flow 

time series at the monthly timestep. The plotting of results and metric calculation was implemented within the CoSWAT 

framework. 280 

The Kling-Gupta Efficiency (KGE) metric provides a more nuanced assessment of model performance than conventional 

measures like R² or Bias alone. It is formulated to simultaneously account for three key components: the linear correlation 

between simulated and observed time series (r), the variability ratio – α, which compares the standard deviation of simulated 

values against observations, and the bias ratio – β, which evaluates the mean offset between simulated and observed values 

(Gupta et al., 2009). KGE gives a balanced indication of how well the model reproduces both the overall magnitude and the 285 

temporal dynamics of observed flows. By considering these complementary aspects. 

In addition to reporting the KGE values, we also present the underlying distributions of r, α, and β across all gauging 

stations. This helps to reveal a global picture of how the model simulations compare against observed data. 

 

Figure 6: Sampled points for measuring distribution of ET differences between GLEAM and SWAT+ output. 290 

We also evaluated the simulated mean annual ET against the GLEAM v4 dataset. This evaluation involved two approaches: 

(1) a comparison of the spatial patterns on global maps to assess the model's ability to capture large-scale ET variations, and 

(2) an analysis of the distribution of differences at specific locations. For the latter, ET differences (GLEAM - SWAT+) were 

calculated at numerous quasi-randomly selected sample points globally (Fig. 6) and their frequency distribution was plotted 

to assess overall model bias and the concentration of differences around zero. 295 
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3. Results 

In total, there were 2.63 million HRUs. Figure 5  Figure 7 illustrates the level of discretisation that was achieved in creating 

HRUs. 

 

300 

Figure 7: Illustration of density of HRUs in the Save Region of the African Continent 

Figure 5: Partitioning of the world land mass into regions based on main river basins. Highlighted region in Africa illustrating 

density of HRUs in the Save Region. 

When loaded into the Django visualisation app (Fig. 8), the Web User Interface (UI) showed all gauging stations where the 

user can pan around and click on any station to see details including performance metrics.  305 
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Figure 68: Django Web User Interface for visualising and managing the CoSWAT Global Model 

(https://github.com/celray/coswat) 

The web UI also allows users to see which datasets were used, download extract outputs from the model and acts as a 

calibration portal. Thus, users can extract a region to calibrate and update input files for better model performance. 310 

3.1 Evapotranspiration 

A comparison of ET for the effective simulation period (1982 – 1990) shows that the spatial pattern between SWAT+ ET and 

GLEAM ET is comparable overall (Fig. 9). 

 

 GLEAM ET SWAT+ ET 315 
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Figure 79: A comparison of the GLEAM v4 and SWAT+ ET maps. Highlighted regions show artefacts in the SWAT+ Output 

due to lack of representation of large water bodies and snow issues in high mountains. 

  325 

 

However, SWAT+ ET appears to have artefacts on the ET in East Africa (especially in the Ethiopian Highlands) and Central 

Asia. It also fails to capture the pattern in South America along the Andes mountains. Figure 8Figure 10 also shows how 

sampled points compare in differences with 78.54% within the range -100mm to 100mm ET difference. 

 330 

Figure 810: Distribution of differences between GLEAM v4 and SWAT+ simulated mean annual evapotranspiration (ET). The 

histogram shows the frequency of ET differences, calculated as (GLEAM - SWAT+), at sample points (shown in Figure 6) for the 

1982-1990 period. 

3.2 River Discharge 

The model achieved some positive KGE values (23.02%), but a majority of the values were negative as demonstrated by Fig. 335 

11. 
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Figure 911: Kling-Gupta Efficiency (KGE) for simulated monthly river discharge (m3/s) at global gauging stations. The map eval-

uates the performance of the uncalibrated global SWAT+ model for the 1982-1990 period against GRDC observations.  

While a small percentage of KGE values were above 0, 85.31% of the stations showed a positive correlation (r) in flow 340 

values with variability ratio (α) and mean ratio (β) median values falling close to 1 (Fig. 12).  

  

Figure 1012: Distribution of river discharge performance metrics across all evaluated gauging stations. The boxenplots show the 

statistical distribution of the Kling-Gupta Efficiency (KGE) and its three components: the linear correlation coefficient (r), the 

variability ratio (alpha, α), and the bias ratio (beta, β). 345 
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4. Discussion and Future Work 

The development of the global SWAT+ model using the CoSWAT framework highlights several significant advancements in 

large-scale hydrological modelling using SWAT+. The scripted workflow approach offers key advantages. By automating 

data retrieval, preprocessing, and model configuration within a single framework, the CoSWAT workflow ensures that the 

model setup can be consistently replicated. This is crucial for verifying results and facilitating collaborative research efforts. 350 

The availability of the workflow as an open-source tool further enhances transparency and community engagement. The 

CoSWAT framework also efficiently leverages multicore processing capabilities of high-performance computing (HPC) 

environments which reduces computational time, making it practical to perform high-resolution global simulations that were 

previously computationally prohibitive (Chawanda et al., 2020b). Users can easily adjust the model setup by modifying the 

configuration file, allowing for easy updates to input data sources, spatial resolution, or simulation parameters. This 355 

flexibility is essential for adapting the model to different research questions or incorporating new datasets as they become 

available. 

With the built in Django App for visualization, the CoSWAT framework plays an important role in visualising results. Users 

can zoom in to given sections of the model setup to extract and improve model setup separately. 

The first version of the CoSWAT global model showed promising results despite not being calibrated. The global SWAT+ 360 

model demonstrated reasonable performance in simulating ET when compared with the GLEAM v4 dataset. The spatial 

patterns were generally consistent, with approximately 78.54% of sampled points showing differences within ±100 mm. 

However, discrepancies were noted in regions such as East Africa, Central Asia, and along the Andes mountains in South 

America. A closer look showed excessive snow accumulation in the mountains which can be improved with calibration of 

SWAT+ snow parameters. 365 

 

Evaluating differences between modeled and remote-sensing-based ET products involves uncertainties from both sources. 

Limitations in the resolution or accuracy of input datasets, particularly climate data, can affect ET simulation. Reanalysis 

datasets may not capture local climate variability effectively, especially in regions with complex topography or sparse 

observational data (Moalafhi et al., 2017). The absence of lake representation in the SWAT+ Model setup also contributed to 370 

some of the discrepancies. For instance, the East African rift valley lake area and big reservoirs in south Africa were all 

simulated with regular HRUs while implementing lakes and reservoirs would ensure that the land ET and water surface ET 

are not mixed up to improve spatial Pattern (Fig 9). Concurrently, inherent uncertainties within the GLEAM v4 product 

itself, potentially related to its algorithms for partitioning ET components such as transpiration vs. soil evaporation, as 

discussed in studies like Chen et al. (2022), can also influence the comparison results. Thus, there is a need to acknowledge 375 

these combined uncertainties when interpreting the evaluation of the ET spatial patterns. 
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The current effective simulation period (1982 - 1990) was chosen to maximize usable GRDC time series. However, there is 

very limited eddy covariance (EC) data for further evaluation of model performance in simulating ET. Since calibration and 

validation were beyond the scope of this study, future studies should make simulations aligned to any available EC data and 

explore its use for calibration and validation. 380 

 

The model's performance in simulating river discharge was less satisfactory, with only 23.02% of gauging stations showing 

positive Kling-Gupta Efficiency (KGE) values for the simulation period (1977 – 1990 with 5 year warm up). Several factors 

contributed to this outcome. Without calibration, the model relies on default parameters, which may not reflect the 

hydrological characteristics of diverse global regions. Calibration would help better represent hydrological processes by 385 

adjusting model parameters to match observed streamflow and improve performance (Molina-Navarro et al., 2017). 

However, at such a scale, calibration would not be easily feasible due to computational and data storage requirements. 

Chawanda et al 2020 detail how Hydrological Mass Balance Calibration (HMBC) applied at large scale improves water 

balance representation while also improving model performance in several gauging stations in at a feasible computational 

cost. This is demonstrated by their application of HMBC on the SWAT+ Model for Africa (Chawanda 2024). Global 390 

modelling exercises like CoSWAT global model can also incorporate such calibration routines to improve the model 

performance. 

 

The non-inclusion of reservoirs and water management practices also negatively affected the performance of the model. The 

model did not implement reservoirs or account for human interventions such as irrigation, which significantly impact river 395 

flow regimes. Large-scale hydrological models struggle with representing human activities accurately due to their 

complexity and data requirements (Wada et al., 2017). Including reservoirs and management practices is an important part 

for realistic flow simulations, as demonstrated by Chawanda et al. (2020a), who showed that incorporating these elements 

improves river flow and ET simulations. 

 400 

Poor performance was also noted in higher latitudes which may be attributed to excessive simulation of snow, leading to 

overestimated flows. This suggests a need to refine the model's snow routines or adjust parameters related to cold climate 

processes. While snow related performance issues are specific to high latitude areas, the use of reanalysis climate data at a 

0.5-degree likely caused reduced model performance throughout the model setup. The 0.5-degree resolution may not capture 

local-scale climate variations, particularly in regions with significant topographic variability (Kay et al., 2015). Downscaling 405 

techniques or higher-resolution datasets could enhance model performance (Wang et al., 2020; Zhu et al., 2023). One major 

limitation faced during the simulation of the global model, the current SWAT+ climate input system requires individual files 

for each variable at each weather station, resulting in a massive number of files for global models. In our Model Setup, we 

required about 230,000 climate files at 0.5 decimal degree resolution. This approach strains computational resources, slows 

disk access, and increases memory usage, especially for long-term simulations or multiple scenarios and limits applicability 410 



21 

 

of downscaling efforts. There is a need to modify the input system to handle large datasets more efficiently by adopting and 

integrating more efficient file formats like NetCDF which would only need one file for all timesteps and climate variables. 

 

Future model versions should include reservoirs, irrigation, and other water management practices to capture both natural 

and anthropogenic activities. This requires collection of global datasets on water infrastructure and usage, which can be 415 

challenging but is essential for better process representation (Nkwasa et al., 2022a). In addition, HMBC should be employed 

to further improve process representation and hence model performance. Snow process and parameters also need to be 

revised to prevent snow build up in higher latitudes. 

Finally, while placing model performance in the context of established global models like those within the ISIMIP ensemble 

is valuable, a direct quantitative comparison of river discharge statistics (e.g., KGE) was considered beyond the scope of th is 420 

initial study and potentially misleading due to fundamental differences in model resolution. Comparing our high-resolution 

outputs, which capture finer-scale heterogeneity, against typical ISIMIP model outputs (0.5-degree) at specific gauge 

locations requires careful consideration of scale mismatches. Future work could explore methodologies for robust inter-

comparison that account for these scale differences, potentially leveraging the aggregation capabilities of the CoSWAT 

framework. 425 

5. Conclusions 

The development of a high-resolution global SWAT+ model using the CoSWAT framework marks a significant step forward 

in global hydrological modelling. The framework's reproducibility, scalability, and flexibility address many challenges 

associated with large-scale simulations. While the model performed well in simulating evapotranspiration, discrepancies in 

certain regions highlight the need for further refinement of input data and model parameters. 430 

The poor performance in river discharge simulations highlights the importance of model calibration and the inclusion of 

human activities such as reservoir operations and water management practices. Future work should focus on enhancing the 

representation of critical hydrological processes, integrating human interventions, and improving input data quality and 

resolution. Adopting more efficient data handling strategies within the SWAT+ framework will also facilitate larger and more 

complex simulations. By addressing these challenges, the global SWAT+ model can become a powerful tool for 435 

understanding global water resources and easily map hotspots for water scarcity, assessing CC and land use impacts, and 

supporting sustainable water management practices worldwide. 

Code and data availability 

Simulations have a large size and cannot easily be hosted online. However, they are available upon request.  The tools used in 

this study are available from github (https://github.com/celray/CoSWAT-Framework and https://github.com/celray/coswat, 440 

https://github.com/celray/CoSWAT-Framework
https://github.com/celray/coswat
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