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Abstract

Global hydrological models are essential tools for understanding water resources and assessing Climate Change (CC)
impacts at planetary scales, supporting water management, flood risk assessment, and sustainable development initiatives
worldwide. The Soil and Water Assessment Tool (SWAT+) has demonstrated robust performance across various
environments and scales, from local to continental applications. However, despite its widespread use, a global
implementation of SWAT+ is currently lacking due to computational demands and data management challenges, while
existing global models often lack the detailed process representation and high spatial resolution needed for comprehensive
hydrological analysis. A global SWAT+ model would offer unique advantages through its integrated simulation of water
quantity, quality, and land management processes, while supporting multiple UN Sustainable Development Goals and
enhancing research opportunities in global hydrology. This study aimed to develop a High-resolution Global SWAT+ Model
and establish a reproducible framework for large-scale SWAT+ applications. We developed the Community SWAT
(CoSWAT) modeling framework, an open-source solution that automates data retrieval, preprocessing, and model
configuration using Python, while maximizing parallel processing for computational efficiency. The global model was then
set up using the framework at 2km resolution using ASTER DEM, ESA land use data, FAO soil data, and ISIMIP climate
data, with performance evaluated against GRDC flow data and GLEAM evapotranspiration dataset. Results without
calibration showed reasonable spatial patterns in evapotranspiration simulation with 78.54% of sampled points showing
differences within +100mm compared to GLEAM data, though river discharge performance was limited due to lack of
reservoir implementation with 23.02% of stations showing positive Kling-Gupta Efficiency values. The development of this

first global SWAT+ model demonstrates the feasibility of high-resolution global hydrological modeling using SWAT+, while
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the CoSWAT framework provides a robust foundation for reproducible large-scale modeling. These advances enable more
detailed analysis of global water resources and CC impacts, though future work should focus on incorporating water

management practices, improving process representation with calibration, and enhancing computational efficiency.

1. Introduction

Global water models aim to simulate phenomena at planetary scale. There are several global models that simulate the water
cycle such as Global Hydrological Models (GHMs), Land Surface Models (LSMs), and Global Dynamic Vegetation Models
(GDVMs), each of them with different approaches and purposes. Most models are based on a gridded structure and vary in
how they represent water storage components and terrestrial processes. Nearly all models incorporate canopy, snow, and soil
water storage to some degree. Surface runoff is estimated by most models, while only a smaller group—specifically GHMs
and a number of LSMs—include river routing to enable streamflow simulations. Additionally, only a small fraction of

models account for reservoirs, with an even smaller subset incorporating lake and wetland storage (Telteu et al., 2021).

In order to assess water resources on a global scale, multi-model comparisons exist due to the differences in structures and
approaches of global water models. There are some Model Intercomparison Projects (MIPs) that focus on global water
models such as the WaterMIP (Haddeland et al., 2011), and the Inter-Sectoral Impact Model Inter-Comparison Project
(ISIMIP) that, on the ISIMIP 2 and 3 simulation rounds(Gosling et al., 2023a, b, 2024a, b), involves several models
including GHMs, LSMs and DGVMs, as shown in Table 1.

Table 1: Global Water Models utilized in the global water sector of ISIMIP

Nr Name Category Reference
1 | CWatM GHM (Burek et al., 2020)
2 | DBH GHM (Tang et al., 2007)
3 | HO8 GHM (Hanasaki et al., 2018a)
4 | HydroPy GHM (Stacke and Hagemann, 2021)
5 | MPI-HM GHM (Stacke and Hagemann, 2012)
6 | PCR-GLOBWB GHM (Sutanudjaja et al., 2018)
7 | VIC GHM (Liang et al., 1994)
8 | WaterGAP2 GHM (Muller Schmied et al., 2021)
9 | WAYS GHM (Mao and Liu, 2019)

10 | WEB-DHM-SG GHM/LSM (Qietal.,, 2022b)

11 | CLASSIC LSM (Melton et al., 2020)

12 | CLM4.5 LSM (Oleson et al., 2013)

13 | CLM5.0 LSM (Lawrence et al., 2019)

14 | ELM-ECA LSM (Zhu etal., 2019)

15 | JULES LSM (Bestetal., 2011)

16 | MATSIRO LSM (Takata et al., 2003)

17 | ORCHIDEE LSM (Guimberteau et al., 2014, 2017)
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18 | SWBM LSM (Rene Orth and Seneviratne, 2015)
19 | SSiB4/TRIFFID LSM/DGVM (Huang et al., 2020)
20 | LPJmL DGVM (Sitch et al., 2003)

Among these models, generally, GHMs focus on representing the land water balance, with particular emphasis on
streamflow for model evaluation, while LSMs focus on the vertical exchange of energy and water between land and
atmosphere, and DGVMs simulate global vegetation dynamics, where hydrological processes play an important role (Telteu
et al., 2021).

Within the ISIMIP ensemble (Table 1), various models exemplify different categories. For instance, GHMs like (Burek et al.,
2020) focus on water quantity assessment across sectors (Becher et al., 2024; Palazzo et al., 2024), HO8 (Hanasaki et al.,
2018a) maps water abstractions and availability, PCR-GLOBWB (Sutanudjaja et al., 2018) simulates the terrestrial water
cycle including human influences (Becher et al., 2024; Burek et al., 2020; Palazzo et al., 2024), The Variable Infiltration
Capacity (VIC) assesses human impacts on water resources (Liang et al., 1994), and WaterGAP (Miiller Schmied et al.,
2021) simulates runoff, recharge, and streamflow considering various storages. LSMs such as CLM, CLASSIC, JULES, and
MATSIRO (Best et al., 2011; Lawrence et al., 2019; Melton et al., 2020; Takata et al., 2003) simulate broader land surface
processes including energy, water, carbon fluxes, and vegetation dynamics, often incorporating hydrological components.
DGVMs like LPJmL (Sitch et al., 2003) simulate vegetation dynamics and surface water balance, including human
influences like irrigation. Despite differing primary objectives, these models are often used collectively in ensemble studies
to assess Climate Change (CC) impacts on various hydrological aspects like groundwater recharge (Reinecke et al., 2021),
river flow (Gudmundsson et al., 2021) and soil moisture (Porkka et al., 2024), river ecological functioning (Thompson et al.,
2021), droughts (Kew et al., 2021; Pokhrel et al., 2021), and floods (Dottori et al., 2018; Tabari et al., 2021; Zhou et al.,
2023), both globally and regionally.

Despite the differences in general purposes and focus for model development between LSMs, GHMs and DGVMs, as part as
the model ensemble for the global water sector from ISIMIP (Table 1), they have been used together for several studies. On
a global scale, model ensembles were used to study the future changes in groundwater recharge (Reinecke et al., 2021). They
were applied to assess the historical and future impacts of CC on river flow trend and soil moisture(Gudmundsson et al.,
2021; Porkka et al., 2024; Thompson et al., 2021). Moreover, others have studied historical and future changes in drought
and flood risks, trends and impacts (Dottori et al., 2018; Kew et al., 2021; Pokhrel et al., 2021; Tabari et al., 2021; Zhou et
al., 2023). On a regional scale, ensembles of models were used to study compound extreme climate events (Muheki et al.,

2024), and project future indices regarding water scarcity in the context of CC and societal changes (Yin et al., 2020).

The ability to simulate water resources and the impacts of CC and other human induced environmental changes is

indispensable in planning for and management of water resources (Ramteke et al., 2020; Soltani et al., 2023; Zhuang et al.,
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2018). This is true for both small scales and large scales (Chawanda et al., 2024; Fu et al., 2019). By predicting how CC and
other human drivers affect the water cycle, the models help in developing strategies to cope with droughts, floods and other
water-related challenges (Brunner et al., 2021). Hydrological models also enable more effective management of water
resources to optimize the use of water for agriculture (Li et al., 2020; Srivastava et al., 2020), industry, and human
consumption, especially in regions where water is scarce (Hanasaki et al., 2018b). These models at a global level can also
support global sustainable initiatives by ensuring that development projects align with long-term water availability (Amjath-
Babu et al., 2019). At the same time, they can also offer means for forecasting extreme events like floods and droughts in any

region of the world, thereby enhancing preparedness and allowing timely warning for disaster response efforts.

SWAT+ (Soil and Water Assessment Tool) is a completely revised version of the original SWAT model (Arnold et al., 2018;
Bieger et al., 2017). It performs hydrological simulations at the Hydrologic Response Units (HRU) scale. HRUs represent
unique combinations of land use, soil, and slope characteristics within each landscape unit or subbasin. The SWAT+ model
can simulate a wide range of processes including surface runoff and infiltration, evapotranspiration (ET) and other water
balance components (Pandi et al., 2023). SWAT+ also simulates Soil Erosion and Sediment Transport, Nutrient Cycle and
Land Use and Management Practices (Arnold et al., 2018). SWAT has been applied all over the world in various
environments including in Temperate (Qi et al., 2019), Tropical and Subtropical (Alemayehu et al., 2017; Ma et al., 2019),
Arid and Semi-Arid (Samimi et al., 2020), Mediterranean Climates, Cold and Mountainous Regions, Wetlands and even
Coastal Environments (Peker and Sorman, 2021; Pulighe et al., 2021; Upadhyay et al., 2022). SWAT+ has also been applied
at small scales (Qi et al., 2022a), regional scale (Chawanda et al., 2020a; Nkwasa et al., 2022b) and even continental scale
(Abbaspour et al., 2015; Chawanda et al., 2024; Nkwasa et al., 2024).

Despite such applications, there are no global applications at present because as with other global modelling efforts, large-
scale SWAT+ applications face several significant challenges. Data availability and quality remain a challenge (Crochemore
et al., 2020). High-resolution, consistent, and up-to-date datasets for land use, soil properties, and climate variables are often
lacking or incomplete (Chawanda et al., 2024; DGll et al., 2016), particularly in developing regions which can lead to
increased uncertainty in model outputs (Sood & Smakhtin, 2015) and limit the model's applicability. Computational demands
pose another challenge (Ma et al., 2023; Zhang et al., 2016). The computational requirements of setting up fine resolution
SWAT+ model, running, calibrating and validating it, coupled with the storage resources required for the input and output
data, necessitates significant computational resources. These two in addition to data processing methods used in global
applications, can make it challenging to replicate and reuse any model set-ups available in a study area (Chawanda et al.,
2020b). This issue may be compounded by frequent updates to model structure and parameters (Smith et al., 2020), which
can lead to inconsistencies between studies conducted at different times. This calls for archiving and versioning systems in

workflows for better reproducibility (Knoben et al., 2022).
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While challenges persist, a global SWAT+ model is in a unique position to provide comprehensive insights into large-scale
processes across diverse ecosystems worldwide. To begin with, a global SWAT+ model offers a holistic approach in
simulation of water quantity and quality, integrating detailed hydrological processes, nutrient cycling, and sediment transport
(Abbaspour et al., 2015; Liu et al., 2017). The model also would enable high-resolution projections of climate change
impacts on global water systems, critical for contributing to international assessments like Intergovernmental Panel on
Climate Change (IPCC) reports. In addition, the global SWAT+ model directly supports multiple United Nations Sustainable
Development Goals (SDGs), by providing data crucial for balancing development with environmental conservation through
simulation of Land Use and Land Cover Change (LULCC) and nutrients in water bodies. Implementing a global SWAT+
model also creates a standardised dataset for cutting-edge international research in hydrology, thereby enhancing research
and educational opportunities. The model has significant implications in designing and enhancing the effectiveness of long-
term global water and land management practices by allowing detailed simulations of global agricultural practices, land use

changes, and their water resource impacts.

The primary aim of this study was to develop a High-resolution Global SWAT+ Model, addressing the growing need for
comprehensive, large-scale hydrological simulations. To achieve this overarching goal, we first establish a robust framework
for setting up a high-resolution global SWAT+ model based on the study by Chawanda et. al., (2020b), ensuring
reproducibility and scalability of the model. This framework integrates global data processing methods and computational
strategies that overcome the challenges inherent in global-scale modelling. Subsequently, we evaluate the model's
performance against observed data. This evaluation not only benchmarks the Global SWAT+ Model's capabilities, but also

identifies areas for potential refinement, contributing to the advancement of global hydrological modelling techniques.
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2. Methodology
2.1 Global Datasets for SWAT+

While setting up the global SWAT+ model, global data sources were used as input and for model evaluation.

2.1.1 Digital Elevation Model

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) global DEM (Abrams, 2016) was
preferred over the Shuttle Radar Topography Mission (SRTM) global DEM (Farr et al., 2007) primarily due to its more
complete global spatial coverage (Fig. 1), which is essential for this study's domain. SRTM data only cover over 80% of the
Earth's land surface (60°N-56°S), while ASTER goes further North and South covering 99% of land surface (Yue et al.,
2017).

Elevation {m)
22000

L]
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Figure 1: Spatial coverage of ASTER Global DEM Excluding Antarctica (mapped at 2km resolution)-vs-SRFM. SRTFM-data-only
cover-over 80% of the Earth's land surface (60°N—56° R goesfurther North-an ue et ak; 2017).

d-Seuth 5

While potential differences in DEM quality exist between the datasets, particularly in mountainous regions at finer native
resolutions_of 30m, these differences are considered less critical at the 2km resolution used for deriving topographic

parameters in this global model setup.

2.1.2 Land Use Map

The |The—tand use data (Fig. 2) —frem—from the European Space Agency (ESA)_is available at 300m resolution was
downloadedfrom-the ESA-website-(Defourny et al., 2017). The 2007 ESA land use map used for this study indicates that,

excluding Antarctica, barren and sparsely vegetated areas dominate, accounting for over 32% of the global land surface.

Grasslands and shrublands cover approximately 27%, while forests account for about 31%. Cropland represents around 7%
of the global landmass.(ESA—FEand—Ceover—CClHProduet—User—Guide—Version—2—Tech—Rep—(2017)—Available
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Figure 2: Major Land Use Categories frem-based on European Space Agency (ESA) 2007 Land Use Map

The FAO soil data (Fischer et al., 2008) was used in this study. The FAO soil data, particularly from the Harmonized World

2.1.3 Soil Map
Soil Database (HWSD), provides global coverage of soil properties (Fig. 3) at a 1 km? resolution. The data is derived from
multiple sources and is widely used in global and regional environmental studies, though it may lack precision for local-scale

analysis due to the generalised nature of its source material.
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Figure 3: Global extent of FAO soil typesMajorseil-typ_(Fischer et al., 2008)esfromFAO-Seil Map

2.1.4 Climate Data

Climate data was acquired from the GSWP3-EWEMBI reanalysis dataset (Lange and Biichner, 2020) through the Inter-
Sectoral Impact Model Intercomparison (ISIMIP) project. The dataset contains historical climate data including daily

minimum and maximum air temperature (tasmin and tasmax, respectively), precipitation (pr), relative humidity (rhs), solar

radiation (rlds), and near-surface wind speed (wind) at 0.5 decimal degrees which corresponds to about 55.66 km along the

equator.

2.1.5 River Flow Data

The monthly river flow for evaluation was acquired from The Global Runoff Data Centre (GRDC,
https://portal.grdc.bafg.de/applications/public.htm). The gauging station location data was also used in the delineation to

create outlets in the model setups.

2.1.6 ET Data

GLEAM v4 dataset available at 0.1° resolution was used for evaluating ET (Miralles et al., 2025). The datasets require pre-
processing to be used by the SWAT+ model. In our model set up, the preprocessing was done in the scripted workflow

described in the next section.

{Formatted: Indent: Left: 0"
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2.2 Seripted-WeorkflowModelling Framework for Global SWAT+ Setup

To facilitate the setup of a global SWAT+ model, we developed a python based scripted workflow based on SWAT+ AW
(Chawanda et al., 2020b). This new workflow, named the Community SWAT (CoSWAT) modelling framework (Fig. 4), is a

free and open-source solution designed for large-scale modelling using SWAT+.

The framework simplifies the setup process for global SWAT+ models by automating data retrieval, pre-processing, and<—

model configuration. The user is required to define regions of interest using box coordinates. Settings for model set up are

saved in one file referred to as the ‘configuration file’. Having model setup settings in one file ensures consistency across

the global model. To ensure reproducibility and ease of use, the workflow includes stages for retrieving and preparing

essential input datasets. These stages are automated and controlled by the configuration file settings:

Digital Elevation Model (DEM): The CoSWAT framework downloads ASTER DEM tiles, mosaics them into a

continuous surface, and resamples and reprojects them as per the configuration file.

Land Use Data: The framework automatically retrieves land use maps from the European Space Agency (ESA) and

processes them. The data is resampled, and reprojected. The lookup file is manually prepared once. This is done by

matching ESA land use classification to equivalent land use types in the SWAT+ land use database.

Soil Data: Soil data from the FAO Harmonized World Soil Database (HWSD) is downloaded and transformed into the

format required by SWAT+. The framework handles rasterization and reprojection to prepare the soil data into a format

required by SWAT+. FAO soil lookup and soil properties database are readily available from the SWAT+ website
(SWAT Global Data, 2025) through QSWAT+ Software and are used by the workflow.

Climate Data: Climate inputs are downloaded from the ISIMIP dataset servers. The workflow processes historical and+—

scenario-based climate data, including variables such as precipitation, temperature, wind speed, solar radiation and

relative humidity and formats them for use in SWAT+ simulations. The downloaded files are in NetCDF format and are

read and written using the xarray python library. Users can customise climate scenarios using the configuration file. It is

also possible to specify the spatial resolution of the points at which climate time series are created.
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220  Figure 4: Schematic of the Community SWAT (CoSWAT) modelling framework. The flowchart illustrates the scripted workflow
designed to automate the setup, execution, and evaluation of large-scale SWAT+ models. The entire process is controlled by a sin-
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The flexibility of the CoSWAT Framework allows users to easily switch data sources, depending on the project's
requirements or data availability which makes the framework a robust and adaptable tool for large-scale modelling.

In addition to the model setup, the CoOSWAT framework integrates evaluation and visualisation tools. A local web application
was developed to serve as an interactive portal, allowing users to visualise model results and outputs in a user-friendly
environment. This platform enhances the accessibility and interpretation of model results. The CoOSWAT framework was
optimised by iteratively implementing parallel processing wherever possible and feasible. This reduces the time required for
data processing and model setup, making large-scale simulations feasible by leveraging High Performance Computing

(HPC) environments which often allow highly parallelised workflows (Chawanda et al., 2020b).

-The efficiency gains from parallel processing significantly reduce computation time, though actual runtimes depend heavily <
on the specific HPC hardware (CPU cores, clock speed, Input/Output (I/O) speed) and parallel configurations used. For
context, using the 64-core, 3.00 GHz, 128 GB RAM Linux environment described below (Section 2.3), the CoSWAT
framework setup phase (including data preprocessing, watershed delineation, HRU generation, and file writing — not
including data download times) required approximately 12 minutes for a moderately sized region such as Save Basin in
Africa, and about 1 hour 49 minutes for a large, complex region such as the Nile Basin. Executing a 10-year SWAT+
simulation for very large basins like the Amazon could take over 24 hours, with runtime strongly influenced by the requested

output frequency (e.g., daily outputs requiring significantly more time due to I/O demands).

12
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2.3 Global SWAT+ Model Implementation and Evaluation

260 The data resolution for DEM, land use and soil maps were set to 2km projected in ESRI:54003 (Miller World Cylindrical)
projection. Climate data resolution was however set to 0.5 decimal degrees due to limitations on the number of files the

operating system allowed (<= 10,000,000 files). The thresholds for stream and channel were set to 44 cells — an equivalent of

177.7 km?.

265 The model was setup in a 64-core HPC Environment running at 3.00 GHz, with 128 GB Memory running Linux. To take
advantage of parallel processing and easy data handling, the global model was setup by combining regions defined based on

major river basins (Fig. 5). However, Greenland was not included in this version.

I Water Body %(k;'

Defined Region {(J

270  Using the CoOSWAT framework, data was prepared, and a model set up for each of these regions using the configuration file< { Formatted: Space Before: 12 pt

options. Slope classes were not considered in creation of HRUs. The Model Files were written with the following options:

the Muskingum method was applied for channel routing, and Penman—Monteith was used for potential evapotranspiration

estimation. A five-year warm-up period was set, and the model was run for the simulation period 1977-1990.
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The version of SWAT+ used to run the global SWAT+ model setup is 60.5.7. The global model was not calibrated as that was
beyond the scope of this study. We used the Kling-Gupta Efficiency (KGE) metric (Gupta et al., 2009) to evaluate the flow
time series at the monthly timestep. The plotting of results and metric calculation was implemented within the CoSWAT

framework.

The Kling-Gupta Efficiency (KGE) metric provides a more nuanced assessment of model performance than conventional
measures like R? or Bias alone. It is formulated to simultaneously account for three key components: the linear correlation
between simulated and observed time series (r), the variability ratio — o, which compares the standard deviation of simulated
values against observations, and the bias ratio — 3, which evaluates the mean offset between simulated and observed values
(Gupta et al., 2009). KGE gives a balanced indication of how well the model reproduces both the overall magnitude and the

temporal dynamics of observed flows. By considering these complementary aspects.

In addition to reporting the KGE values, we also present the underlying distributions of r, a, and B across all gauging

stations. This helps to reveal a global picture of how the model simulations compare against observed data.

We also evaluated the simulated mean annual ET against the GLEAM v4 dataset. This evaluation involved two approaches:
(1) a comparison of the spatial patterns on global maps to assess the model's ability to capture large-scale ET variations, and
(2) an analysis of the distribution of differences at specific locations. For the latter, ET differences (GLEAM - SWAT+) were
calculated at numerous quasi-randomly selected sample points globally (Fig. 6) and their frequency distribution was plotted

to assess overall model bias and the concentration of differences around zero.



3. Results

In total, there were 2.63 million HRUs. Figure 5 -Figure7-illustrates the level of discretisation that was achieved in creating
HRUs.

Figure 5: Partitioning of the world land mass into regions based on main river basins. Highlighted region in Africa illustratin

density of HRUs in the Save Region.

When loaded into the Django visualisation app (Fig. 8), the Web User Interface (UI) showed all gauging stations where the

305 user can pan around and click on any station to see details including performance metrics.
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Figure 68: Django Web User Interface for visualising and managing the CoSWAT Global Model
(https://github.com/celray/coswat)

The web UI also allows users to see which datasets were used, download extract outputs from the model and acts as a

calibration portal. Thus, users can extract a region to calibrate and update input files for better model performance.

3.1 Evapotranspiration

A comparison of ET for the effective simulation period (1982 — 1990) shows that the spatial pattern between SWAT+ ET and
GLEAM ET is comparable overall (Fig. 9).

SWAT+ ET

Evapotranspiration (mm)
-
0 2400
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|325 Figure 79: A comparison of the GLEAM v4 and SWAT+ ET maps. Highlighted regions show artefacts in the SWAT+ Output

due to lack of representation of large water bodies and snow issues in high mountains.
However, SWAT+ ET appears to have artefacts on the ET in East Africa (especially in the Ethiopian Highlands) and Central
| Asia. It also fails to capture the pattern in South America along the Andes mountains. Figure 8Figure—1+0 also shows how

sampled points compare in differences with 78.54% within the range -100mm to 100mm ET difference.
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| Figure 810: Distribution of differences between GLEAM v4 and SWAT+ simulated mean annual evapotranspiration (ET). The
histogram shows the frequency of ET differences, calculated as (GLEAM - SWAT+), at sample points (shown in Figure 6) for the
1982-1990 period.

3.2 River Discharge

335 The model achieved some positive KGE values (23.02%), but a majority of the values were negative as demonstrated by Fig.
11.



KGE

* 0.2-0.5
* 05-1.0

Figure 911: Kling-Gupta Efficiency (KGE) for simulated monthly river discharge (m%s) at global gauging stations. The map eval-
uates the performance of the uncalibrated global SWAT+ model for the 1982-1990 period against GRDC observations.

340 While a small percentage of KGE values were above 0, 85.31% of the stations showed a positive correlation (r) in flow

345

values with variability ratio (o) and mean ratio (B) median values falling close to 1 (Fig. 12).
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Figure 1042: Distribution of river discharge performance metrics across all evaluated gauging stations. The boxenplots show the
statistical distribution of the Kling-Gupta Efficiency (KGE) and its three components: the linear correlation coefficient (r), the

variability ratio (alpha, a), and the bias ratio (beta, p).
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4. Discussion and Future Work

The development of the global SWAT+ model using the CoOSWAT framework highlights several significant advancements in
large-scale hydrological modelling using SWAT+. The scripted workflow approach offers key advantages. By automating
data retrieval, preprocessing, and model configuration within a single framework, the CoOSWAT workflow ensures that the
model setup can be consistently replicated. This is crucial for verifying results and facilitating collaborative research efforts.
The availability of the workflow as an open-source tool further enhances transparency and community engagement. The
CoSWAT framework also efficiently leverages multicore processing capabilities of high-performance computing (HPC)
environments which reduces computational time, making it practical to perform high-resolution global simulations that were
previously computationally prohibitive (Chawanda et al., 2020b). Users can easily adjust the model setup by modifying the
configuration file, allowing for easy updates to input data sources, spatial resolution, or simulation parameters. This
flexibility is essential for adapting the model to different research questions or incorporating new datasets as they become

available.

With the built in Django App for visualization, the CoOSWAT framework plays an important role in visualising results. Users

can zoom in to given sections of the model setup to extract and improve model setup separately.

The first version of the CoOSWAT global model showed promising results despite not being calibrated. The global SWAT+
model demonstrated reasonable performance in simulating ET when compared with the GLEAM v4 dataset. The spatial
patterns were generally consistent, with approximately 78.54% of sampled points showing differences within £100 mm.
However, discrepancies were noted in regions such as East Africa, Central Asia, and along the Andes mountains in South
America. A closer look showed excessive snow accumulation in the mountains which can be improved with calibration of

SWAT+ snow parameters.

Evaluating differences between modeled and remote-sensing-based ET products involves uncertainties from both sources.
Limitations in the resolution or accuracy of input datasets, particularly climate data, can affect ET simulation. Reanalysis
datasets may not capture local climate variability effectively, especially in regions with complex topography or sparse
observational data (Moalafhi et al., 2017). The absence of lake representation in the SWAT+ Model setup also contributed to
some of the discrepancies. For instance, the East African rift valley lake area and big reservoirs in south Africa were all
simulated with regular HRUs while implementing lakes and reservoirs would ensure that the land ET and water surface ET
are not mixed up to improve spatial Pattern (Fig 9). Concurrently, inherent uncertainties within the GLEAM v4 product
itself, potentially related to its algorithms for partitioning ET components such as transpiration vs. soil evaporation, as
discussed in studies like Chen et al. (2022), can also influence the comparison results. Thus, there is a need to acknowledge

these combined uncertainties when interpreting the evaluation of the ET spatial patterns.
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The current effective simulation period (1982 - 1990) was chosen to maximize usable GRDC time series. However, there is
very limited eddy covariance (EC) data for further evaluation of model performance in simulating ET. Since calibration and
validation were beyond the scope of this study, future studies should make simulations aligned to any available EC data and

explore its use for calibration and validation.

The model's performance in simulating river discharge was less satisfactory, with only 23.02% of gauging stations showing
positive Kling-Gupta Efficiency (KGE) values for the simulation period (1977 — 1990 with 5 year warm up). Several factors
contributed to this outcome. Without calibration, the model relies on default parameters, which may not reflect the
hydrological characteristics of diverse global regions. Calibration would help better represent hydrological processes by
adjusting model parameters to match observed streamflow and improve performance (Molina-Navarro et al., 2017).
However, at such a scale, calibration would not be easily feasible due to computational and data storage requirements.
Chawanda et al 2020 detail how Hydrological Mass Balance Calibration (HMBC) applied at large scale improves water
balance representation while also improving model performance in several gauging stations in at a feasible computational
cost. This is demonstrated by their application of HMBC on the SWAT+ Model for Africa (Chawanda 2024). Global
modelling exercises like CoOSWAT global model can also incorporate such calibration routines to improve the model

performance.

The non-inclusion of reservoirs and water management practices also negatively affected the performance of the model. The
model did not implement reservoirs or account for human interventions such as irrigation, which significantly impact river
flow regimes. Large-scale hydrological models struggle with representing human activities accurately due to their
complexity and data requirements (Wada et al., 2017). Including reservoirs and management practices is an important part
for realistic flow simulations, as demonstrated by Chawanda et al. (2020a), who showed that incorporating these elements

improves river flow and ET simulations.

Poor performance was also noted in higher latitudes which may be attributed to excessive simulation of snow, leading to
overestimated flows. This suggests a need to refine the model's snow routines or adjust parameters related to cold climate
processes. While snow related performance issues are specific to high latitude areas, the use of reanalysis climate data at a
0.5-degree likely caused reduced model performance throughout the model setup. The 0.5-degree resolution may not capture
local-scale climate variations, particularly in regions with significant topographic variability (Kay et al., 2015). Downscaling
techniques or higher-resolution datasets could enhance model performance (Wang et al., 2020; Zhu et al., 2023). One major
limitation faced during the simulation of the global model, the current SWAT+ climate input system requires individual files
for each variable at each weather station, resulting in a massive number of files for global models. In our Model Setup, we
required about 230,000 climate files at 0.5 decimal degree resolution. This approach strains computational resources, slows

disk access, and increases memory usage, especially for long-term simulations or multiple scenarios and limits applicability
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of downscaling efforts. There is a need to modify the input system to handle large datasets more efficiently by adopting and

integrating more efficient file formats like NetCDF which would only need one file for all timesteps and climate variables.

Future model versions should include reservoirs, irrigation, and other water management practices to capture both natural
and anthropogenic activities. This requires collection of global datasets on water infrastructure and usage, which can be
challenging but is essential for better process representation (Nkwasa et al., 2022a). In addition, HMBC should be employed
to further improve process representation and hence model performance. Snow process and parameters also need to be

revised to prevent snow build up in higher latitudes.

Finally, while placing model performance in the context of established global models like those within the ISIMIP ensemble
is valuable, a direct quantitative comparison of river discharge statistics (e.g., KGE) was considered beyond the scope of this
initial study and potentially misleading due to fundamental differences in model resolution. Comparing our high-resolution
outputs, which capture finer-scale heterogeneity, against typical ISIMIP model outputs (0.5-degree) at specific gauge
locations requires careful consideration of scale mismatches. Future work could explore methodologies for robust inter-
comparison that account for these scale differences, potentially leveraging the aggregation capabilities of the CoSWAT

framework.

5. Conclusions

The development of a high-resolution global SWAT+ model using the COSWAT framework marks a significant step forward
in global hydrological modelling. The framework's reproducibility, scalability, and flexibility address many challenges
associated with large-scale simulations. While the model performed well in simulating evapotranspiration, discrepancies in
certain regions highlight the need for further refinement of input data and model parameters.

The poor performance in river discharge simulations highlights the importance of model calibration and the inclusion of
human activities such as reservoir operations and water management practices. Future work should focus on enhancing the
representation of critical hydrological processes, integrating human interventions, and improving input data quality and
resolution. Adopting more efficient data handling strategies within the SWAT+ framework will also facilitate larger and more
complex simulations. By addressing these challenges, the global SWAT+ model can become a powerful tool for
understanding global water resources and easily map hotspots for water scarcity, assessing CC and land use impacts, and

supporting sustainable water management practices worldwide.

Code and data availability

Simulations have a large size and cannot easily be hosted online. However, they are available upon request. The tools used in

this study are available from github (https:/github.com/celray/CoSWAT-Framework and https://github.com/celray/coswat
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last access: 28 December 2024) and through Zenodo at https://zenodo.org/doi/10.5281/zenodo.14577842 (Chawanda, 2024).

All input data is from open sources as discussed in the manuscript.
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