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Abstract 

Global hydrological models are essential tools for understanding water resources and assessing climate changeClimate 

Change (CC) impacts at planetary scales, supporting water management, flood risk assessment, and sustainable development 15 

initiatives worldwide. The Soil and Water Assessment Tool (SWAT+) has demonstrated robust performance across various 

environments and scales, from local to continental applications. However, despite its widespread use, a global 

implementation of SWAT+ is currently lacking due to computational demands and data management challenges, while 

existing global models often lack the detailed process representation and high spatial resolution needed for comprehensive 

hydrological analysis. A global SWAT+ model would offer unique advantages through its integrated simulation of water 20 

quantity, quality, and land management processes, while supporting multiple UN Sustainable Development Goals and 

enhancing research opportunities in global hydrology. This study aimed to develop a High-resolution Global SWAT+ Model 

and establish a reproducible framework for large-scale SWAT+ applications. We developed the Community SWAT 

(CoSWAT) modeling framework, an open-source solution that automates data retrieval, preprocessing, and model 

configuration using Python, while maxmisingmaximizing parallel processing for computational efficiency. The global model 25 

was then set up using the framework at 2km resolution using ASTER DEM, ESA land use data, FAO soil data, and ISIMIP 

climate data, with performance evaluated against GRDC flow data and GLEAM evapotranspiration dataset. Results without 

calibration showed reasonable spatial patterns in evapotranspiration simulation with 78.54% of sampled points showing 

differences within ±100mm compared to GLEAM data, though river discharge performance was limited due to lack of 

reservoir implementation with 23.02% of stations showing positive Kling-Gupta Efficiency values. The development of this 30 

first global SWAT+ model demonstrates the feasibility of high-resolution global hydrological modeling using SWAT+, while 
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the CoSWAT framework provides a robust foundation for reproducible large-scale modeling. These advances enable more 

detailed analysis of global water resources and climate Climate change Change (CC)CC impacts, though future work should 

focus on incorporating water management practices, improving process representation with calibration, and enhancing 

computational efficiency. 35 

1. Introduction 

Global water models aim to simulate phenomena at planetary scale. There are several global models that simulate the water 

cycle such as Global Hydrological Models (GHMs), Land Surface Models (LSMs), and Global Dynamic Vegetation Models 

(GDVMs), each of them with different approaches and purposes. Most models are based on a gridded structure and vary in 

how they represent water storage components and terrestrial processes. Nearly all models incorporate canopy, snow, and soil 40 

water storage to some degree. Surface runoff is estimated by most models, while only a smaller group—specifically GHMs 

and a number of LSMs—include river routing to enable streamflow simulations. Additionally, only a small fraction of 

models account for reservoirs, with an even smaller subset incorporating lake and wetland storage (Telteu et al., 2021). 

 

In order to assess water resources on a global scale, multi-model comparisons exist due to the differences in structures and 45 

approaches of global water models. There are some  Model Intercomparison Projects (MIPs) that focus on global water 

models such as the WaterMIP (Haddeland et al., 2011), and the Inter-Sectoral Impact Model Inter-Comparison Project 

(ISIMIP) that, on the ISIMIP 2 and 3 simulation rounds(Gosling et al., 2023a, b, 2024a, b), involves several models 

including GHMs, LSMs and DGVMs, as shown in Table 1. 

 50 

Table 111: Global Water Models utilized in the global water sector of ISIMIP 

Nr Name Category Reference 
1 CWatM GHM (Burek et al., 2020) 
2 DBH GHM (Tang et al., 2007) 
3 H08 GHM (Hanasaki et al., 2018a) 
4 HydroPy GHM (Stacke and Hagemann, 2021) 
5 MPI-HM GHM (Stacke and Hagemann, 2012) 
6 PCR-GLOBWB GHM (Sutanudjaja et al., 2018) 
7 VIC GHM (Liang et al., 1994) 
8 WaterGAP2 GHM (Müller Schmied et al., 2021) 
9 WAYS GHM (Mao and Liu, 2019) 

10 WEB-DHM-SG GHM/LSM (Qi et al., 2022b) 
11 CLASSIC LSM (Melton et al., 2020) 
12 CLM 4.5 LSM (Oleson et al., 2013) 
13 CLM 5.0 LSM (Lawrence et al., 2019) 
14 ELM-ECA LSM (Zhu et al., 2019) 
15 JULES LSM (Best et al., 2011) 
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16 MATSIRO LSM (Takata et al., 2003) 
17 ORCHIDEE LSM (Guimberteau et al., 2014, 2017) 
18 SWBM LSM (Rene Orth and Seneviratne, 2015) 
19 SSiB4/TRIFFID LSM/DGVM (Huang et al., 2020) 
20 LPJmL DGVM (Sitch et al., 2003) 

 

Among these models, generally, GHMs focus on representing the land water balance, with particular emphasis on 

streamflow for model evaluation, while LSMs focus on the vertical exchange of energy and water between land and 

atmosphere, and DGVMs simulate global vegetation dynamics, where hydrological processes play an important role (Telteu 55 

et al., 2021). 

 

Within the ISIMIP ensemble (Table 1), various models exemplify different categories. For instance, GHMs like (Burek et al., 

2020) focus on water quantity assessment across sectors (Becher et al., 2024; Palazzo et al., 2024), H08 (Hanasaki et al., 

2018a) maps water abstractions and availability, PCR-GLOBWB (Sutanudjaja et al., 2018) simulates the terrestrial water 60 

cycle including human influences (Becher et al., 2024; Burek et al., 2020; Palazzo et al., 2024), The Variable Infiltration 

Capacity (VIC)  assesses human impacts on water resources (Liang et al., 1994), and WaterGAP (Müller Schmied et al., 

2021) simulates runoff, recharge, and streamflow considering various storages. LSMs such as CLM, CLASSIC, JULES, and 

MATSIRO (Best et al., 2011; Lawrence et al., 2019; Melton et al., 2020; Takata et al., 2003) simulate broader land surface 

processes including energy, water, carbon fluxes, and vegetation dynamics, often incorporating hydrological components. 65 

DGVMs like LPJmL (Sitch et al., 2003) simulate vegetation dynamics and surface water balance, including human 

influences like irrigation. Despite differing primary objectives, these models are often used collectively in ensemble studies 

to assess Climate Change (CC) impacts on various hydrological aspects like groundwater recharge (Reinecke et al., 2021), 

river flow (Gudmundsson et al., 2021) and soil moisture (Porkka et al., 2024), river ecological functioning (Thompson et al., 

2021), droughts (Kew et al., 2021; Pokhrel et al., 2021), and floods (Dottori et al., 2018; Tabari et al., 2021; Zhou et al., 70 

2023), both globally and regionally.The Community Water Model (CWATM), is a gridded rainfall-runoff and channel 

routing hydrological model developed for assessing water quantity on a global scale, considering water consumption across 

multiple sectors (Burek et al., 2020), and it has been applied to studies about energy, water security (Palazzo et al., 2024b) 

and water supply (Becher et al., 2024). The Distributed Biosphere Hydrological model (DBH) combines a hydrological 

scheme with a biosphere model, able to estimate surface runoff and river routing. It consider human influences such as 75 

irrigation (Tang et al., 2007), and it has been used to assess regional impacts of climate change on the water cycle (Tang et 

al., 2008).  

 

The H08 model simulates surface runoff, river routing, reservoir operation, crop growth and water abstractions. It was 

developed to map water abstractions from different sources of water and study global water availability  (Hanasaki et al., 80 

2018a), as well as estimating water scarcity indicators on a global scale (Hanasaki et al., 2018b). It has been used for 
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studying future impacts of CC on global irrigation water withdrawals (Haile et al., 2024), and for assessing future influence 

of regulation structures on flood risk (Boulange et al., 2021). The Max Planck Institute – Hydrology Model (MPI-HM) 

performs global simulations of surface water balance and river streamflow, with application in wetland dynamics (Stacke and 

Hagemann, 2012). HydroPy is a revised version of the model, fully written in Python (Stacke and Hagemann, 2021). 85 

 

PCRaster Global Water Balance (PCR-GLOBWB) simulates the terrestrial water cycle, considering multiple storages such as 

canopy, soil, snow, floodplains, lakes and rivers. It has been used to simulate human influences on the water cycle 

(Sutanudjaja et al., 2018) and for studies on global water resources (Hoch et al., 2023; Long et al., 2015) and flood risks 

(Hoch et al., 2023). The Variable Infiltration Capacity (VIC) is a gridded land surface hydrology model, originally part of the 90 

Geophysical Fluid Dynamics Laboratory (GFDL) global circulation model (Liang et al., 1994), able to perform river routing, 

and simulate lake and wetland water balance. It has been used to study human impacts on global water resources (Droppers 

et al., 2020; Hamman et al., 2018).  

 

The Water Global Assessment and Prognosis (WaterGAP) simulates surface runoff, groundwater recharge and river 95 

streamflow, considering storages such as snow, soil, aquifers, lakes, wetlands and rivers  and has been used for studies 

related to global water availability and use , and for estimating drought indices on a global scale  . The WAYS model is a 

distributed hydrological model, which was developed focusing on representing root zone water storage, and simulates soil 

water dynamics adequately representing field-scale heterogeneity of the soil (Mao and Liu, 2019). 

 100 

The Water and Energy Budget-based Distributed biosphere Hydrological Model with improved Snow physics for Global 

simulation (WEB-DHM-SG) is a combination of an LSM and a GHM, able to simulate the land surface energy, water 

balance and river routing. It has been used for regional studies assessing the changes in land surface properties and global 

warming on water resources(Qi et al., 2019b) and the contribution of snow to the water availability of several river basins(Qi 

et al., 2020, 2022b). 105 

 

Models such as the Community Land Model (CLM) 4.5 and CLM 5.0 were developed for the Community Earth System 

Model (CESM), and their simulations include biogeophysical, hydrological, biogeochemical and vegetation processes of the 

land. The Canadian Land Surface Scheme Including Biogeochemical Cycles (CLASSIC) is the result of a coupling of the 

Canadian Land Surface Scheme (CLASS) and the Canadian Terrestrial Ecosystem Model (CTEM), which simulates the 110 

energy and water cycles, as well as biogeochemical cycles (Melton et al., 2020). The land model of the Energy Exascale 

Earth System Model (E3SM) is the ELM-ECA land model, which was developed mainly to simulate biogeochemical 

interactions (Zhu et al., 2019). The Joint UK Land Environment Simulator (JULES) simulates energy, water, carbon fluxes 

and vegetation dynamics, it has several versions for which different process calculation schemes (e.g., river routing) have 

been used (Best et al., 2011; Clark et al., 2011). Models like the Minimal Advanced Treatments of Surface Interaction and 115 
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Runoff (MATSIRO), ORCHIDEE, SWBM, and the Simplified Simple Biosphere Model coupled with the Top-down 

Representation of Interactive Foliage and Flora Including Dynamics Mode (SSiB4/TRIFFID), similarly to the LSMs 

previously mentioned, are standalone land surface models that simulate the water cycle and biogeochemical cycles.  

The Lund-Potsdam-Jena managed Land (LPJmL) is a multisectoral DGVM which simulates the surface water balance, and 

includes human influences such as irrigation. It has been used to simulate the impacts of CC on water availability . 120 

 

Despite the  

Despite the differences in general purposes and focus for model development with between LSMs, GHMs and DGVMs, as 

part as the model ensemble for the global water sector from ISIMIP (Table 1), they have been used together for several 

studies.  On a global scale, model ensembles were used to study the future changes in groundwater recharge (Reinecke et al., 125 

2021). They were applied to assess the historical and future impacts of Climate Change (CC) on river flow trend and soil 

moisture(Gudmundsson et al., 2021; Porkka et al., 2024; Thompson et al., 2021). Moreover, others have studied historical 

and future changes in drought and flood risks, trends and impacts (Dottori et al., 2018; Kew et al., 2021; Pokhrel et al., 2021; 

Tabari et al., 2021; Zhou et al., 2023). On a regional scale, ensembles of models were used to study compound extreme 

climate events (Muheki et al., 2024), and project future indices regarding water scarcity in the context of CC and societal 130 

changes (Yin et al., 2020). 

 

The ability to simulate water resources and the impacts of CC and other human induced environmental changes is 

indispensable in planning for and management of water resources (Ramteke et al., 2020; Soltani et al., 2023; Zhuang et al., 

2018). This is true for both small scales and large scales (Chawanda et al., 2024; Fu et al., 2019).  By predicting how CC and 135 

other human drivers affect the water cycle, the models help in developing strategies to cope with droughts, floods and other 

water-related challenges (Brunner et al., 2021). Hydrological models also enable more effective management of water 

resources to optimize the use of water for agriculture (Li et al., 2020; Srivastava et al., 2020), industry, and human 

consumption, especially in regions where water is scarce (Hanasaki et al., 2018b). These models at a global level can also 

support global sustainable initiatives by ensuring that development projects align with long-term water availability (Amjath-140 

Babu et al., 2019). At the same time, they can also offer means for forecasting extreme events like floods and droughts in any 

region of the world, thereby enhancing preparedness and allowing timely warning for disaster response efforts. 

 

 

SWAT+ (Soil and Water Assessment Tool) is a completely revised version of the original SWAT model (Arnold et al., 2018; 145 

Bieger et al., 2017). It performs hydrological simulations at the Hydrologic Response Units (HRU) scale. HRUs represent 

unique combinations of land use, soil, and slope characteristics within each landscape unit or subbasin.  The SWAT+ model 
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can simulate a wide range of processes including surface runoff and infiltration, evapotranspiration and other water balance 

components (Pandi et al., 2023). SWAT+ also simulates Soil Erosion and Sediment Transport, Nutrient Cycle and Land Use 

and Management Practices (Arnold et al., 2018). SWAT has been applied all over the world in various environments 150 

including in Temperate (Qi et al., 2019), Tropical and Subtropical (Alemayehu et al., 2017; Ma et al., 2019), Arid and Semi-

Arid (Samimi et al., 2020), Mediterranean Climates, Cold and Mountainous Regions, Wetlands and even Coastal 

Environments (Peker and Sorman, 2021; Pulighe et al., 2021; Upadhyay et al., 2022). SWAT+ has also been applied at small 

scales (Qi et al., 2022a), regional scale (Chawanda et al., 2020a; Nkwasa et al., 2022b) and even continental scale 

(Abbaspour et al., 2015; Chawanda et al., 2024; Nkwasa et al., 2024). 155 

 

Despite such applications, there are no global applications at present because as with other global modelling efforts, large-

scale SWAT+ applications face several significant challenges. Data availability and quality remain a challenge (Crochemore 

et al., 2020). High-resolution, consistent, and up-to-date datasets for land use, soil properties, and climate variables are often 

lacking or incomplete (Chawanda et al., 2024; Döll et al., 2016), particularly in developing regions which can lead to 160 

increased uncertainty (Sood & Smakhtin, 2015) in model outputs (Sood & Smakhtin, 2015) and limit the model's 

applicability. Computational demands pose another challenge (Ma et al., 2023; Zhang et al., 2016). The computational 

requirements of setting up fine resolution SWAT+ model, running, calibrating and validating it, coupled with the storage 

resources required for the input and output data, necessitates significant computational resources. These two in addition to 

data processing methods used in global applications, can make it challenging to replicate and reuse any model set -ups 165 

available in a study area (Chawanda et al., 2020b). This issue may be compounded by frequent updates to model structure 

and parameters (Smith et al., 2020), which can lead to inconsistencies between studies conducted at different times. This 

calls for archiving and versioning systems in workflows for better reproducibility (Knoben et al., 2022). 

 

While challenges persist, a global SWAT+ model is in a unique position to provide comprehensive insights into large-scale 170 

processes across diverse ecosystems worldwide. To begin with, a global SWAT+ model offers a holistic approach in 

simulation of water quantity and quality, integrating detailed hydrological processes, nutrient cycling, and sediment transport 

(Abbaspour et al., 2015; Liu et al., 2017). The model also would enable high-resolution projections of climate change 

impacts on global water systems, critical for contributing to international assessments like Intergovernmental Panel on 

Climate Change (IPCC) reports. In addition, the global SWAT+ model directly supports multiple United Nations Sustainable 175 

Development Goals (SDGs), by providing data crucial for balancing development with environmental conservation through 

simulation of Land Use and Land Cover Change (LULCC) and nutrients in water bodies. Implementing a global SWAT+ 

model also creates a standardised dataset for cutting-edge international research in hydrology, thereby enhancing research 

and educational opportunities. The model has significant implications in designing and enhancing the effectiveness of long-
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term global water and land management practices by allowing detailed simulations of global agricultural practices, land use 180 

changes, and their water resource impacts. 

 

The primary aim of this study was to develop a High-resolution Global SWAT+ Model, addressing the growing need for 

comprehensive, large-scale hydrological simulations. To achieve this overarching goal, we first establish a robust framework 

for setting up a high-resolution global SWAT+ model based on the study by Chawanda et. al., (2020b), ensuring 185 

reproducibility and scalability of the model. This framework integrates global data processing methods and computational 

strategies that overcome the challenges inherent in global-scale modelling. Subsequently, we evaluate the model's 

performance against other established global models and observed data. This evaluation not only benchmarks the Global 

SWAT+ Model's capabilities, but also identifies areas for potential refinement, contributing to the advancement of global 

hydrological modelling techniques. 190 
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2. Methodology 

2.1 Global Datasets for SWAT+ 

While setting up the global SWAT+ model, global data sources were used as input and for model evaluation. 

2.1.1 Digital Elevation Model 195 

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) global DEM (Abrams, 2016) was 

preferred over the Shuttle Radar Topography Mission (SRTM) global DEM (Farr et al., 2007) primarily due to its more 

complete global spatial coverage (Fig. 1), which is essential for this study's domain. 

 

200 
 

Figure 111: Spatial coverage of ASTER Global DEM vs SRTM. SRTM data only cover over 80% of the Earth's land surface 

(60°N–56°S), while ASTER goes further North and South (Yue et al., 2017). 

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) global DEM (Abrams, 2016) was 

preferred over the Shuttle Radar Topography Mission (SRTM) global DEM (Farr et al., 2007) primarily due to its more 205 

complete global spatial coverage (Fig. 1), which is essential for this study's domain. While potential differences in DEM 

quality exist between the datasets, particularly in mountainous regions at finer native resolutions, these differences are 

considered less critical at the 2km resolution used for deriving topographic parameters in this global model setup.due to 

spatial coverage (Fig. 1). 

2.1.2 Land Use Map 210 

The land use data (Fig. 2) from European Space Agency (ESA) was downloaded from the ESA website (ESA. Land Cover 

CCI Product User Guide Version 2. Tech. Rep. (2017). Available at: maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-

Ph2-PUGv2_2.0.pdf) 

a) ASTER DEM b) SRTM DEM 
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Figure 222: Major Land Use Categories from European Space Agency (ESA) Land Use Map 215 

2.1.3 Soil Map 

The FAO soil data (Fischer et al., 2008) was used in this study. The FAO soil data, particularly from the Harmonized World 

Soil Database (HWSD), provides global coverage of soil properties (Fig. 3) at a 1 km² resolution. The data is derived from 

multiple sources and is widely used in global and regional environmental studies, though it may lack precision for local-scale 

analysis due to the generalised nature of its source material. 220 

 

 

Figure 333: Major soil types from FAO Soil Map 
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2.1.4 Climate Data 

Climate data was acquired from the GSWP3-EWEMBI reanalysis dataset (Lange and Büchner, 2020) through the Inter-225 

Sectoral Impact Model Intercomparison (ISIMIP) project. The dataset contains historical climate data including daily 

minimum and maximum air temperature (tasmin and tasmax, respectively), precipitation (pr), relative humidity (rhs), solar 

radiation (rlds), and near-surface wind speed (wind) at 0.5 decimal degrees. 

2.1.5 River Flow Data 

The monthly river flow for evaluation was acquired from The Global Runoff Data Centre (GRDC, 230 

https://portal.grdc.bafg.de/applications/public.htm). The gauging station location data was also used in the delineation to 

create outlets in the model setups.  

2.1.6 ET Data 

GleamGLEAM v4 dataset available at 0.1o resolution was used for evaluating ET (Miralles et al., 2025). The datasets require 

pre-processing to be used by the SWAT+ model. In our model set up, the preprocessing was done in the scripted workflow 235 

described in the next section.  

2.2 Scripted Workflow for Global SWAT+ Setup 

To facilitate the setup of a global SWAT+ model, we developed a python based scripted workflow based on SWAT+ AW 

(Chawanda et al., 2020b). This new workflow, named the Community SWAT (CoSWAT) modelling framework (Fig. 4), is a 

free and open-source solution designed for large-scale modelling using SWAT+. The framework simplifies the setup process 240 

for global SWAT+ models by automating data retrieval, pre-processing, and model configuration.  
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Figure 444: Schematic of the Community SWAT (CoSWAT) modelling framework. The flowchart illustrates the scripted work-

flow designed to automate the setup, execution, and evaluation of large-scale SWAT+ models. The entire process is controlled by a 

single configuration file, ensuring consistency and reproducibility.Schematic 245 

The framework simplifies the setup process for global SWAT+ models by automating data retrieval, pre-processing, and 

model configuration. The user is required to define regions of interest using box coordinates. Settings for model set up are 

saved in one file referred to as the ‘configuration file’.  Having model setup settings in one file ensures consistency across 

the global model. To ensure reproducibility and ease of use, the workflow includes stages for retrieving and preparing 

essential input datasets. These stages are automated and controlled by the configuration file settings: 250 

▪ Digital Elevation Model (DEM): The CoSWAT framework downloads ASTER DEM tiles, mosaics them into a 

continuous surface, and resamples and reprojects them as per the configuration file. 

▪ Land Use Data: The framework automatically retrieves land use maps from the European Space Agency (ESA) and 

processes them. The data is resampled, and reprojected. The lookup file is manually prepared once. This is done by 

matching ESA land use classification to equivalent land use types in the SWAT+ land use database.  255 

▪ Soil Data: Soil data from the FAO Harmonized World Soil Database (HWSD) is downloaded and transformed into the 

format required by SWAT+. The framework handles rasterization and reprojection to prepare the soil data into a format 

required by SWAT+. FAO soil lookup and soil properties database are readily available from the SWAT+ website and 

are used by the workflow. 

▪ Climate Data: Climate inputs are downloaded from the ISIMIP dataset servers. The workflow processes historical and 260 

scenario-based climate data, including variables such as precipitation, temperature, wind speed, solar radiation and 

relative humidity and formats them for use in SWAT+ simulations. The downloaded files are in NetCDF format and are 

read and written using the xarray python library. Users can customise climate scenarios using the configuration file. It is 

also possible to specify the spatial resolution of the points at which climate time series are created. 

 265 
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The flexibility of the CoSWAT Framework allows users to easily switch data sources, depending on the project's 

requirements or data availability which makes the framework a robust and adaptable tool for large-scale modelling. 

In addition to the model setup, the CoSWAT framework integrates evaluation and visualisation tools. A local web application 

was developed to serve as an interactive portal, allowing users to visualise model results and outputs in a user-friendly 

environment. This platform enhances the accessibility and interpretation of model results. The CoSWAT framework was 270 

optimised by iteratively implementing parallel processing wherever possible and feasible. This reduces the time required for 

data processing and model setup, making large-scale simulations feasible by leveraging High Performance Computing 

(HPC) environments which often allow highly parallelised workflows (Chawanda et al., 2020b). The efficiency gains from 

parallel processing significantly reduce computation time, though actual runtimes depend heavily on the specific HPC 

hardware (CPU cores, clock speed, Input/Output (I/O) speed) and parallel configurations used. For context, using the 64-275 

core, 3.00 GHz, 128 GB RAM Linux environment described below (Section 2.3), the CoSWAT framework setup phase 

(including data preprocessing, watershed delineation, HRU generation, and file writing – not including data download times) 

required approximately 12 minutes for a moderately sized region such as Save Basin in Africa, and about 1 hour 49 minutes 

for a large, complex region such as the Nile Basin. Executing a 10-year SWAT+ simulation for very large basins like the 

Amazon could take over 24 hours, with runtime strongly influenced by the requested output frequency (e.g., daily outputs 280 

requiring significantly more time due to I/O demands). 

2.3 Global SWAT+ Model Implementation and Evaluation 

The data resolution for DEM, land use and soil maps were set to 2km projected in ESRI:54003 (Miller World Cylindrical) 

projection. Climate data resolution was however set to 0.5 decimal degrees due to limitations on the number of files the 

operating system allowed (<= 10,000,000 files). The thresholds for stream and channel were set to 44 cells – an equivalent of 285 

177.7 km2. 

 

The model was setup in a 64-core HPC Environment running at 3.00 GHz, with 128 GB Memory running Linux. To take 

advantage of parallel processing and easy data handling, the global model was setup by combining regions defined based on 

major river basins (Fig. 5). However, Greenland was not included in this version.  290 
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Figure 555: Partitioning of the world land mass into regions based on main river basins. 

Using the CoSWAT framework, data was prepared, and a model set up for each of these regions using the configuration file 

options. Slope classes were not considered in creation of HRUs.  The Model Files were written with the following options 

 295 

Table 222: Model configuration options used when writing model files. 

Routing Method Muskingum 

PET Estimation Method Penman-Monteith 

Warm up Period 5 years 

Simulation Period 1977 - 1990 

The version of SWAT+ used to run the global SWAT+ model setup is 60.5.7. The global model was not calibrated as that was 

beyond the scope of this study. We used the Kling-Gupta Efficiency (KGE) metric (Gupta et al., 2009) to evaluate the flow 

time series at the monthly timestep. The plotting of results and metric calculation was implemented within the CoSWAT 

framework. 300 

The Kling-Gupta Efficiency (KGE) metric provides a more nuanced assessment of model performance than conventional 

measures like R² or Bias alone. It is formulated to simultaneously account for three key components: the linear correlation 

between simulated and observed time series (r), the variability ratio – α, which compares the standard deviation of simulated 

values against observations, and the bias ratio – β, which evaluates the mean offset between simulated and observed values 

(Gupta et al., 2009). KGE gives a balanced indication of how well the model reproduces both the overall magnitude and the 305 

temporal dynamics of observed flows. By considering these complementary aspects. 

In addition to reporting the KGE values, we also present the underlying distributions of r, α, and β across all gauging 

stations. This helps to reveal a global picture of how the model simulations compare against observed data. 
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We also evaluated the ET output against GLEAM v3 dataset using maps and sample point difference distribution. Sampled 

points were quasi-randomly selected in a way to reduce clustering (Fig. 6). 310 

 

Figure 666: Sampled points for measuring distribution of ET differences between GLEAM and SWAT+ output. 

We also evaluated the simulated mean annual ET against the GLEAM v4 dataset. This evaluation involved two approaches: 

(1) a comparison of the spatial patterns on global maps to assess the model's ability to capture large-scale ET variations, and 

(2) an analysis of the distribution of differences at specific locations. For the latter, ET differences (GLEAM - SWAT+) were 315 

calculated at numerous quasi-randomly selected sample points globally (Fig. 6) and their frequency distribution was plotted 

to assess overall model bias and the concentration of differences around zero. 

 

3. Results 

In total, there were 2.63 million HRUs. Figure 7Figure 7Figure 7 illustrates the level of discretisation that was achieved in 320 

creating HRUs. 
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Figure 777: Illustration of density of HRUs in the Save Region of the African Continent 

When loaded into the Django visualisation app (Fig. 8), the Web User Interface (UI) showed all gauging stations where the 

user can pan around and click on any station to see details including performance metrics.  325 

 

Figure 888: Django Web User Interface for visualising and managing the CoSWAT Global Model 

(https://github.com/celray/coswat) 

The web UI also allows users to see which datasets were used, download extract outputs from the model and acts as a 

calibration portal. Thus, users can extract a region to calibrate and update input files for better model performance. 330 
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Evapotranspiration (mm) 

Figure 9: A comparison of the GLEAM v4 and SWAT+ ET maps. Highlighted regions show artefacts in the SWAT+ Output due 

to lack of representation of large water bodies and snow issues in high mountains. 

3.1 Evapotranspiration 

When compared with Gleam ETA comparison of ET for the effective simulation period (1982 – 1990), shows that the spatial 

pattern between SWAT+ ET and GLEAM ET is comparable overall (Fig. 9). 

 

 335 

 GLEAM ET SWAT+ ET 

 

 

 

 340 

 

 

 

 

 345 

  

 

However, SWAT+ ET appears to have artefacts on the ET in East Africa (especially in the Ethiopian Highlands) and Central 

Asia. It also fails to capture the pattern in South America along the Andes mountains. Figure 10Figure 10Figure 10 also 

shows how sampled points compare in differences with 78.54% within the range -100mm to 100mm ET difference. 350 
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Figure 101010: Distribution of differences between GLEAM v4 and SWAT+ simulated mean annual evapotranspiration (ET). The 

histogram shows the frequency of ET differences, calculated as (GLEAM - SWAT+), at sample points (shown in Figure 6) for the 

1982-1990 period.Distribution of map difference ET values (GLEAM – Model ET) 

3.2 River Discharge 355 

The model achieved some positive KGE values (23.02%), but a majority of the values were negative as demonstrated by Fig. 

11. 

 

Figure 111111: Kling-Gupta Efficiency (KGE) for simulated monthly river discharge (m3/s) at global gauging stations. The map 

evaluates the performance of the uncalibrated global SWAT+ model for the 1982-1990 period against GRDC observations. River 360 
Flow Performance (KGE) 

While a small percentage of KGE values were above 0, 85.31% of the stations showed a positive correlation (r) in flow 

values with variability ratio (α) and mean ratio (β) median values falling close to 1 (Fig. 12).  
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Figure 121212: Distribution of river discharge performance metrics across all evaluated gauging stations. The boxenplots show the 365 
statistical distribution of the Kling-Gupta Efficiency (KGE) and its three components: the linear correlation coefficient (r), the 

variability ratio (alpha, α), and the bias ratio (beta, β).Boxen Plots showing the distribution of kge, r, alpha (α) and (β) 

4. Discussion and Future Work 

The development of the global SWAT+ model using the CoSWAT framework highlights several significant advancements in 

large-scale hydrological modelling using SWAT+. The scripted workflow approach offers key advantages. By automating 370 

data retrieval, preprocessing, and model configuration within a single framework, the CoSWAT workflow ensures that the 

model setup can be consistently replicated. This is crucial for verifying results and facilitating collaborative research efforts. 

The availability of the workflow as an open-source tool further enhances transparency and community engagement. The 

CoSWAT framework also efficiently leverages multicore processing capabilities of high-performance computing (HPC) 

environments which reduces computational time, making it practical to perform high-resolution global simulations that were 375 

previously computationally prohibitive (Chawanda et al., 2020b). Users can easily adjust the model setup by modifying the 

configuration file, allowing for easy updates to input data sources, spatial resolution, or simulation parameters. This 

flexibility is essential for adapting the model to different research questions or incorporating new datasets as they become 

available. 

With the built in Django App for visualization, the CoSWAT framework plays an important role in visualising results. Users 380 

can zoom in to given sections of the model setup to extract and improve model setup separately. 

The first version of the CoSWAT global model showed promising results despite not being calibrated. The global SWAT+ 

model demonstrated reasonable performance in simulating ET when compared with the GLEAM v4 dataset. The spatial 
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patterns were generally consistent, with approximately 78.54% of sampled points showing differences within ±100 mm. 

However, discrepancies were noted in regions such as East Africa, Central Asia, and along the Andes mountains in South 385 

America. A closer look showed excessive snow accumulation in the mountains which can be improved with calibration of 

SWAT+ snow parameters. 

 

 Evaluating differences between modeled and remote-sensing-based ET products involves uncertainties from both 

sourcesThese artefacts may be due to input data quality. Limitations in the resolution or accuracy of input datasets, 390 

particularly climate data, can affect ET simulation. Reanalysis datasets may not capture local climate variability effectively, 

especially in regions with complex topography or sparse observational data (Moalafhi et al., 2017). The absence of lake 

representation in the SWAT+ Model setup also contributed to some of the discrepancies. For instance, the East African rift 

valley lake area wasand big reservoirs in south Africa were  all simulated with regular HRUs while implementing lakes and 

reservoirs would ensure that the land ET and lake water surface ET are not mixed up to improve spatial Pattern (Fig 9). 395 

Concurrently, inherent uncertainties within the GLEAM v4 product itself, potentially related to its algorithms for partitioning 

ET components such as transpiration vs. soil evaporation, as discussed in studies like Chen et al. (2022), can also influence 

the comparison results. Thus, there is a need to acknowledge these combined uncertainties when interpreting the evaluation 

of the ET spatial patterns. 

The current effective simulation period (1982 - 1990) was chosen to maximize usable GRDC time series. However, there is 400 

very limited eddy covariance (EC) data for further evaluation of model performance in simulating ET. Since calibration and 

validation were beyond the scope of this study, future studies should make simulations aligned to any available EC data and 

explore its use for calibration and validation. 

 

The model's performance in simulating river discharge was less satisfactory, with only 23.02% of gauging stations showing 405 

positive Kling-Gupta Efficiency (KGE) values for the simulation period (1977 – 1990 with 5 year warm up). Several factors 

contributed to this outcome. Without calibration, the model relies on default parameters, which may not reflect the 

hydrological characteristics of diverse global regions. Calibration would help better represent hydrological processes by 

adjusting model parameters to match observed streamflow and improve performance (Molina-Navarro et al., 2017). 

However, at such a scale, calibration would not be easily feasible due to computational and data storage requirements. 410 

Chawanda et al 2020 detail how Hydrological Mass Balance Calibration (HMBC) applied at large scale improves water 

balance representation while also improving model performance in several gauging stations in at a feasible computational 

cost. This is demonstrated by their application of HMBC on the SWAT+ Model for Africa (Chawanda 2024). Global 

modelling exercises like CoSWAT global model can also incorporate such calibration routines to improve the model 

performance. 415 
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The non-inclusion of reservoirs and water management practices also negatively affected the performance of the model. The 

model did not implement reservoirs or account for human interventions such as irrigation, which significantly impact river 

flow regimes. Large-scale hydrological models struggle with representing human activities accurately due to their 

complexity and data requirements (Wada et al., 2017). Including reservoirs and management practices is an important part 420 

for realistic flow simulations, as demonstrated by Chawanda et al. (2020a), who showed that incorporating these elements 

improves river flow and ET simulations. 

 

Poor performance was also noted in higher latitudes which may be attributed to excessive simulation of snow, leading to 

overestimated flows. This suggests a need to refine the model's snow routines or adjust parameters related to cold climate 425 

processes. While snow related performance issues are specific to high latitude areas, the use of reanalysis climate data at a 

0.5-degree likely caused reduced model performance throughout the model setup. The 0.5-degree resolution may not capture 

local-scale climate variations, particularly in regions with significant topographic variability (Kay et al., 2015). Downscaling 

techniques or higher-resolution datasets could enhance model performance (Wang et al., 2020; Zhu et al., 2023). One major 

limitation faced during the simulation of the global model, the current SWAT+ climate input system requires individual files 430 

for each variable at each weather station, resulting in a massive number of files for global models. In our Model Setup, we 

required about 230,000 climate files at 0.5 decimal degree resolution. This approach strains computational resources, slows 

disk access, and increases memory usage, especially for long-term simulations or multiple scenarios and limits applicability 

of downscaling efforts. There is a need to modify the input system to handle large datasets more efficiently by adopting and 

integrating more efficient file formats like NetCDF which would only need one file for all timesteps and climate variables. 435 

 

 

 

Future model versions should include reservoirs, irrigation, and other water management practices to capture both natural 

and anthropogenic activities. This requires collection of global datasets on water infrastructure and usage, which can be 440 

challenging but is essential for better process representation (Nkwasa et al., 2022a). In addition, HMBC should be employed 

to further improve process representation and hence model performance. Snow process and parameters also need to be 

revised to prevent snow build up in higher latitudes. 

Finally, while placing model performance in the context of established global models like those within the ISIMIP ensemble 

is valuable, a direct quantitative comparison of river discharge statistics (e.g., KGE) was considered beyond the scope of th is 445 

initial study and potentially misleading due to fundamental differences in model resolution. Comparing our high-resolution 

outputs, which capture finer-scale heterogeneity, against typical ISIMIP model outputs (0.5-degree) at specific gauge 

locations requires careful consideration of scale mismatches. Future work could explore methodologies for robust inter-
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comparison that account for these scale differences, potentially leveraging the aggregation capabilities of the CoSWAT 

framework. 450 

5. Conclusions 

The development of a high-resolution global SWAT+ model using the CoSWAT framework marks a significant step forward 

in global hydrological modelling. The framework's reproducibility, scalability, and flexibility address many challenges 

associated with large-scale simulations. While the model performed well in simulating evapotranspiration, discrepancies in 

certain regions highlight the need for further refinement of input data and model parameters. 455 

The poor performance in river discharge simulations highlights the importance of model calibration and the inclusion of 

human activities such as reservoir operations and water management practices. Future work should focus on enhancing the 

representation of critical hydrological processes, integrating human interventions, and improving input data quality and 

resolution. Adopting more efficient data handling strategies within the SWAT+ framework will also facilitate larger and more 

complex simulations. By addressing these challenges, the global SWAT+ model can become a powerful tool for 460 

understanding global water resources and easily map hotspots for water scarcity, assessing climate changeCC and land use 

impacts, and supporting sustainable water management practices worldwide. 

Code and data availability 

Simulations have a large size and cannot easily be hosted online. However, they are available upon request.  The tools used in 

this study are available from github (https://github.com/celray/CoSWAT-Framework and https://github.com/celray/coswat, 465 

last access: 28 December 2024) and through Zenodo at https://zenodo.org/doi/10.5281/zenodo.14577842 (Chawanda, 2024). 

All input data is from open sources as discussed in the manuscript. 
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