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Abstract. Model simulations are widely used to understand, predict, and respond to environmental changes, but uncertainty 

in these models can hinder decision-making. The simulation of hydrological changes after a forest fire is a typical example 

where process-based models with uncertain parameters may inform consequential predictions of water availability. Different 

parameter sets and meteorological forcing assumptions can yield similarly realistic simulations during model calibration but 15 

generate divergent predictions of change, a problem known as “equifinality.” Despite longstanding recognition of the 

problems posed by equifinality, the implications for environmental disturbance simulations remain largely unconstrained. 

Here, we demonstrate how equifinality in water balance partitioning causes compounding uncertainty in hydrological 

changes attributable to a recent 1,540 km2 megafire in the Sierra Nevada mountains (California, USA). Different model 

calibrations generate uncertain predictions of the four-year post-fire streamflow change that vary up to six-fold. However, 20 

controlling for nonstationary model error (e.g., a shift in the model bias after disturbance) can significantly (p < 0.01) reduce 

both equifinality and predictive uncertainty. Using a statistical metamodel to correct for bias shift after disturbance, we 

estimate a streamflow increase of 11% ±1% in the first four years after the fire, with an 18% ±4% increase during drought. 

Our metamodel framework for correcting nonstationarity reduces uncertainty in the post-fire streamflow change by 80% or 

82% compared to the uncertainty of pure statistical or pure process-based model ensembles, respectively. As environmental 25 

disturbances continue to transform global landscapes, controlling for nonstationary biases can improve process-based models 

that are used to predict and respond to unprecedented hydrological changes. 
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1 Introduction 

Calibration – systematic adjustment of model parameters to improve simulation accuracy. 30 

Disturbance – an event that changes an environmental system from one state to another. 

Equifinality – the production of similar results for different reasons. 

Stationarity – the invariance of a statistical property across different time periods. 

 

Environmental disturbances (e.g., forest fires, other vegetation mortality events, floods, anthropogenic land cover 35 

conversion, etc.) can alter the structure and function of ecohydrological systems (Zehe and Sivapalan 2009, Ebel and Mirus 

2014, Buma 2015, Johnstone et al. 2016). Climate change and environmental disturbances introduce nonstationarity into the 

hydrological cycle, which is disrupting longstanding statistical approaches to water resource and risk management (Milly et 

al. 2008, 2015, Hirsch 2011, Salas et al. 2012, Yang et al. 2021). 

 40 

Pure statistical methods (e.g., regression models lacking an explicit physical foundation) can sometimes detect streamflow 

changes attributable to environmental disturbance by comparing measurements to a stationary model, which represents a no-

disturbance counterfactual. In this context, a “counterfactual” refers to a hypothetical scenario in which a particular 

disturbance did not happen, so comparing the actual post-disturbance behavior to the modeled counterfactual enables 

attribution of disturbance effects. Statistical change attribution is generally applied across many years and numerous sites 45 

(e.g., Goeking and Tarboton 2022a, Hampton and Basu 2022, Williams et al. 2022) or in careful paired watershed studies to 

overcome climate/weather variability (e.g., Bart 2016, Manning et al. 2022, Johnson and Alila 2023, Kang and Sharma 

2024). However, in a single watershed with a short post-disturbance record, pure data-driven statistical approaches are 

inherently limited. Crucially, many water management decisions (e.g., reservoir release schedules) are made on a per-

watershed and per-year basis, so large-scale retrospective statistical assessments of disturbance effects may not provide 50 

actionable insights in any particular watershed. 

 

Spatially distributed process-based hydrological models, and related land surface or Earth system models, are a widely 

accepted tool that can overcome some limitations of statistical disturbance attribution (Fatichi et al. 2016, Pongratz et al. 

2018, Fisher and Koven 2020). Because interannual climate variability often obscures hydrological changes caused by 55 

disturbance, counterfactual model experiments using an undisturbed control are a cornerstone of ecohydrological disturbance 

attribution studies (e.g., Moreno et al. 2016, Saksa et al. 2017, Boisramé et al. 2019, Meili et al. 2024). Moreover, key 

process representations (e.g., flow routing and the snowpack energy balance) are expected to generalize beyond observed 

conditions, providing a basis for the prediction of hydrological responses to out-of-sample events including extreme storms 

(e.g., Huang and Swain 2022), decadal-scale climate change (e.g., Tague et al. 2009), and unprecedented “megafires” (e.g., 60 

Abolafia-Rosenzweig et al. 2024). In this context, a megafire is any wildfire in excess of 400 km2 (Ayars et al. 2023). 
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We lack landscape-scale observations of meteorology and many other important environmental properties, so it is typically 

challenging or impossible to setup a single “best” model without a degree of trial-and-error. Therefore, model parameters are 

often estimated through calibration. Equifinality arises during calibration when different parameter sets yield similar 65 

realizations of observable phenomena (Beven 1993, 2006, Ebel and Loague 2006). Recognizing that equifinality may 

preclude the possibility of picking a single “best” parameter set, some modelers advocate for using a “behavioral” ensemble 

based on subjective goodness-of-fit criteria in a generalized likelihood uncertainty estimation (GLUE) framework (Spear and 

Hornberger 1980, Beven and Binley 1992, Her and Chaubey 2015, Vrugt and Beven 2018). 

 70 

Equifinality implies process uncertainty (Grayson et al. 1992, Khatami et al. 2019). For example, total evapotranspiration 

(ET) is the sum of overstory and understory transpiration, interception loss, soil evaporation, snow sublimation, and other 

vapor fluxes; equifinal parameter sets may produce the same total ET with different partitioning between constituent fluxes 

(Franks et al. 1997, Birkel et al. 2024). Because each vapor flux component can respond differently to disturbance (Goeking 

and Tarboton 2020), we hypothesize that equifinal parameter sets may produce divergent predictions when the model is 75 

perturbed beyond the calibration space. 

 

We illustrate the hypothesized interaction of equifinality, disturbance, and bias (non)stationarity using a conceptual water 

balance model (Fig. 1). Example models of the pre-disturbance water balance each achieve the same mean pre-disturbance 

streamflow (Q), which is forced to approximately match Q observations through model calibration. Due to equifinality, there 80 

is residual uncertainty in the bias-corrected total precipitation (P) and the partitioning of ET between transpiration and 

interception from tree canopies (ETTree) and other vapor fluxes (ETOther, e.g., understory ET and soil evaporation). When a 

disturbance such as a fire reduces ETTree, the streamflow response is sensitive to the initial ETTree magnitude (and hence the 

potential ET reduction) as well as the degree to which ETOther responds to increased soil water availability. The three 

examples show cases where ETOther does not respond to the disturbance (Model 1), increased ETOther fully compensates for 85 

reduced ETTree (Model 2), or increased ETOther only partly compensates for reduced ETTree (Model 3). Intuitively, these 

hypothetical model responses are connected to the pre-disturbance balance of ETTree and ETOther, which primes some models 

to predict a larger or smaller compensation effect. Over- or under-estimation of the resultant streamflow change (ΔQ) 

manifests as a positive or negative “bias shift” after disturbance. The bias shift metric, as defined here, is a special discrete 

case of the more general concept of nonstationarity. In a system with changes that occur over longer time periods (in contrast 90 

to the discrete disturbance shown in Fig. 1), a different stationarity metric would be necessary to account for incremental 

changes. In the present study, zero bias shift after disturbance implies stationary error overall. 
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Figure 1: Conceptual model illustrating how equifinality in the modeled water balance may lead to uncertainty in the streamflow 

response to disturbance, and how we expect this to manifest in a measurable “bias shift” after a discrete disturbance. Numbers are 95 
indicative and not intended to represent actual disturbance magnitudes. In the “initial water balance” panel, we assume that all 

three models closely match pre-disturbance streamflow, with uncertain precipitation and evapotranspiration  

(ET) components counterbalanced to produce QObserved = QModeled = 1 (normalized annual units). After a disturbance (e.g., a 

wildfire) reduces ETTree, the different models predict various degrees of streamflow change, which is mediated by the potential for 

compensating increases in ETOther (e.g., soil evaporation and understory ET). In the “disturbance response” panel, the arrows 100 
illustrate the direction and magnitude of the water balance changes predicted by each model. In the “streamflow bias” panel, the 

resulting model predictions are compared to measured streamflow, showing how some models could exhibit a bias after 

disturbance due to uncertain estimation of water balance changes. In this hypothetical example, we assume that QObserved increases 

by 1 unit after disturbance, matching the prediction of Model 3. 

 105 

We build on this conceptual example of the interaction between equifinality, disturbance, and nonstationarity (Fig. 1) to 

consider how the bias shift metric can help select parameter sets with enhanced physical fidelity and greater predictive 

confidence. The initial water balance of Model 1 is dominated by ETTree, leading to a large streamflow gain and a positive 

bias shift (tendency toward over-prediction of post-disturbance streamflow). Conversely, Model 2 has a large ETOther 

component, which compensates for the comparatively small reduction in ETTree, leading to a negligible streamflow gain and 110 

a negative bias shift (tendency toward under-prediction of post-disturbance streamflow). Finally, Model 3 has more 

precipitation than the other models and a more balanced combination of ETTree and ETOther, leading to a medium streamflow 

gain and stationary bias. In this case, Model 3 should be preferred due to its negligible bias shift, which would help achieve a 

better prediction of ΔET and ΔQ and also help constrain uncertainty in the underlying parameterization. 

 115 
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As illustrated in Fig. 1, meteorological uncertainty (e.g., a precipitation bias) can interact with uncertain model 

parameterizations, contributing to uncertainty in the streamflow response to disturbance (Elsner et al. 2014). Basin-scale 

meteorology data are highly uncertain in mountain regions (e.g., Lundquist et al. 2015, Henn et al. 2018, Schreiner-McGraw 

and Ajami 2022), and whatever assumptions are made about the meteorology can cause compensating inaccuracies with 

other calibrated parameters (Elsner et al. 2014). For example, overestimating basin-scale precipitation may cause the model 120 

to simulate a larger ETTree component and a corresponding large change in post-fire water balance partitioning (Model 3 in 

Fig. 1), whereas underestimating basin-scale precipitation could limit the predicted post-fire streamflow change since the 

pre-fire P-Q residual is smaller (Models 1-2 in Fig. 1). From a Bayesian perspective, we can view the data and model as a 

combined inferential system, which enables us to constrain uncertainty in the interactions between uncertain meteorology 

and uncertain hydrology by generating suitable ensemble samples (Kavetski et al. 2003). Thus, uncertainty in the 125 

meteorological forcing data will contribute to uncertainty in our estimate of post-fire streamflow changes. 

 

Equifinality has been neglected in many process-based simulations of environmental disturbance. In contemporary studies, 

single parameter sets are sometimes used with or without site-specific calibration (e.g., Furniss et al. 2023, Abolafia-

Rosenzweig et al. 2024). When parameter ensembles are used, uncertainty propagation is commonly limited to subsurface 130 

parameters and meteorological biases (e.g., Shields and Tague 2012, Saksa et al. 2017, Boisramé et al. 2019). We expect that 

latent uncertainty in vegetation parameters may contribute an unconstrained source of uncertainty in studies of 

ecohydrological disturbance that do not account for vegetation parameter equifinality. Conversely, model equifinality can be 

reduced by leveraging additional types of information beyond traditional streamflow calibration metrics (Kelleher et al. 

2017). One unexplored approach to equifinality reduction is evaluating the stationarity of model biases after environmental 135 

disturbance (e.g., bias shift in Figure 1), which we consider here. 

 

In this study, we leverage a large wildfire as a “natural experiment” to test the hypothesis that quantifying stationarity across 

pre- and post-disturbance periods can reduce equifinality and improve the predictive confidence of a process-based 

hydrological model. Specifically, we apply the Distributed Hydrology Soil Vegetation Model (DHSVM, Wigmosta et al. 140 

1994) to simulate streamflow changes attributable to the Creek Fire in the Sierra Nevada mountains (California, USA), 

which burned 56% of the forested area in our 4,244 km2 study watershed (Stephens et al. 2022, Ayars et al. 2023). We 

expect that this drastic landscape-scale environmental disturbance should have a clear impact on regional-scale water fluxes, 

providing a natural experiment to test whether ecohydrological model process representations are robust to environmental 

disturbance. We leverage a multi-objective calibration of vegetation, snow, subsurface, and meteorological bias-correction 145 

parameters to address two research questions: 

(1) How does calibration equifinality impact process-based simulations of the hydrological response to a megafire? 

(2) Can we reduce equifinality and uncertainty by testing the model’s representation of hydrological change? 
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2 Methods 150 

2.1 Study Area and Data 

Our study watershed encompasses the Upper San Joaquin River Basin above the outlet of Millerton Lake, a total of 4,244 

km2 with an elevation range of 100 to 4,200 m (Fig. 2A). The 2020 Creek Fire burnt 1,540 km2 of mixed conifer and scrub 

forest, including 1,481 km2 within the study watershed (56% of the forested watershed area). Landsat-based data from 

Monitoring Trends in Burn Severity (MTBS, Fig. 2B) indicate that 16% of the Creek Fire exhibited high burn severity and 155 

30% exhibited moderate severity (Eidenshink et al. 2007, MTBS Project 2022). However, using a longer time period for pre- 

and post-fire imagery, Stephens et al. (2022) estimate 41% high severity and 35% moderate severity, illustrating the 

proliferation of uncertainty in disturbance assessments. 

 

 160 

Figure 2: Maps of the study watershed: (A) elevation and watershed location in the U.S. State of California, (B) 2020 Creek Fire 

burn severity, (C) pre-fire and (D) post-fire forest canopy cover. Tick marks indicate 10 km intervals. 
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We represent fire disturbance in DHSVM by adjusting maps of vegetation properties. Canopy cover maps are projected to 

our selected DHSVM resolution of 90 m using nearest-neighbor resampling to preserve the categorical attribute of tree 165 

presence/absence. The Landsat-based RCMAP data provide yearly fractional cover estimates for trees and shrub/herbaceous 

vegetation at 30 m resolution (Rigge et al. 2021a,b). We use the 2011-era RCMAP data as a pre-fire baseline and the 2021-

era RCMAP data to capture the effects of the 2020 Creek Fire (Fig. 2C-D). We also update the vegetation maps in 2013, 

2014, and 2018 to reflect smaller fires in those years. The DHSVM vegetation maps are updated on October 1st in the year of 

a fire, i.e., about one month after the September 2020 Creek Fire ignition. The October 1st date is used for annual model 170 

updates because this date represents the start of a new water year, and Sierra Nevada watersheds are typically near their 

driest condition around this time of year, which limits the impact of model changes on simulated hydrological fluxes. 

Vegetation is classified based on the species (when available) or functional type (e.g., mixed conifer forest) using Landfire 

data (2022), and abiotic land surface classes are derived from NLCD (Dewitz and U.S. Geological Survey 2019). Landfire 

and RCMAP provide tree and shrub height data, respectively. Tree leaf area index (LAI) is estimated empirically from 175 

fractional cover following Pomeroy et al. (2002), which is reproduced as Eq. (1) of Goeking and Tarboton (2022b). Satellite-

based optical LAI estimates are highly uncertain in mountain environments due to saturation at the high LAI values often 

present in mature conifer forests and the inability to resolve 3-dimensional canopy structure that controls LAI (Zolkos et al. 

2013, Winsemius et al. 2024). Thus, we use the fractional cover relationship to constrain the spatial patterning of LAI, but 

the uncertain LAI magnitude is estimated heuristically through calibration. Vegetation transpiration is calculated by 180 

DHSVM based on the vegetation type and local weather, soil moisture, and light in each grid cell (Wigmosta et al. 1994). 

Baseline values of minimum stomatal resistance are estimated from species-level field studies as detailed in the Supporting 

Information of Boardman et al. (2025) and refined by calibration relative to baseline (Sect. 2.2). 

 

Spatial maps and parameter values for DHSVM are collated from a wide range of literature and field studies, as detailed in 185 

Boardman et al. (2025). We briefly summarize key setup procedures here. Subsurface properties are estimated by 

disaggregating regional soil survey databases (Gupta et al. 2022, Soil Survey Staff 2022) using Random Forest models 

trained on topographic metrics (Breiman et al. 2002). In the updated version of DHSVM used here, streamflow in channels is 

bidirectionally coupled to the groundwater level in each grid cell, and the maximum network extent is derived from the 

National Hydrography Dataset (U.S. Geological Survey 2019) with channel geometry from regional regressions (Bieger et 190 

al. 2015). Meteorological data from gridMET (Abatzoglou 2013) are disaggregated to a 3-hour timestep using MetSim 

(Bennett et al. 2020). Modeled snowfall is distributed in proportion to the pixel-wise maximum observed snow water 

equivalent (SWE) pattern derived from Airborne Snow Observatory (ASO) data in the study watershed (Painter et al. 2016), 

which implicitly accounts for snow transport (Vögeli et al. 2016). Regional snow/rain partitioning parameters are adopted 

from Sun et al. (2019). 195 
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2.2 Model Calibration 

We calibrate 14 sensitive and uncertain parameters in DHSVM that control aspects of the meteorology, vegetation, 

subsurface, and snowpack dynamics (Table 1, Supplemental Figure S4). While most of these parameters are widely 

recognized as suitable for calibration (Cuo et al. 2011, Du et al. 2014), precipitation and temperature biases are less 200 

frequently included in the calibration of distributed process-based models despite considerable uncertainty in gridded 

meteorological data. Among gridded meteorological datasets, there is a mean relative difference of 21% for annual 

precipitation in our study watershed (Henn et al. 2018), and misestimation of large storms can lead to yearly biases of about 

20% across the Sierra Nevada (Lundquist et al. 2015). Similarly, gridded meteorological datasets have mean air temperature 

differences as large as ±8 °C in the Sierra Nevada, and basin-average uncertainty is lower but still on the order of several °C 205 

(Schreiner-McGraw and Ajami 2022). Compensation between unknown errors in the meteorological data, model structure, 

and parameter calibration can potentially contribute to spurious goodness-of-fit metrics with hidden physical deficiencies. 

This is especially the case in environmental disturbance studies, as we expect that interactions between meteorological 

uncertainty and parameter equifinality may contribute to the overall uncertainty of disturbance simulations (Fig. 1). 

Critically, this uncertainty would remain hidden if meteorological biases were assumed to be negligible. Because perfectly 210 

resolving the weather data with infinite precision is not feasible across a large, rugged mountain region, the robust approach 

is to propagate meteorological  uncertainty into our final results (the post-fire hydrological change in this case), so that our 

conclusions include the quantified uncertainty caused by the model-data-calibration interaction. We view the combined 

meteorological data and hydrological model as a single inferential system, thereby acknowledging that the meteorological 

data themselves are based on various uncertain observations and empirical model assumptions (Abatzoglou 2013). In a 215 

Bayesian context, the goal of our calibration can be understood as sampling the probability of the calibration data 

(streamflow and snowpack observations) given a particular combination of model parameters and meteorological 

assumptions: P(streamflow + snowpack observations | model + meteorology). Because we lack a closed-form likelihood 

function for spatially distributed hydrological models like DHSVM, we estimate the unknown parameters of this whole 

weather-model system using an informal approximation based on traditional hydrological model calibration objective 220 

functions (Beven and Binley 1992). 
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Category Parameter Range Primary Process Controls 

Meteorology 

Precipitation Bias ±25% 
Net water balance input, interannual variability in 

water balance, snowpack accumulation 

Temperature Bias ±4 °C 
Snow/rain partitioning, snowpack accumulation and 

melt, potential evapotranspiration (PET) 

Temperature Lapse 

Rate Bias 
-8 to -2 °C/km Spatial distribution of snowpack and PET 

Vegetation 

Tree Fractional 

Cover 

50% to 200% of 

baseline, each cell ≤ 

100% cover 

Canopy interception and transpiration, understory and 

snowpack shading 

Tree Leaf Area 

Index (LAI) 

50% to 200% of 

baseline 
Canopy interception capacity, overstory transpiration 

Minimum Stomatal 

Resistance 

50% to 200% of 

baseline 
Overstory and understory transpiration 

Subsurface 

Soil Depth 1 to 10 m 
Lateral transmissivity, root zone groundwater access, 

storage capacity 

Hydraulic 

Conductivity 
10-5 to 10-2 m/s 

Lateral transmissivity, vertical recharge rate (by 

anisotropy ratio), surface/subsurface flow partitioning 

Exponential 

Decrease in 

Conductivity 

10-3 to 100 [unitless] 
Lateral transmissivity, vertical conductivity profile, 

baseflow recession, water table depth 

Porosity 0.3 to 0.6 [fractional] 
Dynamic storage range, water table response to 

infiltration 

Field Capacity 0.1 to 0.4 [fractional] 
Dynamic storage range, soil water retention, plant 

available water 

Snow 

Albedo Decay Rate 

(Accumulation) 
0.7 to 0.99 [unitless] Snowpack energy balance, maximum accumulation 

Albedo Decay Rate 

(Melt Season) 

-0.3 to 0.0 relative to 

accumulation 

Snowpack energy balance, snowmelt rate, snow cover 

duration 

Albedo Reset 

Snowfall Scale 
10-4 to 100 m SWE 

Relative albedo increase associated with new snowfall 

of varying depth 
Table 1: Prior ranges and process controls of DHSVM parameters calibrated in this study. All vegetation and subsurface 

parameters listed here are defined by spatially variable maps, and calibration ranges determine the area-average value around 

which the pattern is rescaled. 225 

 

Multiple parameters combine to control simulated processes. For example, area-average LAI (related to total interception 

loss) is the product of tree-scale LAI with grid-scale fractional cover. Tree transpiration is determined by fractional cover, 

LAI, stomatal resistance, available soil water (related to subsurface parameters), and other factors. Lateral transmissivity in 

the saturated subsurface is controlled by three parameters: soil depth, surface hydraulic conductivity, and the exponential 230 

decrease in conductivity with depth. Cross-compensation among interrelated parameters thus contributes to equifinality. 

Within our 14-dimensional calibration space, 23 parameter pairs have correlations that are significant at p < 0.05 

(Supplemental Fig. S1). Furthermore, perturbing one aspect of the model can lead to cascading effects due to the coupling of 

ecohydrological processes and spatial water connectivity in the model. For example, lateral hydraulic conductivity is coupled 

to vertical conductivity by anisotropy ratios dependent on the soil textural classification (Fan and Miguez-Macho 2011), so 235 
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calibrating lateral conductivity also influences groundwater recharge rates from losing stream reaches, which in turn can 

affect soil evaporation and transpiration from riparian trees. Spatial heterogeneity in modeled soil and vegetation properties 

(Sect. 2.1) further complicates all of these interactions, e.g., different parts of the landscape are relatively more sensitive to 

calibration of different parameters depending on the baseline map patterns. 

 240 

Given the complexity of expected interactions, we define seven objective functions to constrain parameters based on 

different hydrological signatures (Table 2). Streamflow is estimated at the outlet of Millerton Lake (Fig. 2) by reconstructing 

observations to remove the effects of artificial flow regulation (California DWR 2024). Millerton Lake unimpaired outflows 

are estimated assuming sub-daily surface routing times by summing the daily change in storage, canal and dam releases, 

surface evaporation, and storage changes at eight smaller upstream reservoirs (Huang and Kadir 2016). Note that the 245 

reconstructed streamflow timeseries used in this study (called “full natural flow” by the California Data Exchange Center) is 

based on an explicit mass balance equation applied directly to the respective storage and flow measurements, not model 

output, unlike various other meanings of “natural flow” that are sometimes applied to California water datasets (Huang and 

Kadir 2016). The reconstructed streamflow timeseries (hereafter “observed streamflow”) represents the actual effects of the 

Creek Fire (and other disturbances) because the reconstruction procedure is directly based on measurements at specific 250 

diversion, storage, and outflow points, which are directly responsive to the basin hydrological conditions. Three objective 

functions are based on a cleaned version of this daily streamflow timeseries (spurious negative values during low-flow 

periods and other missing values are imputed). Two objective functions similarly target annual percent error in the annual 

water yield and the April-July water yield, which is a well-established benchmark for snowmelt runoff modeling in the 

Sierra Nevada (Pagano et al. 2004). Two objective functions are based on the eight-year (2017-2024), 30-survey database of 255 

ASO SWE maps in the study area, targeting both the spatial distribution at the 90 m grid scale and the percent error in total 

volume across surveys. Hydrograph and water yield objectives are calculated for water years 2015-2024, which includes six 

years before and four years after the Creek Fire. By calibrating across this disturbance (vegetation maps updated during 

calibration), we automatically reject parameter sets that fail to provide reasonably accurate estimates of both pre- and post-

fire streamflow. 260 
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Category 
Objective 

Function 

Best 

Value 

Worst 

Value 
Target Hydrological Signatures 

Daily 

Streamflow 

(2015-2024) 

NSE 0.89 0.80 
Hydrograph shape (high flows), rainfall-runoff response, 

snow/rain partitioning, peak flow and recession timing 

Log-Scaled NSE 0.85 0.80 
Hydrograph shape (low flows), baseflow recession 

characteristics, multi-year storage/deficit effects 

>95th-Percentile 

RMSE 
26 m3/s 74 m3/s 

High flow magnitude, shape of flow duration curve 

independent of timing 

Water Yield 

(2015-2024) 

Yearly MAPE 4% 9% 
Bulk water balance, interannual variability across wet and 

dry years 

April-July MAPE 7% 10% 
Interannual variability in snowmelt runoff efficiency and 

timing 

Snow Maps 

(30 ASO 

Surveys, 

2017-2024) 

Pixel-Wise SWE 

RMSE 
0.23 m 0.25 m 

Spatial distribution of snow accumulation and ablation, 

absolute magnitude of SWE in different years 

Total SWE 

Volume MAPE 
18% 32% 

Evolution of snowpack volume between surveys, 

interannual variability 
Table 2: Calibration objective functions used in this study with descriptions of the primary hydrological signatures constrained by 

each objective. The best (worst) value given here is the lowest (highest) error achieved by any of the Pareto-efficient parameter sets 

in our calibrated 30-member behavioral ensemble. NSE = Nash Sutcliffe Efficiency, RMSE = root mean square error, MAPE = 

mean absolute percent error. 265 

 

To efficiently sample behavioral parameter sets from the 14-dimensonal space of potential interactions, we apply a multi-

objective Bayesian optimization scheme (Jones et al. 1998). After an initial Latin hypercube sample of 320 parameter sets 

(Dupuy et al. 2015), we perform parallel particle swarm optimization (Kennedy and Eberhart 1995, Zambrano-Bigiarini et 

al. 2013) using the expected hypervolume indicator (Emmerich et al. 2011, Binois and Picheny 2019) to sample promising 270 

parameter sets based on Gaussian Process surrogate models of the objective function response surfaces (Roustant et al. 

2012). After six optimization generations, we have tested a total of 600 parameter sets (n.b. this requires ~950 days of CPU 

time on 2.5 GHz servers, but the elapsed wall-clock time is several weeks because multiple parameter sets are tested in 

parallel). While this number of tested parameter sets may seem small by conventional standards considering the 14-

dimensional search space, we note that each new parameter sample is selected after an independent optimization procedure 275 

using 100 to 1,000 particle swarm samples from the objective function surrogate models. Thus, our overall calibration 

explores the objective function tradeoffs across more than 160,000 parameter sets, but only 600 of these are actually tested in 

DHSVM. Because testing hundreds of thousands of parameter sets directly in DHSVM would require prohibitive amounts of 

computational expense, this Bayesian surrogate optimization procedure is essential for efficiently selecting parameter sets 

that have the best likelihood of substantially improving the Pareto frontier. 280 

 

As expected for any high-dimensional multi-objective optimization problem, there is no single “best” parameter set. Rather, 

the behavioral parameter sets constitute a Pareto frontier, with some performing slightly better at one objective and worse at 

another. One way of understanding this phenomenon is that the parameter sets with the absolute highest values for any single 

objective are overfitting to noise in the data, while parameters that perform reasonably well at a variety of objectives are 285 
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intuitively more likely to capture salient hydrological information. Narrowing the range of acceptable parameter sets requires 

case-by-case determination of what skill level is satisfactory for a particular watershed-model combination because a higher 

skill might be achieved in hydroclimates that are conceptually simpler to simulate. At the same time, it is necessary to retain 

enough parameter diversity to explore our research questions related to the interaction between equifinality and disturbance. 

Based on prior experience modeling with DHSVM in the Sierra Nevada (e.g., Boardman et al. 2025), we find that the best 290 

model skill we can generally achieve is around a daily NSE of approximately 0.8 or higher and yearly error of approximately 

10% or lower. Any single criteria is insufficient for narrowing the parameter space to a reasonable fraction of the total 

calibration space. For example, over 30% of all tested parameter sets have daily NSE > 0.8 (none have NSE > 0.9), but some 

of these high-NSE parameter sets are clearly inferior, e.g., with yearly MAPE as high as 35%. Combining multiple 

thresholds, we find that 48 parameter sets qualify as “behavioral” by satisfying daily NSE > 0.8, daily log NSE > 0.8, yearly 295 

MAPE < 10%, April-July MAPE < 10%, and Pareto-efficiency across all objectives. We do not directly apply thresholds to 

the snow calibration metrics because the variability of these objective functions is already strongly constrained within the 

behavioral ensemble (e.g., the SWE RMSE coefficient of variation is 2% within the behavioral ensemble compared to 59% 

across all 600 parameter sets). Nevertheless, snow-based objective functions still constrain the behavioral ensemble because 

all behavioral parameter sets must be Pareto-efficient across all seven objectives. Some behavioral models have very similar 300 

parameter sets, so for efficiency we further select 30 diverse samples by iteratively choosing the behavioral parameter set 

with the maximum mean parameter separation from previously selected samples. These 30 parameter sets define the 

behavioral DHSVM ensemble referenced hereafter. We note that our conclusions are robust to random sub-selection of 

fewer models, as long as at least ~10 parameter sets are used (Supplemental Fig. S2). We validate the performance of the 

selected parameter sets by simulating the 10 year period prior to the calibration period, i.e., water years 2005-2014, using the 305 

same objective functions. 

 

To test whether our results are sensitive to our choice of a calibration period spanning a major disturbance, we repeat the 

entire calibration procedure over the time period immediately before the Creek Fire (water years 2011-2020). Unlike our 

primary calibration, which spans 6 years before the fire and 4 years after the fire, all 10 years of the “pre-fire calibration” 310 

have negligible change in the model vegetation maps. The pre-fire calibration is initialized with the same Latin hypercube 

sample of 320 random parameter sets, after which we perform six generations of multi-objective Bayesian optimization 

following the same procedures as the primary calibration discussed previously, and we select behavioral parameter sets using 

the same objective function criteria. Parameter sets resulting from this pre-fire calibration are completely independent from 

our primary calibration, so we use these results to test whether the model yields similar results when calibrated on a period 315 

without major vegetation map updates. 
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2.3 Disturbance Simulations 

We investigate the ecohydrological effects of the Creek Fire by comparing model simulations using dynamic and static 

vegetation maps to quantify the fire effect relative to a no-fire control scenario. For each of the 30 DHSVM parameter sets, 320 

we simulate streamflow for the past 20 years (water years 2005-2024) with either static 2011-era vegetation maps or 

dynamic vegetation maps updated in 2013, 2014, 2018, and 2020. The 2020 Creek Fire accounts for most of the vegetation 

disturbance in the study area, with a 42% reduction in watershed-average RCMAP tree fractional cover compared to 2-3% 

reductions associated with the 2013, 2014, and 2018 fires. Differences between fire-aware (dynamic vegetation) and no-fire 

control (static vegetation) simulations define the modeled disturbance effect. In addition to comparing daily streamflow, we 325 

also compare annual water yield and ET fluxes between fire-aware and no-fire control scenarios. 

 

2.4 Detecting and Correcting Nonstationarity 

We calculate a “bias shift” metric by comparing observed streamflow with modeled streamflow from the fire-aware 

(dynamic vegetation) simulations. The bias shift metric is useful in two contexts. First, it is useful for understanding and 330 

refining the behavior of models, potentially including reducing equifinality by selecting models with near-stationary bias. 

Second, it is useful for refining our prediction of the real-world hydrological response to a disturbance by estimating what a 

hypothetical model with stationary error would have predicted. 

 

The 30-member behavioral DHSVM ensemble has a reasonably small mean streamflow bias for the overall 2005-2024 335 

evaluation period (interquartile range among parameter sets of ±2%). However, some parameter sets have different mean 

streamflow biases on pre- and post-fire periods, congruent with our conceptual model in Fig. 1. We theorize that over- or 

under-estimation of the disturbance effect on streamflow may result in a matching positive or negative bias shift after 

disturbance, defined as the difference in mean streamflow bias between post-fire and pre-fire periods: 

𝐵𝑖𝑎𝑠 𝑆ℎ𝑖𝑓𝑡 = (𝑄𝑀𝑜𝑑𝑒𝑙
̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝑄𝑀𝑒𝑎𝑠.

̅̅ ̅̅ ̅̅ ̅̅ )𝑃𝑜𝑠𝑡−𝐹𝑖𝑟𝑒 − (𝑄𝑀𝑜𝑑𝑒𝑙
̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝑄𝑀𝑒𝑎𝑠.

̅̅ ̅̅ ̅̅ ̅̅ )𝑃𝑟𝑒−𝐹𝑖𝑟𝑒 (1) 340 

We correct for the bias shift of different parameter sets by developing a “metamodel,” i.e., a statistical model trained on 

DHSVM outputs. The bias shift metric, Eq. (1), is averaged across multiple years, whereas we expect that each individual 

year may have a larger or smaller streamflow response due to variable interactions between climate and vegetation. In the 

case that the streamflow response is purely energy-limited (P >> ET), we would expect the same post-fire streamflow gain in 

all years; conversely, in a water-limited case (P closer to ET magnitude) we would expect a 1:1 scaling between annual 345 

precipitation and the post-fire streamflow gain. Between these two endmember scenarios, we expect that the magnitude of 

the simulated streamflow change in any particular year may be offset and/or fractionally re-scaled relative to the mean multi-

year streamflow change. Thus, we posit a linear relationship between the multi-year mean bias shift and the simulated 

streamflow response to fire in any particular year, ΔQFire. The linear relationship between bias shift and yearly ΔQFire is 
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supported by graphical analysis of bivariate scatterplots, as illustrated subsequently in Fig. 5. In other watersheds or 350 

disturbance scenarios, it might be necessary to posit a nonlinear relationship with the bias shift, which could again be 

detected from analogous bivariate scatterplots. 

 

In a Bayesian statistical framework, we treat each DHSVM parameter set as an independent realization of the possible post-

fire response, with a stochastic error term describing scatter in the hypothesized linear relationship between bias shift and 355 

ΔQFire. We define the metamodel using a normal distribution with mean determined by the linear bias shift vs. ΔQFire 

relationship and uncertainty defined by the sample standard deviation σ, which can be expressed in Bayesian sampling 

notation as: 

𝛥𝑄𝐹𝑖𝑟𝑒  ~ 𝑛𝑜𝑟𝑚𝑎𝑙(𝑐0 + 𝑐1 ∗ 𝐵𝑖𝑎𝑠 𝑆ℎ𝑖𝑓𝑡, 𝜎) (2) 

To estimate the values of c0, c1, and σ (with quantified uncertainty in all three parameters), we generate 1,000 Bayesian 360 

samples using the Hamiltonian Monte Carlo algorithm with two chains (500 samples per chain) after 10,000 warmup 

iterations (Stan Development Team 2023). The metamodel is fit using all 30 pairs of bias shift and ΔQFire values calculated 

for each parameter set in the behavioral DHSVM ensemble, with c0, c1, and σ re-fit for each of the four post-fire years. We 

subsequently generate a conditional prediction of ΔQFire in each year by setting the bias shift equal to zero in Eq. (2), which 

yields a normal distribution with mean c0 and standard deviation σ. Unlike simple least-squares linear regression, uncertainty 365 

in the metamodel parameters (c0, c1, and σ) is propagated into our conditional predictions through the Bayesian sampling 

routine, which considers 1,000 different combinations of plausible c0, c1, and σ values. Sampling the posterior distribution of 

Eq. (2) with bias shift set to zero yields a conditional distribution describing the expected post-fire streamflow change and 

uncertainty of a hypothetical DHSVM simulation with zero bias shift. 

 370 

2.5 Empirical Regression Model 

To compare statistical and process-based approaches to ecohydrological disturbance attribution, we also apply an empirical 

annual water balance model using Bayesian multiple linear regression. We posit a simple four-parameter lumped empirical 

model that estimates the annual runoff efficiency (Q / P) as a linear function of annual precipitation (P), the prior year’s 

streamflow (QLastYear) to account for multi-year storage or deficit effects, and the aridity index calculated from annual 375 

potential evapotranspiration (PET / P). Note that the annual PET used in the empirical water balance model is pre-calculated 

as part of the gridMET dataset (Abatzoglou 2013) from Penman-Monteith reference evapotranspiration, but PET is 

calculated separately within the DHSVM evapotranspiration module (Wigmosta et al. 1994), similarly using a Penman-

Monteith implementation. The structure of the empirical model is adapted from a similar regression approach applied to 

analyze seasonal water supply in adjacent watersheds (Boardman et al. 2024). We assume that each year’s actual runoff 380 

efficiency is randomly sampled from a normal distribution with standard deviation σ and mean defined by the linear model, 

expressed analogously to Eq. (2) in Bayesian sampling notation: 
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𝑄

𝑃
 ~ 𝑛𝑜𝑟𝑚𝑎𝑙 (𝑐0 + 𝑐1 ∗ 𝑃 + 𝑐2 ∗ 𝑄𝐿𝑎𝑠𝑡𝑌𝑒𝑎𝑟 + 𝑐3 ∗

𝑃𝐸𝑇

𝑃
, 𝜎) (3) 

We constrain the empirical model using pre-fire data and compare its post-fire predictions with measured post-fire 

streamflow. Meteorological data required for Eq. (3) are aggregated from the same gridMET data used for DHSVM 385 

(Abatzoglou 2013) over water years 1980-2020. As for Eq. (2), we generate 1,000 Bayesian samples of the empirical model 

parameters (c0, c1, c2, and σ) using Hamiltonian Monte Carlo (Stan Development Team 2023). The empirical model achieves 

R2 = 0.91 for annual variations in runoff efficiency across the 41-year fitting period. By sampling the model’s posterior 

predictive distribution using meteorological data from 2021-2024, we generate 1,000 counterfactual estimates of annual 

streamflow in each of the post-fire years. The difference between measured post-fire streamflow and predicted streamflow 390 

from the stationary statistical model provides an estimate of the streamflow change attributable to disturbance. 

3 Results 

The behavioral ensemble of 30 calibrated DHSVM parameter sets all reproduce observed streamflow hydrographs with a 

close match to peak flow and low flow magnitudes, interannual variability, and seasonal timing (Table 2, Fig. 3). Daily NSE 

values for the 2015-2024 calibration period vary between 0.80 and 0.89 among the different parameter sets (log NSE 0.80 to 395 

0.85), with similar statistics on the 2005-2014 validation period (NSE 0.76-0.88, log NSE 0.80-0.87). All behavioral 

parameter sets also achieve NSE of 0.80 to 0.89 and log-scale NSE of 0.76 to 0.84 considering just the four years after the 

Creek Fire, which is considered satisfactory because the model skill is similar on pre- and post-fire periods. Additionally, the 

post-fire daily NSE of at least 0.80 achieved by all behavioral DHSVM parameter sets is substantially higher than the post-

fire daily NSE of -0.13 to 0.60 achieved by a different distributed hydrological model (with dynamic vegetation and other 400 

fire-aware updates) after a megafire in other Sierra Nevada sub-watersheds (Abolafia-Rosenzweig et al. 2024). Without the 

vegetation map updates, the behavioral ensemble performs significantly worse on the post-fire period, but streamflow skill is 

still reasonably high: the mean NSE is lower by 0.06 in the no-fire control scenario (p < 0.001, Welch one-sample t-test) and 

the mean log NSE is lower by 0.02 (p < 0.001). Furthermore, the no-fire control scenario yields a mean post-fire bias 

between -17% and -9% (static vegetation systematically underestimates post-fire streamflow), while in dynamic vegetation 405 

mode the mean post-fire bias varies between -9% and +6% (Supplemental Figure S3). Comparing fire-aware and no-fire 

counterfactual scenarios, the behavioral ensemble indicates a bulk streamflow increase of +2 to +17% after the Creek Fire 

(median +12%). DHSVM also indicates a shift towards earlier snowmelt runoff after the Creek Fire. Because our post-fire 

implementation only changes the vegetation maps (no change to modeled soil or snow albedo), the prediction of earlier 

snowmelt runoff is primarily a result of increased energy reaching the snowpack due to reduced canopy shading. This 410 

snowmelt timing effect is most noticeable in the 2023 water year, which was a year with extremely high snow accumulation 

(Marshall et al. 2024). 
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Figure 3: Modeled and measured daily streamflow hydrographs (top panel) and streamflow differences between fire-aware and 415 
no-fire control simulations (bottom panel). Both panels show results from 30 calibrated “behavioral” parameter sets (Sect. 2.2). 

 

Uncertainty in the streamflow response to disturbance is large relative to the size of the effect, even after a megafire. The 

difference in total post-fire streamflow volume between fire-aware and no-fire control scenarios has a coefficient of variation 

of 41%. Some parameter sets predict up to a 650% larger annual streamflow response than other parameter sets (inter-model 420 

range of +13 to +97 mm/yr). Relative uncertainty is higher in dry years, with the simulated streamflow response in 2021 

varying between +3 mm/yr and +47 mm/yr across different parameter sets (1,400% range). The predicted streamflow change 

after the Creek Fire is on the same order of magnitude as stochastic error in the annual water balance (Supplemental Fig. S3), 

which intuitively explains why the disturbance response remains uncertain despite direct calibration of pre- and post-fire 

streamflow (Fig. 3). 425 
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Uncertainty in the post-fire streamflow response is linked to equifinality in modeled water balance fluxes (Figs. 1, 4). To 

qualify as “behavioral,” parameter sets must satisfactorily estimate the annual water balance (MAPE < 10%), but the model 

can achieve this in different ways. Some parameter combinations suggest that transpiration and interception loss from 

vegetation accounts for up to 95% of total pre-fire ET, while others suggest a vegetation contribution as low as 77%, with 430 

the balance contributed by evaporation from abiotic surfaces (stream channels and soil, including rock above treeline). 

Relatively dense initial forests (high area-average LAI) are associated with large decreases in post-fire transpiration and 

interception loss (Pearson r = -0.92, p < 0.01). Low transmissivity is associated with increases in post-fire soil evaporation 

and channel evaporation (r = -0.99, p < 0.01, both variables log-transformed). 

 435 

 

Figure 4: Difference in ET fluxes between fire-aware and no-fire control simulations visualized relative to model parameter 

uncertainty. Each point represents a single behavioral parameter set (N = 30) with all values spatially averaged within the 

watershed. The area-average leaf area index (LAI) is aggregated within the pre-fire forested area from maps of tree-scale LAI and 

grid-scale fractional cover, and the area-average transmissivity is aggregated from maps of soil depth, conductivity, and 440 
exponential decrease using the DHSVM transmissivity equations (Table 1). Trend lines indicate the least-squares fit and 90% 

confidence interval of the best-fit linear estimator. 

 

Compensating errors in equifinal parameter sets can produce compounding discrepancies after disturbance. Not only do 

some parameter sets indicate much larger changes in individual fluxes, those with the smallest reductions in vegetation ET 445 

also exhibit the largest fractional compensation (up to 76%) from increased abiotic evaporation (r = 0.71, 0.01). A similar 

compensation between modeled overstory and understory ET components is illustrated by Boardman et al. (2025). Low 

calibrated transmissivity implies slower groundwater recharge and shallower flowpaths, contributing to higher soil 
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evaporation, which compensates for low vegetation ET. These parameter sets are primed for large increases in evaporation 

when soil moisture increases in de-forested areas after fire. Consequentially, there is a negative correlation (r = -0.93, p < 450 

0.01) between the fraction of pre-fire ET contributed by abiotic evaporation and the magnitude of the post-fire net ET 

reduction. 

 

Evaluating the model bias shift (Eq. 1) can help escape this morass of uncertainty. Across the 30-member behavioral 

ensemble, there is a strong correlation (r = 0.96-0.99 depending on year, p < 0.01) between the mean streamflow bias shift 455 

after disturbance and the annual streamflow change attributable to fire (Fig. 5). Lines in Fig. 5 correspond to Eq. (2), and the 

horizontal axis is defined by Eq. (1). Bayesian sampling of a linear model conditioned on zero bias shift yields an estimate of 

the uncertainty in the vertical intercept (Sect. 2.4), which is the predicted streamflow change of models with stationary bias. 

Comparing the annual streamflow errors of models with positive or negative bias shift (Supplemental Fig. S3), we note that 

the positive-shift models tend to have more-positive errors on the pre-fire period compared to negative-shift models, but this 460 

stratification reverses after the Creek Fire. This reversal of model over- and under-prediction after disturbance is consistent 

with our conceptual model in Fig. 1. Additionally, as shown by the shape-size in Fig. 5, the models with the largest over-

prediction have anomalously high overstory LAI, and vice versa, which is similarly consistent with the conceptualization of 

ETTree and ETOther equifinality in Fig. 1. 
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 465 

Figure 5: Annual post-fire streamflow change visualized relative to the mean bias shift after disturbance for all 30 parameter sets. 

Parameter sets with a shift towards overestimation predict a relatively large streamflow response to disturbance, and vice versa. 

Parameter sets with near-stationary bias are assumed to give the most accurate estimate of changes due to disturbance. Trend 

lines indicate the least-squares fit and 90% confidence interval of the best-fit linear estimator, distinct from the analogous 

Bayesian regression in Eq. (2), which also propagates parameter uncertainty. 470 

 

Eight parameter sets result in near-stationary bias (shift less than ±10 mm/yr). This eight-member “stationary sub-ensemble” 

demonstrates how considering bias shift after disturbance can reduce equifinality. Compared to 104 alternative sub-

ensembles of eight parameter sets each randomly selected from the 30-member ensemble, the stationary sub-ensemble has 

significantly reduced uncertainty in LAI (p < 0.01) and transmissivity (p < 0.02), calculated from the cumulative distribution 475 

function for the fractional uncertainty reduction of all 104 sub-ensembles. This uncertainty reduction associated with the 

stationary sub-ensemble is 72% larger for LAI and 285% larger for log-transformed transmissivity compared to the median 

uncertainty reduction of same-sized sub-ensembles selected randomly.  The stationary sub-ensemble has mean 2011-era LAI 

between 1.9-2.8 m2/m2, which is 74% less uncertainty compared to the full behavioral ensemble range of 0.9-4.1 m2/m2 (Fig. 

5). Analogously, the stationary sub-ensemble has 50% less uncertainty in log-transformed mean transmissivity despite order-480 
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of-magnitude residual uncertainty (108-1378 m2/d). Meteorological uncertainty remains mostly unchanged in the stationary 

sub-ensemble, with 3.7 °C and 15% uncertainties in temperature and precipitation biases, respectively, compared to 4.4 °C 

and 15% for the behavioral ensemble (no significant change relative to random sub-ensemble selection). This leads to similar 

uncertainty in the stationary sub-ensemble’s post-fire evaporative index (ET / P) compared to the full ensemble (25-34% vs. 

24-39% respectively). Among all 14 calibrated parameters (Table 1), only the melt-season albedo decay rate has a 485 

statistically significant difference in the mean (p < 0.05, Welch two-sample t-test) between the stationary sub-ensemble and 

the full 30-member ensemble. Instead, most of the equifinality reduction arises from shrinking the uncertainty of the 

parameter distributions rather than changing their mean (Supplemental Fig. S4) and/or from constraining multi-dimensional 

parameter interactions (Supplemental Fig. S1). 

 490 

Compared to the full behavioral ensemble, the stationary sub-ensemble has slightly sub-optimal hydrograph fit (NSE 0.80-

0.85 vs. 0.89 max), but better SWE volume error compared to the highest-NSE parameter set (MAPE of 18-27% across 30 

ASO surveys vs. 32% for the highest-NSE parameter set). The stationary sub-ensemble has statistically lower (worse) mean 

NSE values compared to the 30-member ensemble (p < 0.05) and approaches the threshold for significantly lower (better) 

mean SWE volume percent error (p = 0.055). The >95th-percentile peak flow RMSE is also significantly worse (p < 0.05) for 495 

the stationary sub-ensemble. Differences in log-scale NSE and annual or April-July water yield error are not statistically 

significant. The improvement in snow skill despite a slight worsening of streamflow skill (Supplemental Fig. S5) may arise 

from overfitting during calibration, which leads to a tradeoff between enhanced model physical fidelity (represented by the 

near-zero bias shift and better snow performance of the stationary sub-ensemble) and minor degradation in the streamflow 

performance metrics. 500 

 

Empirical regression and process-based simulations both suggest an increase in streamflow after the Creek Fire, albeit with 

different uncertainty ranges (Fig. 6). An empirical model (Eq. 3) fit to pre-fire data predicts relatively less post-fire 

streamflow than observed, implying a total streamflow increase of +12% with a 90% credible interval of +5 to +18% 

assuming that each year’s error distribution is independent. (The 90% credible interval represents the 5 th-95th percentiles.) 505 

Although the four-year total streamflow increase is significant at p < 0.01, for individual post-fire years we cannot reject the 

null hypothesis (no change after disturbance) at the p < 0.01 level, and we cannot even reject the no-change hypothesis at the 

p < 0.1 level in 2021 or 2024. Compared to the pure statistical model based on the same meteorological data, our process-

based modeling approach yields remarkably similar uncertainty. All 30 behavioral DHSVM parameter sets indicate at least 

some streamflow increase in each post-fire year, with a similar mean increase of +12% and a marginally wider 90% range of 510 

+3 to +17% across the ensemble. Although the 90% uncertainty ranges are similar between DHSVM and the empirical 

regression, all of the DHSVM parameter sets show at least some increase. Additionally, within individual years, the 

DHSVM uncertainty can be much lower (e.g., in 2023, the DHSVM 90% range is +2 to +11%, while the empirical 

regression 90% credible interval is +3% to +23%). The uncertainty of the empirical model benefits from considering all four 
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years simultaneously because the empirical model assumes that each year’s fire effect is independent, while different 515 

DHSVM parameter sets are systematically biased high or low across all post-fire years. 

 

 

Figure 6: Uncertainty distributions for the annual post-fire streamflow change relative to a control scenario with no fire. 

Empirical regression results are estimated by comparing post-fire measurements with 1,000 random samples of a pre-fire multi-520 
linear regression model (Eq. 3). The DHSVM ensemble represents the difference between fire-aware and no-fire control 

simulations using 30 different calibrated parameter sets. The conditional metamodel predicts the DHSVM response subject to the 

requirement of stationary bias using 1,000 random samples of the Bayesian regression in Eq. (2). (Note that the vertical axis is 

truncated at +200 mm/yr for increased visibility of most results.) 

 525 

Compared to pure statistical or pure process-based approaches, a statistical metamodel trained on DHSVM results and 

conditioned on bias stationarity can drastically reduce uncertainty. Using 1,000 random samples of the metamodel (Eq. 2), 

we find a +11% increase in total post-fire streamflow with a 90% credible interval of +10 to +12%. The mean streamflow 

response is 14 standard deviations above zero, confidently rejecting the no-change hypothesis. Moreover, interannual 

variability in the conditional streamflow response is separable between all pairs of years at the p < 0.01 level. In contrast, 530 

raw DHSVM simulations of the streamflow response in 2022, 2023, and 2024 are not mutually separable at the p < 0.05 
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level. Comparing 90% credible intervals, the conditional approach reduces uncertainty in the total post-fire streamflow 

change by 80% compared to the empirical regression and 82% compared to the behavioral DHSVM ensemble. Of course we 

cannot know precisely what the true streamflow would have been without a fire, so some uncertainty must always remain, 

but our metamodel results suggest that we can substantially reduce this uncertainty by fusing process-based and statistical 535 

approaches. 

 

The independent pre-fire calibration (end of Sect. 2.2) yields similar predictions of the post-fire streamflow change 

(Supplemental Figure S7). When applied to behavioral parameter sets from the pre-fire calibration, the conditional 

metamodel predicts a 90% credible interval of +9% to +12% for the total post-fire streamflow change, which is remarkably 540 

close to the independent estimate of +10% to +12% using the cross-fire (2015-2024) calibration. The conditional metamodel 

based on the pre-fire calibration reduces uncertainty in the total post-fire streamflow (90% confidence interval) by 82% 

compared to the empirical regression and 74% compared to the pre-fire behavioral DHSVM ensemble, which is again 

similar to the analogous 80% and 82% reductions (respectively) achieved by the cross-fire calibration metamodel. 

Regardless of whether DHSVM is calibrated pre- and post-fire, or only pre-fire, the conditional metamodel provides 545 

consistent predictions of the additional streamflow attributable to the Creek Fire (ΔQFire). 

4 Discussion 

Hydrological models must include forest fires and other environmental disturbances to provide robust predictions for water 

resource management, risk assessment, and operational planning. In 2021, the first year after the Creek Fire, our hybrid 

modeling approach estimates that the additional streamflow attributable to forest disturbance provided 0.11 ±0.03 km3 550 

(92,000 ac-ft.) of extra water to Millerton Lake (a major regional reservoir, Fig. 2), which is 18% ±4% of the total water 

yield in a year where drought conditions caused curtailment of downstream water rights (California DWR 2021). In the wet 

2023 water year, extra streamflow attributable to the fire totaled ~0.38 ±0.04 km3 (310,000 ac-ft., 7% of total water yield), 

equivalent to an extra 60% ±7% of the reservoir storage capacity in a year with widespread flooding (California DWR 2023). 

(All uncertainty ranges indicate the 90% credible interval.) These examples illustrate the potential for landscape-scale forest 555 

disturbance to enhance water resources and/or exacerbate water risks (e.g., Boardman et al., 2025). Accurately representing 

disturbance and accounting for other sources of nonstationarity should be a priority of ecohydrological modeling. 

 

Our results suggest that equifinality demands more thoughtful consideration in hydrological model-based studies of 

disturbance. At the same time, studies investigating disturbance have a unique and underutilized opportunity to reduce model 560 

equifinality. Much of the spread in the DHSVM ensemble (Fig. 6) could be eliminated by reducing the number of calibrated 

parameters or narrowing their prior range (Table 1). However, in typical landscape-scale simulations, we do not know the 

“correct” parameter values. For example, there is considerable uncertainty in vegetation properties derived from satellite 
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imagery (Garrigues et al. 2008, Tang et al. 2019) or extrapolated from sparse field data (Meyer et al. 2016). Moreover, in 

modeling applications, “effective” parameters may subsume additional sources of structural or data uncertainty (Dolman and 565 

Blyth 1997, Vázquez 2003, Were et al. 2007), and some quasi-empirical parameters (e.g., grid-scale hydraulic conductivity) 

do not have single “correct” values (Beven 1993). Uncertainty in vegetation properties like LAI can produce significantly 

different streamflow predictions (e.g., Bart et al. 2016 and Fig. 5 of this study), and latent uncertainty could cause systematic 

biases (Fig. 4). Furthermore, even if vegetation properties could be tightly constrained, introducing parameter variability into 

model experiments can reveal compensating ecohydrological processes (Figs. 1, 4), counterintuitively leading to higher 570 

confidence in the statistical metamodel by providing datapoints for regression in Eq. (2). Nevertheless, reducing model 

parameter uncertainty is generally desirable when justified, and our results show that a sub-ensemble of parameter sets with 

near-stationary bias after disturbance can significantly reduce uncertainty in LAI (p < 0.01) and transmissivity (p < 0.02). 

 

Using process-based models for post-disturbance predictions based on traditional streamflow calibration metrics can be 575 

dangerously misleading. Describing model performance with simple goodness-of-fit metrics (e.g., NSE) is problematic in 

general due to sampling uncertainty and other issues (Clark et al. 2021), but these metrics remain ubiquitous in modeling 

studies (including this one) due to their ease of application and simplicity of interpretation. Although these metrics are useful 

for loosely identifying an initial ensemble of behavioral models, our results provide a clear example of the pitfalls in blindly 

trusting NSE-based (or similar) calibration strategies. In particular, the four models with the highest daily NSE (0.88-0.89) 580 

have anomalously small disturbance effects, and the parameter set with the absolute highest NSE underestimates the post-

fire streamflow change by 79% relative to the metamodel mean (Supplemental Fig. S6). These outlying parameter sets are 

presumably compensating for unknown deficiencies in the model structure and/or forcing data, leading the model to get a 

slightly higher NSE for what are apparently the wrong reasons. These undesirable and yet numerically optimal solutions are 

endemic to high-dimensional optimization problems, an issue known as “reward hacking” (Amodei et al. 2016). Although 585 

log-transformed NSE appears less vulnerable to reward hacking (Supplemental Fig. S6), the parameter set with the absolute 

highest log NSE still underestimates the metamodel-based mean streamflow change by 58%. It is noteworthy that our 

ultimate model evaluation metric (bias shift, Fig. 5) is not included in the calibration. If this metric were directly calibrated, 

it might be susceptible to reward hacking, leading to unreliable inference in Eq. (2). 

 590 

With care, process-based models can remain powerful tools for hydrological investigation. Despite a recent focus on 

machine learning approaches to hydrological prediction (Ardabili et al. 2020, Xu and Liang 2021), purely empirical methods 

are limited by the amount of available data, the ability to assign clear process attribution, and the potentially ambiguous 

interpretation of nonstationarity (Slater et al. 2021). In the years immediately after a large forest disturbance (e.g., megafire), 

water managers may require rapid estimates of the potential hydrological impacts without the luxury of waiting for more 595 

data to accrue. Counterfactual model simulations can help isolate disturbance effects from stochastic weather and other 

variability, but it is notoriously challenging to quantify the uncertainty of distributed process-based models. Direct 
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uncertainty estimation based on subjective likelihood metrics (e.g., GLUE, Beven and Binley 1992) is statistically 

unjustified (Mantovan and Todini 2006, Stedinger et al. 2008). Nevertheless, by using a subjective sample of models to 

constrain sensitivity (Fig. 5), we can perform classical Bayesian inference (Eq. 2) to sample the relationship between an 600 

unknown outcome (e.g., the streamflow response to fire) and an observational constraint (e.g., bias stationarity). This 

framework overcomes the statistical limitations of process-based models by treating the results from equifinal parameter sets 

as independent data points that constrain a statistical metamodel (Eq. 2), which should be transferable to other disturbance 

studies. Moreover, the statistical metamodel provides an 82% uncertainty reduction compared to the raw DHSVM ensemble 

with just four years of post-fire streamflow data in a single watershed. The consistency of the metamodel results between 605 

two independent calibrations (pre-fire and cross-fire) suggests that our framework is robust to subjective calibration 

decisions and random temporal variability, strengthening confidence in the results. Further calibration tests in other 

watersheds could inform a transferrable understanding of equifinality that might help constrain the post-fire streamflow 

response with fewer years of post-fire data, and could even help constrain predictions for possible future disturbances before 

they happen. 610 

 

Our findings suggest a generally applicable conceptual framework for hydrological model simulations of many types of 

change beyond just environmental disturbance. In brief, it is important to ensure that our models are stationary with respect 

to the variability they are used to investigate. For our present study of the streamflow response to a forest fire, the model 

should have stationary bias across pre- and post-fire periods. For a study on climate warming effects, modelers could test the 615 

stationarity of model biases in warmer or cooler years or locations. For a drought study, model bias stationarity could be 

evaluated between wet and dry periods. Many analogous examples are easily imagined. We anticipate that testing bias 

stationarity across different types of change can help reduce both equifinality and uncertainty, as shown here. 

5 Conclusion 

In light of our results from this test application, we offer some general recommendations for process-based simulations of 620 

environmental disturbance in a hydrological context. 

 

• Parameter uncertainty extends beyond the subsurface. We suggest calibrating or at least testing the sensitivity of 

parameters controlling the partitioning of ET fluxes (e.g., overstory/understory transpiration, interception loss, soil 

evaporation, etc.). Parameter interactions with meteorological uncertainty should also be considered and potentially 625 

propagated during calibration, especially when high-precision basin-scale forcing data are unavailable. 
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• Nonstationary error metrics (e.g., positive or negative bias shift) can indicate a failure to adequately represent 

change. Rejecting parameter sets with a bias shift after forest disturbance (or with respect to some other change) can 

help reduce equifinality and thus also reduce uncertainty in modeled hydrological responses to disturbance. 630 

 

• Modelers should beware of “reward hacking” (i.e., overfitting) during calibration, particularly when applying 

powerful optimization algorithms to high-dimensional search spaces. In this study, selecting the highest-NSE 

parameter sets would lead to a 79% underestimation of the streamflow response to disturbance relative to the mean 

value of the conditional metamodel (analogous 58% underestimation using the highest log NSE). 635 

 

• We caution against direct derivation of uncertainty ranges from subjective parameter ensembles, as this could lead 

to unnecessarily high uncertainty with poor statistical justification (Fig. 5). Instead, model results can inform a 

statistical metamodel conditioned on observation-based metrics related to stationarity (e.g., bias shift), enabling the 

derivation of uncertainty from conditional statistics (Eq. 2). The statistical metamodel structure will necessarily 640 

depend on the study objectives, but the principle is generally applicable to other models and types of environmental 

change. 

Data and Code Availability 

A Zenodo archive (Boardman 2025) includes all data, model code, and processing scripts needed to understand the study and 

recreate the figures (https://doi.org/10.5281/zenodo.16972670). In particular, the R script “5_BayesianModeling.R” and the 645 

Stan code “Bayesian_DHSVMbias.stan” may be useful for anyone interested in adapting our Bayesian conditional 

metamodel (Eq. 2) to other projects. SWE maps from Airborne Observatories, Inc., used for calibration are publicly 

available at https://data.airbornesnowobservatories.com/ (Airborne Snow Observatories, Inc., 2025). 
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