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Abstract. Model simulations are widely used to understand, predict, and respond to environmental changes, but uncertainty
in these models can hinder decision-making. A-typical-exampleistheThe simulation of hydrological respenses-techanges after
a forest fire; is a typical example where process-based models with uncertain parameters may inform consequential predictions

of water availability. Different parameter sets and meteorological forcing assumptions can yield similarly realistic simulations

during model calibration but generate divergent predictions_of change, a problem known as “equifinality.” Despite
longstanding recognition of the problems posed by equifinality—and-nenstationarity, the implications for environmental
disturbance simulations remain largely unquantifiedunconstrained. Here, we demonstrate how equifinality in water balance
partitioning causes compounding uncertainty in hydrological changes attributable to a recent 1,540 km? megafire in the Sierra

Nevada mountains (California, USA). Different sets-of ealibrated-parametersmodel calibrations generate uncertain predictions

of the four-year post-fire streamflow change that vary up to six-fold. However, controlling for nonstationary model error (e.g.,
a shift in the model bias after disturbance) can significantly (p < 0.01) reduce both equifinality and predictive uncertainty .
Using a statistical metamodel to correct for bias shift after disturbance, we estimate a streamflow increase of 11% 1% in the
first four years after the fire, with an 18% +4% increase during drought. Our metamodel framework for addressingcorrecting
nonstationarity prevides-an-80%-o+82% reduces uncertainty reduetionforin the post-fire streamflow respense-to—fire-change
by 80% or 82% compared to_the uncertainty of pure statistical or pure process-based model ensembles, respectively. As
environmental disturbances continue to transform global landscapes, controlling for nonstationary biases can improve process-

based models that are used to predict and respond to unprecedented hydrological changes.
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1 Introduction

Calibration — systematic adjustment of model parameters to improve simulation accuracy.
Disturbance — an event that changes an environmental system from one state to another.
Equifinality — the production of similar results for different reasons.

Stationarity — the invariance of a statistical property across different time periods.

Environmental disturbances (e.g., forest fires, other vegetation mortality events, floods, anthropogenic land cover conversion,
etc.) can alter the structure and function of ecohydrological systems (Zehe and Sivapalan 2009, Ebel and Mirus 2014, Buma
2015, Johnstone et al. 2016). Climate change and environmental disturbances introduce nonstationarity into the hydrological
cycle, which is disrupting longstanding statistical approaches to water resource and risk management (Milly et al. 2008, 2015,

Hirsch 2011, Salas et al. 2012, Yang et al. 2021).

Pure statistical methods (e.g., regression models lacking an explicit physical foundation) can sometimes detect streamflow
changes attributable to environmental disturbance by comparing measurements to a stationary model, which represents a no-

disturbance counterfactual. In this context, a “counterfactual” refers to a hypothetical scenario in which a particular disturbance

did not happen, so comparing the actual post-disturbance behavior to the modeled counterfactual enables attribution of

disturbance effects. Statistical change attribution is generally applied across many years and numerous sites (e.g., Goeking and
Tarboton 2022a, Hampton and Basu 2022, Williams et al. 2022) or in careful paired watershed studies to overcome
climate/weather variability (e.g., Bart 2016, Manning et al. 2022, Johnson and Alila 2023, Kang and Sharma 2024). However,
in a single watershed with a short post-disturbance record, pure data-driven statistical approaches are inherently limited.
Crucially, many water management decisions (e.g., reservoir release schedules) are made on a per-watershed and per-year
basis, so large-scale retrospective statistical assessments of disturbance effects may not provide actionable insights in any

particular watershed.

Spatially distributed process-based hydrological models, and related land surface or Earth system models, are a widely
accepted tool that can overcome some limitations of statistical disturbance attribution (Fatichi et al. 2016, Pongratz et al. 2018,
Fisher and Koven 2020). SineeBecause interannual climate variability often obscures hydrological changes caused by
disturbance, counterfactual model experiments using an undisturbed control are a cornerstone of ecohydrological disturbance
attribution studies (e.g., Moreno et al. 2016, Saksa et al. 2017, Boisramé et al. 2019, Meili et al. 2024). Moreover, key process
representations (e.g., flow routing and the snowpack energy balance) are expected to generalize beyond observed conditions,
providing a basis for the prediction of hydrological responses to out-of-sample events including extreme storms (e.g., Huang
and Swain 2022), decadal-scale climate change (e.g., Tague et al. 2009), and unprecedented “megafires” (e.g., Abolafia-

Rosenzweig et al. 2024). In this context, a megafire is any wildfire in excess of 400 km? (Ayars et al. 2023).
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Sinee-weWe lack landscape-scale observations of meteorology and many other important environmental properties, so it is

typically challenging or impossible to setup a single “best” model without a degree of trial-and-error. Therefore, model

parameters are often estimated through calibration. Equifinality arises during calibration when different parameter sets yield
similar realizations of observable phenomena (Beven 1993, 2006, Ebel and Loague 2006). Recognizing that equifinality may
preclude the possibility of picking a single “best” parameter set, some modelers advocate for using a “behavioral” ensemble
based on subjective goodness-of-fit criteria in a generalized likelihood uncertainty estimation (GLUE) framework (Spear and

Hornberger 1980, Beven and Binley 1992, Her and Chaubey 2015, Vrugt and Beven 2018).

Equifinality implies process uncertainty (Grayson et al. 1992, Khatami et al. 2019). For example, total evapotranspiration (ET)
is the sum of overstory and understory transpiration, interception loss, soil evaporation, snow sublimation, and other vapor
fluxes; equifinal parameter sets may produce the same total ET with different partitioning between constituent fluxes (Franks
etal. 1997, Birkel et al. 2024). SineeBecause each vapor flux component can respond differently to disturbance (Goeking and
Tarboton 2020), we hypothesize that equifinal parameter sets may produce divergent predictions when the model is perturbed

beyond the calibration space.

We illustrate the hypothesized interaction of equifinality, disturbance, and bias (non)stationarity using a conceptual water
balance model (Fig. 1). Example models of the pre-disturbance water balance each achieve the same mean pre-disturbance
streamflow (Q), which is forced to approximately match Q observations through model calibration. Due to equifinality, there
is residual uncertainty in the bias-corrected total precipitation (P) and the partitioning of ET between transpiration and
interception from tree canopies (ETtrc) and other vapor fluxes (ETomer, €.g., understory ET and soil evaporation). When a
disturbance such as a fire reduces ET e, the streamflow response is sensitive to the initial ET . magnitude (and hence the
potential ET reduction) as well as the degree to which ETomer responds to increased soil water availability. The three examples

show cases where EToumer does not respond to the disturbance (Model 1), increased ETowmer fully compensates for reduced ET e

(Model 2), or increased ETomer only partly compensates for reduced ETree (Model 3). Intuitively, these hypothetical model

responses are connected to the pre-disturbance balance of ETtree and ETowmer, Which primes some models to predict a larger or

smaller compensation effect. Over- or under-estimation of the resultant streamflow change (AQ) manifests as a positive or

negative “bias shift” after disturbance. The bias shift metric, as defined here, is a special discrete case of the more general
concept of nonstationarity. In a system with changes that occur over longer time periods (in contrast to the discrete disturbance
shown in Fig. 1), a different stationarity metric would be necessary to account for incremental changes. In the present study,

zero bias shift after disturbance implies stationary error overall.
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Figure 1: Conceptual model illustrating how equifinality in the modeled water balance may lead to uncertainty in the streamflow
response to disturbance, and how we expect this to manifest in a measurable “bias shift” after a discrete disturbance. Numbers are
indicative and not intended to represent actual disturbance magnitudes._In the “initial water balance” panel, we assume that all
three models closely match pre-disturbance streamflow, with uncertain recipitation and _evapotranspiration
(ET) components counterbalanced to produce Qobserved = QModeled = 1 (normalized annual units). After a disturbance (e.g., a wildfire)
reduces ETrre, the different models predict various degrees of streamflow change, which is mediated by the potential for

compensating increases in ETowmer_(e.g., soil evaporation and understory ET). In the “disturbance response” panel, the arrows

illustrate the direction and magnitude of the water balance changes predicted by each model. In the “streamflow bias” panel, the
resulting model predictions are compared to measured streamflow, showing how some models could exhibit a bias after disturbance
due to uncertain estimation of water balance changes. In this hypothetical example, we assume that Qobserved increases by 1 unit after
disturbance, matching the prediction of Model 3.

We build on this conceptual example of the interaction between equifinality, disturbance, and nonstationarity (Fig. 1) to
consider how the bias shift metric can help select parameter sets with enhanced physical fidelity and greater predictive
confidence. The initial water balance of Model 1 is dominated by ET v, leading to a large streamflow gain and a positive bias
shift (tendency toward over-prediction of post-disturbance streamflow). Conversely, Model 2 has a large ET omer component,
which compensates for the comparatively small reduction in ET v, leading to a negligible streamflow gain and a negative bias
shift (tendency toward under-prediction of post-disturbance streamflow). Finally, Model 3 has more precipitation than the
other models and a more balanced combination of ET 1rec and ETorer, leading to a medium streamflow gain and stationary bias.
In this case, Model 3 should be preferred due to its negligible bias shift, which would help achieve a better prediction of AET

and AQ and also help constrain uncertainty in the underlying parameterization.
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The-interaction-of equifinality-and-As illustrated in Fig. 1, meteorological uncertainty (e.g.. a precipitation bias) can interact

with uncertain model parameterizations, contributing to uncertainty in the streamflow response to disturbance (Elsner et al.

2014). Basin-scale meteorology data are highly uncertain in mountain regions (e.g., Lundquist et al. 2015, Henn et al. 2018

Schreiner-McGraw and Ajami 2022), and whatever assumptions are made about the meteorology can cause compensating

inaccuracies with other calibrated parameters (Elsner et al. 2014). For example, overestimating basin-scale precipitation may

cause the model to simulate a larger ET .. component and a corresponding large change in post-fire water balance partitioning

(Model 3 in Fig. 1), whereas underestimating basin-scale precipitation could limit the predicted post-fire streamflow change

since the pre-fire P-Q residual is smaller (Models 1-2 in Fig. 1). From a Bayesian perspective, we can view the data and model

as a combined inferential system, which enables us to constrain uncertainty in the interactions between uncertain meteorology

and uncertain_hydrology by generating suitable ensemble samples (Kavetski et al. 2003).is—+arely—addressed—in—_Thus

uncertainty in the meteorological forcing data will contribute to uncertainty in our estimate of post-fire streamflow changes.

Equifinality has been neglected in many process-based simulations: of environmental disturbance. In contemporary studies,

single parameter sets are sometimes used with or without site-specific calibration (e.g., Furniss et al. 2023, Abolafia-
Rosenzweig et al. 2024). When ealibratedparameter ensembles are used, uncertainty propagation is commonly limited to
subsurface parameters and meteorological biases (e.g., Shields and Tague 2012, Saksa et al. 2017, Boisramé et al. 2019). We
expect that latent uncertainty in vegetation parameters may contribute an unconstrained source of uncertainty in studies of
ecohydrological disturbance that do not account for vegetation parameter equifinality. Conversely, model equifinality can be
reduced by leveraging additional types of information beyond traditional streamflow calibration metrics (Kelleher et al. 2017).
One unexplored approach to equifinality reduction is evaluating the stationarity of model biases after environmental

disturbance; (e.g., bias shift in Figure 1), which we consider here.

In this study, we leverage a large wildfire as a “natural experiment” to test the hypothesis that quantifying stationarity across
pre- and post-disturbance periods can reduce equifinality and improve the predictive confidence of a process-based
hydrological model. Specifically, we apply the Distributed Hydrology Soil Vegetation Model (DHSVM, Wigmosta et al. 1994)
to simulate streamflow changes attributable to the Creek Fire in the Sierra Nevada mountains (California, USA), which burned
56% of the forested area in our 4,244 km? study watershed (Stephens et al. 2022, Ayars et al. 2023). We expect that this drastic
landscape-scale environmental disturbance should have a clear impact on regional-scale water fluxes, providing an
oppertunitya natural experiment to test whether ecohydrological model process representations are robust to environmental
disturbance. We leverage a multi-objective calibration of vegetation, snow, subsurface, and meteorological bias-correction
parameters to address two research questions:

(1) How does calibration equifinality impact process-based simulations of the hydrological response to a megafire?

(2) Can we reduce equifinality and uncertainty by testing the model’s representation of hydrological change?
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2 Methods
2.1 Study Area and Data

Our study watershed encompasses the Upper San Joaquin River Basin above the outlet of Millerton Lake, a total of 4,244 km?
with an elevation range of 100 to 4,200 m (Fig. 2A). The 2020 Creek Fire burnt 1,540 km? of mixed conifer and scrub forest,
including 1,481 km? within the study watershed (56% of the forested watershed area). Landsat-based data from Monitoring
Trends in Burn Severity (MTBS, Fig. 2B) indicate that 16% of the Creek Fire exhibited high burn severity and 30% exhibited
moderate severity (Eidenshink et al. 2007, MTBS Project 2022). However, using a longer time period for pre- and post-fire
imagery, Stephens et al. (2022) estimate 41% high severity and 35% moderate severity, illustrating the proliferation of

uncertainty in disturbance assessments.
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Figure 2: Maps of the study watershed: (A) elevation and watershed location in the U.S. State of California, (B) 2020 Creek Fire
burn severity-from-MTBS, (C) pre-fire and (D) post-fire forest canopy cover-froem-RCMAP. Tick marks indicate 10 km intervals-in
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We represent fire disturbance in DHSVM by adjusting maps of vegetation properties. AHCanopy cover maps are projected to

our selected DHSVM resolution of 90 m_using nearest-neighbor resampling to preserve the categorical attribute of tree

presence/absence. The Landsat-based RCMAP data provide yearly fractional cover estimates for trees and shrub/herbaceous
vegetation at 30 m resolution (Rigge et al. 2021a,b). We use the 2011-era RCMAP data as a pre-fire baseline and the 2021-era
RCMAP data to capture the effects of the 2020 Creek Fire (Fig. 2C-D). We also update the vegetation maps in 2013, 2014,
and 2018 to reflect smaller fires in those years. The DHSVM vegetation maps are updated on October 1% in the year of a fire,

i.e., about one month after the September 2020 Creek Fire ignition. The October 1% date is used for annual model updates

because this date represents the start of a new water year, and Sierra Nevada watersheds are typically near their driest condition

around this time of year, which limits the impact of model changes on simulated hydrological fluxes. Vegetation is classified

based on the species (when available) or functional type (e.g., mixed conifer forest) using Landfire data (2022), and abiotic
land surface classes are derived from NLCD (Dewitz and U.S. Geological Survey 2019). Landfire and RCMAP provide tree
and shrub height data, respectively. Tree leaf area index (LAI) is estimated empirically from fractional cover following

Pomeroy et al. (2002), which is reproduced as Eq. (1) of Goeking and Tarboton (2022b). Satellite-based optical LAI estimates

are highly uncertain in mountain environments due to saturation at the high LAI values often present in mature conifer forests

and the inability to resolve 3-dimensional canopy structure that controls LAI (Zolkos et al. 2013, Winsemius et al. 2024). Thus.

we use the fractional cover relationship to constrain the spatial patterning of LAI, but the uncertain LAI magnitude is estimated

heuristically through calibration. Vegetation transpiration is calculated by DHSVM based on the vegetation type and local

weather, soil moisture, and light in each grid cell (Wigmosta et al. 1994). Baseline values of minimum stomatal resistance are
estimated from species-level field studies as detailed in the Supporting Information of Boardman et al. (2025)—Fractional
eover; LAL) and-stomatal resistanee-are refined by calibration relative to baseline (Sect. 2.2).

Spatial maps and parameter values for DHSVM are collated from a wide range of literature and field studies, as detailed in
Boardman et al. (2025)-and Boardman+(2023). We briefly summarize key setup procedures here. Subsurface properties are
estimated by disaggregating regional soil survey databases (Gupta et al. 2022, Soil Survey Staff 2022) using Random Forest
models trained on topographic metrics (Breiman et al. 2002). In the updated version of DHSVM used here, streamflow in
channels is bidirectionally coupled to the groundwater level in each grid cell, and the maximum network extent is derived from
the National Hydrography Dataset (U.S. Geological Survey 2019) with channel geometry from regional regressions (Bieger et
al. 2015). Meteorological data from gridMET (Abatzoglou 2013) are disaggregated to a 3-hour timestep using MetSim
(Bennett et al. 2020). Modeled snowfall is distributed in proportion to the pixel-wise maximum observed snow water
equivalent (SWE) pattern derived from Airborne Snow Observatory (ASO) data in the study watershed (Painter et al. 2016),
which implicitly accounts for snow transport (Vogeli et al. 2016). Regional snow/rain partitioning parameters are adopted from
Sun et al. (2019).
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2.2 Model Calibration

We calibrate 14 sensitive and uncertain parameters in DHSVM that control aspects of the meteorology, vegetation, subsurface,
and snowpack dynamics (Table 1), Supplemental Figure S4). While most of these parameters are widely recognized as suitable
for calibration (Cuo et al. 2011, Du et al. 2014), precipitation and temperature biases are less frequently included in the
calibration of distributed process-based models despite considerable uncertainty in gridded meteorological data. Among

gridded meteorological datasets, there is a mean relative difference of 21% for annual precipitation in our study watershed

(Henn et al. 2018), and misestimation of large storms can lead to yearly biases of about 20% across the Sierra Nevada
(Lundquist et al. 2015).«(Henn—et-al—2048)—We_Similarly, gridded meteorological datasets have mean air temperature

differences as large as £8 °C in the Sierra Nevada, and basin-average uncertainty is lower but still on the order of several °C

(Schreiner-McGraw and Ajami 2022). Compensation between unknown errors in the meteorological data, model structure

and parameter calibration can potentially contribute to spurious goodness-of-fit metrics with hidden physical deficiencies. This
is especially the case in environmental disturbance studies, as we expect that interactions between meteorological uncertainty
and parameter equifinality may contribute to the overall uncertainty of disturbance simulations (Fig. 1);-but-this-uncertainty
in—hi i biases—were—assumed—zero-1). Critically, this uncertainty would remain hidden if

meteorological biases were assumed to be negligible. Because perfectly resolving the weather data with infinite precision is

not feasible across a large, rugged mountain region, the robust approach is to propagate meteorological uncertainty into our

final results (the post-fire hydrological change in this case), so that our conclusions include the quantified uncertainty caused

by the model-data-calibration interaction. We view the combined meteorological data and hydrological model as a single

inferential system, thereby acknowledging that the meteorological data themselves are based on various uncertain observations

and empirical model assumptions (Abatzoglou 2013). In a Bayesian context, the goal of our calibration can be understood as

sampling the probability of the calibration data (streamflow and snowpack observations) given a particular combination of

model parameters and meteorological assumptions: P(streamflow + snowpack observations | model + meteorology). Because

we lack a closed-form likelihood function for spatially distributed hydrological models like DHSVM, we estimate the unknown

parameters of this whole weather-model system using an informal approximation based on traditional hydrological model

calibration objective functions (Beven and Binley 1992).
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Category Parameter Range Primary Process Controls
Precipitation Bias £05% Net wat‘er balance input, interannual varlgblhty in
water yieldbalance, snowpack accumulation
. Snow/rain partitioning, snowpack accumulation and
+4 © . S
Meteorology Temperature Bias 4% melt, potential evapotranspiration (PET)
Tem}l);:::leméiquapse -8 to -2 °C/km Spatial distribution of snewsnowpack and PET
0, 0,
Tree Fractional 30 A) t0 200% of Canopy interception and transpiration, understory and
Cover baseline, each cell < snowpack shading
100% cover
Vegetation Tree Leaf Arca 30% to 200% of Canopy interception capacity, overstory transpiration
Index (LAD) baseline Py P pacity, Ty transp
Minimum Stomatal 50% to 200% of Overstory and understory transpiration
Resistance baseline Y v P
Soil Depth 11010 m Lateral transrr_nsswny, root zone groundwater access,
storage capacity
Hydraulic 10 to 102 m/s Lateral transmissivity, vertical recharge rate (by
Conductivity anisotropy ratio), surface/subsurface flow partitioning
Exponential . . ..
Subsurface Decrease in 107 to 10° [unitless] Lateral transmissivity, vertical conductivity profile,
.. baseflow recession, water table depth
Conductivity
Porosity 0.3 to 0.6 [fractional] !)ynaml'c storage range, water table response to
infiltration
Field Capacity 0.1 to 0.4 [fractional] Dyr}amlc storage range, soil water retention, plant
available water
Albedo Decay Rate o . .
(Accumulation) 0.7 to 0.99 [unitless] Snowpack energy balance, maximum accumulation
Albedo Decay Rate -0.3 to 0.0 relative to Snowpack energy balance, snowmelt rate, snow cover
Snow . .
(Melt Season) accumulation duration
Albedo Reset 4 0 AlbedeRelative albedo increase associated with new
Snowfall Scale 1070 107 m SWE snowfall of a-givenvarying depth

Table 1: Prior ranges and process controls of DHSVM parameters calibrated in this study. All vegetation and subsurface parameters
listed here are defined by spatially variable maps, and calibration ranges determine the area-average value around which the pattern
is rescaled.

Multiple parameters combine to control simulated processes. For example, area-average LAI (related to total interception loss)
is the product of tree-scale LAI with grid-scale fractional cover. Tree transpiration is determined by fractional cover, LAIL
stomatal resistance, available soil water (related to subsurface parameters), and other factors. Lateral transmissivity in the
saturated subsurface is controlled by three parameters: soil depth, surface hydraulic conductivity, and the exponential decrease
in conductivity with depth. Cross-compensation among interrelated parameters thus contributes to equifinality. Within our 14-
dimensional calibration space, 23 parameter pairs have correlations that are significant at p < 0.05 (Supplemental Fig. S1).
Furthermore, perturbing one aspect of the model can lead to cascading effects due to the coupling of ecohydrological processes
and spatial water connectivity in the model. For example, lateral hydraulic conductivity is coupled to vertical conductivity by

anisotropy ratios dependent on the soil textural classification (Fan and Miguez-Macho 2011), so calibrating lateral conductivity
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also influences groundwater recharge rates from losing stream reaches, which in turn can affect soil evaporation and
transpiration from riparian trees. Spatial heterogeneity in modeled soil and vegetation properties ( Sect. 2.1) further complicates
all of these interactions, e.g., different parts of the landscape are relatively more sensitive to calibration of different p arameters

depending on the baseline map patterns.

Given the complexity of expected interactions, we define seven objective functions to constrain parameters based on different

hydrological signatures (Table 2). Fhree-objeetives-are-based-on-daily-streamflow—which-isreconstructedat MillertonLake

2024).Streamflow is estimated at the outlet of Millerton Lake (Fig. 2) by reconstructing observations to remove the effects of

artificial flow regulation (California DWR 2024). Millerton Lake unimpaired outflows are estimated assuming sub-daily

surface routing times by summing the daily change in storage, canal and dam releases, surface evaporation, and storage changes

at cight smaller upstream reservoirs (Huang and Kadir 2016). Note that the reconstructed streamflow timeseries used in this

study (called “full natural flow” by the California Data Exchange Center) is based on an explicit mass balance equation applied

directly to the respective storage and flow measurements, not model output, unlike various other meanings of “natural flow”

that are sometimes applied to California water datasets (Huang and Kadir 2016). The reconstructed streamflow timeseries

(hereafter “observed streamflow”) represents the actual effects of the Creek Fire (and other disturbances) because the

reconstruction procedure is directly based on measurements at specific diversion, storage, and outflow points, which are

directly responsive to the basin hydrological conditions. Three objective functions are based on a cleaned version of this daily

streamflow timeseries (spurious negative values during low-flow periods and other missing values are imputed). Two objective

functions similarly target annual percent error in the annual water yield and the April-July water yield, which is a well-
established benchmark for snowmelt runoff modeling in the Sierra Nevada (Pagano et al. 2004). Two objective functions are
based on the eight-year (2017-2024), 30-survey database of ASO SWE maps in the study area, targeting both the spatial
distribution at the 90 m grid scale and the percent error in total volume across surveys. Hydrograph and water yield objectives
are calculated for water years 2015-2024, which includes six years before and four years after the Creek Fire. By calibrating
across this disturbance (vegetation maps updated during calibration), we automatically reject parameter sets that fail to provide

reasonably accurate estimates of both pre- and post-fire streamflow.
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Objective Best Worst . .
Category Function Value Value Target Hydrological Signatures
NSE 089 080 Hydrogr‘aph shape (hlgh flows), ralnfall—ruanf response,
. snow/rain partitioning, peak flow and recession timing
Daily Hydrograph shape (low flows), baseflow recession
Streamflow Log-Scaled NSE 0.85 0.80 S . > .
characteristics, multi-year storage/deficit effects
(2015-2024) ™ - - - -
>95"-Percentile 26m¥s | 74 ms High flow magnitude, shape of flow duration curve
RMSE independent of timing
' Yearly MAPE 4% 9% Bulk water balance, interannual variability across wet and
Water Yield dry years
(2015-2024) April-July MAPE 7% 10% :ir:;ei;a;mual variability in snowmelt runoff efficiency and
Snow Maps Pixel-Wise SWE 023m 025m Spatial distribution of snow accumulation and ablation,
(30 ASO RMSE ) ) absolute magnitude of SWE in different years
Surveys, Total SWE 18% 329 Evolution of snowpack volume between surveys,
2017-2024) Volume MAPE ° ° | interannual variability

Table 2: Calibration objective functions used in this study with descriptions of the primary hydrological signatures constrained by
each objective. The best (worst) value given here is the lowest (highest) error achieved by any of the Pareto-efficient parameter sets
in our calibrated 30-member behavioral ensemble. NSE = Nash Sutcliffe Efficiency (identical to-R*>for statistical models);, RMSE =
root mean square error, MAPE = mean absolute percent error.

To efficiently sample behavioral parameter sets from the 14-dimensonal space of potential interactions, we apply a multi-
objective Bayesian optimization scheme (Jones et al. 1998). After an initial Latin hypercube sample of 320 parameter sets
(Dupuy et al. 2015), we perform parallel particle swarm optimization (Kennedy and Eberhart 1995, Zambrano -Bigiarini et al.
2013) using the expected hypervolume indicator (Emmerich et al. 2011, Binois and Picheny 2019) to sample promising
parameter sets based on Gaussian Process surrogate models of the objective function response surfaces (Roustant et al. 2012).
After six optimization generations, we have tested a total of 600 parameter sets (n.b. this requires ~950 days of CPU time on

2.5 GHz servers, andbut the elapsed wall-clock time is several weeks sineebecause multiple parameter sets are tested in

parallel). Ofalt-the-While this number of tested parameter sets; may seem small by conventional standards considering the 14-

dimensional search space, we note that each new parameter sample is selected after an independent optimization procedure

using 100 to 1,000 particle swarm samples from the objective function surrogate models. Thus, our overall calibration explores

the objective function tradeoffs across more than 160,000 parameter sets, but only 600 of these are actually tested in DHSVM.

Because testing hundreds of thousands of parameter sets directly in DHSVM would require prohibitive amounts of

computational expense, this Bayesian surrogate optimization procedure is essential for efficiently selecting parameter sets that

have the best likelihood of substantially improving the Pareto frontier.

As expected for any high-dimensional multi-objective optimization problem, there is no single “best” parameter set. Rather.

better at one objective and worse at

arameter sets constitute a Pareto frontier, with some performing slightl

the behavioral

another. One way of understanding this phenomenon is that the parameter sets with the absolute highest values for any single

objective are overfitting to noise in the data, while parameters that perform reasonably well at a variety of objectives are

11



290

295

300

305

310

320

intuitively more likely to capture salient hydrological information. Narrowing the range of acceptable parameter sets requires

case-by-case determination of what skill level is satisfactory for a particular watershed-model combination because a higher

skill might be achieved in hydroclimates that are conceptually simpler to simulate. At the same time, it is necessary to retain

enough parameter diversity to explore our research questions related to the interaction between equifinality and disturbance.

Based on prior experience modeling with DHSVM in the Sierra Nevada (e.g., Boardman et al. 2025), we find that the best

model skill we can generally achieve is around a daily NSE of approximately 0.8 or higher and yearly error of approximately

10% or lower. Any single criteria is insufficient for narrowing the parameter space to a reasonable fraction of the total

calibration space. For example, over 30% of all tested parameter sets have daily NSE > 0.8 (none have NSE > 0.9), but some
of these high-NSE parameter sets are clearly inferior, e.g., with yearly MAPE as high as 35%. Combining multiple thresholds,

we find that 48 parameter sets qualify as “behavioral” by satisfying the-folowingsubjeetive-eriteria:-daily NSE > 0.8, daily
log NSE > 0.8, yearly MAPE < 10%, April-July MAPE < 10%, and Pareto-cfficiency across all objectives. We do not directly

apply thresholds to the snow calibration metrics because the variability of these objective functions is already strongly

constrained within the behavioral ensemble (e.g., the SWE RMSE coefficient of variation is 2% within the behavioral ensemble

compared to 59% across all 600 parameter sets). Nevertheless, snow-based objective functions still constrain the behavioral

ensemble because all behavioral parameter sets must be Pareto-efficient across all seven objectives. Some parametersamples

are-behavioral models have very similar parameter sets, so for efficiency we further select 30 diverse samples by iteratively

choosing the behavioral parameter set with the maximum mean parameter separation from previously selected samples. These
30 parameter sets define the behavioral DHSVM ensemble referenced hereafter. We note that our conclusions are robust to
random sub-selection of fewer models, as long as at least ~10 parameter sets are used (Supplemental Fig. S2). We validate the

performance of the selected parameter sets by simulating the 10 year period prior to the calibration period, i.e., water years

2005-2014, using the same objective functions.

To test whether our results are sensitive to our choice of a calibration period spanning a major disturbance, we repeat the entire

calibration procedure over the time period immediately before the Creek Fire (water years 2011-2020). Unlike our primary

calibration, which spans 6 years before the fire and 4 years after the fire, all 10 years of the “pre-fire calibration” have negligible

change in the model vegetation maps. The pre-fire calibration is initialized with the same Latin hypercube sample of 320

random parameter sets, after which we perform six generations of multi-objective Bayesian optimization following the same

procedures as the primary calibration discussed previously, and we select behavioral parameter sets using the same objective

function criteria. Parameter sets resulting from this pre-fire calibration are completely independent from our primary

calibration, so we use these results to test whether the model yields similar results when calibrated on a period without major

vegetation map updates.
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2.3 Disturbance Simulations

We investigate the ecohydrological effects of the Creek Fire by comparing model simulations using dynamic and static
vegetation maps to quantify the fire effect relative to a no-fire control scenario. For each of the 30 DHSVM parameter sets,
we simulate streamflow for the past 20 years (water years 2005-2024) with either static 2011-era vegetation maps or dynamic
vegetation maps updated in 2013, 2014, 2018, and 2020. The 2020 Creek Fire accounts for most of the vegetation disturbance
in the study area, with a 42% reduction in watershed-average RCMAP tree fractional cover compared to 2-3% reductions
associated with the 2013, 2014, and 2018 fires. Differences between fire-aware (dynamic vegetation) and no-fire control (static
vegetation) simulations define the modeled disturbance effect. In addition to comparing daily streamflow, we also compare

annual water yield and ET fluxes between fire-aware and no-fire control scenarios.

2.4 Detecting and Correcting Nonstationarity

We calculate a “bias shift” metric by comparing observed streamflow with modeled streamflow from the fire-aware (dynamic

vegetation) simulations. The bias shift metric is useful in two contexts. First, it is useful for understanding and refining the

behavior of models, potentially including reducing equifinality by selecting models with near-stationary bias. Second, it is

useful for refining our prediction of the real-world hydrological response to a disturbance by estimating what a hypothetical

model with stationary error would have predicted.

The 30-member behavioral DHSVM ensemble has a reasonably small mean streamflow bias for the overall 2005-2024
evaluation period (interquartile range among parameter sets of +2%). However, some parameter sets have different mean
streamflow biases on pre- and post-fire periods, congruent with our conceptual model in Fig. 1. We theorize that over- or
under-estimation of the disturbance effect on streamflow may result in a matching positive or negative bias shift after
disturbance, defined as the difference in mean streamflow bias between post-fire and pre-fire periods:

Bias Shift = (m - m)Post—Fire - (m - m)Pre—Fire (1)
We correct for the bias shift of different parameter sets by developing a “metamodel,” i.e., a statistical model trained on
DHSVM outputs. The bias shift metric, Eq. (1), is averaged across multiple years, whereas we expect that each individual year
may have a larger or smaller streamflow response due to variable interactions between climate and vegetation. In the case that
the streamflow response is purely energy-limited (P >> ET), we would expect the same post-fire streamflow gain in all years;
conversely, in a water-limited case (P closer to ET magnitude) we would expect a 1:1 scaling between annual precipitation
and the post-fire streamflow gain. Between these two endmember scenarios, we expect that the magnitude of the simulated
streamflow change in any particular year may be offset and/or fractionally re-scaled relative to the mean multi-year streamflow

change. Thus, we posit a linear relationship between the multi-year mean bias shift and the simulated streamflow response to

fire in any particular year, AQFir. The linear relationship between bias shift and yearly AQgir is supported by graphical analysis
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of bivariate scatterplots, as illustrated subsequently in Fig. 5. In other watersheds or disturbance scenarios, it might be necessary

to posit a nonlinear relationship with the bias shift, which could again be detected from analogous bivariate scatterplots.

In a Bayesian statistical framework, we treat each DHSVM parameter set as an independent realization of the possible post-
fire response, with a stochastic error term describing scatter in the hypothesized linear relationship between bias shift and
AQFire. We define the metamodel using a normal distribution with mean determined by the linear bias shift vs. AQFir
relationship and uncertainty defined by the sample standard deviation 6, which can be expressed in Bayesian sampling notation
as:

AQpire ~ normal(cy + c; * Bias Shift, o) )
To estimate the values of ¢y, ¢1, and o (with quantified uncertainty in all three parameters), we generate 1,000 Bayesian samples

using the Hamiltonian Monte Carlo algorithm with two chains (500 samples per chain) after 10,000 warmup iterations (Stan

Development Team 2023). The metamodel is fit using all 30 pairs of bias shift and AQFi. values calculated for each parameter
set in the behavioral DHSVM ensemble, with ¢y, ci, and o re-fit for each of the four post-fire years. We subsequently generate
a conditional prediction of AQFjr in each year by setting the bias shift equal to zero in Eq. (2), which yields a normal distribution
with mean ¢ and standard deviation ¢. Unlike simple least-squares linear regression, uncertainty in the metamodel parameters
(co, c1, and o) is propagated into our conditional predictions through the Bayesian sampling routine, which considers 1,000
different combinations of plausible co, ¢, and ¢ values. Sampling the posterior distribution of Eq. (2) with bias shift set to zero
yields a conditional distribution describing the expected post-fire streamflow change and uncertainty of a hypothetical

DHSVM simulation with zero bias shift.

2.5 Empirical Regression Model

To compare statistical and process-based approaches to ecohydrological disturbance attribution, we also apply an empirical
annual water balance model using Bayesian multiple linear regression. We posit a simple four-parameter lumped empirical
model that estimates the annual runoff efficiency (Q / P) as a linear function of annual precipitation (P), the prior year’s
streamflow (Qrastyear) to account for multi-year storage or deficit effects, and the aridity index calculated from annual potential

evapotranspiration (PET / P). Fhe-medelstruetureNote that the annual PET used in the empirical water balance model is pre-

calculated as part of the gridMET dataset (Abatzoglou 2013) from Penman-Monteith reference evapotranspiration, but PET is

calculated separately within the DHSVM evapotranspiration module (Wigmosta et al. 1994), similarly using a Penman-

Monteith implementation. The structure of the empirical model is adapted from a similar regression approach applied to

analyze seasonal water supply in adjacent watersheds (Boardman et al. 2024). We assume that each year’s actual runoff
efficiency is randomly sampled from a normal distribution with standard deviation ¢ and mean defined by the linear model,

expressed analogously to Eq. (2) in Bayesian sampling notation:
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Q PE'
7~ normal (CO + ¢ * P+ ¢y * Quastyear + €3 % P "7)

We constrain the empirical model using pre-fire data and compare its post-fire predictions with measured post-fire streamflow.
Meteorological data required for Eq. (3) are aggregated from the same gridMET data used for DHSVM (Abatzoglou 2013)
over water years 1980-2020. As for Eq. (2), we generate 1,000 Bayesian samples of the empirical model parameters (co, c1, c2,
and o) using Hamiltonian Monte Carlo (Stan Development Team 2023). The empirical model achieves R? = 0.91 for annual
variations in runoff efficiency across the 41-year fitting period. By sampling the model’s posterior predictive distribution using
meteorological data from 2021-2024, we generate 1,000 counterfactual estimates of annual streamflow in each of the post-fire
years. The difference between measured post-fire streamflow and predicted streamflow from the stationary statistical model

provides an estimate of the streamflow change attributable to disturbance.
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3 Results

The behavioral ensemble of 30 calibrated DHSVM parameter sets all satisfactorily—reproduce observed streamflow

hydrographs with a close match to peak flow and low flow magnitudes, interannual variability, and seasonal timing (Table 2,

Fig. 3). Daily NSE values for the 2015-2024 calibration period vary between 0.80 and 0.89 among the different parameter sets
(log NSE 0.80- to 0.85), with similar statistics on the 2005-2014 validation period (NSE 0.76-0.88, log NSE 0.80-0.8987). All
behavioral parameter sets also achieve satisfactory-NSE (of 0.80- to 0.8789 and log-scale NSE ¢of 0.76- to 0.84} considering

just the four years after the Creek Fire, which is considered satisfactory because the model skill is similar on pre- and post-fire

periods. Additionally, the post-fire daily NSE of at least 0.80 achieved by all behavioral DHSVM parameter sets is substantially

higher than the post-fire daily NSE of -0.13 to 0.60 achieved by a different distributed hydrological model (with dynamic

vegetation and other fire-aware updates) after a megafire in other Sierra Nevada sub-watersheds (Abolafia-Rosenzweig et al.

2024).-—Fhe Without the vegetation map updates, the behavioral ensemble performs significantly worse on the post-fire period

but streamflow skill is still reasonably high: the mean NSE is lower by 0.06 in the no-fire control scenario (p < 0.001, Welch

one-sample t-test) and the mean log NSE is lower by 0.02 (p < 0.001). Furthermore, the no-fire control scenario yields a mean

post-fire bias between -17% and -9% (static vegetation systematically underestimates post-fire streamflow), while in dynamic

vegetation mode the mean post-fire bias varies bybetween -9% teand +6%-% (Supplemental Figure S3). Comparing fire-aware
and no-fire eentrelcounterfactual scenarios, the behavioral ensemble indicates a bulk streamflow increase of +2 to +17% after
the Creek Fire (median +12%). DHSVM also indicates a shift towards earlier snowmelt runoff after the Creek Fire;particularly

in-the-snowsy. Because our post-fire implementation only changes the vegetation maps (no change to modeled soil or snow

albedo), the prediction of earlier snowmelt runoff is primarily a result of increased energy reaching the snowpack due to

reduced canopy shading. This snowmelt timing effect is most noticeable in the 2023 water year, which was a year with

extremely high snow accumulation (Marshall et al. 2024).-
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Figure 3: Modeled and measured daily streamflow hydrographs (top panel) and streamflow differences between fire-aware and no-
fire control simulations (bottom panel). Both panels show results from 30 calibrated “behavioral” parameter sets (Sect. 2.2).

Uncertainty in the streamflow response to disturbance is large relative to the size of the effect, even after a megafire. The
difference in total post-fire streamflow volume between fire-aware and no-fire control scenarios has a coefficient of variation
of 41%. Some parameter sets predict up to a 650% larger annual streamflow response than other parameter sets (inter-model
range of +13 to +97 mm/yr). Relative uncertainty is higher in dry years, with the simulated streamflow response in 2021
varying between +3 mm/yr and +47 mm/yr across different parameter sets (1,400% range). The predicted streamflow change
after the Creek Fire is on the same order of magnitude as stochastic error in the annual water balance (Supplemental Fig. S3),
which intuitively explains why the disturbance response remains uncertain despite direct calibration of pre- and post-fire

streamflow (Fig. 3).
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Uncertainty in the post-fire streamflow response is linked to equifinality in modeled water balance fluxes (Figs. 1, 4). To
qualify as “behavioral,” parameter sets must satisfactorily estimate the annual water balance (MAPE < 10%), but the model
can achieve this in different ways. Some parameter combinations suggest that transpiration and interception loss from
vegetation accounts for up to 95% of total pre-fire ET, while others suggest a vegetation contribution as low as 77%, with the
balance contributed by evaporation from abiotic surfaces (stream channels and soil, including rock above treeline). Relatively
dense initial forests (high area-average LAI) are associated with large decreases in post-fire transpiration and interception loss
(Pearson r = -0.92, p < 0.01). Low transmissivity is associated with increases in post-fire soil evaporation and channel

evaporation (r = -0.99, p < 0.01, both variables log-transformed).
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Figure 4: Difference in ET fluxes between fire-aware and no-fire control simulations visualized relative to model parameter
uncertainty. Each point represents a single behavioral parameter set (N = 30) with all values spatially averaged within the watershed.
The area-average leaf area index (LAI) is aggregated within the pre-fire forested area from maps of tree-scale LAI and grid-scale
fractional cover, and the area-average transmissivity is aggregated from maps of soil depth, conductivity, and exponential decrease
using the DHSVM transmissivity equations (Table 1). Trend lines indicate the least-squares fit and 90% confidence interval of the
best-fit linear estimator.

Compensating errors in equifinal parameter sets can produce compounding discrepancies after disturbance. Not only do some
parameter sets indicate much larger changes in individual fluxes, those with the smallest reductions in vegetation ET also
exhibit the largest fractional compensation (up to 76%) from increased abiotic evaporation (r = 0.71, 0.01). A similar
compensation between modeled overstory and understory ET components is illustrated by Boardman et al. (2025). Low

calibrated transmissivity implies slower groundwater recharge and shallower flowpaths, contributing to higher soil
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evaporation, which compensates for low vegetation ET. These parameter sets are primed for large increases in evaporation
when soil moisture increases in de-forested areas after fire. Consequentially, there is a negative correlation (r = -0.93, p <0.01)

between the fraction of pre-fire ET contributed by abiotic evaporation and the magnitude of the post-fire net ET reduction.

Evaluating the model bias shift (Eq. 1) can help escape this morass of uncertainty. Across the 30-member behavioral ensemble,
there is a strong correlation (r = 0.96-0.99 depending on year, p < 0.01) between the mean streamflow bias shift after
disturbance and the annual streamflow change attributable to fire (Fig. 5). Lines in Fig. 5 correspond to Eq. (2), and the
horizontal axis is defined by Eq. (1). Bayesian sampling of a linear model conditioned on zero bias shift yields an estimate of
the uncertainty in the vertical intercept (Sect. 2.4), which is the predicted streamflow change of models with stationary bias.
Comparing the annual streamflow errors of models with positive or negative bias shift (Supplemental Fig. S3), we note that
the positive-shift models tend to have more-positive errors on the pre-fire period compared to negative-shift models, but this
stratification reverses after the Creek Fire. This reversal of model over- and under-prediction after disturbance is consistent
with our conceptual model in Fig. 1. Additionally, as shown by the shape-size in Fig. 5, the models with the largest over-
prediction have anomalously high overstory LAI, and vice versa, which is similarly consistent with the conceptualization of

ETtree and ETomer equifinality in Fig. 1.



470

475

480

+150
Water Year
Bias Shift = AN2021
+125—] 02022
A (Q Model — Q Meas.)
m 2023
5 100 V2024
£
= T Leaf Area
i Index
c (m?/ m?)
< +50— A1
A2
+25— A 3
A
No-Fire « Under-Prediction | Over-Prediction —
Control | [
-50 -25 Stationary +25 +50
Bias

Bias Shift After Disturbance (mm / yr)

Figure 5: Annual post-fire streamflow change visualized relative to the mean bias shift after disturbance for all 30 parameter sets.
Parameter sets with a shift towards overestimation predict a relatively large streamflow response to disturbance, and vice versa.
Parameter sets with near-stationary bias are assumed to give the most accurate estimate of changes due to disturbance. Trend lines
indicate the least-squares fit and 90% confidence interval of the best-fit linear estimator, distinct from the analogous Bayesian
regression in Eq. (2), which also propagates parameter uncertainty.

Eight parameter sets result in near-stationary bias (shift less than £10 mm/yr). This eight-member “stationary sub-ensemble”
demonstrates how considering bias shift after disturbance can reduce equifinality. Compared to 10* alternative sub-ensembles
of eight parameter sets each randomly selected from the 30-member ensemble, the stationary sub-ensemble has significantly
reduced uncertainty in LAI (p < 0.01) and transmissivity (p < 0.02), calculated from the cumulative distribution function for
the fractional uncertainty reduction of all 10* sub-ensembles. This uncertainty reduction associated with the stationary sub-
ensemble is 72% larger for LAI and 285% larger for log-transformed transmissivity compared to the median uncertainty
reduction of same-sized sub-ensembles selected randomly. The stationary sub-ensemble has mean 2011-era LAI between 1.9-
2.8 m?m?, which is 74% less uncertainty compared to the full behavioral ensemble range of 0.9-4.1 m?*m? (Fig. 5).

Analogously, the stationary sub-ensemble has 50% less uncertainty in log-transformed mean transmissivity despite order-of-
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magnitude residual uncertainty (108-1378 m?d). Meteorological uncertainty remains mostly unchanged in the stationary sub-
ensemble, with 3.7 °C and 15% uncertainties in temperature and precipitation biases, respectively, compared to 4.4 °C and
15% for the behavioral ensemble (no significant change relative to random sub-ensemble selection). This leads to similar
uncertainty in the stationary sub-ensemble’s post-fire evaporative index (ET / P) compared to the full ensemble (25-34% vs.
24-39% respectively). Among all 14 calibrated parameters (Table 1), only the melt-season albedo decay rate has a statistically
significant difference in the mean (p < 0.05, Welch two-sample t-test) between the stationary sub-ensemble and the full 30-
member ensemble. Instead, most of the equifinality reduction arises from shrinking the uncertainty of the parameter
distributions rather than changing their mean (Supplemental Fig. S4) and/or from constraining multi-dimensional parameter

interactions (Supplemental Fig. S1).

Compared to the full behavioral ensemble, the stationary sub-ensemble has slightly sub-optimal hydrograph fit (NSE 0.80-
0.85 vs. 0.89 max), but generally-better SWE volume error compared to the highest-NSE parameter set (MAPE of 18-27%

across 30 ASO surveys vs. 32% for the highest-NSE parameter set). The stationary sub-ensemble has statistically lower (worse)
mean NSE values compared to the 30-member ensemble (p <0.05) and approaches the threshold for significantly lower (better)
mean SWE volume percent error (p = 0.055). The >95"-percentile peak flow RMSE is also significantly worse (p < 0.05) for
the stationary sub-ensemble. Differences in log-scale NSE and annual or April-July water yield error are not statistically
significant. The improvement in snow skill despite a slight worsening of streamflow skill (Supplemental Fig. S5) may arise
from overfitting during calibration, which leads to a tradeoff between enhanced model physical fidelity (represented by the
near-zero bias shift and better snow performance of the stationary sub-ensemble) and minor degradation in the streamflow

performance metrics.

Empirical regression and process-based simulations both suggest an increase in streamflow after the Creek Fire, albeit with
different uncertainty ranges (Fig. 6). An empirical model (Eq. 3) fit to pre-fire data predicts relatively less post-fire streamflow
than observed, implying a total streamflow increase of +12% with a 90% credible interval of +5 to +18% assuming that each
year’s error distribution is independent. (The 90% credible interval represents the 5%-95" percentiles.) Although the four-year
total streamflow increase is significant at p < 0.01, for individual post-fire years we cannot reject the null hypothesis (no change
after disturbance) at the p < 0.01 level, and we cannot even reject the no-change hypothesis at the p < 0.1 level in 2021 or
2024. Compared to the pure statistical model based on the same meteorological data, our process-based modeling approach
yields remarkably similar uncertainty. All 30 behavioral DHSVM parameter sets indicate at least some streamflow increase in
each post-fire year, with a similar mean increase of +12% and a marginally wider 90% range of +3 to +17% across the
ensemble. Although the 90% uncertainty ranges are similar between DHSVM and the empirical regression, all of the DHSVM
parameter sets show at least some increase. Additionally, within individual years, the DHSVM uncertainty can be much lower
(e.g., in 2023, the DHSVM 90% range is +2 to +11%, while the empirical regression 90% credible interval is +3% to +23%).

The uncertainty of the empirical model benefits from considering all four years simultaneously;sinee because the empirical
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model assumes that each year’s fire effect is independent, while different DHSVM parameter sets are systematically biased
high or low across all post-fire years.
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Figure 6: Uncertainty distributions for the annual post-fire streamflow change relative to a control scenario with no fire. Empirical
regression results are estimated by comparing post-fire measurements with 1,000 random samples of a pre-fire multi-linear
regression model (Eq. 3). The DHSVM ensemble represents the difference between fire-aware and no-fire control simulations using

525 30 different calibrated parameter sets. The conditional metamodel predicts the DHSVM response subject to the requirement of
stationary bias using 1,000 random samples of the Bayesian regression in Eq. (2). (Note that the vertical axis is truncated at +200
mm/yr for increased visibility of most results.)

Compared to pure statistical or pure process-based approaches, a statistical metamodel trained on DHSVM results and
530 conditioned on bias stationarity can drastically reduce uncertainty. Using 1,000 random samples of the metamodel (Eq. 2), we
find a +11% increase in total post-fire streamflow with a 90% credible interval of +10 to +12%. The mean streamflow response
is 14 standard deviations above zero, confidently rejecting the no-change hypothesis. Moreover, interannual variability in the
conditional streamflow response is separable between all pairs of years at the p < 0.01 level. In contrast, raw DHSVM

simulations of the streamflow response in 2022, 2023, and 2024 are not mutually separable at the p < 0.05 level. Comparing
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90% credible intervals, the conditional approach reduces uncertainty in the total post-fire streamflow change by 80% compared
to the empirical regression and 82% compared to the behavioral DHSVM ensemble. Of course we cannot know precisely what
the true streamflow would have been without a fire, so some uncertainty must always remain, but our metamodel results

suggest that we can substantially reduce this uncertainty by fusing process-based and statistical approaches.

The independent pre-fire calibration (end of Sect. 2.2) yields similar predictions of the post-fire streamflow change

(Supplemental Figure S7). When applied to behavioral parameter sets from the pre-fire calibration, the conditional metamodel

predicts a 90% credible interval of +9% to +12% for the total post-fire streamflow change, which is remarkably close to the

independent estimate of +10% to +12% using the cross-fire (2015-2024) calibration. The conditional metamodel based on the

pre-fire calibration reduces uncertainty in the total post-fire streamflow (90% confidence interval) by 82% compared to the

empirical regression and 74% compared to the pre-fire behavioral DHSVM ensemble, which is again similar to the analogous

80% and 82% reductions (respectively) achieved by the cross-fire calibration metamodel. Regardless of whether DHSVM is

calibrated pre- and post-fire, or only pre-fire, the conditional metamodel provides consistent predictions of the additional

streamflow attributable to the Creek Fire (AQFirc).

4 Discussion

Hydrological models must include forest fires and other environmental disturbances to provide robust predictions for water
resource management, risk assessment, and operational planning. In 2021, the first year after the Creek Fire, our hybrid
modeling approach estimates that the additional streamflow attributable to forest disturbance provided 0.11 +0.03 km? (92,000
ac-ft.) of extra water to Millerton Lake (a major regional reservoir, Fig. 2), which is 18% +4% of the total water yield in a year
where drought conditions caused curtailment of downstream water rights (California DWR 2021). In the wet 2023 water year,
extra streamflow attributable to the fire totaled ~0.38 £0.04 km? (310,000 ac-ft., 7% of total water yield), equivalent to an extra
60% £7% of the reservoir storage capacity in a year with widespread flooding (California DWR 2023). (All uncertainty ranges
indicate the 90% credible interval.) These examples illustrate the potential for majerlandscape-scale forest disturbaneestike
forestmegafiresdisturbance to enhance water resources and/or exacerbate water risks (e.g., Boardman et al., 2025). Accurately

representing disturbance and accounting for other sources of nonstationarity should be a priority of ecohydrological modeling.

Our results suggest that equifinality demands more thoughtful consideration in hydrological model-based studies of
disturbance. At the same time, studies investigating disturbance have a unique and underutilized opportunity to reduce model
equifinality. Much of the spread in the DHSVM ensemble (Fig. 6) could be eliminated by reducing the number of calibrated
parameters or narrowing their prior range (Table 1). However, in typical landscape-scale simulations, we do not know the
“correct” parameter values. For example, there is considerable uncertainty in vegetation properties derived from satellite

imagery (Garrigues et al. 2008, Tang et al. 2019) or extrapolated from sparse field data (Meyer et al. 2016). Moreover, in
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modeling applications, “effective” parameters may subsume additional sources of structural or data uncertainty (Dolman and
Blyth 1997, Vazquez 2003, Were et al. 2007), and some quasi-empirical parameters (e.g., grid-scale hydraulic conductivity)
do not have single “correct” values (Beven 1993). Uncertainty in vegetation properties like LAI can produce significantly
different streamflow predictions (e.g., Bart et al. 2016 and Fig. 5 of this study), and latent uncertainty could cause systematic
biases (Fig. 4). Furthermore, even if vegetation properties could be tightly constrained, introducing parameter variability into
model experiments can reveal compensating ecohydrological processes (Figs. 1, 4), counterintuitively leading to higher
confidence in the statistical metamodel by providing datapoints for regression in Eq. (2). Nevertheless, reducing model
parameter uncertainty is generally desirable when justified, and our results show that a sub-ensemble of parameter sets with
near-stationary bias after disturbance can significantly reduce uncertainty in LAI (p < 0.01) and saturated-transmissivity (p <
0.02).

Using process-based models for post-disturbance predictions based on traditional streamflow calibration metrics can be
dangerously misleading. Describing model performance with simple goodness-of-fit metrics (e.g., NSE) is problematic in
general due to sampling uncertainty and other issues (Clark et al. 2021), but these metrics remain ubiquitous in modeling
studies (including this stadyone) due to their ease of application and simplicity of interpretation. Although these metrics are
useful for loosely identifying an initial ensemble of behavioral models, our results provide a clear example of the pitfalls in
blindly trusting NSE-based (or similar) calibration strategies. In particular, the four models with the highest daily NSE (0.88-
0.89) have anomalously small disturbance effects, and the parameter set with the absolute highest NSE underestimates the
post-fire streamflow change by 79% relative to the metamodel mean (Supplemental Fig. S6). These outlying parameter sets
are prebablypresumably compensating for unknown deficiencies in the model structure and/or forcing data, leading the model
to get a slightly higher NSE for what are apparently the wrong reasons. These undesirable and yet numerically optimal solutions
are endemic to high-dimensional optimization problems, an issue known as “reward hacking” (Amodei et al. 2016). Although
log-transformed NSE appears less vulnerable to reward hacking (Supplemental Fig. S6), the parameter set with the absolute
highest log NSE still underestimates the metamodel-based mean streamflow change by 58%. It is noteworthy that our ultimate
model evaluation metric (bias shift, Fig. 5) is not included in the calibration. If this metric were directly calibrated, it might be

susceptible to reward hacking, leading to unreliable inference in Eq. (2).

With care, process-based models can remain powerful tools for hydrological investigation. Despite a recent focus on machine
learning approaches to hydrological prediction (Ardabili et al. 2020, Xu and Liang 2021), purely empirical methods are limited
by the amount of available data, the ability to assign clear process attribution, and the potentially ambiguous interpretation of
nonstationarity (Slater et al. 2021). In the years immediately after a large forest disturbance (e.g., megafire), water manag ers
may require rapid estimates of the potential hydrological impacts without the luxury of waiting for more data to accrue.
Counterfactual model simulations can help isolate disturbance effects from stochastic weather and other variability, but it is

notoriously challenging to quantify the uncertainty of distributed process-based models. Direct uncertainty estimation based
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on subjective likelihood metrics (e.g., GLUE, Beven and Binley 1992) is statistically unjustified (Mantovan and Todini 2006,
Stedinger et al. 2008). Nevertheless, by using a subjective sample of models to constrain sensitivity (Fig. 5), we can perform
classical Bayesian inference (Eq. 2) to sample the relationship between an unknown outcome (e.g., the streamflow response
to fire) and an observational constraint (e.g., bias stationarity). This framework overcomes the statistical limitations of process-
based models by treating the results from equifinal parameter sets as independent data points that constrain a statistical
metamodel (Eq. 2), which should be transferable to other disturbance studies. Moreover, the statistical metamodel provides an
82% uncertainty reduction compared to the raw DHSVM ensemble with just four years of post-fire streamflow data in a single

watershed. The consistency of the metamodel results between two independent calibrations (pre-fire and cross-fire) suggests

that our framework is robust to subjective calibration decisions and random temporal variability, strengthening confidence in

the results. Further calibration tests in other watersheds could inform a transferrable understanding of equifinality that might
help constrain the post-fire streamflow response with fewer years of post-fire data, and could even help constrain predictions

for possible future disturbances before they happen.

Our findings suggest a generally applicable conceptual framework for hydrological model simulations of many types of change
beyond just environmental disturbance. In brief, it is important to ensure that our models are stationary with respect to the
variability they are used to investigate. For our present study of the streamflow response to a forest fire, the model should have
stationary bias across pre- and post-fire periods. For a study on climate warming effects, modelers could test the stationarity
of model biases in warmer or cooler years or locations. For a drought study, model bias stationarity could be evaluated between
wet and dry periods. Many analogous examples are easily imagined. We anticipate that testing bias stationarity across different

types of change can help reduce both equifinality and uncertainty, as shown here.

5 Conclusion

In light of our results from this test application, we offer some general recommendations for process-based simulations of

environmental disturbance in a hydrological context.

e Parameter uncertainty extends beyond the subsurface. We suggest calibrating or at least testing the sensitivity of

parameters controlling the partitioning of ET fluxes (e.g., overstory/understory transpiration, interception loss, soil

evaporation, etc.). Ideallyunecertainty-inParameter interactions with meteorological biasesuncertainty should also be

considered and potentially propagated during calibration, especially when high-precision basin-scale forcing data are

unavailable.
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e Nonstationary error metrics (e.g., positive or negative bias shift) can indicate a failure to adequately represent change.

Rejecting parameter sets with a bias shift after forest disturbance (or with respect to some other change) can help

reduce equifinality and thus also reduce uncertainty in modeled hydrological ehangesresponses to disturbance.

e Modelers should beware of “reward hacking” (i.e., overfitting) during calibration, particularly when applying

powerful optimization algorithms to high-dimensional search spaces. In this study, selecting the highest-NSE

parameter sets would lead to a 79% underestimation of the streamflow response to disturbance relative to the mean

value of the conditional metamodel (analogous 58% underestimation using the highest log NSE).

e  We caution against direct derivation of uncertainty ranges from subjective parameter ensembles, as this could lead to
unnecessarily high uncertainty with poor statistical justification (Fig. 5). Instead, model results can inform a statistical
metamodel conditioned on observation-based metrics related to stationarity (e.g., bias shift), enabling the derivation

of uncertainty from elassies

econditional statistics (Eq. 2). The statistical metamodel structure will
necessarily depend on the study objectives, but the principle is generally applicable to other models and types of

environmental change.

Data and Code Availability

Al-medelinputsfoutputs;-A Zenodo archive (Boardman 2025) includes all data, model code, analysisand processing scripts;
tals needed to understand and-reproduce-the results-of this-study will-be-archived-onZenode
after—aceeptanee-and _recreate the figures (https:/doi.org/10.5281/zenodo.16972670). In particular, the R script

“5_BayesianModeling.R” and the Stan code “Bayesian DHSVMbias.stan” may be useful for anyone interested in adapting

our hybrid-Bayesian frameweorkconditional metamodel (Eq. 2) to other projects. SWE maps from Airborne Observatories. Inc.

used for calibration are publicly available at https://data.airbornesnowobservatories.com/ (Airborne Snow Observatories, Inc.

2025).
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