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Response to Editor 

We thank the editor for helpful feedback, which we have addressed. Specifically, we have 

corrected (removed) the comparison between NSE and R2, and we have substantially clarified 

and expanded our justification for propagating meteorological uncertainty (see below). 

Response to Reviewers 

We thank the reviewers for helpful feedback, which we have also addressed. In addition to minor 

edits and clarifications throughout, we have incorporated the following major improvements: 

• Substantially expanded justification of our treatment of meteorological uncertainty, 

including (1) prior studies showing comparably large uncertainties in the Sierra Nevada, 

and (2) detailed explanation of why meteorological uncertainty should be considered as 

part of a unified model-weather inferential system to support robust predictions. 

• Added details about the streamflow reconstruction procedure underlying the “observed” 

streamflow, which is based on a simple mass balance equation considering upstream 

reservoir storage changes, reservoir evaporation, and canal diversions. 

• Added a completely independent second calibration experiment using only pre-fire years 

for calibration, which yields nearly identical predictions of the post-fire streamflow 

change (new Supplemental Figure S7). 

Our response to each of the two reviewers is attached hereafter. 
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Harpold 

Response to Reviewer Comment RC1 

We greatly appreciate the reviewers’ helpful comments on this manuscript, which we will 

address in a revision. Our comments are interspersed into the review in blue. 

The authors should define counterfactual. On page 2, paragraphs 2 and 3, the authors use this 

term, but the meaning is not clear. It may need to be rephrased to increase the manuscript's 

accessibility. 

We added a sentence immediately after the first use of “counterfactual” to clarify its meaning: 

In this context, a “counterfactual” refers to a hypothetical scenario in which a particular 

disturbance did not happen, so comparing the actual post-disturbance behavior to the 

counterfactual scenarios enables attribution of disturbance effects. 

On page 3, in the first paragraph, the word “since” should be replaced by “because” due to the 

authors' intent. 

This sentence has been restructured and no longer includes either word. 

On page 3, paragraph 1, the logical connection between the lack of landscape-scale observation 

of many environmental properties and model properties is that we cannot infer the parameters 

from data and therefore need to calibrate. We suggest making this explicit to increase the 

accessibility of the text. 

Agreed—the start of this paragraph has been reworded to make this connection more explicit. 

On page 3, line 71, “since” is used instead of because. 

Changed. 

On page 3, line 72, the authors hypothesize that equifinal parameter sets may produce divergent 

predictions. Could work be cited here to state this as a fact rather than formulating this as a 

hypothesis? 

While we agree that this is a commonly discussed idea, we have not been able to find any studies 

explicitly demonstrating it as a fact, specifically in the context of post-disturbance changes. 

Thus, we believe that the current formulation as a hypothesis is most appropriate, though we are 

open to suggestions for references we might have missed. 



Figure 1 on page 4 could be improved by including more details. This would reduce the number 

of assumptions readers will have to make in order to understand the image. -"Initial water 

balance": for the sake of argument, we'll assume that all models perfectly fit current streamflow, 

even if given different inputs (P), the simulated ET_tree and ET_other components are such that 

Qsim = Qobs = 1. "Disturbance response": some disturbance reduces ET_tree (line 79-80). 

We have expanded the caption for this figure to include additional explanation as follows: 

In the “initial water balance” panel, we assume that all three models closely match pre-

disturbance streamflow, with uncertain precipitation and evapotranspiration (ET) components 

counterbalanced to produce QObserved = QModeled = 1 (normalized annual units). After a disturbance 

(e.g., a wildfire) reduces ETTree, the different models predict various degrees of streamflow 

change, which is mediated by the potential for compensating increases in ETOther (e.g., soil 

evaporation and understory ET). In the “disturbance response” panel, the arrows illustrate the 

direction and magnitude of the water balance changes predicted by each model. In the 

“streamflow bias” panel, the resulting model predictions are compared to measured streamflow, 

showing how some models could exhibit a bias after disturbance due to uncertain estimation of 

water balance changes. 

The image could better explain what the up and down arrows in this column show. Readers can 

speculate that the downward ET_tree arrows mean that (to match reality) the models simulate no 

ET_tree anymore. In model 1, this means Q_sim goes up by 2, but why would ET_other in 

models 2 and 3 go up by either the negative change in ET_tree or half that? If these are meant as 

examples of what could happen with a given model (rather than what will happen), it would be 

good to state this in the text explicitly. E.g. "[..] increased soil water availability. The three 

examples show cases where ET_other does not change (model 1), where ET_other fully 

compensates the reduction in ET_tree (model 2), and where ET_other only aprtly compensates 

the reduction in ET_tree". 

The reviewers have indeed given the correct interpretation of the figure, and we have clarified 

with an adapted version of the suggested text: 

The three examples show cases where ETOther does not respond to the disturbance (Model 1), 

where ETOther fully compensates for reduced ETTree (Model 2), and where ETOther only partly 

compensates for reduced ETTree. Intuitively, these hypothetical model responses are connected to 

the pre-disturbance balance of ETTree and ETOther, which primes some models to predict a larger 

or smaller compensation effect. 

"Streamflow bias": here seems to have an underlying assumption that Qobs increases by 1 after 

the disturbance. This is key to understanding why the models are assumed to 

underpredict/overpredict/no change and should be explicitly stated somewhere. 

Agreed—we added the following sentence to the figure caption: 

In this hypothetical example, we assume that QObserved increases by 1 unit after disturbance, 

matching the prediction of Model 3. 



Given that this example is intended to give the reader an easy intro into the concepts used in the 

paper, it's worthwhile to make sure all assumptions are clearly stated. Without this figure, it may 

raise more questions than it answers. A possible solution is to move the paragraph with lines 92 

to 100 before the figure. 

We believe that Figure 1 makes the most sense immediately after the first paragraph of text 

where it is mentioned. However, we have substantially expanded the caption (see above), which 

we believe makes the figure much easier to interpret even without the rest of the text. 

Figure 2 should have labels in a better font. The current font choice looks out of place. The 

caption also needs to define the acronyms RCMAP and UTM. 

All figure fonts used throughout are Arial, which is an extremely widely used and easily readable 

font recommended for figures by the APA style guide: 

https://apastyle.apa.org/style-grammar-guidelines/paper-format/font 

We determined that the acronyms were unnecessary for the figure caption because the datasets 

are specified elsewhere, so they have been removed. 

On page 7, lines 139 to 141, the description of the methods would be strengthened if the 

resampling technique used to aggregate the 30 m resolution data to the 90 m resolution model 

were explicitly stated. Was it averaging, weighted aggregation or majority rule? An explanation 

of how this mapping works in cases where there are differences in burned area at the original 

30m resolution would help reproducibility. 

The canopy cover data are reprojected using nearest-neighbor because the dataset is a 

combination of continuous (canopy cover %) and categorical (trees present: true or false), and 

nearest-neighbor reprojection is the appropriate technique for categorical data. This has been 

added to the text. 

On page 7, lines 143 to 144, the authors should provide a quick justification for why October 1 

was chosen to update the vegetation maps. A quick sentence saying it corresponds to the water 

year, or the availability of vegetation maps at the end of the fire season, or any other justification, 

should be stated. An October 1st update could introduce artificial bias, so it would be good to 

justify why this approach was followed. 

We added the following justification: 

The October 1st date is used for annual model updates because this date represents the start of a 

new water year, and Sierra Nevada watersheds are typically near their driest condition around 

this time of year, which limits the impact of model changes on simulated hydrological fluxes. 

 

 

https://apastyle.apa.org/style-grammar-guidelines/paper-format/font


On page 7, lines 147 to 148, the authors should explain why estimation is preferable to using 

LAI observations from something like. Are the empirical estimates close to satellite 

observations? 

Current satellite technology cannot observe LAI directly; rather, satellite observations (of 

reflected light) are converted into estimates of LAI through various models and empirical 

relationships (e.g., see Table 1 summary in Yan et al. 2018). 

Yan et al., "Generating Global Products of LAI and FPAR From SNPP-VIIRS Data: 

Theoretical Background and Implementation," in IEEE Transactions on Geoscience and 

Remote Sensing, vol. 56, no. 4, pp. 2119-2137, April 2018, doi: 

10.1109/TGRS.2017.2775247 

Lidar surveys show weaknesses in satellite-based optical LAI estimates, including saturation in 

dense forests and the inability to resolve 3-dimensional canopy structure that is important for 

LAI. Pre- and post-fire lidar surveys are not publicly available in the study area, so lacking high-

resolution canopy structure data, we opt to estimate LAI heuristically through calibration. 

Winsemius, S., Babcock, C., Kane, V. R., Bormann, K. J., Safford, H. D., & Jin, Y. (2024). 

Improved aboveground biomass estimation and regional assessment with aerial lidar in 

California’s subalpine forests. Carbon Balance and Management, 19(1), 41. 

https://doi.org/10.1186/s13021-024-00286-w 

Zolkos, S. G., Goetz, S. J., & Dubayah, R. (2013). A meta-analysis of terrestrial aboveground 

biomass estimation using lidar remote sensing. Remote Sensing of Environment, 128, 289–

298. https://doi.org/10.1016/j.rse.2012.10.017 

We have added the preceding justification to the methods. 

On page 8, it is important to speak about calibrating correction factors for meteorological inputs, 

which has the potential to compensate for any deficiencies in the model itself. For a study trying 

to investigate how calibrated models predict process changes after a disturbance, calibrating 

bias-correction parameters for the forcing could introduce a lot of complexity (in other words, 

substantially enhance equifinality) that will complicate later analysis. A broad statement like 

"gridded meteorological data can have considerable uncertainty" is insufficient to justify this. Is 

there any concrete evidence that the specific meteorological data chosen are biased in this 

particular watershed? (Even) If so, the correct approach would be to bias-correct the forcing 

before calibration starts, so that every model in the ensemble uses the same inputs. This seems 

the only way to get a clean comparison between models later. 

We are not primarily interested in “a clean comparison between models,” but rather, we are 

interested in the effect of the fire on real-world annual streamflow. This effect is uncertain due to 

both the model and the forcing data. Failure to propagate meteorological uncertainty (by only 

using one set of inputs) would systematically overestimate our confidence in the combined 

model/weather system. It is helpful to think of this in a Bayesian context: the forcing data 

themselves are uncertain, but this uncertainty can be constrained by performing simultaneous 

inference over the model/data system. 

https://doi.org/10.1186/s13021-024-00286-w
https://doi.org/10.1016/j.rse.2012.10.017


We recognize that a fully Bayesian perspective is rare in distributed process-based hydrological 

modeling, so we have substantially expanded our explanation of this approach as follows: 

While most of these parameters are widely recognized as suitable for calibration (Cuo et al. 

2011, Du et al. 2014), precipitation and temperature biases are less frequently included in the 

calibration of distributed process-based models despite considerable uncertainty in gridded 

meteorological data. Among gridded meteorological datasets, there is mean relative difference of 

21% for annual precipitation in our study watershed (Henn et al. 2018), and misestimation of 

large storms can lead to yearly biases of about 20% across the Sierra Nevada (Lundquist et al. 

2015). Similarly, different meteorological datasets have mean air temperature differences as 

large as ±8 °C in the Sierra Nevada, and basin-average uncertainty is lower but still on the order 

of several °C (Schreiner-McGraw and Ajami 2022). Compensation between unknown errors in 

the meteorology data, model structure and calibration, and reconstructed streamflow can 

potentially contribute to spurious goodness-of-fit metrics with hidden physical deficiencies. 

Moreover, we expect that interactions between meteorological uncertainty and parameter 

equifinality may contribute to the overall uncertainty of disturbance simulations (Fig. 1), but this 

uncertainty would remain hidden if meteorological biases were assumed to be negligible. 

Because perfectly resolving the weather data with infinite precision is not feasible across a large, 

rugged mountain region, the robust approach is to propagate meteorological  uncertainty into our 

final results (the post-fire hydrological change in this case), so that our conclusions include the 

quantified uncertainty caused by the model-data-calibration interaction. We view the combined 

meteorological data and hydrological model as a single inferential system, thereby 

acknowledging that the meteorological data themselves are based on various uncertain 

observations and empirical model assumptions (Abatzoglou 2013). In a Bayesian context, the 

goal of our calibration can be understood as sampling the probability of the streamflow and snow 

observations given a particular combination of model parameters and meteorological 

assumptions: P(streamflow + snow | model + meteorology). Because we lack a closed-form 

likelihood function for spatially distributed hydrological models like DHSVM, we estimate the 

unknown parameters of this whole weather-model system using an informal approximation 

based on traditional hydrological model calibration objective functions (Beven and Binley 1992). 

Lundquist, J. D., Abel, M. R., Henn, B., Gutmann, E. D., Livneh, B., Dozier, J., & Neiman, 

P. (2015). High-Elevation Precipitation Patterns: Using Snow Measurements to Assess Daily 

Gridded Datasets across the Sierra Nevada, California. Journal of Hydrometeorology, 16(4), 

1773–1792. https://doi.org/10.1175/JHM-D-15-0019.1 

Henn, B., Newman, A. J., Livneh, B., Daly, C., & Lundquist, J. D. (2018). An assessment of 

differences in gridded precipitation datasets in complex terrain. Journal of Hydrology, 556, 

1205–1219. https://doi.org/10.1016/j.jhydrol.2017.03.008 

Schreiner-McGraw, A. P., & Ajami, H. (2022). Combined impacts of uncertainty in 

precipitation and air temperature on simulated mountain system recharge from an integrated 

hydrologic model. Hydrology and Earth System Sciences, 26(4), 1145–1164. 

https://doi.org/10.5194/hess-26-1145-2022 

 

https://doi.org/10.1175/JHM-D-15-0019.1
https://doi.org/10.1016/j.jhydrol.2017.03.008
https://doi.org/10.5194/hess-26-1145-2022


The correct approach would be to bias-correct the forcing before calibration starts, so that every 

model in the ensemble uses the same inputs. 

We disagree, and this is actually one of the fundamental contributions of our study (Figure 1). 

It is not possible to bias-correct the forcing in the absence of ground-truth spatially representative 

meteorology data, which do not exist for our particular study watershed. Moreover, this proposed 

“bias-correction” seems to just be a type of calibration by a different name, which should be 

included in the formal quantification and propagation of calibration uncertainty. Otherwise, we 

would end up with a single, infinitely precise estimate of meteorological biases, which is not 

realistic. Our conceptual model (Figure 1) illustrates why meteorological uncertainty needs to be 

propagated through calibration because different forcing assumptions lead to different pre- and 

post-disturbance water balance configurations, and it is impossible to determine the “true” 

spatially distributed mountain weather with infinite precision. 

We have clarified this in the introduction as follows: 

As illustrated in Fig. 1, meteorological uncertainty (e.g., a precipitation bias) can interact with 

uncertain model parameterizations, contributing to uncertainty in the streamflow response to 

disturbance. Basin-scale meteorology data are highly uncertain in mountain regions (e.g., 

Lundquist et al. 2015, Henn et al. 2018, Schreiner-McGraw and Ajami 2022), and whatever 

assumptions we make about the meteorology may cause the model to compensate for 

inaccuracies with other calibrated parameters (Elsner et al. 2014). For example, assuming a 

larger precipitation bias correction may cause the model to simulate a larger ETTree component 

and a corresponding large post-fire change (Model 3 in Fig. 1), whereas a smaller precipitation 

bias correction could limit the predicted post-fire streamflow change since the pre-fire P-Q 

residual is smaller (Models 1-2 in Fig. 1). From a Bayesian perspective, we can treat the data and 

model as a combined inferential system, which enables us to constrain uncertainty in the 

interactions between uncertain meteorology and uncertain hydrology by generating suitable 

ensemble samples (Kavetski et al. 2003). 

Kavetski, D., Franks, S. W., & Kuczera, G. (2003). Confronting input uncertainty in 

environmental modelling. In Q. Duan, H. V. Gupta, S. Sorooshian, A. N. Rousseau, & R. 

Turcotte (Eds.), Water Science and Application (Vol. 6, pp. 49–68). American Geophysical 

Union. https://doi.org/10.1029/WS006p0049 

Elsner, M. M., Gangopadhyay, S., Pruitt, T., Brekke, L. D., Mizukami, N., & Clark, M. P. 

(2014). How Does the Choice of Distributed Meteorological Data Affect Hydrologic Model 

Calibration and Streamflow Simulations? Journal of Hydrometeorology, 15(4), 1384–1403. 

https://doi.org/10.1175/JHM-D-13-083.1 

 

 

 

https://doi.org/10.1029/WS006p0049
https://doi.org/10.1175/JHM-D-13-083.1


On page 8, lines 194 to 195, some extra explanation about why these three objectives are based 

on reconstructed daily streamflow is needed and how it works would be good to add. A reference 

to a more in-depth explanation would be enough. How does the reconstruction approach deal 

with the disturbance if this is reconstructed? Is that accounted for somehow? 

We have clarified what is meant by “reconstructed” streamflow. This is not a model output, but 

rather a combination of observations, which are added and subtracted to “undo” the effect of 

upstream artificial storage and diversion. We have added additional information to the text about 

the streamflow dataset, including a citation to the California DWR documentation as follows: 

Streamflow is estimated at the outlet of Millerton Lake (Fig. 2) by reconstructing observations to 

remove the effects of artificial flow regulation (California Department of Water Resources 

2024). Millerton Lake unimpaired outflows are estimated assuming sub-daily surface routing 

times by summing the daily change in storage, canal and dam releases, surface evaporation, and 

storage changes at eight smaller upstream reservoirs (Huang and Kadir 2016). Note that the 

reconstructed streamflow timeseries used in this study (called “full natural flow” by the 

California Data Exchange Center) is based on an explicit mass balance equation applied directly 

to the respective storage and flow measurements, not model output, unlike various other 

meanings of “natural flow” that are sometimes applied to California water datasets (Huang and 

Kadir 2016). The reconstructed streamflow timeseries (hereafter “observed streamflow”) 

constrains the actual effects of the Creek Fire (and other disturbances) because the reconstruction 

procedure is directly based on measurements at specific diversion, storage, and outflow points, 

which are themselves responsive to the basin hydrological conditions. Three objective functions 

are based on a cleaned version of this daily streamflow timeseries (spurious negative values 

during low-flow periods and other missing values are imputed). 

Huang, G., & Kadir, T. (2016). Estimates of Natural and Unimpaired Flows for the Central 

Valley of California: Water Years 1922-2014 (pp. 1–256). Department of Water Resources, 

Bay-Delta Office. https://data.ca.gov/dataset/estimates-of-natural-and-unimpaired-flows-for-

the-central-valley-of-california-wy-1922-2014 

On page 9, the caption for Table 2 states that NSE is identical to R² for statistical models. It 

would be better if it stated that NSE is analogous to R2 and not identical, and if a citation from 

the original Nash and Sutcliffe paper from 1970 were provided. 

We have removed this wording. 

On page 10, line 217, 600 samples for a 14-dimensional space does not seem a lot, and a large 

number of these might already be Pareto-optimal just because of the low number of samples. A 

table that shows how many of each sample fulfills each individual criterion would be good. 

This is actually one of the key advances of our underlying methodology, though we agree it 

needs to be better highlighted in the manuscript. Specifically, our calibration approach uses 

parallel expected hypervolume calculations obtained from surrogate machine learning models to 

search for Pareto-efficient parameter sets extremely efficiently. In such a context, a few hundred 

samples is actually quite a lot, as these techniques are intended to work with even just tens of 

https://data.ca.gov/dataset/estimates-of-natural-and-unimpaired-flows-for-the-central-valley-of-california-wy-1922-2014
https://data.ca.gov/dataset/estimates-of-natural-and-unimpaired-flows-for-the-central-valley-of-california-wy-1922-2014


parameter samples. A good overview of this methodology is provided by one of the included 

citations for the expected hypervolume indicator: 

Binois, M., & Picheny, V. (2019). GPareto: An R Package for Gaussian-Process-Based 

Multi-Objective Optimization and Analysis. Journal of Statistical Software, 89(8). 

https://doi.org/10.18637/jss.v089.i08 

We have also clarified in the text as follows: 

While this number of tested parameter sets may seem small by conventional standards 

considering the 14-dimensional search space, we note that each new parameter sample is selected 

after an independent optimization procedure using 100 to 1,000 particle swarm samples from the 

objective function surrogate models. Thus, our overall calibration explores the objective function 

tradeoffs across more than 160,000 parameter sets, though only 600 of these are actually tested 

in DHSVM. Because testing hundreds of thousands of parameter sets directly in DHSVM would 

require prohibitive amounts of computational expense, the Bayesian surrogate optimization 

procedure is essential for efficiently selecting parameter sets that have the best likelihood of 

substantially improving the Pareto frontier. 

On page 10, line 234, given that streamflow is reconstructed, the authors should use the term 

“reconstructed streamflow” instead of calling this "observed" to help the reader understand that 

we're comparing results from one model to another. 

Please see prior comment—the “reconstructed streamflow” is indeed calculated directly from 

observations. It is only reconstructed in the sense of removing upstream diversion/storage effects 

using a simple water balance equation, and it is not a model output. 

On page 11, line 242, the authors should state the importance of the bias shift metric. The co-

reviewers came to differing conclusions about its importance. Is it a metric to inform people 

about models, or is the bias shift something that needs to be corrected, and how is the correction 

applied? 

The bias shift metric is useful in both contexts. We clarified this immediately at the start of 

Section 2.4, where we introduce the metric: 

The bias shift metric is useful in two contexts. First, it is useful for understanding and refining 

the behavior of models, potentially including reducing equifinality by preferring models with 

near-stationary bias. Second, it is useful for correcting model predictions to estimate what a 

hypothetical model with stationary error would have predicted. 

The reasoning on page 11, lines 249 to 250, is a bit difficult to follow. Are there any tests that 

can be done to see if this assumption is valid, or can the authors speculate how the results would 

change if it didn’t hold? 

We have clarified that this reasoning is supported by the scatterplots in Fig. 5: 

The linear relationship between bias shift and yearly ΔQFire is supported by graphical analysis of 

bivariate scatterplots, as illustrated subsequently in Fig. 5. In other watersheds or disturbance 

https://doi.org/10.18637/jss.v089.i08


scenarios, it might be necessary to posit a nonlinear relationship with the bias shift, which could 

again be detected from analogous bivariate scatterplots. 

Figure 3 shows some variability in the simulations, particularly around the middle flow 

magnitudes. Can it be clarified why these simulations are called "satisfactory"? Presumably, 

there's an implicit middle step that says "these NSE scores are [something], therefore these 

parameter sets all satisfactorily reproduce observed streamflow". I encourage the authors to add 

their reasoning for thinking that these simulations are good enough for this study. Are these 

simulations of typical quality for this particular watershed (i.e., comparable to other modelling 

efforts)? Are these ranges of scores particularly high for this specific watershed? 

We have reworded this sentence as follows: 

All behavioral parameter sets also achieve NSE of 0.80-0.87 and log-scale NSE of 0.76-0.84 

considering just the four years after the Creek Fire, which is considered satisfactory because the 

model skill is similar on pre- and post-fire periods 

We have also added a comparison to a similar study in a different Sierra Nevada basin: 

Additionally, the post-fire daily NSE of at least 0.80 achieved by all behavioral DHSVM 

parameter sets is substantially higher than the post-fire daily NSE of -0.13 to 0.60 achieved by a 

different distributed hydrological model (with dynamic vegetation and other fire-aware updates) 

after a megafire in other Sierra Nevada sub-watersheds (Abolafia-Rosenzweig et al. 2024). 

Figure 4 needs more explanation. For example, for both x-axes, are we looking at different parts 

in space? In other words, does this figure show how different parts of the watershed respond? 

The reviewers are asking because the caption says that the values on both x-axes are derived 

from data and not calibrated, but if this is so, the reviewers are unsure how this figure shows 

parameter uncertainty. By counting we can summarize that each symbol stands for a behavioural 

parameter set, but this should be stated somewhere. 

Thank you for bringing this to our attention—it was indeed ambiguous as written. We have 

clarified the caption to indicate that each point represents a behavioral parameter set, with all 

values spatially averaged within the watershed. 

 

 

The data and code availability statement on page 22 is incomplete. See the guidelines at 

https://www.hydrology-and-earth-system sciences.net/submission.html. The co-reviewers would 

like to take a look at the streamflow series for this basin but cannot easily find the location of this 

data either in this section or through the California DWR reference mentioned in the text. 

Our understanding from the options presented during the HESS submission process was that 

final datasets could be archived after acceptance, thus incorporating any changes suggested 

during review. At this stage, we are comfortable that our methods and results are largely final, so 

we have created the archive and it has been added to the paper. 



The original data, as well as the cleaned dataset with imputed values that is used in our study, 

can be downloaded from the new Zenodo archive: 

https://doi.org/10.5281/zenodo.16972670 

Additionally, the raw streamflow data (sensor number 8) can be downloaded here: 

https://cdec.water.ca.gov/dynamicapp/staMeta?station_id=SBF 

In the references, line 586, this link does not go to the dataset but to the landing page. A DOI, an 

accurate link, and the access date are needed. 

This has been updated to the station metadata page above. However, a DOI is not available for 

this dataset, which is hosted on a California state webpage. 

 

 

https://doi.org/10.5281/zenodo.16972670
https://cdec.water.ca.gov/dynamicapp/staMeta?station_id=SBF
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Response to Reviewer Comment RC2 

We greatly appreciate the reviewer’s helpful comments on this manuscript, which we will 

address in a revision. Our comments are interspersed into the review in blue. 

I understand the idea that meteorological data are uncertain and can significantly influence 

model outputs. However, the parameter range used for correcting meteorological biases (±25% 

for precipitation, ±4°C for temperature) appears very large. Are there existing studies or 

evidence supporting this magnitude of potential meteorological bias specifically within this 

basin? My concern is that using such broad correction ranges might allow the hydrological 

model to artificially add or remove water to better match streamflow observations, which 

themselves are uncertain due to reconstruction processes, thereby compensating for potentially 

missing or poorly represented processes. 

We agree that the potential compensations between uncertain weather, uncertain models, and 

uncertain streamflow leads to a quandary. However, we believe that our study proposes a 

uniquely robust method to untangle this problem through a Bayesian uncertainty framework. By 

simultaneously propagating uncertainty in the data and model (through calibration of biases 

along with other parameters), we explore the full range of potential compensations, thereby 

robustly propagating the resultant uncertainty. This approach constrains uncertainty in the target 

variable (extra water from fire) without requiring an unrealistically precise confidence level in 

the unmeasured mountain weather. 

We have substantially expanded our justification of this approach as follows: 

While most of these parameters are widely recognized as suitable for calibration (Cuo et al. 

2011, Du et al. 2014), precipitation and temperature biases are less frequently included in the 

calibration of distributed process-based models despite considerable uncertainty in gridded 

meteorological data. Among gridded meteorological datasets, there is mean relative difference of 

21% for annual precipitation in our study watershed (Henn et al. 2018), and misestimation of 

large storms can lead to yearly biases of about 20% across the Sierra Nevada (Lundquist et al. 

2015). Similarly, different meteorological datasets have mean air temperature differences as 

large as ±8 °C in the Sierra Nevada, and basin-average uncertainty is lower but still on the order 

of several °C (Schreiner-McGraw and Ajami 2022). Compensation between unknown errors in 

the meteorology data, model structure and calibration, and reconstructed streamflow can 

potentially contribute to spurious goodness-of-fit metrics with hidden physical deficiencies. 

Moreover, we expect that interactions between meteorological uncertainty and parameter 

equifinality may contribute to the overall uncertainty of disturbance simulations (Fig. 1), but this 



uncertainty would remain hidden if meteorological biases were assumed to be negligible. 

Because perfectly resolving the weather data with infinite precision is not feasible across a large, 

rugged mountain region, the robust approach is to propagate meteorological  uncertainty into our 

final results (the post-fire hydrological change in this case), so that our conclusions include the 

quantified uncertainty caused by the model-data-calibration interaction. We view the combined 

meteorological data and hydrological model as a single inferential system, thereby 

acknowledging that the meteorological data themselves are based on various uncertain 

observations and empirical model assumptions (Abatzoglou 2013). In a Bayesian context, the 

goal of our calibration can be understood as sampling the probability of the streamflow and snow 

observations given a particular combination of model parameters and meteorological 

assumptions: P(streamflow + snow | model + meteorology). Because we lack a closed-form 

likelihood function for spatially distributed hydrological models like DHSVM, we estimate the 

unknown parameters of this whole weather-model system using an informal approximation 

based on traditional hydrological model calibration objective functions (Beven and Binley 1992). 

Lundquist, J. D., Abel, M. R., Henn, B., Gutmann, E. D., Livneh, B., Dozier, J., & Neiman, 

P. (2015). High-Elevation Precipitation Patterns: Using Snow Measurements to Assess Daily 

Gridded Datasets across the Sierra Nevada, California. Journal of Hydrometeorology, 16(4), 

1773–1792. https://doi.org/10.1175/JHM-D-15-0019.1 

Henn, B., Newman, A. J., Livneh, B., Daly, C., & Lundquist, J. D. (2018). An assessment of 

differences in gridded precipitation datasets in complex terrain. Journal of Hydrology, 556, 

1205–1219. https://doi.org/10.1016/j.jhydrol.2017.03.008 

Schreiner-McGraw, A. P., & Ajami, H. (2022). Combined impacts of uncertainty in 

precipitation and air temperature on simulated mountain system recharge from an integrated 

hydrologic model. Hydrology and Earth System Sciences, 26(4), 1145–1164. 

https://doi.org/10.5194/hess-26-1145-2022 

Additional added explanation in introduction: 

As illustrated in Fig. 1, meteorological uncertainty (e.g., a precipitation bias) can interact with 

uncertain model parameterizations, contributing to uncertainty in the streamflow response to 

disturbance. Basin-scale meteorology data are highly uncertain in mountain regions (e.g., 

Lundquist et al. 2015, Henn et al. 2018, Schreiner-McGraw and Ajami 2022), and whatever 

assumptions we make about the meteorology may cause the model to compensate for 

inaccuracies with other calibrated parameters (Elsner et al. 2014). For example, assuming a 

larger precipitation bias correction may cause the model to simulate a larger ETTree component 

and a corresponding large post-fire change (Model 3 in Fig. 1), whereas a smaller precipitation 

bias correction could limit the predicted post-fire streamflow change since the pre-fire P-Q 

residual is smaller (Models 1-2 in Fig. 1). From a Bayesian perspective, we can treat the data and 

model as a combined inferential system, which enables us to constrain uncertainty in the 

interactions between uncertain meteorology and uncertain hydrology by generating suitable 

ensemble samples (Kavetski et al. 2003). 

Kavetski, D., Franks, S. W., & Kuczera, G. (2003). Confronting input uncertainty in 

environmental modelling. In Q. Duan, H. V. Gupta, S. Sorooshian, A. N. Rousseau, & R. 

https://doi.org/10.1175/JHM-D-15-0019.1
https://doi.org/10.1016/j.jhydrol.2017.03.008
https://doi.org/10.5194/hess-26-1145-2022


Turcotte (Eds.), Water Science and Application (Vol. 6, pp. 49–68). American Geophysical 

Union. https://doi.org/10.1029/WS006p0049 

Elsner, M. M., Gangopadhyay, S., Pruitt, T., Brekke, L. D., Mizukami, N., & Clark, M. P. 

(2014). How Does the Choice of Distributed Meteorological Data Affect Hydrologic Model 

Calibration and Streamflow Simulations? Journal of Hydrometeorology, 15(4), 1384–1403. 

https://doi.org/10.1175/JHM-D-13-083.1 

The presence of a reservoir near the gauge station considerably disrupts natural streamflow 

patterns. The approach of reconstructing streamflow to remove these effects (naturalized flows) 

partially restores the basin's natural characteristics but leaves the "observed" data highly 

uncertain. Such uncertainty can significantly impact calibration experiments. Could you clarify 

the method used to reconstruct the streamflow? Specifically, does the reconstruction explicitly 

account for changes introduced by the 2020 Creek Fire disturbance? 

We have clarified how the “reconstructed” streamflow is calculated based on the California 

DWR documentation as follows: 

Streamflow is estimated at the outlet of Millerton Lake (Fig. 2) by reconstructing observations to 

remove the effects of artificial flow regulation (California Department of Water Resources 

2024). Millerton Lake unimpaired outflows are estimated assuming sub-daily surface routing 

times by summing the daily change in storage, canal and dam releases, surface evaporation, and 

storage changes at eight smaller upstream reservoirs (Huang and Kadir 2016). Note that the 

reconstructed streamflow timeseries used in this study (called “full natural flow” by the 

California Data Exchange Center) is based on an explicit mass balance equation applied directly 

to the respective storage and flow measurements, not model output, unlike various other 

meanings of “natural flow” that are sometimes applied to California water datasets (Huang and 

Kadir 2016). The reconstructed streamflow timeseries (hereafter “observed streamflow”) 

constrains the actual effects of the Creek Fire (and other disturbances) because the reconstruction 

procedure is directly based on measurements at specific diversion, storage, and outflow points, 

which are themselves responsive to the basin hydrological conditions. Three objective functions 

are based on a cleaned version of this daily streamflow timeseries (spurious negative values 

during low-flow periods and other missing values are imputed). 

Huang, G., & Kadir, T. (2016). Estimates of Natural and Unimpaired Flows for the Central 

Valley of California: Water Years 1922-2014 (pp. 1–256). Department of Water Resources, 

Bay-Delta Office. https://data.ca.gov/dataset/estimates-of-natural-and-unimpaired-flows-for-

the-central-valley-of-california-wy-1922-2014 
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In defining the “behavioral” parameter sets, thresholds were applied selectively to NSE, log 

NSE, yearly MAPE, and April-July MAPE, but notably not to the snow criteria. Could you 

elaborate on why snow metrics were excluded from this subjective filtering? Additionally, could 

you clarify whether these subjective thresholds are truly necessary or if the results would have 

differed significantly by simply selected the 30 "best" members from the initial ensemble across 

all calibration metrics? A more detailed justification for choosing these thresholds would 

enhance transparency and reproducibility. 

We have substantially expanded our explanation of the filtering process: 

Narrowing the range of acceptable parameter sets requires case-by-case determination of what 

skill level is satisfactory for a particular watershed-model combination because a higher skill 

might be achieved in hydroclimates that are conceptually simpler to simulate. At the same time, 

it is necessary to retain enough parameter diversity to explore our research questions related to 

the interaction between equifinality and disturbance. Based on prior experience modeling with 

DHSVM in the Sierra Nevada (e.g., Boardman et al. 2025), we find that the best model skill we 

can generally achieve is around a daily NSE of approximately 0.8 or higher and yearly error of 

approximately 10% or lower. Any single criteria is insufficient for narrowing the parameter 

space to a reasonable fraction of the total calibration space. For example, over 30% of all tested 

parameter sets have daily NSE > 0.8 (none have NSE > 0.9), but some of these high-NSE 

parameter sets are clearly inferior, e.g., with yearly MAPE as high as 35%. Combining multiple 

thresholds, we find that 48 parameter sets qualify as “behavioral” by satisfying daily NSE > 0.8, 

daily log NSE > 0.8, yearly MAPE < 10%, April-July MAPE < 10%, and Pareto-efficiency 

across all objectives. We do not directly apply thresholds to the snow calibration metrics because 

the variability of these objective functions is already strongly constrained within the behavioral 

ensemble (e.g., the SWE RMSE coefficient of variation is 2% within the behavioral ensemble 

compared to 59% across all 600 parameter sets). Nevertheless, snow-based objective functions 

still constrain the behavioral ensemble because all behavioral parameter sets must be Pareto-

efficient across all seven objectives. 

If my understanding is correct, the 30 DHSVM parameter sets were derived from calibration 

experiments using dynamic vegetation only. Thus, comparing model performance under 

conditions for which it was explicitly calibrated (dynamic vegetation) against for which it was 

not calibrated (static vegetation conditions) might be unfair. To address this concern, would it be 

possible to conduct an additional calibration experiment using static vegetation maps? This 

would allow a more balanced and fair comparison, using these static-calibrated parameter sets as 

an appropriate benchmark against the dynamic-vegetation approach presented here. 

The reviewer is correct about our calibration procedure. However, we are not primarily 

“comparing model performance,” but rather, predicting the real-world streamflow change that is 

attributable to the fire. The nuance here is that we do not expect the static vegetation model to 

accurately simulate post-fire streamflow, so there is no inherent unfairness in the model 

treatment. Rather, the static vegetation model is simply expected to represent an approximation 

of what streamflow might have resulted if there had been no fire. 

Nevertheless, we appreciate the reviewer’s interest in seeing how a static-calibrated model would 

perform in a similar framework. Luckily, we have already performed a completely independent 



second calibration experiment over the pre-fire period (2011-2020), which has mostly static 

vegetation with the exception of negligible disturbances on the order of a couple percent. We 

initially chose not to discuss this second calibration in the manuscript because it gave basically 

the same results, and we thought it was unnecessarily complicated to explain. However, we have 

now added the details about the second calibration. The primary result is contained in 

Supplemental Figure S7 (shown below). 

 

Figure S7: Comparison of pre-fire and cross-fire calibration results analogous to Fig. 6 in the 

main manuscript. The “cross-fire calibration” (black text labels) refers to the primary DHSVM 

behavioral ensemble (30 parameter sets) referenced throughout the main manuscript (calibrated 

over water years 2015-2024). The “pre-fire calibration” (magenta text labels)  refers to an 

entirely separate behavioral ensemble (10 parameter sets) obtained using an identical Bayesian 

regression approach applied to a completely separate DHSVM calibration performed over water 

years 2011-2020, prior to the Creek Fire. 

Importantly, both the pre-fire and cross-fire calibrations yield similar predictions of the post-fire 

streamflow change (ΔQFire), both when considering either the raw ensemble of behavioral 

parameter sets or the conditional metamodel (Eq. 2). 

Added text in methods: 

We repeat our entire calibration procedure over the time period immediately before the fire 

(water years 2011-2020) to test whether similar results are obtained when the model is calibrated 

without foreknowledge of a mega disturbance. Unlike our primary calibration, which spans 6 

years before the fire and 4 years after the fire, all 10 years of the “pre-fire calibration” have 

negligible change in the model vegetation maps. The pre-fire calibration is initialized with the 

same Latin hypercube sample of 320 random parameter sets, after which we perform six 

generations of multi-objective Bayesian optimization following the same procedures as the 

primary calibration discussed previously, and we select behavioral parameter sets using the same 



objective function criteria. By performing two completely separate and identical calibration 

procedures on different time periods, we ensure that there is no cross-contamination of 

information between the two calibrations, i.e., the pre-fire calibration is independent and does 

not “know” about the other calibration. 

Added text in results: 

The independent pre-fire calibration (end of Sect. 2.2) yields similar predictions of the post-fire 

streamflow change (Supplemental Figure S7). When applied to behavioral parameter sets from 

the pre-fire calibration, the conditional metamodel predicts a 90% credible interval of +9% to 

+12% for the total post-fire streamflow change, which is remarkably close to the independent 

estimate of +10% to +12% using the cross-fire (2015-2024) calibration. The conditional 

metamodel based on the pre-fire calibration reduces uncertainty in the total post-fire streamflow 

(90% confidence interval) by 82% compared to the empirical regression and 74% compared to 

the pre-fire behavioral DHSVM ensemble, which is again similar to the analogous 80% and 82% 

reductions (respectively) achieved by the cross-fire calibration metamodel. Regardless of 

whether DHSVM is calibrated pre- and post-fire, or only pre-fire, the conditional metamodel 

provides consistent predictions of the additional streamflow attributable to the Creek Fire 

(ΔQFire). 

Added text in discussion: 

The consistency of the metamodel results between two independent calibrations (pre-fire and 

cross-fire) suggests that our framework is robust to modeling decisions and random temporal 

variability, further strengthening confidence in the results. 

I'm not sure what that means. Could you define this term in more detail? 

We added a sentence immediately after the first use of “counterfactual” to clarify its meaning: 

In this context, a “counterfactual” refers to a hypothetical scenario in which a particular 

disturbance did not happen, so comparing the actual post-disturbance behavior to the 

counterfactual scenarios enables attribution of disturbance effects. 

I would suggest to define what a megafire is or just use large wildfire. 

Clarified as follows: 

In this context, a megafire is any wildfire in excess of 400 km2 (Ayars et al. 2023). 

Ayars, J., Kramer, H. A., & Jones, G. M. (2023). The 2020 to 2021 California megafires and 

their impacts on wildlife habitat. Proceedings of the National Academy of Sciences, 120(48), 

e2312909120. https://doi.org/10.1073/pnas.2312909120 

Given Figure 2, it's not really above, the lake is included, which is a very strong control on 

hydrological modelling. 

Agreed, and we have reworded this to say “…above the outlet of Millerton Lake.” 

https://doi.org/10.1073/pnas.2312909120


I think it would be interesting to refer to Figure S4 when you introduce this Table too. By the 

way, parameters have a different name between Table 1 and Figure S4. Please check consistency 

in parameter names. 

We have added a reference to Figure S4 when Table 1 is introduced. The parameter names have 

also been updated for consistency in Figure S1 and S4, though some need to be abbreviated to fit 

on the plots. 

By the way I was not able to access the data with the reference provided to have more 

information about this station. Could you update the hyperlink? 

The link has been updated: 

https://cdec.water.ca.gov/dynamicapp/staMeta?station_id=SBF 

Out of curiosity, does the ‘best’ member, i.e. the 'best' parameter set, achieve BestValue on all 

criteria or does it show some 'worst' values (even if here it is not really worst since it is already 

filter to achieve a threshold) on some criteria? If it's the first case, that's good news; if it's the 

second, that show a trade-off, so it would be interesting to know what's stopping the model with 

the 'best' parameter set from top-performing for everything. 

There is definitely not a single “best” parameter set. Rather, there is a Pareto frontier between 

each of the objective functions, so some models do slightly better at one objective while having 

worse values on other objectives. This is emphasized in our discussion of overfitting to NSE and 

Log NSE, which would result in outlying models (Supplemental Figure S6). 

In terms of “what’s preventing one model from being best at everything,” we can’t really say, 

because the high-dimensional interactions between parameters and objective functions is very 

complex (e.g., Supplemental Figure S1). Rather, this Pareto-efficient behavior is what we 

generally expect from any high-dimensional multi-objective optimization procedure, 

hydrological or otherwise. One way of thinking about it is that the edges of the Pareto frontier 

(best values on any one objective) are basically overfitting to noise in the data, which is 

illustrated by our Supplemental Figure S6. 

We added the following to the text: 

As expected for any high-dimensional multi-objective optimization problem, there is no single 

“best” parameter set. Rather, the behavioral parameter sets constitute a Pareto frontier, with some 

achieving slightly better at one objective and worse at another. One way of understanding this 

phenomenon is that the parameter sets with the absolute highest values for any single objective 

are overfitting to noise in the data, while parameters that perform reasonably well at a variety of 

objectives are intuitively more likely to capture meaningful hydrological information. 

 

 

https://cdec.water.ca.gov/dynamicapp/staMeta?station_id=SBF


Is it included in meteorological inputs or is it calculated through DHSVM. In both case, how is 

PET calculated? 

This is clarified as follows in the text: 

Note that the annual PET used in the empirical water balance model is pre-calculated as part of 

the gridMET dataset (Abatzoglou 2013) from Penman-Monteith reference evapotranspiration, 

but PET is calculated separately within the DHSVM evapotranspiration module (Wigmosta et al. 

1994), similarly using a Penman-Monteith implementation. 

This seems arbitrary; I suggest to add a clear definition of what satisfactory means in your study 

if you want to use this terminology. 

We clarified that we consider these simulations visually “satisfactory” in addition to the metrics: 

The behavioral ensemble of 30 calibrated DHSVM parameter sets all reproduce observed 

streamflow hydrographs with a satisfactory visual match to peak flow and low flow magnitudes, 

interannual variability, and seasonal timing (Table 2, Fig. 3). 

We also added a comparison to a similar study: 

Additionally, the post-fire daily NSE of at least 0.80 achieved by all behavioral DHSVM 

parameter sets is substantially higher than the post-fire daily NSE of -0.13 to 0.60 achieved by a 

different distributed hydrological model (with dynamic vegetation and other fire-aware updates) 

after a megafire in other Sierra Nevada sub-watersheds (Abolafia-Rosenzweig et al. 2024). 

I think it is important to introduce the validation procedure in the methodology section (period, 

criteria used, ...) 

Agreed—this has been added: 

We validate the performance of the selected parameter sets by simulating the 10 year period 

prior to the calibration period, i.e., water years 2005-2014. We calculate the same objective 

functions over this validation period to test the validity of the calibration on out-of-sample time 

periods. 

A benchmark would be very helpful here to know whether the model was already capable of this 

without the dynamic aspect of the vegetation maps. 

Agreed—this has been added: 

Without the vegetation map updates, the behavioral ensemble performs significantly worse on 

the post-fire period, but streamflow skill is still reasonably high: the mean NSE is lower by 0.06 

in the no-fire control scenario (p < 0.001, Welch one-sample t-test) and the mean log NSE is 

lower by 0.02 (p < 0.001). Furthermore, the no-fire control scenario yields a mean post-fire bias 

between -17% and -9% (static vegetation systematically underestimates post-fire streamflow), 

while in dynamic vegetation mode, the mean post-fire bias varies between -9% and +6% 

(Supplemental Figure S3). 



This is an interesting result. I think it is important to provide an explanation to support this result 

(greater exposure to sunlight, changes in albedo, increased wind exposure, etc.). Do you know 

what is causing 2023 to be particularly affected? 

We added this information: 

Because our post-fire implementation only changes the vegetation maps (no change to modeled 

soil or snow albedo), the prediction of earlier snowmelt runoff is primarily a result of increased 

energy reaching the snowpack due to reduced canopy shading. This snowmelt timing effect is 

most noticeable in the 2023 water year, which was a year with extremely high snow 

accumulation (Marshall et al. 2024). 

Marshall, A. M., Abatzoglou, J. T., Rahimi, S., Lettenmaier, D. P., & Hall, A. (2024). 

California’s 2023 snow deluge: Contextualizing an extreme snow year against future climate 

change. Proceedings of the National Academy of Sciences, 121(20), e2320600121. 

https://doi.org/10.1073/pnas.2320600121 

I’m not sure I fully understood. The stationary sub-ensemble is a subset of the full behavioral 

ensemble, right? In that case, how can it achieve a higher maximum score? 

This has been clarified to explain that the sub-ensemble has better SWE error compared to the 

highest-NSE parameter set, not the full behavioral ensemble: 

Compared to the full behavioral ensemble, the stationary sub-ensemble has slightly sub-optimal 

hydrograph fit (NSE 0.80-0.85 vs. 0.89 max), but better SWE volume error compared to the 

highest-NSE parameter set (MAPE of 18-27% across 30 ASO surveys vs. 32% for the highest-

NSE parameter set). 

 

https://doi.org/10.1073/pnas.2320600121



