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Response to Editor

We thank the editor for helpful feedback, which we have addressed. Specifically, we have
corrected (removed) the comparison between NSE and R?, and we have substantially clarified
and expanded our justification for propagating meteorological uncertainty (see below).

Response to Reviewers

We thank the reviewers for helpful feedback, which we have also addressed. In addition to minor
edits and clarifications throughout, we have incorporated the following major improvements:

e Substantially expanded justification of our treatment of meteorological uncertainty,
including (1) prior studies showing comparably large uncertainties in the Sierra Nevada,
and (2) detailed explanation of why meteorological uncertainty should be considered as
part of a unified model-weather inferential system to support robust predictions.

e Added details about the streamflow reconstruction procedure underlying the “observed”
streamflow, which is based on a simple mass balance equation considering upstream
reservoir storage changes, reservoir evaporation, and canal diversions.

e Added a completely independent second calibration experiment using only pre-fire years
for calibration, which yields nearly identical predictions of the post-fire streamflow
change (new Supplemental Figure S7).

Our response to each of the two reviewers is attached hereafter.
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Harpold

Response to Reviewer Comment RC1

We greatly appreciate the reviewers’ helpful comments on this manuscript, which we will
address in a revision. Our comments are interspersed into the review in blue.

The authors should define counterfactual. On page 2, paragraphs 2 and 3, the authors use this
term, but the meaning is not clear. It may need to be rephrased to increase the manuscript's
accessibility.

We added a sentence immediately after the first use of “counterfactual” to clarify its meaning:

In this context, a “counterfactual” refers to a hypothetical scenario in which a particular
disturbance did not happen, so comparing the actual post-disturbance behavior to the
counterfactual scenarios enables attribution of disturbance effects.

On page 3, in the first paragraph, the word “since” should be replaced by “because” due to the
authors' intent.

This sentence has been restructured and no longer includes either word.

On page 3, paragraph 1, the logical connection between the lack of landscape-scale observation
of many environmental properties and model properties is that we cannot infer the parameters
from data and therefore need to calibrate. We suggest making this explicit to increase the
accessibility of the text.

Agreed—the start of this paragraph has been reworded to make this connection more explicit.
On page 3, line 71, “since” is used instead of because.
Changed.

On page 3, line 72, the authors hypothesize that equifinal parameter sets may produce divergent
predictions. Could work be cited here to state this as a fact rather than formulating this as a
hypothesis?

While we agree that this is a commonly discussed idea, we have not been able to find any studies
explicitly demonstrating it as a fact, specifically in the context of post-disturbance changes.
Thus, we believe that the current formulation as a hypothesis is most appropriate, though we are
open to suggestions for references we might have missed.



Figure 1 on page 4 could be improved by including more details. This would reduce the number
of assumptions readers will have to make in order to understand the image. -"Initial water
balance": for the sake of argument, we'll assume that all models perfectly fit current streamflow,
even if given different inputs (P), the simulated ET tree and ET other components are such that
Qsim = Qobs = 1. "Disturbance response": some disturbance reduces ET tree (line 79-80).

We have expanded the caption for this figure to include additional explanation as follows:

In the “initial water balance” panel, we assume that all three models closely match pre-
disturbance streamflow, with uncertain precipitation and evapotranspiration (ET) components
counterbalanced to produce Qobserved = QModeled = 1 (normalized annual units). After a disturbance
(e.g., a wildfire) reduces ETTree, the different models predict various degrees of streamflow
change, which is mediated by the potential for compensating increases in ETOther (e.g., soil
evaporation and understory ET). In the “disturbance response” panel, the arrows illustrate the
direction and magnitude of the water balance changes predicted by each model. In the
“streamflow bias” panel, the resulting model predictions are compared to measured streamflow,
showing how some models could exhibit a bias after disturbance due to uncertain estimation of
water balance changes.

The image could better explain what the up and down arrows in this column show. Readers can
speculate that the downward ET _tree arrows mean that (to match reality) the models simulate no
ET tree anymore. In model 1, this means Q sim goes up by 2, but why would ET other in
models 2 and 3 go up by either the negative change in ET _tree or half that? If these are meant as
examples of what could happen with a given model (rather than what will happen), it would be
good to state this in the text explicitly. E.g. "[..] increased soil water availability. The three
examples show cases where ET_other does not change (model 1), where ET_other fully
compensates the reduction in ET _tree (model 2), and where ET_other only aprtly compensates
the reduction in ET _tree".

The reviewers have indeed given the correct interpretation of the figure, and we have clarified
with an adapted version of the suggested text:

The three examples show cases where ETowmer does not respond to the disturbance (Model 1),
where ETomer fully compensates for reduced ETtree (Model 2), and where ETother only partly
compensates for reduced ETtree. Intuitively, these hypothetical model responses are connected to
the pre-disturbance balance of ETtree and ETotmer, which primes some models to predict a larger
or smaller compensation effect.

"Streamflow bias": here seems to have an underlying assumption that Qobs increases by 1 after
the disturbance. This is key to understanding why the models are assumed to
underpredict/overpredict/no change and should be explicitly stated somewhere.

Agreed—we added the following sentence to the figure caption:

In this hypothetical example, we assume that Qobserved increases by 1 unit after disturbance,
matching the prediction of Model 3.



Given that this example is intended to give the reader an easy intro into the concepts used in the
paper, it's worthwhile to make sure all assumptions are clearly stated. Without this figure, it may
raise more questions than it answers. A possible solution is to move the paragraph with lines 92
to 100 before the figure.

We believe that Figure 1 makes the most sense immediately after the first paragraph of text
where it is mentioned. However, we have substantially expanded the caption (see above), which
we believe makes the figure much easier to interpret even without the rest of the text.

Figure 2 should have labels in a better font. The current font choice looks out of place. The
caption also needs to define the acronyms RCMAP and UTM.

All figure fonts used throughout are Arial, which is an extremely widely used and easily readable
font recommended for figures by the APA style guide:

https://apastyle.apa.org/style-grammar-guidelines/paper-format/font

We determined that the acronyms were unnecessary for the figure caption because the datasets
are specified elsewhere, so they have been removed.

On page 7, lines 139 to 141, the description of the methods would be strengthened if the
resampling technique used to aggregate the 30 m resolution data to the 90 m resolution model
were explicitly stated. Was it averaging, weighted aggregation or majority rule? An explanation
of how this mapping works in cases where there are differences in burned area at the original
30m resolution would help reproducibility.

The canopy cover data are reprojected using nearest-neighbor because the dataset is a
combination of continuous (canopy cover %) and categorical (trees present: true or false), and
nearest-neighbor reprojection is the appropriate technique for categorical data. This has been
added to the text.

On page 7, lines 143 to 144, the authors should provide a quick justification for why October 1
was chosen to update the vegetation maps. A quick sentence saying it corresponds to the water
year, or the availability of vegetation maps at the end of the fire season, or any other justification,
should be stated. An October 1st update could introduce artificial bias, so it would be good to
justify why this approach was followed.

We added the following justification:

The October 1st date is used for annual model updates because this date represents the start of a
new water year, and Sierra Nevada watersheds are typically near their driest condition around
this time of year, which limits the impact of model changes on simulated hydrological fluxes.


https://apastyle.apa.org/style-grammar-guidelines/paper-format/font

On page 7, lines 147 to 148, the authors should explain why estimation is preferable to using
LAI observations from something like. Are the empirical estimates close to satellite
observations?

Current satellite technology cannot observe LAI directly; rather, satellite observations (of
reflected light) are converted into estimates of LAI through various models and empirical
relationships (e.g., see Table 1 summary in Yan et al. 2018).

Yan et al., "Generating Global Products of LAI and FPAR From SNPP-VIIRS Data:
Theoretical Background and Implementation," in /EEE Transactions on Geoscience and
Remote Sensing, vol. 56, no. 4, pp. 2119-2137, April 2018, doi:
10.1109/TGRS.2017.2775247

Lidar surveys show weaknesses in satellite-based optical LAI estimates, including saturation in
dense forests and the inability to resolve 3-dimensional canopy structure that is important for
LAL Pre- and post-fire lidar surveys are not publicly available in the study area, so lacking high-
resolution canopy structure data, we opt to estimate LAI heuristically through calibration.

Winsemius, S., Babcock, C., Kane, V. R., Bormann, K. J., Safford, H. D., & Jin, Y. (2024).
Improved aboveground biomass estimation and regional assessment with aerial lidar in

California’s subalpine forests. Carbon Balance and Management, 19(1), 41.
https://doi.org/10.1186/s13021-024-00286-w

Zolkos, S. G., Goetz, S. J., & Dubayah, R. (2013). A meta-analysis of terrestrial aboveground
biomass estimation using lidar remote sensing. Remote Sensing of Environment, 128, 289—
298. https://doi.org/10.1016/j.rse.2012.10.017

We have added the preceding justification to the methods.

On page 8, it is important to speak about calibrating correction factors for meteorological inputs,
which has the potential to compensate for any deficiencies in the model itself. For a study trying
to investigate how calibrated models predict process changes after a disturbance, calibrating
bias-correction parameters for the forcing could introduce a lot of complexity (in other words,
substantially enhance equifinality) that will complicate later analysis. A broad statement like
"eridded meteorological data can have considerable uncertainty" is insufficient to justify this. Is
there any concrete evidence that the specific meteorological data chosen are biased in this
particular watershed? (Even) If so, the correct approach would be to bias-correct the forcing
before calibration starts, so that every model in the ensemble uses the same inputs. This seems
the only way to get a clean comparison between models later.

We are not primarily interested in “a clean comparison between models,” but rather, we are
interested in the effect of the fire on real-world annual streamflow. This effect is uncertain due to
both the model and the forcing data. Failure to propagate meteorological uncertainty (by only
using one set of inputs) would systematically overestimate our confidence in the combined
model/weather system. It is helpful to think of this in a Bayesian context: the forcing data
themselves are uncertain, but this uncertainty can be constrained by performing simultaneous
inference over the model/data system.


https://doi.org/10.1186/s13021-024-00286-w
https://doi.org/10.1016/j.rse.2012.10.017

We recognize that a fully Bayesian perspective is rare in distributed process-based hydrological
modeling, so we have substantially expanded our explanation of this approach as follows:

While most of these parameters are widely recognized as suitable for calibration (Cuo et al.
2011, Du et al. 2014), precipitation and temperature biases are less frequently included in the
calibration of distributed process-based models despite considerable uncertainty in gridded
meteorological data. Among gridded meteorological datasets, there is mean relative difference of
21% for annual precipitation in our study watershed (Henn et al. 2018), and misestimation of
large storms can lead to yearly biases of about 20% across the Sierra Nevada (Lundquist et al.
2015). Similarly, different meteorological datasets have mean air temperature differences as
large as £8 °C in the Sierra Nevada, and basin-average uncertainty is lower but still on the order
of several °C (Schreiner-McGraw and Ajami 2022). Compensation between unknown errors in
the meteorology data, model structure and calibration, and reconstructed streamflow can
potentially contribute to spurious goodness-of-fit metrics with hidden physical deficiencies.
Moreover, we expect that interactions between meteorological uncertainty and parameter
equifinality may contribute to the overall uncertainty of disturbance simulations (Fig. 1), but this
uncertainty would remain hidden if meteorological biases were assumed to be negligible.
Because perfectly resolving the weather data with infinite precision is not feasible across a large,
rugged mountain region, the robust approach is to propagate meteorological uncertainty into our
final results (the post-fire hydrological change in this case), so that our conclusions include the
quantified uncertainty caused by the model-data-calibration interaction. We view the combined
meteorological data and hydrological model as a single inferential system, thereby
acknowledging that the meteorological data themselves are based on various uncertain
observations and empirical model assumptions (Abatzoglou 2013). In a Bayesian context, the
goal of our calibration can be understood as sampling the probability of the streamflow and snow
observations given a particular combination of model parameters and meteorological
assumptions: P(streamflow + snow | model + meteorology). Because we lack a closed-form
likelihood function for spatially distributed hydrological models like DHSVM, we estimate the
unknown parameters of this whole weather-model system using an informal approximation
based on traditional hydrological model calibration objective functions (Beven and Binley 1992).

Lundquist, J. D., Abel, M. R., Henn, B., Gutmann, E. D., Livneh, B., Dozier, J., & Neiman,
P. (2015). High-Elevation Precipitation Patterns: Using Snow Measurements to Assess Daily

Gridded Datasets across the Sierra Nevada, California. Journal of Hydrometeorology, 16(4),
1773-1792. https://doi.org/10.1175/JHM-D-15-0019.1

Henn, B., Newman, A. J., Livneh, B., Daly, C., & Lundquist, J. D. (2018). An assessment of
differences in gridded precipitation datasets in complex terrain. Journal of Hydrology, 556,
1205-1219. https://doi.org/10.1016/j.jhydrol.2017.03.008

Schreiner-McGraw, A. P., & Ajami, H. (2022). Combined impacts of uncertainty in
precipitation and air temperature on simulated mountain system recharge from an integrated
hydrologic model. Hydrology and Earth System Sciences, 26(4), 1145-1164.
https://doi.org/10.5194/hess-26-1145-2022



https://doi.org/10.1175/JHM-D-15-0019.1
https://doi.org/10.1016/j.jhydrol.2017.03.008
https://doi.org/10.5194/hess-26-1145-2022

The correct approach would be to bias-correct the forcing before calibration starts, so that every
model in the ensemble uses the same inputs.

We disagree, and this is actually one of the fundamental contributions of our study (Figure 1).

It is not possible to bias-correct the forcing in the absence of ground-truth spatially representative
meteorology data, which do not exist for our particular study watershed. Moreover, this proposed
“bias-correction” seems to just be a type of calibration by a different name, which should be
included in the formal quantification and propagation of calibration uncertainty. Otherwise, we
would end up with a single, infinitely precise estimate of meteorological biases, which is not
realistic. Our conceptual model (Figure 1) illustrates why meteorological uncertainty needs to be
propagated through calibration because different forcing assumptions lead to different pre- and
post-disturbance water balance configurations, and it is impossible to determine the “true”
spatially distributed mountain weather with infinite precision.

We have clarified this in the introduction as follows:

As illustrated in Fig. 1, meteorological uncertainty (e.g., a precipitation bias) can interact with
uncertain model parameterizations, contributing to uncertainty in the streamflow response to
disturbance. Basin-scale meteorology data are highly uncertain in mountain regions (e.g.,
Lundquist et al. 2015, Henn et al. 2018, Schreiner-McGraw and Ajami 2022), and whatever
assumptions we make about the meteorology may cause the model to compensate for
inaccuracies with other calibrated parameters (Elsner et al. 2014). For example, assuming a
larger precipitation bias correction may cause the model to simulate a larger ETtree component
and a corresponding large post-fire change (Model 3 in Fig. 1), whereas a smaller precipitation
bias correction could limit the predicted post-fire streamflow change since the pre-fire P-Q
residual is smaller (Models 1-2 in Fig. 1). From a Bayesian perspective, we can treat the data and
model as a combined inferential system, which enables us to constrain uncertainty in the
interactions between uncertain meteorology and uncertain hydrology by generating suitable
ensemble samples (Kavetski et al. 2003).

Kavetski, D., Franks, S. W., & Kuczera, G. (2003). Confronting input uncertainty in
environmental modelling. In Q. Duan, H. V. Gupta, S. Sorooshian, A. N. Rousseau, & R.
Turcotte (Eds.), Water Science and Application (Vol. 6, pp. 49—68). American Geophysical
Union. https://doi.org/10.1029/WS006p0049

Elsner, M. M., Gangopadhyay, S., Pruitt, T., Brekke, L. D., Mizukami, N., & Clark, M. P.
(2014). How Does the Choice of Distributed Meteorological Data Affect Hydrologic Model
Calibration and Streamflow Simulations? Journal of Hydrometeorology, 15(4), 1384—1403.
https://doi.org/10.1175/JHM-D-13-083.1



https://doi.org/10.1029/WS006p0049
https://doi.org/10.1175/JHM-D-13-083.1

On page 8, lines 194 to 195, some extra explanation about why these three objectives are based
on reconstructed daily streamflow is needed and how it works would be good to add. A reference
to a more in-depth explanation would be enough. How does the reconstruction approach deal
with the disturbance if this is reconstructed? Is that accounted for somehow?

We have clarified what is meant by “reconstructed” streamflow. This is not a model output, but
rather a combination of observations, which are added and subtracted to “undo” the effect of
upstream artificial storage and diversion. We have added additional information to the text about
the streamflow dataset, including a citation to the California DWR documentation as follows:

Streamflow is estimated at the outlet of Millerton Lake (Fig. 2) by reconstructing observations to
remove the effects of artificial flow regulation (California Department of Water Resources
2024). Millerton Lake unimpaired outflows are estimated assuming sub-daily surface routing
times by summing the daily change in storage, canal and dam releases, surface evaporation, and
storage changes at eight smaller upstream reservoirs (Huang and Kadir 2016). Note that the
reconstructed streamflow timeseries used in this study (called “full natural flow” by the
California Data Exchange Center) is based on an explicit mass balance equation applied directly
to the respective storage and flow measurements, not model output, unlike various other
meanings of “natural flow” that are sometimes applied to California water datasets (Huang and
Kadir 2016). The reconstructed streamflow timeseries (hereafter “observed streamflow”)
constrains the actual effects of the Creek Fire (and other disturbances) because the reconstruction
procedure is directly based on measurements at specific diversion, storage, and outflow points,
which are themselves responsive to the basin hydrological conditions. Three objective functions
are based on a cleaned version of this daily streamflow timeseries (spurious negative values
during low-flow periods and other missing values are imputed).

Huang, G., & Kadir, T. (2016). Estimates of Natural and Unimpaired Flows for the Central
Valley of California: Water Years 1922-2014 (pp. 1-256). Department of Water Resources,
Bay-Delta Office. https://data.ca.gov/dataset/estimates-of-natural-and-unimpaired-flows-for-
the-central-valley-of-california-wy-1922-2014

On page 9, the caption for Table 2 states that NSE is identical to R? for statistical models. It
would be better if it stated that NSE is analogous to R2 and not identical, and if a citation from
the original Nash and Sutcliffe paper from 1970 were provided.

We have removed this wording.

On page 10, line 217, 600 samples for a 14-dimensional space does not seem a lot, and a large
number of these might already be Pareto-optimal just because of the low number of samples. A
table that shows how many of each sample fulfills each individual criterion would be good.

This is actually one of the key advances of our underlying methodology, though we agree it
needs to be better highlighted in the manuscript. Specifically, our calibration approach uses
parallel expected hypervolume calculations obtained from surrogate machine learning models to
search for Pareto-efficient parameter sets extremely efficiently. In such a context, a few hundred
samples is actually quite a lot, as these techniques are intended to work with even just tens of


https://data.ca.gov/dataset/estimates-of-natural-and-unimpaired-flows-for-the-central-valley-of-california-wy-1922-2014
https://data.ca.gov/dataset/estimates-of-natural-and-unimpaired-flows-for-the-central-valley-of-california-wy-1922-2014

parameter samples. A good overview of this methodology is provided by one of the included
citations for the expected hypervolume indicator:

Binois, M., & Picheny, V. (2019). GPareto: An R Package for Gaussian-Process-Based
Multi-Objective Optimization and Analysis. Journal of Statistical Software, 89(8).
https://doi.org/10.18637/jss.v089.108

We have also clarified in the text as follows:

While this number of tested parameter sets may seem small by conventional standards
considering the 14-dimensional search space, we note that each new parameter sample is selected
after an independent optimization procedure using 100 to 1,000 particle swarm samples from the
objective function surrogate models. Thus, our overall calibration explores the objective function
tradeoffs across more than 160,000 parameter sets, though only 600 of these are actually tested
in DHSVM. Because testing hundreds of thousands of parameter sets directly in DHSVM would
require prohibitive amounts of computational expense, the Bayesian surrogate optimization
procedure is essential for efficiently selecting parameter sets that have the best likelihood of
substantially improving the Pareto frontier.

On page 10, line 234, given that streamflow is reconstructed, the authors should use the term
“reconstructed streamflow” instead of calling this "observed" to help the reader understand that
we're comparing results from one model to another.

Please see prior comment—the “reconstructed streamflow” is indeed calculated directly from
observations. It is only reconstructed in the sense of removing upstream diversion/storage effects
using a simple water balance equation, and it is not a model output.

On page 11, line 242, the authors should state the importance of the bias shift metric. The co-
reviewers came to differing conclusions about its importance. Is it a metric to inform people
about models, or is the bias shift something that needs to be corrected, and how is the correction
applied?

The bias shift metric is useful in both contexts. We clarified this immediately at the start of
Section 2.4, where we introduce the metric:

The bias shift metric is useful in two contexts. First, it is useful for understanding and refining
the behavior of models, potentially including reducing equifinality by preferring models with
near-stationary bias. Second, it is useful for correcting model predictions to estimate what a
hypothetical model with stationary error would have predicted.

The reasoning on page 11, lines 249 to 250, is a bit difficult to follow. Are there any tests that
can be done to see if this assumption is valid, or can the authors speculate how the results would
change if it didn’t hold?

We have clarified that this reasoning is supported by the scatterplots in Fig. 5:

The linear relationship between bias shift and yearly AQFire is supported by graphical analysis of
bivariate scatterplots, as illustrated subsequently in Fig. 5. In other watersheds or disturbance


https://doi.org/10.18637/jss.v089.i08

scenarios, it might be necessary to posit a nonlinear relationship with the bias shift, which could
again be detected from analogous bivariate scatterplots.

Figure 3 shows some variability in the simulations, particularly around the middle flow
magnitudes. Can it be clarified why these simulations are called "satisfactory"? Presumably,
there's an implicit middle step that says "these NSE scores are [something], therefore these
parameter sets all satisfactorily reproduce observed streamflow". I encourage the authors to add
their reasoning for thinking that these simulations are good enough for this study. Are these
simulations of typical quality for this particular watershed (i.e., comparable to other modelling
efforts)? Are these ranges of scores particularly high for this specific watershed?

We have reworded this sentence as follows:

All behavioral parameter sets also achieve NSE of 0.80-0.87 and log-scale NSE of 0.76-0.84
considering just the four years after the Creek Fire, which is considered satisfactory because the
model skill is similar on pre- and post-fire periods

We have also added a comparison to a similar study in a different Sierra Nevada basin:

Additionally, the post-fire daily NSE of at least 0.80 achieved by all behavioral DHSVM
parameter sets is substantially higher than the post-fire daily NSE of -0.13 to 0.60 achieved by a
different distributed hydrological model (with dynamic vegetation and other fire-aware updates)
after a megafire in other Sierra Nevada sub-watersheds (Abolafia-Rosenzweig et al. 2024).

Figure 4 needs more explanation. For example, for both x-axes, are we looking at different parts
in space? In other words, does this figure show how different parts of the watershed respond?
The reviewers are asking because the caption says that the values on both x-axes are derived
from data and not calibrated, but if this is so, the reviewers are unsure how this figure shows
parameter uncertainty. By counting we can summarize that each symbol stands for a behavioural
parameter set, but this should be stated somewhere.

Thank you for bringing this to our attention—it was indeed ambiguous as written. We have
clarified the caption to indicate that each point represents a behavioral parameter set, with all
values spatially averaged within the watershed.

The data and code availability statement on page 22 is incomplete. See the guidelines at
https://www.hydrology-and-earth-system sciences.net/submission.html. The co-reviewers would
like to take a look at the streamflow series for this basin but cannot easily find the location of this
data either in this section or through the California DWR reference mentioned in the text.

Our understanding from the options presented during the HESS submission process was that
final datasets could be archived after acceptance, thus incorporating any changes suggested
during review. At this stage, we are comfortable that our methods and results are largely final, so
we have created the archive and it has been added to the paper.



The original data, as well as the cleaned dataset with imputed values that is used in our study,
can be downloaded from the new Zenodo archive:

https://doi.org/10.5281/zenodo.16972670

Additionally, the raw streamflow data (sensor number 8) can be downloaded here:

https://cdec.water.ca.eov/dynamicapp/staMeta?station 1d=SBF

In the references, line 586, this link does not go to the dataset but to the landing page. A DOI, an
accurate link, and the access date are needed.

This has been updated to the station metadata page above. However, a DOI is not available for
this dataset, which is hosted on a California state webpage.


https://doi.org/10.5281/zenodo.16972670
https://cdec.water.ca.gov/dynamicapp/staMeta?station_id=SBF
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Response to Reviewer Comment RC2

We greatly appreciate the reviewer’s helpful comments on this manuscript, which we will
address in a revision. Our comments are interspersed into the review in blue.

I understand the idea that meteorological data are uncertain and can significantly influence
model outputs. However, the parameter range used for correcting meteorological biases (£25%
for precipitation, +4°C for temperature) appears very large. Are there existing studies or
evidence supporting this magnitude of potential meteorological bias specifically within this
basin? My concern is that using such broad correction ranges might allow the hydrological
model to artificially add or remove water to better match streamflow observations, which
themselves are uncertain due to reconstruction processes, thereby compensating for potentially
missing or poorly represented processes.

We agree that the potential compensations between uncertain weather, uncertain models, and
uncertain streamflow leads to a quandary. However, we believe that our study proposes a
uniquely robust method to untangle this problem through a Bayesian uncertainty framework. By
simultaneously propagating uncertainty in the data and model (through calibration of biases
along with other parameters), we explore the full range of potential compensations, thereby
robustly propagating the resultant uncertainty. This approach constrains uncertainty in the target
variable (extra water from fire) without requiring an unrealistically precise confidence level in
the unmeasured mountain weather.

We have substantially expanded our justification of this approach as follows:

While most of these parameters are widely recognized as suitable for calibration (Cuo et al.
2011, Du et al. 2014), precipitation and temperature biases are less frequently included in the
calibration of distributed process-based models despite considerable uncertainty in gridded
meteorological data. Among gridded meteorological datasets, there is mean relative difference of
21% for annual precipitation in our study watershed (Henn et al. 2018), and misestimation of
large storms can lead to yearly biases of about 20% across the Sierra Nevada (Lundquist et al.
2015). Similarly, different meteorological datasets have mean air temperature differences as
large as £8 °C in the Sierra Nevada, and basin-average uncertainty is lower but still on the order
of several °C (Schreiner-McGraw and Ajami 2022). Compensation between unknown errors in
the meteorology data, model structure and calibration, and reconstructed streamflow can
potentially contribute to spurious goodness-of-fit metrics with hidden physical deficiencies.
Moreover, we expect that interactions between meteorological uncertainty and parameter
equifinality may contribute to the overall uncertainty of disturbance simulations (Fig. 1), but this



uncertainty would remain hidden if meteorological biases were assumed to be negligible.
Because perfectly resolving the weather data with infinite precision is not feasible across a large,
rugged mountain region, the robust approach is to propagate meteorological uncertainty into our
final results (the post-fire hydrological change in this case), so that our conclusions include the
quantified uncertainty caused by the model-data-calibration interaction. We view the combined
meteorological data and hydrological model as a single inferential system, thereby
acknowledging that the meteorological data themselves are based on various uncertain
observations and empirical model assumptions (Abatzoglou 2013). In a Bayesian context, the
goal of our calibration can be understood as sampling the probability of the streamflow and snow
observations given a particular combination of model parameters and meteorological
assumptions: P(streamflow + snow | model + meteorology). Because we lack a closed-form
likelihood function for spatially distributed hydrological models like DHSVM, we estimate the
unknown parameters of this whole weather-model system using an informal approximation
based on traditional hydrological model calibration objective functions (Beven and Binley 1992).

Lundquist, J. D., Abel, M. R., Henn, B., Gutmann, E. D., Livneh, B., Dozier, J., & Neiman,
P. (2015). High-Elevation Precipitation Patterns: Using Snow Measurements to Assess Daily
Gridded Datasets across the Sierra Nevada, California. Journal of Hydrometeorology, 16(4),
1773-1792. https://doi.org/10.1175/JHM-D-15-0019.1

Henn, B., Newman, A. J., Livneh, B., Daly, C., & Lundquist, J. D. (2018). An assessment of
differences in gridded precipitation datasets in complex terrain. Journal of Hydrology, 556,
1205-1219. https://doi.org/10.1016/].jhydrol.2017.03.008

Schreiner-McGraw, A. P., & Ajami, H. (2022). Combined impacts of uncertainty in
precipitation and air temperature on simulated mountain system recharge from an integrated
hydrologic model. Hydrology and Earth System Sciences, 26(4), 1145-1164.
https://doi.org/10.5194/hess-26-1145-2022

Additional added explanation in introduction:

As illustrated in Fig. 1, meteorological uncertainty (e.g., a precipitation bias) can interact with
uncertain model parameterizations, contributing to uncertainty in the streamflow response to
disturbance. Basin-scale meteorology data are highly uncertain in mountain regions (e.g.,
Lundquist et al. 2015, Henn et al. 2018, Schreiner-McGraw and Ajami 2022), and whatever
assumptions we make about the meteorology may cause the model to compensate for
inaccuracies with other calibrated parameters (Elsner et al. 2014). For example, assuming a
larger precipitation bias correction may cause the model to simulate a larger ETTree component
and a corresponding large post-fire change (Model 3 in Fig. 1), whereas a smaller precipitation
bias correction could limit the predicted post-fire streamflow change since the pre-fire P-Q
residual is smaller (Models 1-2 in Fig. 1). From a Bayesian perspective, we can treat the data and
model as a combined inferential system, which enables us to constrain uncertainty in the
interactions between uncertain meteorology and uncertain hydrology by generating suitable
ensemble samples (Kavetski et al. 2003).

Kavetski, D., Franks, S. W., & Kuczera, G. (2003). Confronting input uncertainty in
environmental modelling. In Q. Duan, H. V. Gupta, S. Sorooshian, A. N. Rousseau, & R.
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Turcotte (Eds.), Water Science and Application (Vol. 6, pp. 49—-68). American Geophysical
Union. https://doi.org/10.1029/WS006p0049

Elsner, M. M., Gangopadhyay, S., Pruitt, T., Brekke, L. D., Mizukami, N., & Clark, M. P.
(2014). How Does the Choice of Distributed Meteorological Data Affect Hydrologic Model
Calibration and Streamflow Simulations? Journal of Hydrometeorology, 15(4), 1384—1403.
https://doi.org/10.1175/JHM-D-13-083.1

The presence of a reservoir near the gauge station considerably disrupts natural streamflow
patterns. The approach of reconstructing streamflow to remove these effects (naturalized flows)
partially restores the basin's natural characteristics but leaves the "observed" data highly
uncertain. Such uncertainty can significantly impact calibration experiments. Could you clarify
the method used to reconstruct the streamflow? Specifically, does the reconstruction explicitly
account for changes introduced by the 2020 Creek Fire disturbance?

We have clarified how the “reconstructed” streamflow is calculated based on the California
DWR documentation as follows:

Streamflow is estimated at the outlet of Millerton Lake (Fig. 2) by reconstructing observations to
remove the effects of artificial flow regulation (California Department of Water Resources
2024). Millerton Lake unimpaired outflows are estimated assuming sub-daily surface routing
times by summing the daily change in storage, canal and dam releases, surface evaporation, and
storage changes at eight smaller upstream reservoirs (Huang and Kadir 2016). Note that the
reconstructed streamflow timeseries used in this study (called “full natural flow” by the
California Data Exchange Center) is based on an explicit mass balance equation applied directly
to the respective storage and flow measurements, not model output, unlike various other
meanings of “natural flow” that are sometimes applied to California water datasets (Huang and
Kadir 2016). The reconstructed streamflow timeseries (hereafter “observed streamflow™)
constrains the actual effects of the Creek Fire (and other disturbances) because the reconstruction
procedure is directly based on measurements at specific diversion, storage, and outflow points,
which are themselves responsive to the basin hydrological conditions. Three objective functions
are based on a cleaned version of this daily streamflow timeseries (spurious negative values
during low-flow periods and other missing values are imputed).

Huang, G., & Kadir, T. (2016). Estimates of Natural and Unimpaired Flows for the Central
Valley of California: Water Years 1922-2014 (pp. 1-256). Department of Water Resources,
Bay-Delta Office. https://data.ca.gov/dataset/estimates-of-natural-and-unimpaired-flows-for-
the-central-valley-of-california-wy-1922-2014
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In defining the “behavioral” parameter sets, thresholds were applied selectively to NSE, log
NSE, yearly MAPE, and April-July MAPE, but notably not to the snow criteria. Could you
elaborate on why snow metrics were excluded from this subjective filtering? Additionally, could
you clarify whether these subjective thresholds are truly necessary or if the results would have
differed significantly by simply selected the 30 "best" members from the initial ensemble across
all calibration metrics? A more detailed justification for choosing these thresholds would
enhance transparency and reproducibility.

We have substantially expanded our explanation of the filtering process:

Narrowing the range of acceptable parameter sets requires case-by-case determination of what
skill level is satisfactory for a particular watershed-model combination because a higher skill
might be achieved in hydroclimates that are conceptually simpler to simulate. At the same time,
it is necessary to retain enough parameter diversity to explore our research questions related to
the interaction between equifinality and disturbance. Based on prior experience modeling with
DHSVM in the Sierra Nevada (e.g., Boardman et al. 2025), we find that the best model skill we
can generally achieve is around a daily NSE of approximately 0.8 or higher and yearly error of
approximately 10% or lower. Any single criteria is insufficient for narrowing the parameter
space to a reasonable fraction of the total calibration space. For example, over 30% of all tested
parameter sets have daily NSE > 0.8 (none have NSE > 0.9), but some of these high-NSE
parameter sets are clearly inferior, e.g., with yearly MAPE as high as 35%. Combining multiple
thresholds, we find that 48 parameter sets qualify as “behavioral” by satisfying daily NSE > 0.8,
daily log NSE > 0.8, yearly MAPE < 10%, April-July MAPE < 10%, and Pareto-efficiency
across all objectives. We do not directly apply thresholds to the snow calibration metrics because
the variability of these objective functions is already strongly constrained within the behavioral
ensemble (e.g., the SWE RMSE coefficient of variation is 2% within the behavioral ensemble
compared to 59% across all 600 parameter sets). Nevertheless, snow-based objective functions
still constrain the behavioral ensemble because all behavioral parameter sets must be Pareto-
efficient across all seven objectives.

If my understanding is correct, the 30 DHSVM parameter sets were derived from calibration
experiments using dynamic vegetation only. Thus, comparing model performance under
conditions for which it was explicitly calibrated (dynamic vegetation) against for which it was
not calibrated (static vegetation conditions) might be unfair. To address this concern, would it be
possible to conduct an additional calibration experiment using static vegetation maps? This
would allow a more balanced and fair comparison, using these static-calibrated parameter sets as
an appropriate benchmark against the dynamic-vegetation approach presented here.

The reviewer is correct about our calibration procedure. However, we are not primarily
“comparing model performance,” but rather, predicting the real-world streamflow change that is
attributable to the fire. The nuance here is that we do not expect the static vegetation model to
accurately simulate post-fire streamflow, so there is no inherent unfairness in the model
treatment. Rather, the static vegetation model is simply expected to represent an approximation
of what streamflow might have resulted if there had been no fire.

Nevertheless, we appreciate the reviewer’s interest in seeing how a static-calibrated model would
perform in a similar framework. Luckily, we have already performed a completely independent



second calibration experiment over the pre-fire period (2011-2020), which has mostly static
vegetation with the exception of negligible disturbances on the order of a couple percent. We
initially chose not to discuss this second calibration in the manuscript because it gave basically
the same results, and we thought it was unnecessarily complicated to explain. However, we have
now added the details about the second calibration. The primary result is contained in
Supplemental Figure S7 (shown below).
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Figure S7: Comparison of pre-fire and cross-fire calibration results analogous to Fig. 6 in the
main manuscript. The “cross-fire calibration” (black text labels) refers to the primary DHSVM
behavioral ensemble (30 parameter sets) referenced throughout the main manuscript (calibrated
over water years 2015-2024). The “pre-fire calibration” (magenta text labels) refers to an
entirely separate behavioral ensemble (10 parameter sets) obtained using an identical Bayesian
regression approach applied to a completely separate DHSVM calibration performed over water
years 2011-2020, prior to the Creek Fire.

Importantly, both the pre-fire and cross-fire calibrations yield similar predictions of the post-fire
streamflow change (AQFire), both when considering either the raw ensemble of behavioral
parameter sets or the conditional metamodel (Eq. 2).

Added text in methods:

We repeat our entire calibration procedure over the time period immediately before the fire
(water years 2011-2020) to test whether similar results are obtained when the model is calibrated
without foreknowledge of a mega disturbance. Unlike our primary calibration, which spans 6
years before the fire and 4 years after the fire, all 10 years of the “pre-fire calibration” have
negligible change in the model vegetation maps. The pre-fire calibration is initialized with the
same Latin hypercube sample of 320 random parameter sets, after which we perform six
generations of multi-objective Bayesian optimization following the same procedures as the
primary calibration discussed previously, and we select behavioral parameter sets using the same



objective function criteria. By performing two completely separate and identical calibration
procedures on different time periods, we ensure that there is no cross-contamination of
information between the two calibrations, i.e., the pre-fire calibration is independent and does
not “know” about the other calibration.

Added text in results:

The independent pre-fire calibration (end of Sect. 2.2) yields similar predictions of the post-fire
streamflow change (Supplemental Figure S7). When applied to behavioral parameter sets from
the pre-fire calibration, the conditional metamodel predicts a 90% credible interval of +9% to
+12% for the total post-fire streamflow change, which is remarkably close to the independent
estimate of +10% to +12% using the cross-fire (2015-2024) calibration. The conditional
metamodel based on the pre-fire calibration reduces uncertainty in the total post-fire streamflow
(90% confidence interval) by 82% compared to the empirical regression and 74% compared to
the pre-fire behavioral DHSVM ensemble, which is again similar to the analogous 80% and 82%
reductions (respectively) achieved by the cross-fire calibration metamodel. Regardless of
whether DHSVM is calibrated pre- and post-fire, or only pre-fire, the conditional metamodel
provides consistent predictions of the additional streamflow attributable to the Creek Fire

(AQF ire)-
Added text in discussion:

The consistency of the metamodel results between two independent calibrations (pre-fire and
cross-fire) suggests that our framework is robust to modeling decisions and random temporal
variability, further strengthening confidence in the results.

I'm not sure what that means. Could you define this term in more detail?
We added a sentence immediately after the first use of “counterfactual” to clarify its meaning:

In this context, a “counterfactual” refers to a hypothetical scenario in which a particular
disturbance did not happen, so comparing the actual post-disturbance behavior to the
counterfactual scenarios enables attribution of disturbance effects.

I would suggest to define what a megafire is or just use large wildfire.
Clarified as follows:
In this context, a megafire is any wildfire in excess of 400 km2 (Ayars et al. 2023).

Ayars, J., Kramer, H. A., & Jones, G. M. (2023). The 2020 to 2021 California megafires and
their impacts on wildlife habitat. Proceedings of the National Academy of Sciences, 120(48),
€2312909120. https://doi.org/10.1073/pnas.2312909120

Given Figure 2, it's not really above, the lake is included, which is a very strong control on
hydrological modelling.

Agreed, and we have reworded this to say “...above the outlet of Millerton Lake.”


https://doi.org/10.1073/pnas.2312909120

I think it would be interesting to refer to Figure S4 when you introduce this Table too. By the
way, parameters have a different name between Table 1 and Figure S4. Please check consistency
in parameter names.

We have added a reference to Figure S4 when Table 1 is introduced. The parameter names have
also been updated for consistency in Figure S1 and S4, though some need to be abbreviated to fit
on the plots.

By the way I was not able to access the data with the reference provided to have more
information about this station. Could you update the hyperlink?

The link has been updated:

https://cdec.water.ca.gov/dynamicapp/staMeta?station_id=SBF

Out of curiosity, does the ‘best’ member, i.e. the 'best' parameter set, achieve BestValue on all
criteria or does it show some 'worst' values (even if here it is not really worst since it is already
filter to achieve a threshold) on some criteria? If it's the first case, that's good news; if it's the
second, that show a trade-off, so it would be interesting to know what's stopping the model with
the 'best' parameter set from top-performing for everything.

There 1s definitely not a single “best” parameter set. Rather, there is a Pareto frontier between
each of the objective functions, so some models do slightly better at one objective while having
worse values on other objectives. This is emphasized in our discussion of overfitting to NSE and
Log NSE, which would result in outlying models (Supplemental Figure S6).

In terms of “what’s preventing one model from being best at everything,” we can’t really say,
because the high-dimensional interactions between parameters and objective functions is very
complex (e.g., Supplemental Figure S1). Rather, this Pareto-efficient behavior is what we
generally expect from any high-dimensional multi-objective optimization procedure,
hydrological or otherwise. One way of thinking about it is that the edges of the Pareto frontier
(best values on any one objective) are basically overfitting to noise in the data, which is
illustrated by our Supplemental Figure S6.

We added the following to the text:

As expected for any high-dimensional multi-objective optimization problem, there is no single
“best” parameter set. Rather, the behavioral parameter sets constitute a Pareto frontier, with some
achieving slightly better at one objective and worse at another. One way of understanding this
phenomenon is that the parameter sets with the absolute highest values for any single objective
are overfitting to noise in the data, while parameters that perform reasonably well at a variety of
objectives are intuitively more likely to capture meaningful hydrological information.


https://cdec.water.ca.gov/dynamicapp/staMeta?station_id=SBF

Is it included in meteorological inputs or is it calculated through DHSVM. In both case, how is
PET calculated?

This is clarified as follows in the text:

Note that the annual PET used in the empirical water balance model is pre-calculated as part of
the gridMET dataset (Abatzoglou 2013) from Penman-Monteith reference evapotranspiration,
but PET is calculated separately within the DHSVM evapotranspiration module (Wigmosta et al.
1994), similarly using a Penman-Monteith implementation.

This seems arbitrary; I suggest to add a clear definition of what satisfactory means in your study
if you want to use this terminology.

We clarified that we consider these simulations visually “satisfactory” in addition to the metrics:

The behavioral ensemble of 30 calibrated DHSVM parameter sets all reproduce observed
streamflow hydrographs with a satisfactory visual match to peak flow and low flow magnitudes,
interannual variability, and seasonal timing (Table 2, Fig. 3).

We also added a comparison to a similar study:

Additionally, the post-fire daily NSE of at least 0.80 achieved by all behavioral DHSVM
parameter sets is substantially higher than the post-fire daily NSE of -0.13 to 0.60 achieved by a
different distributed hydrological model (with dynamic vegetation and other fire-aware updates)
after a megafire in other Sierra Nevada sub-watersheds (Abolafia-Rosenzweig et al. 2024).

I think it is important to introduce the validation procedure in the methodology section (period,
criteria used, ...)

Agreed—this has been added:

We validate the performance of the selected parameter sets by simulating the 10 year period
prior to the calibration period, i.e., water years 2005-2014. We calculate the same objective
functions over this validation period to test the validity of the calibration on out-of-sample time
periods.

A benchmark would be very helpful here to know whether the model was already capable of this
without the dynamic aspect of the vegetation maps.

Agreed—this has been added:

Without the vegetation map updates, the behavioral ensemble performs significantly worse on
the post-fire period, but streamflow skill is still reasonably high: the mean NSE is lower by 0.06
in the no-fire control scenario (p < 0.001, Welch one-sample t-test) and the mean log NSE is
lower by 0.02 (p < 0.001). Furthermore, the no-fire control scenario yields a mean post-fire bias
between -17% and -9% (static vegetation systematically underestimates post-fire streamflow),
while in dynamic vegetation mode, the mean post-fire bias varies between -9% and +6%
(Supplemental Figure S3).



This is an interesting result. I think it is important to provide an explanation to support this result
(greater exposure to sunlight, changes in albedo, increased wind exposure, etc.). Do you know
what is causing 2023 to be particularly affected?

We added this information:

Because our post-fire implementation only changes the vegetation maps (no change to modeled
soil or snow albedo), the prediction of earlier snowmelt runoff is primarily a result of increased
energy reaching the snowpack due to reduced canopy shading. This snowmelt timing effect is
most noticeable in the 2023 water year, which was a year with extremely high snow
accumulation (Marshall et al. 2024).

Marshall, A. M., Abatzoglou, J. T., Rahimi, S., Lettenmaier, D. P., & Hall, A. (2024).
California’s 2023 snow deluge: Contextualizing an extreme snow year against future climate
change. Proceedings of the National Academy of Sciences, 121(20), €2320600121.
https://doi.org/10.1073/pnas.2320600121

I’'m not sure I fully understood. The stationary sub-ensemble is a subset of the full behavioral
ensemble, right? In that case, how can it achieve a higher maximum score?

This has been clarified to explain that the sub-ensemble has better SWE error compared to the
highest-NSE parameter set, not the full behavioral ensemble:

Compared to the full behavioral ensemble, the stationary sub-ensemble has slightly sub-optimal
hydrograph fit (NSE 0.80-0.85 vs. 0.89 max), but better SWE volume error compared to the
highest-NSE parameter set (MAPE of 18-27% across 30 ASO surveys vs. 32% for the highest-
NSE parameter set).


https://doi.org/10.1073/pnas.2320600121



