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Response to Reviewer Comment RC2 

We greatly appreciate the reviewer’s helpful comments on this manuscript, which we will 

address in a revision. Our comments are interspersed into the review in blue. 

I understand the idea that meteorological data are uncertain and can significantly influence 

model outputs. However, the parameter range used for correcting meteorological biases (±25% 

for precipitation, ±4°C for temperature) appears very large. Are there existing studies or 

evidence supporting this magnitude of potential meteorological bias specifically within this 

basin? My concern is that using such broad correction ranges might allow the hydrological 

model to artificially add or remove water to better match streamflow observations, which 

themselves are uncertain due to reconstruction processes, thereby compensating for potentially 

missing or poorly represented processes. 

We agree that the potential compensations between uncertain weather, uncertain models, and 

uncertain streamflow leads to a quandary. However, we believe that our study proposes a 

uniquely robust method to untangle this problem through a Bayesian uncertainty framework. By 

simultaneously propagating uncertainty in the data and model (through calibration of biases 

along with other parameters), we explore the full range of potential compensations, thereby 

robustly propagating the resultant uncertainty. This approach constrains uncertainty in the target 

variable (extra water from fire) without requiring an unrealistically precise confidence level in 

the unmeasured mountain weather. 

We have substantially expanded our justification of this approach as follows: 

While most of these parameters are widely recognized as suitable for calibration (Cuo et al. 

2011, Du et al. 2014), precipitation and temperature biases are less frequently included in the 

calibration of distributed process-based models despite considerable uncertainty in gridded 

meteorological data. Among gridded meteorological datasets, there is mean relative difference of 

21% for annual precipitation in our study watershed (Henn et al. 2018), and misestimation of 

large storms can lead to yearly biases of about 20% across the Sierra Nevada (Lundquist et al. 

2015). Similarly, different meteorological datasets have mean air temperature differences as 

large as ±8 °C in the Sierra Nevada, and basin-average uncertainty is lower but still on the order 

of several °C (Schreiner-McGraw and Ajami 2022). Compensation between unknown errors in 

the meteorology data, model structure and calibration, and reconstructed streamflow can 

potentially contribute to spurious goodness-of-fit metrics with hidden physical deficiencies. 

Moreover, we expect that interactions between meteorological uncertainty and parameter 

equifinality may contribute to the overall uncertainty of disturbance simulations (Fig. 1), but this 



uncertainty would remain hidden if meteorological biases were assumed to be negligible. 

Because perfectly resolving the weather data with infinite precision is not feasible across a large, 

rugged mountain region, the robust approach is to propagate meteorological  uncertainty into our 

final results (the post-fire hydrological change in this case), so that our conclusions include the 

quantified uncertainty caused by the model-data-calibration interaction. We view the combined 

meteorological data and hydrological model as a single inferential system, thereby 

acknowledging that the meteorological data themselves are based on various uncertain 

observations and empirical model assumptions (Abatzoglou 2013). In a Bayesian context, the 

goal of our calibration can be understood as sampling the probability of the streamflow and snow 

observations given a particular combination of model parameters and meteorological 

assumptions: P(streamflow + snow | model + meteorology). Because we lack a closed-form 

likelihood function for spatially distributed hydrological models like DHSVM, we estimate the 

unknown parameters of this whole weather-model system using an informal approximation 

based on traditional hydrological model calibration objective functions (Beven and Binley 1992). 

Lundquist, J. D., Abel, M. R., Henn, B., Gutmann, E. D., Livneh, B., Dozier, J., & Neiman, 

P. (2015). High-Elevation Precipitation Patterns: Using Snow Measurements to Assess Daily 

Gridded Datasets across the Sierra Nevada, California. Journal of Hydrometeorology, 16(4), 

1773–1792. https://doi.org/10.1175/JHM-D-15-0019.1 

Henn, B., Newman, A. J., Livneh, B., Daly, C., & Lundquist, J. D. (2018). An assessment of 

differences in gridded precipitation datasets in complex terrain. Journal of Hydrology, 556, 

1205–1219. https://doi.org/10.1016/j.jhydrol.2017.03.008 

Schreiner-McGraw, A. P., & Ajami, H. (2022). Combined impacts of uncertainty in 

precipitation and air temperature on simulated mountain system recharge from an integrated 

hydrologic model. Hydrology and Earth System Sciences, 26(4), 1145–1164. 
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Additional added explanation in introduction: 

As illustrated in Fig. 1, meteorological uncertainty (e.g., a precipitation bias) can interact with 

uncertain model parameterizations, contributing to uncertainty in the streamflow response to 

disturbance. Basin-scale meteorology data are highly uncertain in mountain regions (e.g., 

Lundquist et al. 2015, Henn et al. 2018, Schreiner-McGraw and Ajami 2022), and whatever 

assumptions we make about the meteorology may cause the model to compensate for 

inaccuracies with other calibrated parameters (Elsner et al. 2014). For example, assuming a 

larger precipitation bias correction may cause the model to simulate a larger ETTree component 

and a corresponding large post-fire change (Model 3 in Fig. 1), whereas a smaller precipitation 

bias correction could limit the predicted post-fire streamflow change since the pre-fire P-Q 

residual is smaller (Models 1-2 in Fig. 1). From a Bayesian perspective, we can treat the data and 

model as a combined inferential system, which enables us to constrain uncertainty in the 

interactions between uncertain meteorology and uncertain hydrology by generating suitable 

ensemble samples (Kavetski et al. 2003). 

Kavetski, D., Franks, S. W., & Kuczera, G. (2003). Confronting input uncertainty in 

environmental modelling. In Q. Duan, H. V. Gupta, S. Sorooshian, A. N. Rousseau, & R. 

https://doi.org/10.1175/JHM-D-15-0019.1
https://doi.org/10.1016/j.jhydrol.2017.03.008
https://doi.org/10.5194/hess-26-1145-2022


Turcotte (Eds.), Water Science and Application (Vol. 6, pp. 49–68). American Geophysical 

Union. https://doi.org/10.1029/WS006p0049 

Elsner, M. M., Gangopadhyay, S., Pruitt, T., Brekke, L. D., Mizukami, N., & Clark, M. P. 

(2014). How Does the Choice of Distributed Meteorological Data Affect Hydrologic Model 

Calibration and Streamflow Simulations? Journal of Hydrometeorology, 15(4), 1384–1403. 

https://doi.org/10.1175/JHM-D-13-083.1 

The presence of a reservoir near the gauge station considerably disrupts natural streamflow 

patterns. The approach of reconstructing streamflow to remove these effects (naturalized flows) 

partially restores the basin's natural characteristics but leaves the "observed" data highly 

uncertain. Such uncertainty can significantly impact calibration experiments. Could you clarify 

the method used to reconstruct the streamflow? Specifically, does the reconstruction explicitly 

account for changes introduced by the 2020 Creek Fire disturbance? 

We have clarified how the “reconstructed” streamflow is calculated based on the California 

DWR documentation as follows: 

Streamflow is estimated at the outlet of Millerton Lake (Fig. 2) by reconstructing observations to 

remove the effects of artificial flow regulation (California Department of Water Resources 

2024). Millerton Lake unimpaired outflows are estimated assuming sub-daily surface routing 

times by summing the daily change in storage, canal and dam releases, surface evaporation, and 

storage changes at eight smaller upstream reservoirs (Huang and Kadir 2016). Note that the 

reconstructed streamflow timeseries used in this study (called “full natural flow” by the 

California Data Exchange Center) is based on an explicit mass balance equation applied directly 

to the respective storage and flow measurements, not model output, unlike various other 

meanings of “natural flow” that are sometimes applied to California water datasets (Huang and 

Kadir 2016). The reconstructed streamflow timeseries (hereafter “observed streamflow”) 

constrains the actual effects of the Creek Fire (and other disturbances) because the reconstruction 

procedure is directly based on measurements at specific diversion, storage, and outflow points, 

which are themselves responsive to the basin hydrological conditions. Three objective functions 

are based on a cleaned version of this daily streamflow timeseries (spurious negative values 

during low-flow periods and other missing values are imputed). 

Huang, G., & Kadir, T. (2016). Estimates of Natural and Unimpaired Flows for the Central 

Valley of California: Water Years 1922-2014 (pp. 1–256). Department of Water Resources, 

Bay-Delta Office. https://data.ca.gov/dataset/estimates-of-natural-and-unimpaired-flows-for-

the-central-valley-of-california-wy-1922-2014 
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In defining the “behavioral” parameter sets, thresholds were applied selectively to NSE, log 

NSE, yearly MAPE, and April-July MAPE, but notably not to the snow criteria. Could you 

elaborate on why snow metrics were excluded from this subjective filtering? Additionally, could 

you clarify whether these subjective thresholds are truly necessary or if the results would have 

differed significantly by simply selected the 30 "best" members from the initial ensemble across 

all calibration metrics? A more detailed justification for choosing these thresholds would 

enhance transparency and reproducibility. 

We have substantially expanded our explanation of the filtering process: 

Narrowing the range of acceptable parameter sets requires case-by-case determination of what 

skill level is satisfactory for a particular watershed-model combination because a higher skill 

might be achieved in hydroclimates that are conceptually simpler to simulate. At the same time, 

it is necessary to retain enough parameter diversity to explore our research questions related to 

the interaction between equifinality and disturbance. Based on prior experience modeling with 

DHSVM in the Sierra Nevada (e.g., Boardman et al. 2025), we find that the best model skill we 

can generally achieve is around a daily NSE of approximately 0.8 or higher and yearly error of 

approximately 10% or lower. Any single criteria is insufficient for narrowing the parameter 

space to a reasonable fraction of the total calibration space. For example, over 30% of all tested 

parameter sets have daily NSE > 0.8 (none have NSE > 0.9), but some of these high-NSE 

parameter sets are clearly inferior, e.g., with yearly MAPE as high as 35%. Combining multiple 

thresholds, we find that 48 parameter sets qualify as “behavioral” by satisfying daily NSE > 0.8, 

daily log NSE > 0.8, yearly MAPE < 10%, April-July MAPE < 10%, and Pareto-efficiency 

across all objectives. We do not directly apply thresholds to the snow calibration metrics because 

the variability of these objective functions is already strongly constrained within the behavioral 

ensemble (e.g., the SWE RMSE coefficient of variation is 2% within the behavioral ensemble 

compared to 59% across all 600 parameter sets). Nevertheless, snow-based objective functions 

still constrain the behavioral ensemble because all behavioral parameter sets must be Pareto-

efficient across all seven objectives. 

If my understanding is correct, the 30 DHSVM parameter sets were derived from calibration 

experiments using dynamic vegetation only. Thus, comparing model performance under 

conditions for which it was explicitly calibrated (dynamic vegetation) against for which it was 

not calibrated (static vegetation conditions) might be unfair. To address this concern, would it be 

possible to conduct an additional calibration experiment using static vegetation maps? This 

would allow a more balanced and fair comparison, using these static-calibrated parameter sets as 

an appropriate benchmark against the dynamic-vegetation approach presented here. 

The reviewer is correct about our calibration procedure. However, we are not primarily 

“comparing model performance,” but rather, predicting the real-world streamflow change that is 

attributable to the fire. The nuance here is that we do not expect the static vegetation model to 

accurately simulate post-fire streamflow, so there is no inherent unfairness in the model 

treatment. Rather, the static vegetation model is simply expected to represent an approximation 

of what streamflow might have resulted if there had been no fire. 

Nevertheless, we appreciate the reviewer’s interest in seeing how a static-calibrated model would 

perform in a similar framework. Luckily, we have already performed a completely independent 



second calibration experiment over the pre-fire period (2011-2020), which has mostly static 

vegetation with the exception of negligible disturbances on the order of a couple percent. We 

initially chose not to discuss this second calibration in the manuscript because it gave basically 

the same results, and we thought it was unnecessarily complicated to explain. However, we have 

now added the details about the second calibration. The primary result is contained in 

Supplemental Figure S7 (shown below). 

 

Figure S7: Comparison of pre-fire and cross-fire calibration results analogous to Fig. 6 in the 

main manuscript. The “cross-fire calibration” (black text labels) refers to the primary DHSVM 

behavioral ensemble (30 parameter sets) referenced throughout the main manuscript (calibrated 

over water years 2015-2024). The “pre-fire calibration” (magenta text labels)  refers to an 

entirely separate behavioral ensemble (10 parameter sets) obtained using an identical Bayesian 

regression approach applied to a completely separate DHSVM calibration performed over water 

years 2011-2020, prior to the Creek Fire. 

Importantly, both the pre-fire and cross-fire calibrations yield similar predictions of the post-fire 

streamflow change (ΔQFire), both when considering either the raw ensemble of behavioral 

parameter sets or the conditional metamodel (Eq. 2). 

Added text in methods: 

We repeat our entire calibration procedure over the time period immediately before the fire 

(water years 2011-2020) to test whether similar results are obtained when the model is calibrated 

without foreknowledge of a mega disturbance. Unlike our primary calibration, which spans 6 

years before the fire and 4 years after the fire, all 10 years of the “pre-fire calibration” have 

negligible change in the model vegetation maps. The pre-fire calibration is initialized with the 

same Latin hypercube sample of 320 random parameter sets, after which we perform six 

generations of multi-objective Bayesian optimization following the same procedures as the 

primary calibration discussed previously, and we select behavioral parameter sets using the same 



objective function criteria. By performing two completely separate and identical calibration 

procedures on different time periods, we ensure that there is no cross-contamination of 

information between the two calibrations, i.e., the pre-fire calibration is independent and does 

not “know” about the other calibration. 

Added text in results: 

The independent pre-fire calibration (end of Sect. 2.2) yields similar predictions of the post-fire 

streamflow change (Supplemental Figure S7). When applied to behavioral parameter sets from 

the pre-fire calibration, the conditional metamodel predicts a 90% credible interval of +9% to 

+12% for the total post-fire streamflow change, which is remarkably close to the independent 

estimate of +10% to +12% using the cross-fire (2015-2024) calibration. The conditional 

metamodel based on the pre-fire calibration reduces uncertainty in the total post-fire streamflow 

(90% confidence interval) by 82% compared to the empirical regression and 74% compared to 

the pre-fire behavioral DHSVM ensemble, which is again similar to the analogous 80% and 82% 

reductions (respectively) achieved by the cross-fire calibration metamodel. Regardless of 

whether DHSVM is calibrated pre- and post-fire, or only pre-fire, the conditional metamodel 

provides consistent predictions of the additional streamflow attributable to the Creek Fire 

(ΔQFire). 

Added text in discussion: 

The consistency of the metamodel results between two independent calibrations (pre-fire and 

cross-fire) suggests that our framework is robust to modeling decisions and random temporal 

variability, further strengthening confidence in the results. 

I'm not sure what that means. Could you define this term in more detail? 

We added a sentence immediately after the first use of “counterfactual” to clarify its meaning: 

In this context, a “counterfactual” refers to a hypothetical scenario in which a particular 

disturbance did not happen, so comparing the actual post-disturbance behavior to the 

counterfactual scenarios enables attribution of disturbance effects. 

I would suggest to define what a megafire is or just use large wildfire. 

Clarified as follows: 

In this context, a megafire is any wildfire in excess of 400 km2 (Ayars et al. 2023). 

Ayars, J., Kramer, H. A., & Jones, G. M. (2023). The 2020 to 2021 California megafires and 

their impacts on wildlife habitat. Proceedings of the National Academy of Sciences, 120(48), 

e2312909120. https://doi.org/10.1073/pnas.2312909120 

Given Figure 2, it's not really above, the lake is included, which is a very strong control on 

hydrological modelling. 

Agreed, and we have reworded this to say “…above the outlet of Millerton Lake.” 

https://doi.org/10.1073/pnas.2312909120


I think it would be interesting to refer to Figure S4 when you introduce this Table too. By the 

way, parameters have a different name between Table 1 and Figure S4. Please check consistency 

in parameter names. 

We have added a reference to Figure S4 when Table 1 is introduced. The parameter names have 

also been updated for consistency in Figure S1 and S4, though some need to be abbreviated to fit 

on the plots. 

By the way I was not able to access the data with the reference provided to have more 

information about this station. Could you update the hyperlink? 

The link has been updated: 

https://cdec.water.ca.gov/dynamicapp/staMeta?station_id=SBF 

Out of curiosity, does the ‘best’ member, i.e. the 'best' parameter set, achieve BestValue on all 

criteria or does it show some 'worst' values (even if here it is not really worst since it is already 

filter to achieve a threshold) on some criteria? If it's the first case, that's good news; if it's the 

second, that show a trade-off, so it would be interesting to know what's stopping the model with 

the 'best' parameter set from top-performing for everything. 

There is definitely not a single “best” parameter set. Rather, there is a Pareto frontier between 

each of the objective functions, so some models do slightly better at one objective while having 

worse values on other objectives. This is emphasized in our discussion of overfitting to NSE and 

Log NSE, which would result in outlying models (Supplemental Figure S6). 

In terms of “what’s preventing one model from being best at everything,” we can’t really say, 

because the high-dimensional interactions between parameters and objective functions is very 

complex (e.g., Supplemental Figure S1). Rather, this Pareto-efficient behavior is what we 

generally expect from any high-dimensional multi-objective optimization procedure, 

hydrological or otherwise. One way of thinking about it is that the edges of the Pareto frontier 

(best values on any one objective) are basically overfitting to noise in the data, which is 

illustrated by our Supplemental Figure S6. 

We added the following to the text: 

As expected for any high-dimensional multi-objective optimization problem, there is no single 

“best” parameter set. Rather, the behavioral parameter sets constitute a Pareto frontier, with some 

achieving slightly better at one objective and worse at another. One way of understanding this 

phenomenon is that the parameter sets with the absolute highest values for any single objective 

are overfitting to noise in the data, while parameters that perform reasonably well at a variety of 

objectives are intuitively more likely to capture meaningful hydrological information. 

 

 

https://cdec.water.ca.gov/dynamicapp/staMeta?station_id=SBF


Is it included in meteorological inputs or is it calculated through DHSVM. In both case, how is 

PET calculated? 

This is clarified as follows in the text: 

Note that the annual PET used in the empirical water balance model is pre-calculated as part of 

the gridMET dataset (Abatzoglou 2013) from Penman-Monteith reference evapotranspiration, 

but PET is calculated separately within the DHSVM evapotranspiration module (Wigmosta et al. 

1994), similarly using a Penman-Monteith implementation. 

This seems arbitrary; I suggest to add a clear definition of what satisfactory means in your study 

if you want to use this terminology. 

We clarified that we consider these simulations visually “satisfactory” in addition to the metrics: 

The behavioral ensemble of 30 calibrated DHSVM parameter sets all reproduce observed 

streamflow hydrographs with a satisfactory visual match to peak flow and low flow magnitudes, 

interannual variability, and seasonal timing (Table 2, Fig. 3). 

We also added a comparison to a similar study: 

Additionally, the post-fire daily NSE of at least 0.80 achieved by all behavioral DHSVM 

parameter sets is substantially higher than the post-fire daily NSE of -0.13 to 0.60 achieved by a 

different distributed hydrological model (with dynamic vegetation and other fire-aware updates) 

after a megafire in other Sierra Nevada sub-watersheds (Abolafia-Rosenzweig et al. 2024). 

I think it is important to introduce the validation procedure in the methodology section (period, 

criteria used, ...) 

Agreed—this has been added: 

We validate the performance of the selected parameter sets by simulating the 10 year period 

prior to the calibration period, i.e., water years 2005-2014. We calculate the same objective 

functions over this validation period to test the validity of the calibration on out-of-sample time 

periods. 

A benchmark would be very helpful here to know whether the model was already capable of this 

without the dynamic aspect of the vegetation maps. 

Agreed—this has been added: 

Without the vegetation map updates, the behavioral ensemble performs significantly worse on 

the post-fire period, but streamflow skill is still reasonably high: the mean NSE is lower by 0.06 

in the no-fire control scenario (p < 0.001, Welch one-sample t-test) and the mean log NSE is 

lower by 0.02 (p < 0.001). Furthermore, the no-fire control scenario yields a mean post-fire bias 

between -17% and -9% (static vegetation systematically underestimates post-fire streamflow), 

while in dynamic vegetation mode, the mean post-fire bias varies between -9% and +6% 

(Supplemental Figure S3). 



This is an interesting result. I think it is important to provide an explanation to support this result 

(greater exposure to sunlight, changes in albedo, increased wind exposure, etc.). Do you know 

what is causing 2023 to be particularly affected? 

We added this information: 

Because our post-fire implementation only changes the vegetation maps (no change to modeled 

soil or snow albedo), the prediction of earlier snowmelt runoff is primarily a result of increased 

energy reaching the snowpack due to reduced canopy shading. This snowmelt timing effect is 

most noticeable in the 2023 water year, which was a year with extremely high snow 

accumulation (Marshall et al. 2024). 

Marshall, A. M., Abatzoglou, J. T., Rahimi, S., Lettenmaier, D. P., & Hall, A. (2024). 

California’s 2023 snow deluge: Contextualizing an extreme snow year against future climate 

change. Proceedings of the National Academy of Sciences, 121(20), e2320600121. 

https://doi.org/10.1073/pnas.2320600121 

I’m not sure I fully understood. The stationary sub-ensemble is a subset of the full behavioral 

ensemble, right? In that case, how can it achieve a higher maximum score? 

This has been clarified to explain that the sub-ensemble has better SWE error compared to the 

highest-NSE parameter set, not the full behavioral ensemble: 

Compared to the full behavioral ensemble, the stationary sub-ensemble has slightly sub-optimal 

hydrograph fit (NSE 0.80-0.85 vs. 0.89 max), but better SWE volume error compared to the 

highest-NSE parameter set (MAPE of 18-27% across 30 ASO surveys vs. 32% for the highest-

NSE parameter set). 

 

https://doi.org/10.1073/pnas.2320600121

