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Response to Reviewer Comment RC1 

We greatly appreciate the reviewers’ helpful comments on this manuscript, which we will 

address in a revision. Our comments are interspersed into the review in blue. 

The authors should define counterfactual. On page 2, paragraphs 2 and 3, the authors use this 

term, but the meaning is not clear. It may need to be rephrased to increase the manuscript's 

accessibility. 

We added a sentence immediately after the first use of “counterfactual” to clarify its meaning: 

In this context, a “counterfactual” refers to a hypothetical scenario in which a particular 

disturbance did not happen, so comparing the actual post-disturbance behavior to the 

counterfactual scenarios enables attribution of disturbance effects. 

On page 3, in the first paragraph, the word “since” should be replaced by “because” due to the 

authors' intent. 

This sentence has been restructured and no longer includes either word. 

On page 3, paragraph 1, the logical connection between the lack of landscape-scale observation 

of many environmental properties and model properties is that we cannot infer the parameters 

from data and therefore need to calibrate. We suggest making this explicit to increase the 

accessibility of the text. 

Agreed—the start of this paragraph has been reworded to make this connection more explicit. 

On page 3, line 71, “since” is used instead of because. 

Changed. 

On page 3, line 72, the authors hypothesize that equifinal parameter sets may produce divergent 

predictions. Could work be cited here to state this as a fact rather than formulating this as a 

hypothesis? 

While we agree that this is a commonly discussed idea, we have not been able to find any studies 

explicitly demonstrating it as a fact, specifically in the context of post-disturbance changes. 

Thus, we believe that the current formulation as a hypothesis is most appropriate, though we are 

open to suggestions for references we might have missed. 



Figure 1 on page 4 could be improved by including more details. This would reduce the number 

of assumptions readers will have to make in order to understand the image. -"Initial water 

balance": for the sake of argument, we'll assume that all models perfectly fit current streamflow, 

even if given different inputs (P), the simulated ET_tree and ET_other components are such that 

Qsim = Qobs = 1. "Disturbance response": some disturbance reduces ET_tree (line 79-80). 

We have expanded the caption for this figure to include additional explanation as follows: 

In the “initial water balance” panel, we assume that all three models closely match pre-

disturbance streamflow, with uncertain precipitation and evapotranspiration (ET) components 

counterbalanced to produce QObserved = QModeled = 1 (normalized annual units). After a disturbance 

(e.g., a wildfire) reduces ETTree, the different models predict various degrees of streamflow 

change, which is mediated by the potential for compensating increases in ETOther (e.g., soil 

evaporation and understory ET). In the “disturbance response” panel, the arrows illustrate the 

direction and magnitude of the water balance changes predicted by each model. In the 

“streamflow bias” panel, the resulting model predictions are compared to measured streamflow, 

showing how some models could exhibit a bias after disturbance due to uncertain estimation of 

water balance changes. 

The image could better explain what the up and down arrows in this column show. Readers can 

speculate that the downward ET_tree arrows mean that (to match reality) the models simulate no 

ET_tree anymore. In model 1, this means Q_sim goes up by 2, but why would ET_other in 

models 2 and 3 go up by either the negative change in ET_tree or half that? If these are meant as 

examples of what could happen with a given model (rather than what will happen), it would be 

good to state this in the text explicitly. E.g. "[..] increased soil water availability. The three 

examples show cases where ET_other does not change (model 1), where ET_other fully 

compensates the reduction in ET_tree (model 2), and where ET_other only aprtly compensates 

the reduction in ET_tree". 

The reviewers have indeed given the correct interpretation of the figure, and we have clarified 

with an adapted version of the suggested text: 

The three examples show cases where ETOther does not respond to the disturbance (Model 1), 

where ETOther fully compensates for reduced ETTree (Model 2), and where ETOther only partly 

compensates for reduced ETTree. Intuitively, these hypothetical model responses are connected to 

the pre-disturbance balance of ETTree and ETOther, which primes some models to predict a larger 

or smaller compensation effect. 

"Streamflow bias": here seems to have an underlying assumption that Qobs increases by 1 after 

the disturbance. This is key to understanding why the models are assumed to 

underpredict/overpredict/no change and should be explicitly stated somewhere. 

Agreed—we added the following sentence to the figure caption: 

In this hypothetical example, we assume that QObserved increases by 1 unit after disturbance, 

matching the prediction of Model 3. 



Given that this example is intended to give the reader an easy intro into the concepts used in the 

paper, it's worthwhile to make sure all assumptions are clearly stated. Without this figure, it may 

raise more questions than it answers. A possible solution is to move the paragraph with lines 92 

to 100 before the figure. 

We believe that Figure 1 makes the most sense immediately after the first paragraph of text 

where it is mentioned. However, we have substantially expanded the caption (see above), which 

we believe makes the figure much easier to interpret even without the rest of the text. 

Figure 2 should have labels in a better font. The current font choice looks out of place. The 

caption also needs to define the acronyms RCMAP and UTM. 

All figure fonts used throughout are Arial, which is an extremely widely used and easily readable 

font recommended for figures by the APA style guide: 

https://apastyle.apa.org/style-grammar-guidelines/paper-format/font 

We determined that the acronyms were unnecessary for the figure caption because the datasets 

are specified elsewhere, so they have been removed. 

On page 7, lines 139 to 141, the description of the methods would be strengthened if the 

resampling technique used to aggregate the 30 m resolution data to the 90 m resolution model 

were explicitly stated. Was it averaging, weighted aggregation or majority rule? An explanation 

of how this mapping works in cases where there are differences in burned area at the original 

30m resolution would help reproducibility. 

The canopy cover data are reprojected using nearest-neighbor because the dataset is a 

combination of continuous (canopy cover %) and categorical (trees present: true or false), and 

nearest-neighbor reprojection is the appropriate technique for categorical data. This has been 

added to the text. 

On page 7, lines 143 to 144, the authors should provide a quick justification for why October 1 

was chosen to update the vegetation maps. A quick sentence saying it corresponds to the water 

year, or the availability of vegetation maps at the end of the fire season, or any other justification, 

should be stated. An October 1st update could introduce artificial bias, so it would be good to 

justify why this approach was followed. 

We added the following justification: 

The October 1st date is used for annual model updates because this date represents the start of a 

new water year, and Sierra Nevada watersheds are typically near their driest condition around 

this time of year, which limits the impact of model changes on simulated hydrological fluxes. 

 

 

https://apastyle.apa.org/style-grammar-guidelines/paper-format/font


On page 7, lines 147 to 148, the authors should explain why estimation is preferable to using 

LAI observations from something like. Are the empirical estimates close to satellite 

observations? 

Current satellite technology cannot observe LAI directly; rather, satellite observations (of 

reflected light) are converted into estimates of LAI through various models and empirical 

relationships (e.g., see Table 1 summary in Yan et al. 2018). 

Yan et al., "Generating Global Products of LAI and FPAR From SNPP-VIIRS Data: 

Theoretical Background and Implementation," in IEEE Transactions on Geoscience and 

Remote Sensing, vol. 56, no. 4, pp. 2119-2137, April 2018, doi: 

10.1109/TGRS.2017.2775247 

Lidar surveys show weaknesses in satellite-based optical LAI estimates, including saturation in 

dense forests and the inability to resolve 3-dimensional canopy structure that is important for 

LAI. Pre- and post-fire lidar surveys are not publicly available in the study area, so lacking high-

resolution canopy structure data, we opt to estimate LAI heuristically through calibration. 

Winsemius, S., Babcock, C., Kane, V. R., Bormann, K. J., Safford, H. D., & Jin, Y. (2024). 

Improved aboveground biomass estimation and regional assessment with aerial lidar in 

California’s subalpine forests. Carbon Balance and Management, 19(1), 41. 

https://doi.org/10.1186/s13021-024-00286-w 

Zolkos, S. G., Goetz, S. J., & Dubayah, R. (2013). A meta-analysis of terrestrial aboveground 

biomass estimation using lidar remote sensing. Remote Sensing of Environment, 128, 289–

298. https://doi.org/10.1016/j.rse.2012.10.017 

We have added the preceding justification to the methods. 

On page 8, it is important to speak about calibrating correction factors for meteorological inputs, 

which has the potential to compensate for any deficiencies in the model itself. For a study trying 

to investigate how calibrated models predict process changes after a disturbance, calibrating 

bias-correction parameters for the forcing could introduce a lot of complexity (in other words, 

substantially enhance equifinality) that will complicate later analysis. A broad statement like 

"gridded meteorological data can have considerable uncertainty" is insufficient to justify this. Is 

there any concrete evidence that the specific meteorological data chosen are biased in this 

particular watershed? (Even) If so, the correct approach would be to bias-correct the forcing 

before calibration starts, so that every model in the ensemble uses the same inputs. This seems 

the only way to get a clean comparison between models later. 

We are not primarily interested in “a clean comparison between models,” but rather, we are 

interested in the effect of the fire on real-world annual streamflow. This effect is uncertain due to 

both the model and the forcing data. Failure to propagate meteorological uncertainty (by only 

using one set of inputs) would systematically overestimate our confidence in the combined 

model/weather system. It is helpful to think of this in a Bayesian context: the forcing data 

themselves are uncertain, but this uncertainty can be constrained by performing simultaneous 

inference over the model/data system. 

https://doi.org/10.1186/s13021-024-00286-w
https://doi.org/10.1016/j.rse.2012.10.017


We recognize that a fully Bayesian perspective is rare in distributed process-based hydrological 

modeling, so we have substantially expanded our explanation of this approach as follows: 

While most of these parameters are widely recognized as suitable for calibration (Cuo et al. 

2011, Du et al. 2014), precipitation and temperature biases are less frequently included in the 

calibration of distributed process-based models despite considerable uncertainty in gridded 

meteorological data. Among gridded meteorological datasets, there is mean relative difference of 

21% for annual precipitation in our study watershed (Henn et al. 2018), and misestimation of 

large storms can lead to yearly biases of about 20% across the Sierra Nevada (Lundquist et al. 

2015). Similarly, different meteorological datasets have mean air temperature differences as 

large as ±8 °C in the Sierra Nevada, and basin-average uncertainty is lower but still on the order 

of several °C (Schreiner-McGraw and Ajami 2022). Compensation between unknown errors in 

the meteorology data, model structure and calibration, and reconstructed streamflow can 

potentially contribute to spurious goodness-of-fit metrics with hidden physical deficiencies. 

Moreover, we expect that interactions between meteorological uncertainty and parameter 

equifinality may contribute to the overall uncertainty of disturbance simulations (Fig. 1), but this 

uncertainty would remain hidden if meteorological biases were assumed to be negligible. 

Because perfectly resolving the weather data with infinite precision is not feasible across a large, 

rugged mountain region, the robust approach is to propagate meteorological  uncertainty into our 

final results (the post-fire hydrological change in this case), so that our conclusions include the 

quantified uncertainty caused by the model-data-calibration interaction. We view the combined 

meteorological data and hydrological model as a single inferential system, thereby 

acknowledging that the meteorological data themselves are based on various uncertain 

observations and empirical model assumptions (Abatzoglou 2013). In a Bayesian context, the 

goal of our calibration can be understood as sampling the probability of the streamflow and snow 

observations given a particular combination of model parameters and meteorological 

assumptions: P(streamflow + snow | model + meteorology). Because we lack a closed-form 

likelihood function for spatially distributed hydrological models like DHSVM, we estimate the 

unknown parameters of this whole weather-model system using an informal approximation 

based on traditional hydrological model calibration objective functions (Beven and Binley 1992). 

Lundquist, J. D., Abel, M. R., Henn, B., Gutmann, E. D., Livneh, B., Dozier, J., & Neiman, 

P. (2015). High-Elevation Precipitation Patterns: Using Snow Measurements to Assess Daily 

Gridded Datasets across the Sierra Nevada, California. Journal of Hydrometeorology, 16(4), 

1773–1792. https://doi.org/10.1175/JHM-D-15-0019.1 

Henn, B., Newman, A. J., Livneh, B., Daly, C., & Lundquist, J. D. (2018). An assessment of 

differences in gridded precipitation datasets in complex terrain. Journal of Hydrology, 556, 

1205–1219. https://doi.org/10.1016/j.jhydrol.2017.03.008 

Schreiner-McGraw, A. P., & Ajami, H. (2022). Combined impacts of uncertainty in 

precipitation and air temperature on simulated mountain system recharge from an integrated 

hydrologic model. Hydrology and Earth System Sciences, 26(4), 1145–1164. 

https://doi.org/10.5194/hess-26-1145-2022 

 

https://doi.org/10.1175/JHM-D-15-0019.1
https://doi.org/10.1016/j.jhydrol.2017.03.008
https://doi.org/10.5194/hess-26-1145-2022


The correct approach would be to bias-correct the forcing before calibration starts, so that every 

model in the ensemble uses the same inputs. 

We disagree, and this is actually one of the fundamental contributions of our study (Figure 1). 

It is not possible to bias-correct the forcing in the absence of ground-truth spatially representative 

meteorology data, which do not exist. Moreover, this proposed “bias-correction” seems to just be 

a type of calibration by a different name, which should be included in the formal quantification 

and propagation of calibration uncertainty. Otherwise, we would end up with a single, infinitely 

precise estimate of meteorological biases, which is not realistic. Our conceptual model (Figure 1) 

illustrates why meteorological uncertainty needs to be propagated through calibration because 

different forcing assumptions lead to different pre- and post-disturbance water balance 

configurations, and it is impossible to determine the “true” spatially distributed mountain 

weather with infinite precision. 

We have clarified this in the introduction as follows: 

As illustrated in Fig. 1, meteorological uncertainty (e.g., a precipitation bias) can interact with 

uncertain model parameterizations, contributing to uncertainty in the streamflow response to 

disturbance. Basin-scale meteorology data are highly uncertain in mountain regions (e.g., 

Lundquist et al. 2015, Henn et al. 2018, Schreiner-McGraw and Ajami 2022), and whatever 

assumptions we make about the meteorology may cause the model to compensate for 

inaccuracies with other calibrated parameters (Elsner et al. 2014). For example, assuming a 

larger precipitation bias correction may cause the model to simulate a larger ETTree component 

and a corresponding large post-fire change (Model 3 in Fig. 1), whereas a smaller precipitation 

bias correction could limit the predicted post-fire streamflow change since the pre-fire P-Q 

residual is smaller (Models 1-2 in Fig. 1). From a Bayesian perspective, we can treat the data and 

model as a combined inferential system, which enables us to constrain uncertainty in the 

interactions between uncertain meteorology and uncertain hydrology by generating suitable 

ensemble samples (Kavetski et al. 2003). 

Kavetski, D., Franks, S. W., & Kuczera, G. (2003). Confronting input uncertainty in 

environmental modelling. In Q. Duan, H. V. Gupta, S. Sorooshian, A. N. Rousseau, & R. 

Turcotte (Eds.), Water Science and Application (Vol. 6, pp. 49–68). American Geophysical 

Union. https://doi.org/10.1029/WS006p0049 

Elsner, M. M., Gangopadhyay, S., Pruitt, T., Brekke, L. D., Mizukami, N., & Clark, M. P. 

(2014). How Does the Choice of Distributed Meteorological Data Affect Hydrologic Model 

Calibration and Streamflow Simulations? Journal of Hydrometeorology, 15(4), 1384–1403. 

https://doi.org/10.1175/JHM-D-13-083.1 

 

 

 

https://doi.org/10.1029/WS006p0049
https://doi.org/10.1175/JHM-D-13-083.1


On page 8, lines 194 to 195, some extra explanation about why these three objectives are based 

on reconstructed daily streamflow is needed and how it works would be good to add. A reference 

to a more in-depth explanation would be enough. How does the reconstruction approach deal 

with the disturbance if this is reconstructed? Is that accounted for somehow? 

We have clarified what is meant by “reconstructed” streamflow. This is not a model output, but 

rather a combination of observations, which are added and subtracted to “undo” the effect of 

upstream artificial storage and diversion. We have added additional information to the text about 

the streamflow dataset, including a citation to the California DWR documentation as follows: 

Streamflow is estimated at the outlet of Millerton Lake (Fig. 2) by reconstructing observations to 

remove the effects of artificial flow regulation (California Department of Water Resources 

2024). Millerton Lake unimpaired outflows are estimated assuming sub-daily surface routing 

times by summing the daily change in storage, canal and dam releases, surface evaporation, and 

storage changes at eight smaller upstream reservoirs (Huang and Kadir 2016). Note that the 

reconstructed streamflow timeseries used in this study (called “full natural flow” by the 

California Data Exchange Center) is based on an explicit mass balance equation applied directly 

to the respective storage and flow measurements, not model output, unlike various other 

meanings of “natural flow” that are sometimes applied to California water datasets (Huang and 

Kadir 2016). The reconstructed streamflow timeseries (hereafter “observed streamflow”) 

constrains the actual effects of the Creek Fire (and other disturbances) because the reconstruction 

procedure is directly based on measurements at specific diversion, storage, and outflow points, 

which are themselves responsive to the basin hydrological conditions. Three objective functions 

are based on a cleaned version of this daily streamflow timeseries (spurious negative values 

during low-flow periods and other missing values are imputed). 

Huang, G., & Kadir, T. (2016). Estimates of Natural and Unimpaired Flows for the Central 

Valley of California: Water Years 1922-2014 (pp. 1–256). Department of Water Resources, 

Bay-Delta Office. https://data.ca.gov/dataset/estimates-of-natural-and-unimpaired-flows-for-

the-central-valley-of-california-wy-1922-2014 

On page 9, the caption for Table 2 states that NSE is identical to R² for statistical models. It 

would be better if it stated that NSE is analogous to R2 and not identical, and if a citation from 

the original Nash and Sutcliffe paper from 1970 were provided. 

We have changed this wording to avoid unnecessary confusion. However, the calculations are 

indeed numerically identical: 

𝑅2 ≡ (1 −
𝑆𝑆𝑟𝑒𝑠
𝑆𝑆𝑡𝑜𝑡

) = (1 −
∑(𝑚𝑒𝑎𝑠 − 𝑜𝑏𝑠)

2

∑(𝑚𝑒𝑎𝑠 − 𝑚𝑒𝑎𝑠𝑎𝑣𝑔)
2) 

𝑁𝑆𝐸 ≡ (1 −
∑(𝑚𝑒𝑎𝑠 − 𝑜𝑏𝑠)

2

∑(𝑚𝑒𝑎𝑠 − 𝑚𝑒𝑎𝑠𝑎𝑣𝑔)
2) 

https://data.ca.gov/dataset/estimates-of-natural-and-unimpaired-flows-for-the-central-valley-of-california-wy-1922-2014
https://data.ca.gov/dataset/estimates-of-natural-and-unimpaired-flows-for-the-central-valley-of-california-wy-1922-2014


On page 10, line 217, 600 samples for a 14-dimensional space does not seem a lot, and a large 

number of these might already be Pareto-optimal just because of the low number of samples. A 

table that shows how many of each sample fulfills each individual criterion would be good. 

This is actually one of the key advances of our underlying methodology, though we agree it 

needs to be better highlighted in the manuscript. Specifically, our calibration approach uses 

parallel expected hypervolume calculations obtained from surrogate machine learning models to 

search for Pareto-efficient parameter sets extremely efficiently. In such a context, a few hundred 

samples is actually quite a lot, as these techniques are intended to work with even just tens of 

parameter samples. A good overview of this methodology is provided by one of the included 

citations for the expected hypervolume indicator: 

Binois, M., & Picheny, V. (2019). GPareto: An R Package for Gaussian-Process-Based 

Multi-Objective Optimization and Analysis. Journal of Statistical Software, 89(8). 

https://doi.org/10.18637/jss.v089.i08 

We have also clarified in the text as follows: 

While this number of tested parameter sets may seem small by conventional standards 

considering the 14-dimensional search space, we note that each new parameter sample is selected 

after an independent optimization procedure using 100 to 1,000 particle swarm samples from the 

objective function surrogate models. Thus, our overall calibration explores the objective function 

tradeoffs across more than 160,000 parameter sets, though only 600 of these are actually tested 

in DHSVM. Because testing hundreds of thousands of parameter sets directly in DHSVM would 

require prohibitive amounts of computational expense, the Bayesian surrogate optimization 

procedure is essential for efficiently selecting parameter sets that have the best likelihood of 

substantially improving the Pareto frontier. 

On page 10, line 234, given that streamflow is reconstructed, the authors should use the term 

“reconstructed streamflow” instead of calling this "observed" to help the reader understand that 

we're comparing results from one model to another. 

Please see prior comment—the “reconstructed streamflow” is indeed calculated directly from 

observations. It is only reconstructed in the sense of removing upstream diversion/storage effects 

using a simple water balance equation, and it is not a model output. 

On page 11, line 242, the authors should state the importance of the bias shift metric. The co-

reviewers came to differing conclusions about its importance. Is it a metric to inform people 

about models, or is the bias shift something that needs to be corrected, and how is the correction 

applied? 

The bias shift metric is useful in both contexts. We clarified this immediately at the start of 

Section 2.4, where we introduce the metric: 

The bias shift metric is useful in two contexts. First, it is useful for understanding and refining 

the behavior of models, potentially including reducing equifinality by preferring models with 

near-stationary bias. Second, it is useful for correcting model predictions to estimate what a 

hypothetical model with stationary error would have predicted. 

https://doi.org/10.18637/jss.v089.i08


The reasoning on page 11, lines 249 to 250, is a bit difficult to follow. Are there any tests that 

can be done to see if this assumption is valid, or can the authors speculate how the results would 

change if it didn’t hold? 

We have clarified that this reasoning is supported by the scatterplots in Fig. 5: 

The linear relationship between bias shift and yearly ΔQFire is supported by graphical analysis of 

bivariate scatterplots, as illustrated subsequently in Fig. 5. In other watersheds or disturbance 

scenarios, it might be necessary to posit a nonlinear relationship with the bias shift, which could 

again be detected from analogous bivariate scatterplots. 

Figure 3 shows some variability in the simulations, particularly around the middle flow 

magnitudes. Can it be clarified why these simulations are called "satisfactory"? Presumably, 

there's an implicit middle step that says "these NSE scores are [something], therefore these 

parameter sets all satisfactorily reproduce observed streamflow". I encourage the authors to add 

their reasoning for thinking that these simulations are good enough for this study. Are these 

simulations of typical quality for this particular watershed (i.e., comparable to other modelling 

efforts)? Are these ranges of scores particularly high for this specific watershed? 

We have reworded this sentence as follows: 

All behavioral parameter sets also achieve NSE of 0.80-0.87 and log-scale NSE of 0.76-0.84 

considering just the four years after the Creek Fire, which is considered satisfactory because the 

model skill is similar on pre- and post-fire periods 

We have also added a comparison to a similar study in a different Sierra Nevada basin: 

Additionally, the post-fire daily NSE of at least 0.80 achieved by all behavioral DHSVM 

parameter sets is substantially higher than the post-fire daily NSE of -0.13 to 0.60 achieved by a 

different distributed hydrological model (with dynamic vegetation and other fire-aware updates) 

after a megafire in other Sierra Nevada sub-watersheds (Abolafia-Rosenzweig et al. 2024). 

Figure 4 needs more explanation. For example, for both x-axes, are we looking at different parts 

in space? In other words, does this figure show how different parts of the watershed respond? 

The reviewers are asking because the caption says that the values on both x-axes are derived 

from data and not calibrated, but if this is so, the reviewers are unsure how this figure shows 

parameter uncertainty. By counting we can summarize that each symbol stands for a behavioural 

parameter set, but this should be stated somewhere. 

Thank you for bringing this to our attention—it was indeed ambiguous as written. We have 

clarified the caption to indicate that each point represents a behavioral parameter set, with all 

values spatially averaged within the watershed. 

 

 



The data and code availability statement on page 22 is incomplete. See the guidelines at 

https://www.hydrology-and-earth-system sciences.net/submission.html. The co-reviewers would 

like to take a look at the streamflow series for this basin but cannot easily find the location of this 

data either in this section or through the California DWR reference mentioned in the text. 

Our understanding from the options presented during the HESS submission process was that 

final datasets could be archived after acceptance, thus incorporating any changes suggested 

during review. At this stage, we are comfortable that our methods and results are largely final, so 

we have created the archive and it has been added to the paper. 

The original data, as well as the cleaned dataset with imputed values that is used in our study, 

can be downloaded from the new Zenodo archive: 

https://doi.org/10.5281/zenodo.16972670 

Additionally, the raw streamflow data (sensor number 8) can be downloaded here: 

https://cdec.water.ca.gov/dynamicapp/staMeta?station_id=SBF 

In the references, line 586, this link does not go to the dataset but to the landing page. A DOI, an 

accurate link, and the access date are needed. 

This has been updated to the station metadata page above. However, a DOI is not available for 

this dataset, which is hosted on a California state webpage. 

 

 

https://doi.org/10.5281/zenodo.16972670
https://cdec.water.ca.gov/dynamicapp/staMeta?station_id=SBF

