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Abstract

Aerosol optical depth (AOD) is a crucial parameter for understanding the impact of

aerosols on Earth's atmosphere and air quality. Nevertheless, most existing remote

sensing ftechniques rely on the shortwave spectrum, precluding nighttime

measurements, While lunar and stellar photometry can measure nighttime AOD. their

data availability is limited due to the scarce moonlight for lunar photometry and the

rarity of application for stellar photometry. In this study, we made a first attempt to

retrieve AOD from ground-based microwave radiometer (MWR) measurements, in

Beijing Nanjiao Meteorological Observatory in China. Brightness temperatures (BT)
at the K band (from 22.23 GHz to 30.00 GHz) and V band (from 51.25 GHz to 58.80
GHz) are trained against daytime spectral AOD from sun-photometer measurements
together with temperature profile using the random forest regression (RFR) retrieval
model, and the model is then used to retrieve nighttime AOD. The algorithm

demonstrates satisfactory performance, with reasonable agreements with lunar AOD

retrievals, from the lunar photometer (R=0.91 and RMSE=0.14). The results also

reveal a distinct day-night cycle of AOD, with nighttime AOD typically higher than
its daytime value, for the Beijing-CAMS Aerosol Robotic Network (AERONET) site

and AOD estimated based on MWR measurements. The physical basis of our

approach is verified using vertical temperature and humidity profiles from sounding
observation and simulation results from WRF-Chem as well as the MonoRTM. Our
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study provides an effective and convenient approach to estimate nighttime aerosol

loading from surface, which has great potential in environmental monitoring and

climate forcing research.
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1. Introduction

Aerosols have a significant impact on weather patterns and the Earth's climate (Huang
et al., 2014; Li et al., 2022; Li et al., 2019; Riemer et al., 2019), offsetting about
one-third of the warming effect by anthropogenic greenhouse gases and influence
large-scale circulation (Huang et al., 2014; Li et al.,, 2022). However, accurately
assessing their role in radiative forcing is a major challenge (Fan et al., 2016; Ghan et

al., 2016; IPCC, 2021: Seinfeld et al., 2016). Monitoring aerosol optical depth (AOD)

is crucial for understanding aerosol impacts on climate and air quality, as it reflects

the total amount of aerosols in the atmosphere from its direct radiative impact (Visioni

et al., 2023; Yang et al., 2020). As a result, there have been extensive efforts to

measure AOD by various methods.

The AOD is firstly measured through the inversion of the Beer-Bouguer-Lambert law,

which describes the attenuation of spectral direct normal irradiance (DNI) (Gueymard,

2012). This process typically involves the use of a spectrometer or spectroradiometer

to measure direct solar irradiance as monochromatically as possible on a specific

spectral channel (Gueymard, 2012). This can be achieved using either a filter-based

photometer or a narrow-band spectroradiometer. The ground-based Cimel CE318-T

sun photometer is widely used within the Aerosol Robotic Network (AERONET) to

provide relatively accurate estimates of daytime AOD serving as referenced values

since 1980s (Holben et al., 1998). Other observations measure physicochemical

properties of aerosols instead of optical properties like AOD (Kremser et al., 2016; Li
et al.,, 2016b). Mainstream aerosol remote sensing techniques rely on aerosol
scattering of shortwave radiation in the ultraviolet and/or visible spectrum, thus only
daytime AOD can be obtained (Sayer et al., 2019; Sun et al., 2021). However,
aerosols typically have day-night variability, due to factors such as different emission
sources, boundary layer structure, etc (Arola et al., 2013; Cachorro et al., 2004;

Cachorro et al., 2008; Guo et al., 2017). Aerosols at nighttime also have detectable
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impacts on the radiative balance, since they usually exert a warming effect in contrast
to the cooling effect at daytime (Chen and Zhao, 2024; Colarco et al., 2014; Zhang et
al., 2022), particularly in polar regions with the rapid change of AOD between
daytime and nighttime (Chen and Zhao, 2024; Stenchikov et al., 2002; Wei et al.,
2021). In special cases such as aerosols above the open oceans, they consistently exert
a cooling influence in both shortwave and longwave, yet for dust aerosols, they
potentially exert a warming effect in longwave during both day and night (Adebiyi et
al., 2023; Feng et al., 2022; Song et al., 2022).

Remote sensing of aerosol properties at night is a challenging task. Lunar photometer
emerges during recent years as an effective and relative accurate nighttime AOD

retrieval technique, and has been widely used within the AERONET since 2013

(Barreto et al., 2013: Barreto et al., 2016). However, this method is limited in its

temporal coverage, providing data for only approximately half of each month. This

limitation arises because the method requires a substantial amount of moon-reflected

solar radiation, which is not consistently available due to the imperfect

anti-correlation between the lunar and solar set/rise cycles (Barreto et al., 2017;

Berkoff et al., 2011). Compared with the lunar photometer method, stellar photometry,

despite its rarity of use, provides, nighttime AOD measurements by leveraging stellar

irradiance, eliminating lunar phase corrections, with long-term datasets revealing
diurnal aerosol dynamics (Pérez-Ramirez et al., 2011; Pérez-Ramirez et al., 2016;
Pérez-Ramirez et al., 2008; Pérez-Ramirez et al., 2015). Arctic deployments and
further development such as using a wide-field imager enhance its adaptability in
extreme environments and spatiotemporal resolution, addressing gaps in traditional
sun-photometer-based nocturnal monitoring (Ebr et al., 2021; Ivanescu et al., 2021;

Ivanescu and O'Neill, 2023), However, this method is not widely adopted globally

due to the bulkiness of the facilities and the complex operational processes required

for deployment (Herber et al., 2002: LEITERER. 1995). Other researches take

advantage of urban light to retrieve nighttime AOD from space from multiple sensors
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(Jiang et al., 2022; Meng et al., 2023; Wang et al., 2023; Wang et al., 2020; Zhou et
al., 2021). For example, Zhang et al. examined the effectiveness of retrieving
nighttime AOD over urban areas by utilizing city lights observed through the

satellite-based instrument VIIRS (Visible Infrared Imaging Radiometer Suite)

Day-Night Band (DNB) (Zhang et al., 2019). However, this approach has limitations
as it does not account for multiple scattering and gas absorption, which can potentially
reduce the signals from aerosols (Zhou et al., 2021). Furthermore, these studies are
constrained to the spatial scale of urban areas, resulting in vast rural regions being
unexplored (Meng et al., 2023). Active remote sensing, such as lidars, can provide
aerosol measurements at both day and night time (Balmes et al., 2021; Jiang et al.,
2024). Nonetheless, solving the lidar equation requires assumption of the lidar ratio,
and this assumed lidar ratio often causes large uncertainty of the retrieved extinction
profiles as well as column integrated AOD usually (Liu et al., 2018; Rogers et al.,
2014; Santa Maria and Winker, 2005). For the day-night difference of AOD, previous
studies find slight increases of nighttime AOD using the long-term sun-and-star
photometry data (Pérez-Ramirez et al., 2012; Pérez-Ramirez et al., 2016; Wang et al.,
2004). Moreover, using Infrared Atmospheric Sounder Interferometer (IASI) and
Cloud-Aerosol Transport System (CATS) are also effective methods to understand
day-night differences in dust aerosols (Tindan et al., 2023; Yu et al., 2021). Grassl et

al. (2024) also presented a homogenized dataset derived from a sun and star

photometer operated in the European Arctic over a 20-year period. However, existing

research regarding day-night difference of AOD only focuses on special types of
aerosols such as dust aerosols, and has low availability due to the moon phase and
urban light extent (Barreto et al., 2017; Jiang et al., 2022; Meng et al., 2023; Wang et
al., 2023; Wang et al., 2020; Zhou et al., 2021). Due to our limited capability to
measure nighttime AOD, there is a significant knowledge gap between daytime and

nighttime aerosol properties.
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In contrast to shortwave radiation which is only available during daytime, longwave
radiation, especially in the thermal infrared and microwave spectrum, exists during
both day and night, and offers the potential to derive nighttime aerosol property
(Dufresne et al., 2002; Panicker et al., 2008). Previous research has explored the
possibility to retrieve aerosol loading using longwave measurements, but mostly

focused on large particles such as dust (Clarisse et al., 2019; DeSouza-Machado et al.,

2010; Kliiser et al., 2012; Pierangelo et al., 2004; Pierangelo et al., 2005; Zheng et al.,
2022; Zheng et al., 2023). For example, using collocated thermal infrared
observations from MODIS and dust optical depth from Cloud-Aerosol Lidar with
Orthogonal Polarization (CALIOP), Zheng et al. simultaneously retrieve the thermal
infrared dust optical depth and coarse-mode effective diameter over global oceans
(Zheng et al., 2023). Observational and simulation studies indicate that the microwave
brightness temperatures (BTs) and brightness temperature polarization differences
may be both useful for estimating the dust mass loading (Ge et al., 2008; Hong et al.,
2008; Huang et al.,, 2007; Mitra et al., 2013). Our previous study utilized
satellite-based thermal infrared measurements in the atmospheric window region to
retrieve nighttime AOD (Liu et al., 2024), and proves the effectiveness of these

longwave measurements in deriving aerosol properties.

Ground-based microwave radiometer (MWR) is a widely used remote sensing
instrument to retrieve temperature and humidity profiles using emitted longwave
radiation by the surface-atmosphere system (Bianco et al., 2005; Greenwald et al.,
2018; Knupp et al., 2009). Considering the aforementioned concepts of utilizing
longwave radiances to retrieve aerosol properties and the potential alterations in
microwave BTs due to the modified temperature and humidity profiles resulting from
the shortwave radiation effect of aerosols, there is potential that aerosol information

can be derived from MWR measurements, thereby further filling the gaps of previous

retrieval methods. Therefore, in this study, we explore the possibility to retrieve AOD

using surface based MWR measurements in the K spectral bands (22.23 GHz, 22.50
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GHz, 23.03 GHz, 23.83 GHz, 25.00 GHz, 26.23 GHz, 28.00 GHz, and 30.00 GHz)
and V spectral bands (51.25 GHz, 51.76 GHz, 52.28 GHz, 52.80 GHz, 53.34 GHz,
53.85 GHz, 54.40 GHz, 54.94 GHz, 55.50 GHz, 56.02 GHz, 56.66 GHz, 57.29 GHz,
57.96 GHz, and 58.80 GHz). A machine learning based algorithm is developed to
estimate AOD during both day and night. The theoretical basis of the method is
further verified using regional model and radiative transfer simulations. The
difference between day and night time AOD is also examined using the retrieval

results.

2. Data and Methods

The retrieval algorithm used in this study is described in Figure 1 and includes four
main steps: (1) preprocessing of input variables, (2) training the Random Forest
Regression (RFR) retrieval model, (3) estimation of AOD using the trained model,
and (4) independent validation to refine the model and assess its performance
compared to lunar photometer observations. The details of the datasets and methods

are explained below.

2.1 Datasets

The study area is located at the northern edge of the North China Plain, featuring a

temperate continental monsoon climate with four distinct seasons (Yu et al.. 2009).

Spring is occasionally influenced by dust episodes transported by northwesterly and

westerly winds from the Kumutage and Taklimakan deserts in western China, or by
northerly winds from the Mongolian deserts (Liu et al., 2022a). Summer is marked by

relatively hot and humid conditions and accounts for approximately 74% of the

annual precipitation. Autumn i1s mild and dry, with clear skies and cooling

temperatures. Winter is cold and dry, with occasional snowfall and minimal

precipitation (Feng et al., 2010: Hao et al., 2017).
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In this study, we utilized BT data collected from the MP-3000A MWR, which was
stationed at the Beijing Nanjiao Meteorological Observatory located in China

(39.80°N, 116.47°E, http://bj.cma.gov.cn/) (Ding et al., 2010; Lei et al., 2011; Zhou et

al., 2024). The MP-3000A MWR is capable of detecting signals in the K-band (22 to
30 GHz) and V-band (51 to 59 GHz), and it is also equipped with additional features
such as a precipitation sensor, an infrared radiation thermometer, and other relevant
instruments. To maintain the accuracy and consistency of the atmospheric BT
measurements, the MWR undergoes regular real-time calibration. These
measurements are essential for obtaining temperature profiles and AOD data. Our
analysis focuses on the K and V band of BT observations with 22 available channels,
because BT observations at the K band are sensitive to water vapor absorption and BT
observations at the V band are sensitive to oxygen absorption and temperature
changes. We use the data ranging from December 2019 to October 2020 with a

temporal resolution of one minute due to limitations of data distribution policy. We

also aim to extend the temporal range of our analysis in the future study.

The measured BTs include inaccuracies and unusual values caused by instrumental
faults, calibration problems, and environmental factors. Hence, it's crucial to conduct
quality control (QC) checks on the BT data before processing it further. These checks
involve removing abnormal values to ensure that the BTs fall within a reasonable
temperature range of 2.7 to 330 Kelvin, and inspecting for data consistency over time

as per the methodology of Zhang et al. (Zhang, 2024). Ultimately, nearly 4.36% of BT

data were excluded from the study due to a combination of instrumental faults,

calibration problems, and environmental factors. Notably. the Level 2 sun photometer

AOD products from AERONET are already validated and represent clear-sky

conditions. Therefore, the collocation of MWR data with these AERONET products

inherently excludes cloudy conditions. While AERONET data can be cloud-free in

the direction of the sun, the MWR. which measures in the zenith direction, may still

detect the presence of clouds. Therefore, we further conducted an additional cloud
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screening following the method by the previous study to ensure the clear-sky

conditions in the analysis (Zhang. 2024).

AOD retrieved using the solar and lunar methods at the Beijing-CAMS AERONET

site, (39.95°N.116.32°E. located in the Chinese Academy of Meteorological Sciences,

see Table S1), which is the closest site to the MWR location, (20.77 km), is used as

training and validation data in the retrieval algorithm. For training our model, we

utilized Level 2 sun photometer AOD products at the wavelengths of 440 nm, 500 nm,

675 nm, 870 nm, and 1020 nm during the day. Version 3 Level 1.5 lunar AOD

products at the same wavelengths to validate AOD retrievals at night._It is noteworthy

that the distance between the Beijing-CAMS AERONET site and MWR site is 20.77

km. Considering the vast urban area of Beijing, which spans approximately 160 km

both east-west and north-south, this distance is relatively short. We specifically chose

this AERONET station other than others because it is the only one that provides

consistent Version 3 Level 1.5 lunar AOD products from 2019 to 2020, ensuring a

consistent dataset with daytime AOD for our analysis.

Given that MWRs are instrumental in tracking atmospheric temperature and humidity
profile changes (Zhang et al., 2024), our method retrieves vertical temperature
profiles concurrently. This is achieved by using temperatures at different pressure
levels obtained from the European Center for Medium-Range Weather Forecasts
(ECMWF) Reanalysis version 5 (ERA-5) as the target for our training, (Hersbach,

2023). We chose the ECMWF products mainly because of their hourly temporal

resolution, which provides more training samples for the RFR model than the

twice-daily sounding data. This enhances the model's ability to capture temporal

variability and improve prediction accuracy of the predicted variables. To further

assess the accuracy of the model in predicting vertical temperature profiles, we
utilized the collocated sounding data obtained from Beijing Meteorological Station

(station ID: 54511) during the corresponding time frame. The collocation process
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involves identifying the temporally nearest valid BT measurement and subsequently

inputting this BT wvalue into the model to generate the MWR-based vertical

temperature profile prediction. The radiosonde temperature profiles are then vertically

interpolated to the standard pressure levels (100 hPa, 200 hPa, 500 hPa. 700 hPa, 850

hPa, and 1000 hPa) using a linear interpolation method, allowing for direct

comparison with the MWR-based temperature profile prediction. These sounding data

were collected twice daily respectively at 00:00 and 12:00 UTC from December 2019

to October 2020.

For the physical interpretation of our retrieval method, we employed collocated
vertical profiles of temperature and relative humidity (RH) from the same sounding
data under varying aerosol loadings to explore the effects of aerosol loading on the
vertical profiles of meteorological variables. These vertical profiles were further
utilized to compute BTs using the monochromatic radiative transfer model

(MonoRTM).

In summary, our study primarily relies on in-situ measurements from three sites: the

MWR site, the AERONET site, and the sounding site (see Table S1 and Figure 2b for

details). These sites are located at the Beijing Nanjiao Meteorological Observatory,

the Chinese Academy of Meteorological Sciences, and the Beijing Meteorological

Station, respectively. All three sites are situated within the urban or suburban areas of

Beijing, with relatively close proximity to each other. The aerosol types expected at

these sites include urban aerosols and mixed aerosols, with dust aerosols peaking

during the boreal spring season (Chen et al., 2016: Ou et al.. 2017).

2.2 Retrieval Algorithm

Because the relationship between aerosol loading and microwave radiation is
complicated and could be nonlinear, we use a machine learning based retrieval

method focusing on the RFR method (Svetnik et al., 2003). The RFR model leverages
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the power of ensemble learning, integrating multiple decision trees to enhance

prediction accuracy and robustness. Each decision tree within the ensemble is

constructed using a random subset of the training data and a random selection of

features, thereby reducing overfitting and improving generalization capabilities.

Through this mechanism, the RFR model can effectively capture the complex

interactions between aerosol properties and microwave radiation signals, providing a

reliable and efficient approach for aerosol retrieval.

All variables are rigorously matched in both temporal and spatial dimensions to

ensure consistency and accuracy. Specifically, AOD data derived from sun

photometer measurements are temporally matched with BTs from the MWR within a

5-minute time window. Meanwhile, hourly temperature profiles from the ERA-5

reanalysis datasets are collocated with MWR BTs within a 30-minute time window

and a 15 km spatial radius. It should be noted that the acquisition of temperature

profiles relies solely on the ERA-5 reanalysis data and does not require data from the

AERONET station, and that the 15 km spatial radius only refers to the distance

between the ERA-5 erid point and the MWR site location.

We first apply the relative importance feature selection technique, which is based on
the Gini importance measure (Nembrini et al., 2018), to identify significant

independent variables and build a generalized model. In the context of random forests,

the relative importance of each predictor variable (feature) is quantified by a numeric

array of size 1-by-Nvars. The importance measure for each variable is defined as the

increase in prediction error that results from permuting the values of that variable

across the out-of-bag observations. This measure is calculated for each tree in the

ensemble, then averaged across all trees. To standardize the importance scores, the

average values are normalized by dividing them by the standard deviation computed

over the entire ensemble. This process yields a normalized importance measure that

provides a robust assessment of each feature's contribution to the model's predictive
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performance. The relative importance of each factor is presented in Figure 3. It is

observed that BTs across various frequency bands carry similar levels of importance,

suggesting that the BTs are almost equally important for retrieving AOD.,

Jhe retrieval algorithm is subsequently trained using eight selected K-band BTs and

fourteen V-band BTs from the MP-3000A MWR as input yariables. The target

variables, include AOD at 440 nm, 500 nm, 675 nm, 870 nm, and 1020 nm from the

Beijing-CAMS AERONET site, as well as ERA-5 vertical temperature profiles at 100

hPa, 200 hPa, 500 hPa, 700 hPa, 850 hPa, and 1000 hPa. To ensure the
representativeness of the sampling, we select the first 3/4 of the data in each month as
the training set and the last 1/4 of the data as the testing set. Additionally, the
algorithm is adapted to estimate nighttime AOD using nighttime BTs from microwave
radiometry as inputs, which is then validated against nighttime AOD observations
from lunar measurements in lunar photometer for the same period. Moreover, AOD,
whether in the visible or microwave region, is associated with aerosol loading, which
serves as the foundation for retrieving visible AOD using microwave observations.
Since we primarily aim at retrieving AOD rather than aerosol type, we did not
consider AOD at the other wavelengths when building the AOD retrieval model. The

relationship between AOD at 440 nm, 500 nm, 675 nm, 870 nm, and 1020 nm (the

output wavelengths of the RFR model) and at the microwave band is enclosed in the

random forest model. The model performance is assessed against photometer
retrievals using metrics such as linear regression slope and intercept, correlation
coefficient (R), root-mean-square error (RMSE), and mean absolute percentage error

(MAPE).

The RFR model is built by varying the number of decision trees from 8 to 256.
Through validation analysis, it is determined that the optimal number of trees is 128,

based on the best performance during validation. The super parameters of this RFR

model are detailed in Table S2. After refining the algorithm through extensive training
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and testing, it is used to retrieve nighttime AOD from nighttime MWR BTs, with
validation against collocated lunar AOD measurements from the lunar photometer.
Moreover, before investigating the diurnal cycle of MWR derived AOD, we perform
a quality control on the minute-resolution retrieval results that typically have a higher
noise level. Specifically, for each specific minute, we extract the AOD for this minute
from each day to form an AOD sequence. We then calculate the mean and standard
deviation of this AOD sequence. Finally, we remove AOD that exceeds three times
the standard deviation. Considering the suitable quantity of outliers procured by
setting the threshold at three standard deviations and the prevalently utilized 3-sigma
rule, we used three standard deviations as the threshold (Li et al., 2016a; Liu et al.,

2024; Wang et al., 2012).

2.3 WRF-Chem simulations

To investigate the effect of aerosols on downward microwave radiation, we use the
Weather Research and Forecasting model with Chemistry (WRF-Chem) simulations
combined with the MonoRTM radiative transfer model. Because MWR-observed BT
change is not only due to AOD change but also reflects the change of meteorological
conditions due to the AOD change, we apply WRF-Chem and MonoRTM radiation

transfer model instead of radiative transfer simulations only.

WRF-Chem simulation runs from 00:00 UTC on 17 December 2016 to 00:00 UTC on

20 December 2016 (a 72-hour period). The simulation period is different from that of
the retrieval because there are no updated emission fields for 2019 and 2020. The
initial meteorological conditions used for the simulations are based on the National
Center for Atmospheric Research (NCEP) Final Global Forecast System Operational
Analysis (FNL) provided by the National Oceanic and Atmospheric Administration
(NOAA), with a 1° x 1° spatial resolution and a 6-hour temporal interval. The
emission fields used here are Emissions Database for Global Atmospheric Research

(EDGAR), MIX, and Multi-resolution Emission Inventory for China (MEIC) (Crippa
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et al., 2018; Li et al., 2017; Wang et al., 2014). The surface emissivity we used for
simulation is the default data for WRF-Chem. The simulation domain encompasses

the area of Beijing, Tianjin, and Hebei province (as shown in Figure 2a), with a center

point at 40.00°N, 116.25°E. The model employs a three-tiered nesting configuration,
featuring outer grids of 40 x 46 with a 90 km horizontal spacing, middle grids of 48 x
60 with a 30 km horizontal spacing, and inner grids of 51 x 72 with a 10 km
horizontal spacing. The vertical atmosphere is segmented into 47 levels, ranging from
the model's ground level to 100 hPa, encompassing both the surface and the upper
atmosphere. Figure 3 illustrates the domains of the WRF model simulations and the
location of the MWR deployed at the Beijing Nanjiao Meteorological Observatory in
China. To further confirm our findings, we perform another set of parallel

experiments lasting from 00:00 UTC on 3 December 2016 to 00:00 UTC on 5

December 2016 (a 48-hour period) with the same settings. Additionally, to augment

the representativeness of our results, analogous WRF-Chem simulations were

executed during the boreal summer from 00:00 UTC on 5 July 2016 to 00:00 UTC on

8 July 2016 (a 72-hour period). The choice of these simulation periods is based on the

presence of significant pollution events, which provide a robust basis for examining

the influence of aerosols on meteorological fields and the associated microwave BTs.

The first day of both sets of experiments is used for model stabilization, and the

subsequent days are utilized for analysis.

For the choices of physical parameterization schemes, we employ the Lin
microphysics scheme, the rapid radiative transfer model for global climate model
(GCM) applications (RRTMG) for shortwave radiation, the Yonsei University (YSU)
boundary layer scheme, the Monin-Obukhov ground layer scheme, the Carbon-Bond
Mechanism version Z (CBM-Z) for gas-phase chemistry, and the Model for
Simulating Aerosol Interactions and Chemistry (MOSAIC). The model output has a

one-hour temporal resolution._ Here, we utilize AOD at 550 nm instead of 500 nm
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because WRF-Chem does not simulate AOD at 500 nm. Thus, 550 nm was selected as

the closest available alternative wavelength in the WRF-Chem output.

To investigate the responses of surface downward microwave radiation to aerosol
loadings, we also conducted two parallel experiments with and without aerosol

emissions in the study. Two simulations that are respectively, designated as

“EXP_AER” and “EXP NOAER” are carried out. The EXP_AER experiment is

defined as a control simulation in which aerosol and aerosol precursor emission
scheme is turned on. This aerosol emission includes emissions of carbon monoxide,
nitrogen oxides, sulphate oxides, dust aerosols, biomass aerosols, biomass burning
aerosols, sea salt aerosols and anthropogenic aerosols. The sensitivity experiment
(“EXP_NOAER”) is also conducted by closing corresponding aerosol and aerosol
precursor emission scheme. The difference between control and sensitivity results are
considered as the adjustments of vertical meteorological profiles to aerosol loadings.
This method is also widely used to explore the radiative forcing of different kinds of
aerosol and its effects on meteorological fields in previous studies (Chen et al., 2023c;

Matsui et al., 2018).

It is important to note that the aerosol-radiation interaction feature is activated in the
WRF-Chem model to investigate the impact of aerosol loadings on meteorological
fields. Subsequently, we input meteorological profile data from pollution cases
without cloud cover at each grid point into the monochromatic radiative transfer
model (MonoRTM) to calculate the corresponding BT responses at various

frequencies within the K-band.

2.4 MonoRTM

The MonoRTM, (Clough et al., 2005; Huang et al., 2013), developed by Atmospheric

and Environmental Research (AER), is a radiative transfer model specifically
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designed for microwave and millimeter-wave applications (Clough et al., 2005;

Huang et al., 2013). This model is particularly useful in the microwave radiation

calculation (Payne et al., 2011). In this study, it is used to calculate the brightness
temperatures (BTs) associated with the simulated temperature and humidity vertical

profiles from WRF-Chem.

3. Results

3.1 Model fitting and validation

The AERONET AOD data are used for training and validating the model. Specifically,

daytime AERONET AOD data are used for model training and testing. To ensure the

representativeness of the sampling, we have partitioned the data such that the 3/4 of

the data in each month are designated as the training set, while the remaining 1/4

serves as the testing set. After training, nighttime MWR BT measurements are input

into the model to generate nighttime AOD estimates. These estimates are then

compared with nighttime AERONET lunar AOD measurements for validation.

The retrieval model has great fitting performance, as shown by Figure 4. The model
fitting reaches correlation coefficients of 0.98 for the 440 nm, 500 nm, 675 nm, 870
nm, and 1020 nm, respectively, albeit with a minor systematic low bias for high AOD
scenarios, which is similar to MODIS AOD products (Levy et al., 2013). Due to the

consistent model performance in all wavelengths (Figure 4)., we will focus on results

at 500 nm in the following discussions since this is typically the reference wavelength

for satellite remote sensing (Levy et al., 2013).

Figure 5 displays the comparison between the daytime and nighttime AOD
independently retrieved by MWR using our algorithm and those from the sun and
lunar photometer from December 2019 to October 2020. The model, tested during the

daytime, utilized a dataset of over 3,000 samples and achieved correlation coefficients
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of 0.96 for 500 nm (Figure 5a). The performance in 500 nm of the test set (R = 0.96,

RMSE = 0.08, and MAPE = 0.11) is slightly inferior to the train set (R = 0.98. RMSE

= 0.07, and MAPE = 0.10) regarding the statistical metrics (Figure 5a). Most points

are concentrated on the 1:1 line, with RMSE within 0,08 and MAPE within 0.11. The

accuracy of this estimation is similar to existing shortwave-based algorithms based on

the satellite sensor such as the MODIS aerosol products (Levy et al., 2013). However,

the key advantage of using microwave BT is the capability to retrieve AOD at night, a
feature lacking in these shortwave-based algorithms (Figure 5b). Nighttime AOD
retrieval reaches comparable performance to that for daytime, exhibiting a high
correlation of 0.91 with lunar AOD. A minor systematic bias towards lower values in
high AOD scenarios is also noted, with RMSE about 0.14 and MAPE approximately

027, indicating the overall satisfactory performance of MWR retrievals. In addition,

the MWR results also well capture the spectral variation of AOD for fine (440 nm to
870 nm Angstrom index > 1) and coarse mode particles (440 nm to 870 nm Angstrom

index < 1), as shown in Figure 6. Moreover, the MWR tends to underestimate AOD

during both daytime and nighttime, particularly at shorter wavelengths. As the

wavelength increases, this underestimation diminishes, and the MWR measurements

alien more closely with AERONET observations (Figure 6). This trend is observed

for both fine-mode and coarse-mode aerosols (Figure 6).

For retrieving vertical temperatures profiles, similarly to the AOD, we also partitioned

the data such that the 3/4 of the data in each month are designated as the training set,

while the remaining 1/4 serves as the testing set. Our algorithm simultaneously

retrieves daytime and nighttime temperature profiles. As shown in Figure 7 & Figure
8, atmospheric temperature retrieval results also demonstrate good performance and
exceed those of AOD. This is expected since the main signals in the microwave come
from emitted radiation by the atmosphere that is directly related to temperature. In
detail, R is generally above 0.98 and all of the RMSEs are around 1.0 K in the training

set (Figure 7). Similarly, the model's performance on the test set is somewhat lower
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compared to the training set, but remains satisfactory overall. Specifically, R is above

0.95 and all of the RMSEs are around 1.8 K the test set (Figure 8), comparable to

previous studies using MWR fo retrieval temperature profiles with an optimal

estimation method (Cimini et al., 2006). The significant biases at some pressure levels
may be attributed to the larger biases between sounding data and reanalysis data that
is used to train the model (Varga and Breuer, 2022). Our model also well captures the
characteristics of the climatological mean temperature vertical profile, with the error
in each pressure layer within 1.5 K (Figure 9a). There exist greater RMSE and bias in
low pressure levels partially due to the higher temperature variations in these levels,
the overall RMSE and bias serve to illustrate the exemplary performance of the model

in estimating the vertical temperature profiles (Figure 9b & c).

In summary, the day and nighttime MWR-based AOD and vertical temperature
profiles derived from our algorithm successfully capture the AOD variability and
vertical temperature profile characteristics with satisfactory accuracy. This model also
unveils the spectral characteristics of AOD, with higher wavelengths corresponding to
lower AOD. With great performance through model validation, we will investigate the

diurnal cycle of AOD in the following section.

3.2 The diurnal cycle of MWR derived AOD

We further examine the day-night differences in the AOD retrieved by MWR and

compare them to those revealed by surface photometer. It should be noted that the

analysis period in the following section remains from December 2019 to October

2020, contingent upon the availability of data. We acknowledge that the analysis

period may not fully represent typical regional conditions due to COVID-19 (Lv et al..

2020; Sulaymon et al., 2021). However, the impact of COVID was mainly confined to

January—March 2020. By April 2020, Beijing had largely recovered, with industrial

and anthropogenic pollution sources returning to normal (Liu et al.. 2022b: Tao et al.,

2021).
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Figure 10a-b illustrates the mean diurnal cycles of the photometer AOD and
MWR-based AOD derived from BT observations at the Beijing Nanjiao
Meteorological Observatory in China._Although the MWR-based AOD tends to

underestimate extreme values relative to the photometer AOD., the MWR

measurements exhibits strong agreement with the photometer AOD (Figure 10a-b).

As shown in Figure 10a, mean diurnal AOD follows a bi-modal temporal distribution,
with a greater peak ~21:00 and a secondary peak at ~03:00. The AOD stays relatively
low from 06:00 to 10:00, gradually rises from 10:00 to 21:00, reaching the first peak
at 21:00. After that greater peak, the AOD decreases from 22:00 to 00:00, and then
increases again until it reaches the second peak at 03:00. This pattern is consistent
across other spectral bands (675 nm, 870 nm, and 1020 nm, not shown here). [This

decrease may be attributed to the higher relative humidity near 23:00 and the

corresponding aerosol scavenging effect, but further investigation is needed in future

Studies. Moreover, although the MWR-based AOD seems to underestimate the

extreme pollutions with high AOD compared with photometer observation, since the
number of upper outliers of AOD of the photometer is higher than that of MWR, the

overall temporal pattern is similar to that of the photometer (Figure 10a).

The mean and median AOD values further support the above findings, highlighting
higher nighttime AOD compared to daytime (Figure 10b). This difference is validated
by the boxplots of MWR-based AOD and photometer AOD (Figure 10c), passing the

Student's #-test significance test with p < 0.05. Specifically, the median daytime

AOD is in the range of 0.15 to 0.28 for MWR and 0.15 to 0.27 for the photometer,
while the median nighttime AOD is greater than 0.34 for MWR and higher than 0.30
for the photometer. Similarly, the mean daytime AOD is in the range of 0.25 to 0.35
for MWR and 0.24 to 0.32 for the photometer, while the mean nighttime AOD is
greater than 0.40 for MWR and over 0.44 for the photometer. This discrepancy
between daytime and nighttime AOD has also been observed in previous studies

estimating nighttime AOD by incorporating infrared radiance measurement from the
19/52
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Atmospheric InfraRed Sounder (AIRS) instrument into the machine learning model,

further corroborated by surface and space lidar measurements (Liu et al., 2024).

Notably, the mean AOD tends to exceed the median AOD, partly due to the long-tail

distribution of AOD and the presence of high extreme values (Sayer et al., 2019). |

We have further divided the results into four seasons and validated that the diurnal

cycle of AOD is consistent across all seasons, with the most pronounced diurnal

difference occurring in summer (Figure S1). It is noted that the lunar AOD is not

available for JJA, which further underscores the supplementary role of

MWR-predicted AOD in complementing lunar AOD measurements. The seasonal

variation of AOD diurnal cycle agrees with previous studies derived from

downscaling reanalysis datasets (Wang et al.. 2025). The more significant diurnal

difference in AOD during summer can be attributed to two primary factors. Firstly,

the intense solar radiation and high temperatures prevalent in summer significantly

promote the formation of aerosol particles through the process of gas-to-particle

conversion (Chen et al., 2023a). Secondly, the high humidity levels in summer

facilitate aerosol hygroscopic erowth, which enhances aerosol extinction (Chen et al.,

2023b; Lv et al., 2017). AOD at the other wavelengths (440 nm, 675 nm, 870 nm, and

1020 nm) exhibit similar diurnal patterns with peaks at about 20:00-22:00 (not shown

here) and higher nighttime AOD in general (Figure 6).

The increase in nighttime AOD compared to daytime can be attributed to various
factors, including a shallower mixed layer due to reduced horizontal mixing and
transport, a decrease in atmospheric environmental capacity, higher relative humidity,
enhanced aerosol hygroscopic growth, or intensified pollution emissions (Brock et al.,
2016). Similar observations of elevated nighttime particle matter concentration have
been reported in previous studies (Perrone et al., 2022; Su et al., 2023). However,
research on nighttime aerosol properties is limited, warranting further analysis to fully
understand these discrepancies, which exceeds the scope of this study.
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In summary, by using the BT measured by the MWR to retrieve AOD during
nighttime, we can uncover the daily cycle of AOD. This improves our understanding
of the day-nighttime AOD variability, provides insights into the diurnal changes of

atmospheric pollution and sheds light on nighttime aerosol radiative effects.

3.3 Physical interpretation

Since the machine learning technique does not necessarily represent the physical
relationship between aerosol loading and microwave radiances, we further verify the
theoretical basis of our technique by analyzing the observed temperature and RH
profiles under various AOD levels and using WRF-Chem combined with MonoRTM

simulations. The simulation is designed to establish a connection between aerosol

loadings and microwave radiances. A set of sensitivity experiments with and without
aerosol forcing is conducted using WRF-Chem as described in Section 2, whose
atmospheric profiles, including temperature, water vapor, gases and aerosols, are then
used as the inputs to the MonoRTM to simulate the downward microwave radiances
(represented by BT) observed by the MWR. To mitigate the influence of surface
temperature on BT, we maintained a consistent surface temperature range (265 K-270

K) throughout the simulation.

We first analyze the temperature and RH profiles from sounding observations under
various AOD levels (Figure 11a-b & d-e). These AOD levels include light pollution
(AOD<0.2), medium pollution (0.2<A0D<0.5), and heavy pollution (AOD>(.5)
scenarios. The selection of this threshold is to ensure a balanced sample size for each

scenario. All differences in the temperature and RH profiles under different AOD

scenarios passed the significance test with p < 0.1 by the #-test. For the temperature

profiles, a higher AOD corresponds to a lower temperature in the upper atmosphere,
and vice versa (Figure 11a). However, for the low-level atmosphere, the temperature

might first increase as AOD increases and then decrease with AOD as increases. This
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is associated with aerosol type and optical properties (Che et al., 2024; Mahowald et
al., 2011). For the RH vertical profiles, RH increases as AOD increases at all pressure
levels (Figure 11b). This may be attributed to aerosol hygroscopic growth effect,
leading to a higher AOD (Quan et al., 2018). Notably, since the collocation between
MWR and Level 2 sun photometer AOD products from the AERONET is already
clear-sky data, the vertical profiles of RH is relatively low. BTs at 22.23 GHz
calculated by these vertical profiles from MonoRTM also demonstrate that BTs tend
to increase with AOD (Figure 11c). BTs at other frequencies in the K band also show

similar trend (not shown here). We have also conducted a detailed seasonal analysis

and found similar responses in temperature, RH, and BT to AOD. with minor

differences likely attributable to variations in aerosol types (Figure S2). Similarly, the

WRF-Chem output also demonstrates the sensitiveness of temperature and RH
vertical profiles to aerosol loading, contributing to statistically significant BT

difference under different pollution levels (Figure 11d-f). Although there might be a

significant discrepancy of BT between WRF simulation results and observations with

regards to the range, the trend and overall pattern is quite similar, revealing the similar

trends in BT as a function of AOD (Figure 11f). This suggests that despite the range

discrepancies, the fundamental relationships between BT and AOD are consistent

between observation and simulation. The above observational evidence jnight indicate

that MWR estimate AOD by detecting the temperature and humidity profile

differences caused by the presence of aerosols, but the impact of aerosols on

microwave radiative transfer is highly complex. involving multiple processes such as

aerosol scattering and absorption, changes in surface temperature and

temperature/humidity profiles due to aerosol radiative and hygroscopic effects, and

the nonlinear relationship between aerosol properties in the microwave and visible

spectra. The above-mentioned complexities inspire us to conduct further simulation to

verify the theoretical basis of our technique.
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Furthermore, to isolate the impact of AOD on BT, we have fixed the surface

temperature between 270 K and 275 K in our analysis. The selection of this specific

surface temperature range effectively minimizes the influence of temperature

variability on BT. Our simulation results, illustrated in Figure 12 and 13, indicate that

for all frequencies in the K band, BT increases as AOD levels increase. This
phenomenon exists in both the daytime and nighttime. Specifically, at 22.23 GHz, BT
levels for clean conditions range from 60 K to 80 K, while for polluted conditions
they range from 80 to 130 K, showing a statistically significant difference at both
daytime and nighttime (Figure 12a & 13a). BT levels at other frequencies support this
trend, indicating that BT tends to increase with AOD (Figure 12b-d & 13b-d). The
increase of K band BT with AOD might be related to coherent changes of water vapor
and aerosols, either due to aerosol absorption of water or meteorological conditions

that affect both water vapor and aerosols. When AOD is higher, RH is typically also

higher, accompanied by more water vapor due to the hygroscopic growth effect of

aerosols, as supported by previous analysis (Figure 1la & c¢). Since the K band

includes the water vapor absorption line near 22.235 GHz, the BT in the K band is

sensitive to water vapor, and thus the BT increases as AOD increases (Liu et al., 2014;

Xie et al.. 2013). further strengthening the theoretical foundation of the proposed

approach.

In contrast to the observations in the K band, an analysis of the V band frequencies
reveals a consistent decrease in BT with the reduction of AOD levels, applicable to
both diurnal and nocturnal periods (Figure 12e-h & 13e-h), which well corresponds to
the cooling effect of aerosols. Notably, at a frequency of 51.76 GHz, the BT levels
exhibit a range of 264 K to 270 K under pristine atmospheric conditions, whereas
under polluted conditions, these levels are observed to be between 262 K and 265 K.

Although the magnitude of this change is less pronounced than that observed in the K

band, it passes the statistical significance (p < 0.1 by the #-test), indicating a reliable

and measurable effect. The detailed physical interpretation as follows: due to the
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presence of the oxygen absorption band within the frequency range of the V band, it is

highly sensitive to changes in atmospheric temperature (Van Leeuwen et al., 2001).

Variations in AOD can influence the atmospheric temperature profile as shown by

observation and simulation (Figure 11b &d). Consequently, in cases when AOD is

high, the BT in the V band decreases.

The above-mentioned conclusion was further verified by simulations lasting from

00:00 UTC on 3 December 2016 to 00:00 UTC on 5 December 2016 (a 48-hour

period) with the same settings (not shown). In conclusion, MWR has the potential to

estimate AOD by identifying the differences in temperature and humidity profiles, as

well as the direct scattering and absorption signals that arise from varying aerosol

loadings. While previous studies have demonstrated that large aerosol particles,

particularly dust aerosols, can significantly influence microwave radiation and BT (Ge

et al.. 2008: Hong et al., 2008), the primary mechanism by which MWR estimates

AOD in this study might be through detecting the changes of temperature and RH

profiles.

To deepen our understanding of the impact of aerosol loading on longwave radiation,

we conducted a comparative analysis using WRF-Chem. By comparing scenarios with
aerosol loadings (EXP_AER) and without aerosol loadings (EXP NOAER), we
examined the differences in AOD, surface temperature (ST) and ground downward

longwave radiation (GDLR). This comparison is specifically designed to examine the

impact of aerosol loading on longwave radiation, particularly its spatial distribution.

As such, no BT information is generated or output in this comparison experiment. The

findings reveal that higher aerosol concentration levels have a negative effect on ST
(Figure 14b & e), particularly during the daytime (Figure 14b), while positively
influencing GDLR (Figure 14c & f), especially at nighttime (Figure 14f), which is

consistent with the above MonoRTM calculations. |
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The validity of the aforementioned conclusion was further corroborated through

simulations that spanned from 00:00 UTC on 3 December 2016 to 00:00 UTC on 5

December 2016, encompassing a continuous 48-hour period, utilizing identical

settings (not shown here). Additionally, to augment the representativeness of our

results, analogous WRF-Chem simulations were executed during the boreal summer.

Specifically, these simulations were conducted from 00:00 UTC on 5 July 2016 to

00:00 UTC on 8 July 2016, covering a 72-hour duration, and they also vielded

consistent conclusions (Figure S3-S5).

4. Conclusions and Discussions

This study introduces a new method for estimating clear sky AOD using BT
measurements in the K and V band obtained from the MWR. By establishing a strong
correlation (R = 0.96, RMSE = 0.11, and MAPE = 0.11 in the daytime test set)

between the photometer AOD and multiple BTs derived from the MWR at the Beijing
Nanjiao Meteorological Observatory using a machine learning algorithm, we were

able to accurately retrieve nighttime AOD (R = 0.91, RMSE = 0.14, and MAPE =

0.28) and vertical temperature profiles (R >0.95 for all levels and RMSE<<2.20 K for

all levels). This model also well captures the spectral characteristics of AOD with
higher Angstrom index for fine-mode dominated AOD and lower Angstrom index for
coarse-mode dominated AOD. After applying this model with satisfactory
performance, we show that the AOD diurnal cycle and find that AOD values follow a
bi-modal diurnal cycle temporal distribution, with a greater peak ~21:00 and a
secondary peak at ~03:00, suggesting higher nighttime AOD compared with daytime.
The difference between daytime and nighttime AOD observed in the MWR data well
agrees with sun and lunar photometer observation as well as particle matter

concentration observations.

The theoretical basis of our algorithm is also confirmed by analyzing observational

vertical profiles of temperature and RH under various AOD levels and WRF-Chem as
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well as MonoRTM simulations. Observation indicated that the vertical profiles of

temperature and RH have statistically significant differences (p < 0.1) under different

AOD levels, suggesting that MWR might estimate AOD by detecting the temperature
and humidity profile differences caused by various aerosol loadings. Simulation
further indicated a consistent and mostly linear increase in BTs in the K band

(increasing from ~70 K to ~105 K at 22.23 GHz) and decrease in BTs in the V band

(decreasing from ~265 K to ~257 K at 51.76 GHz) with AOD (550 nm, the

wavelength of WRF-Chem simulated AOD) across all time periods. Aerosols tend to

induce a cooling effect at surface while increasing ground downward longwave

radiation, especially at the nighttime, This study holds significant promise for

environmental and climate research as MWR BT measurements can be obtained day
and night without being hindered by bright surfaces. The methodology developed here
can potentially be applied to MWRs in other locations worldwide to retrieve both
daytime and nighttime AOD values. However, it is important to note that this
investigation is preliminary and may contain uncertainties. It is also applicable under
clear sky since during cloudy sky, the downward microwave radiation will be

dominated by that emitted by clouds.

It is important to note that the analysis of AOD is specifically conducted for the

Beijing Nanjiao Meteorological Observatory in China, covering the period from

December 2019 to October 2020. This timeframe encompasses various climate and

pollution conditions and is contingent upon the availability of data. Moving forward,

we aim to extend the time range of our analysis and explore additional aerosol

characteristics that may be inferred from BT measurements, such as aerosol
absorption and layer height. This will enhance our understanding of aerosol
distribution and properties, ultimately improving our ability to monitor and predict

aerosol impacts on climate and the environment.
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Code and data availability

The sun photometer AOD data was obtained from https://aeronet.gsfc.nasa.gov/n

ew_web/webtool _aod v3.html, last access: 20 Apr 2024; the lunar photometer

AOD data was obtained from https://aeronet.gsfc.nasa.gov/new_web/webtool aod

_v3 lunar.html, last access: 20 Apr 2024; the temperature profile from the ER

A-5 reanalysis data was downloaded from https://cds.climate.copernicus.eu/cdsap

p#!/dataset/reanalysis-eraS-pressure-levels?tab=overview, last access: 24 Apr 2024;

the MonoRTM source code is available on https://github.com/AER-RC/monoR

TM, last access 18 Apr 2024. The sounding data obtained from Beijing Meteor

ological Station (station ID: 54511) was obtained from https://weather.uwyo.edu/

upperair/bufrraob.shtml.
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Figure 2. (a) Simulation domains of the WRF-Chem experiments. (b) Left panel: the
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sounding. Right panel: the MWR used in this study is located in domain 3. This

domain has a spatial resolution of 10 km. The MP-3000A MWR by Radiometrics is
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China for brightness temperature (BT) measurements.
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The dashed dark gray line represents the 1:1 line, and the black solid line represents

the linear regression line.
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Figure 7. Density scatterplots of the vertical temperature profile in the train set of
MWR and sounding data at (a) 100 hPa, (b) 200 hPa, (c¢) 500 hPa, (d) 700 hPa, (e)
850 hPa, and (f) 1000 hPa. The dashed dark gray line represents the 1:1 line, and the

black solid line represents the linear regression line.
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black solid line represents the linear regression line.
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