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Abstract. Snow is a critical component of the Arctic sea ice system. With its low thermal conductivity and high 8 
albedo, snow moderates energy transfer between the atmosphere and ocean during both winter and summer, thereby 9 
playing a significant role in determining the magnitude, timing, and variability of sea ice growth and melt. The depth 10 
of snow on Arctic sea ice is highly variable in space and time, and accurate measurements of snow depth and 11 
variability are central to improving our basic understanding, model representation, and remote sensing observations 12 
of the Arctic system. Our ability to collect those measurements has hitherto been limited by the high cost and large 13 
size of existing autonomous snow measurement systems. We designed a new system called SnoTATOS (the Snow 14 
Thickness and Temperature Observation System) to address this gap. SnoTATOS is a radio-networked, distributed 15 
snow depth observation system that is 95% less expensive and 93% lighter than existing systems. In this manuscript, 16 
we describe the technical specifications of the system and present results from a case study deployment of four 17 
SnoTATOS networks (each with ten observing nodes) in the Lincoln Sea between April 2024 and February 2025. 18 
The study demonstrates SnoTATOS’ utility in collecting distributed, in situ snow depth, accumulation, and surface 19 
melt data. While initial snow depth varied by up to 42% within each network, a comparison of mean initial 20 
snow depth between networks showed a maximum difference of only 26%. Similarly, whereas surface melt varied 21 
within each network by up to 38%, mean surface melt varied between networks by only up to 9%. This indicates 22 
that floe-scale measurements made using SnoTATOS provide valuable snow depth variability information and 23 
therefore more representative data for regional intercomparisons than existing single station systems. We conclude 24 
by recommending further research to determine the optimal number and arrangement of autonomous stations needed 25 
to capture the variability of snow depth on Arctic sea ice. 26 

1 Introduction 27 

September Arctic sea ice area has diminished by ~50% since satellite observations began in 1979 (Meier et al., 28 
2023; Onarheim et al., 2018; Peng and Meier, 2018). The remainder is predominantly thin first- and second-year ice 29 
(FYI, SYI) (Kwok, 2018). The Arctic Ocean may experience ice-free summers within the next decade (Jahn et al., 30 
2024). The thinning and loss of Arctic sea ice has increased Arctic coastal erosion (Barnhart et al., 2014; Eicken and 31 
Mahoney, 2015), diminished habitat (Laidre et al., 2015; Post et al., 2013), impeded hunting, fishing, and 32 
transportation over sea ice, and created new opportunities and uncertainties for shipping, tourism, military activity, 33 
and geopolitical conflicts in the Arctic (Backus, 2012; Bystrowska, 2019; Carman, 2002). Understanding the Arctic 34 
ice pack is more important than ever. At the same time, rapidly changing conditions, in addition to baseline spatial 35 
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and temporal variability, present considerable challenges for our efforts to observe, understand, and predict changes 44 
in this environment. 45 

Our fundamental understanding and model representations of the Arctic sea ice system are limited by the 46 
spatial and temporal resolution, consistency, coverage, representativeness, and scalability of available snow 47 
observations. Sturm et al. (2002) found early evidence that variability in snow cover properties, including snow 48 
depth, significantly impacts heat flow, surface temperatures, ice growth, and even marine mammals. Zampieri et al. 49 
(2024) and Clemens-Sewall et al. (2024b) both found that neglecting sub-meter to meter-scale snow depth 50 
variability results in a 10% underestimation of modeled conductive heat flux through the Arctic sea ice cover during 51 
winter, yielding a directly proportional underestimation of ice growth. Itkin and Liston (2024) identified meter to 52 
decimeter scale snow variability as a key control on area-average heat flux, and thus ice growth. Measurements of 53 
temperature profiles through the snow and ice are commonplace on observational campaigns (see, e.g., Lei, 2022; 54 
Liao, 2019; Perovich, 2023). Augmenting these temperature measurements with precise, distributed snow depth 55 
observations enables investigators to determine the role of snow in controlling heat transfer at the local scale. 56 

Snow also influences the timing of melt onset (Holland et al., 2021), and the formation and distribution of 57 
melt ponds (Polashenski et al., 2012), both of which impact the magnitude and spatial variability of sea ice melt. 58 
Clemens-Sewall et al. (2024b) and Holland et al. (2021) conclude that more observations of the spatial heterogeneity 59 
of snow depth are needed to improve model representations of sea ice conditions. 60 

Further, snow accumulation can impact the validity of other measurements of the Arctic system. For 61 
example, an air temperature sensor initially installed at two meters effectively becomes a 1.5-meter air temperature 62 
sensor after 0.5 m of snow accumulation, with an opposite result occurring due to surface melt. Accurate snow 63 
accumulation estimates are thus useful for interpretation of other datasets, especially those at the surface boundary 64 
layer. 65 

Gerland et al. (2019) identified the sparsity of in situ measurements of snow depth as an essential gap in 66 
our understanding of Arctic sea ice, and in a review of snow in the contemporary sea ice system, Webster et al. 67 
(2018) stated that “Major questions remain … as to the exact role of snow, how it varies regionally and seasonally, 68 
how snow conditions on sea ice are changing and what effects these changes have on the atmosphere–sea ice–ocean 69 
interactions,” and that, “first and foremost, our limited understanding stems from the complexity of the snow–sea ice 70 
systems and the scarcity of observations.” In short, we need high-spatial-resolution observations of snow depth to 71 
constrain spatial variability, validate remote sensing observations, advance model physics, and maintain an 72 
observational record of snow depth in the Arctic. 73 

Remote sensing observations give broad and consistent geographical coverage, but do not afford the 74 
necessary spatial resolution or measurement precision (Meier and Markus, 2015; Webster et al., 2018). Crewed, in 75 
situ drift and station experiments – e.g., the long-running Russian drifting ice station program (Colony et al., 1998; 76 
National Snow and Ice Data Center, 2004), the 1997–1998 SHEBA expedition (Perovich et al., 1999, 2003; Sturm et 77 
al., 2002), the 2015 N-ICE experiment (Granskog et al., 2018; Merkouriadi et al., 2017; Rösel et al., 2018), and the 78 
2019–2020 MOSAiC expedition (Itkin et al., 2023; Nicolaus et al., 2022; Raphael et al., 2024) – are important, but 79 
only partial, solutions. They provide opportunities to densely sample sea ice and snow conditions, usually alongside 80 
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a rich suite of atmosphere, ocean, and contextual information. However, each expedition offers only a snapshot in 86 
space and time. 87 

Autonomous in situ instruments can provide wide spatial coverage and high temporal resolution, and 88 
several autonomous systems exist that offer precise, in situ measurements with selectable sampling frequency and 89 
up to 1–2 year endurance (Liao et al., 2019; Nicolaus et al., 2021; Planck et al., 2019). These systems are regularly 90 
deployed in the Arctic, but are expensive, heavy, and difficult to transport to and in the field (Table 1). This has 91 
historically limited their use to one to two instruments installed per floe, and few (<10) per region, the rare 92 
exceptions being major expeditions like N-ICE (Itkin et al., 2017; Nicolaus et al., 2021) and MOSAiC (Nicolaus et 93 
al., 2022; Rabe et al., 2024). Even on such major campaigns, relatively few units have been deployed on a single 94 
floe. These limited point measurements are usually taken as representative local snow depths. However, snow depth 95 
on Arctic sea ice can vary by two orders of magnitude over decimeter to kilometer length-scales due to 96 
topographical features, surface conditions of the underlying ice and snow, and ice age (and resultant accumulation 97 
time), among other factors (Clemens-Sewall et al., 2024a; Iacozza and Barber, 1999). A point measurement is 98 
unlikely to capture the mean (and, by definition, cannot capture the variance) of snow depth in complex local snow 99 
fields. 100 

We need a new snow sensing technology that will improve the spatial density of Arctic snow depth 101 
measurements. The system must be inexpensive, easy to transport, use, and install, and have similar measurement 102 
precision and endurance to existing systems. We have designed, built, tested, and deployed the Snow Thickness and 103 
Temperature Observation System (SnoTATOS) to meet this need (Table 1). SnoTATOS is an autonomous, radio-104 
networked, distributed snow depth measurement system that will accurately observe the mean and variance of snow 105 
depth on Arctic sea ice at meter to regional spatial scales. Throughout the design process, we focused on 106 
affordability; ease of manufacturing, transport, use, and deployment; and matching or exceeding existing 107 
measurement standards. Our ultimate goal is to reduce or eliminate barriers to deploying the system in large 108 
numbers across the Arctic. The SnoTATOS system is also a promising tool for distributed observations of terrestrial 109 
snow, such as in alpine, tundra, and glacier environments. 110 

In this manuscript, we describe the characteristics of the SnoTATOS system, share bench-testing 111 
performance evaluations, and present results from SnoTATOS prototype networks deployed in the Lincoln Sea in 112 
May 2024.  113 
 114 
Table 1: Specifications of several polar snow depth measurement systems (all specifications are per unit/station) 115 

System Approximate 
cost 

Weight Size Time to 
deploy 

Endurance Measurement 
precisiona 

MetOcean 
Snow Buoy 

$9,400 USD 40 kg 2.55 m x 1 
m x 1 m 

30–40 
min 

12–18 months ± 1 mm 

SAMS 
SIMBA buoy 

$10,000 USD 25 kg ~0.55 m x 
0.30 m x 
0.20 m  

20–30 
min 

> 12 months ± 2 cm 
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SIMB3 $18,000 USD 36 kg 4.87 m x 
0.25 m x 
0.11 m 

20–30 
min 

24 months ± 1 mm 

SnoTATOS $500 USDb 1.8 kg 2.44 m x 
0.15 m x 
0.1 m 

<10 min 4.5 yearsc ± 1 mm 

aThis value specifies the instrument’s stated measurement precision, not the accuracy of the snow depth retrieval. 117 
The precision of the ultrasonic rangefinders is ± 1 mm, while accuracy depends on temperature compensation, 118 
ice/snow surface conditions, sensor icing, etc. The precision of digital temperature chain instruments (e.g., the 119 
SIMBA) is ± 2 cm (the separation between any two temperature sensors in the chain), while the accuracy depends 120 
on the thermal characteristics of the snow, ice, and atmosphere, which affect the feasibility of determining the 121 
interfaces between the three media. 122 
bCost of components only (not including manufacturing and assembly) is approximately $200. 123 
cThis is a nominal endurance based on power consumption measurements in a laboratory setting. We expect the 124 
effective endurance to be reduced by low temperatures and any radio communication reattempts. 125 

2 System description 126 

2.1 Overview of SnoTATOS 127 

A standard SnoTATOS network consists of several autonomous snow measurement stations (hereafter called 128 
“nodes”) linked to a central server by a LoRa radio network (Augustin et al., 2016) (Fig. 1). The number of nodes in 129 
a network is theoretically unlimited. Each node is equipped with an ultrasonic rangefinder (HRXL-MaxSonar-WR 130 
Datasheet, 2024) for monitoring the snow or ice surface position; additional sensors (e.g. temperature sensors) can 131 
be added with minimal engineering effort. The network is synchronized such that all nodes simultaneously collect 132 
samples and transmit their data back to the server at regular intervals, with random transmission jitter introduced to 133 
reduce packet collisions. The sampling frequency is programmable with a typical interval set at four hours. We 134 
initially designed the server to integrate into a SIMB3 ice mass balance buoy (Planck et al., 2019, p.201), thereby 135 
taking advantage of the SIMB3’s existing Iridium telemetry. We have since redesigned the server to operate in a 136 
freestanding mode, either transmitting data using its own Iridium telemetry module or storing data locally on an SD 137 
card. In the following sections, we will describe the node and server electronics, physical characteristics, radio 138 
network, and operating software. 139 
 140 
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 141 
Figure 1: Diagram of a SnoTATOS network. SnoTATOS data is collected at each node in a distributed 142 
network, and transferred to the server via radio, either directly (in the hub-and-spoke network model) or via 143 
relay through peers (in the mesh network model). The server collects all SnoTATOS data and relays it to the 144 
SIMB3, which handles satellite telemetry to a land-side server. 145 

2.2 Node overview and physical characteristics 146 

A SnoTATOS node consists of a MaxBotix 7389-200 ultrasonic surface rangefinder; a microcontroller that manages 147 
sampling, datalogging, and radio communications with the server; a nickel-metal hydride (NiMH) battery power-148 
bank; and ancillary electronics. Figure A1 shows a system block diagram. The electronics are housed in a watertight 149 
plastic enclosure (Fig. 2). The rangefinder is mounted directly to a sidewall of the enclosure (Fig. 2). The resulting 150 
sensing unit is 0.08 m x 0.19 m x 0.09 cm and weighs approximately 0.62 kg. The sensing unit is mounted on a 2.44 151 
m x 0.038 m x 0.038 m (8 feet x 1.5 inches x 1.5 inches) wooden stake (Fig. 3). The long edges of the stake are 152 
filleted so that the stake fits snugly in a standard 5 cm (2 inch) diameter ice auger hole. The total weight of an 153 
individual node is approximately 1.80 kg, representing a 96% mass reduction compared to the MetOcean Snow 154 
Buoy. The stake length maximizes the range of observable snow depths while ensuring ease of transport to field 155 
sites by conforming to less-than-truckload (LTL) and passenger aircraft lower deck freight limitations, where freight 156 
often must be less than approximately 2.44 m long. 157 
 158 
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 159 
Figure 2: SnoTATOS node sensing unit. Panel (a) is a photograph of a SnoTATOS sensing unit, showing 160 
the ABS plastic enclosure and ultrasonic surface rangefinder mounted in the sidewall of the enclosure. 161 
Panel (b) is a top down photograph of the sensing unit with lid removed, showing the PCB, rangefinder 162 
wiring harness, and battery bank. Panel (c) shows an annotated digital model of a node PCB with key 163 
features identified. 164 

 165 
The Maxbotix ultrasonic rangefinder detection cone has an approximately 40º aperture angle, so spurious 166 

detection of the mounting stake was a significant design concern. We conducted a series of experiments to 167 
determine the optimal sensor look-angle (𝜃) and standoff of the sensor from the mounting stake. We determined that 168 
a sensor standoff between 5–40 cm and 5° < 𝜃 ≤ 35° yielded the lowest error rate (between 4–6%). Taking this into 169 
account, we mounted the enclosure on an inclined face of the stake, with 𝜃 = 8° off-nadir and a standoff of 0.05 m. 170 
The rangefinder’s projected beam has a roughly circular footprint with a diameter of approximately 0.60 m at typical 171 
ranging distances. 172 

During installation, a 5 cm (2 inch) diameter hole is drilled into the ice and the stake is inserted until a 173 
depth stop is at the ice surface, then allowed to freeze in. The initial snow depth and distance between the snow 174 
surface and rangefinder are then measured. The rangefinder is thus situated at a known height (𝑍!) above the ice 175 
surface, and subsequent snow depth (ℎ") can be determined from the range value (𝑅") as ℎ" = 𝑍! − 𝑅". Through 176 
experimental measurements we have determined that the range reading does not vary appreciably for 5° < 𝜃 ≤ 35°, 177 
so we do not perform a trigonometric correction for 𝑅". The installation process requires ~2 to 10 minutes per node 178 
depending on conditions, reducing deployment time by at least 50% compared to other systems. 179 

 180 
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 181 
Figure 3: Schematic diagram of a SnoTATOS node. Snow depth (ℎ") can be calculated by subtracting the 182 
range reading (𝑅") from the rangefinder offset (𝑍!).  183 

2.3 Sensing unit electronics 184 

Here, we summarize the selection of key components in the sensing unit and their notable features. The sensing unit 185 
is built around an ATmega4808 AVR microcontroller unit (MCU). The ATmega4808 is an 8-bit reduced instruction 186 
set computer (RISC) (Patterson, 1985) with 48 KB of program memory and 6 KB of RAM. The chip is equipped 187 
with an onboard 10-bit analog-to-digital converter (ADC). We added an external crystal oscillator which drives a 188 
one-second precision system clock, enabling an ultra-low-power standby mode with programmable, alarmed 189 
wakeups. In standby mode, unused peripheral devices are depowered and the MCU sleeps until woken, either by a 190 
programmed alarm or by an external interrupt on a general-purpose input/output (GPIO) pin. We selected the 191 
ATmega4808 for its low power consumption, affordability, and programming simplicity. The MCU has an operating 192 
input voltage range of 1.8–5.5 V, however, logic levels and GPIO output voltage are dependent on MCU input 193 
voltage. We added a low-quiescent-current (0.3 µA) buck-boost converter with a 1.8–5.5 V input voltage range and 194 
a fixed 3.3 V output. This achieves 3.3 V board logic and GPIO output voltage while maintaining flexibility in 195 
power supply voltage (Table 2). 196 
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We selected the HopeRF RFM95-915 LoRa module for radio communications. The module operates at 915 197 
MHz with a maximum output power of 20 dBm. The 902–928 MHz frequency range is a license-free Industrial, 198 
Scientific, and Medical (ISM) radio band in the Americas (including the United States, Greenland, Canada, and 199 
South and Central America). The unit is directly exchangeable for the RFM95-868, which operates at 868 MHz, 200 
within the European ISM band (including the Russian Federation). These two options ensure system compliance for 201 
any Arctic deployment. Either option is suitable for deployments in international waters. The authors are not aware 202 
of any regulations restricting radio frequency use in Antarctica. 203 

Most snow accumulation observation systems use one of several models of the Maxbotix ultrasonic 204 
rangefinder. Maxbotix offers many variations of their basic rangefinder, including snow-specific models. We chose 205 
to use their general-purpose model with the compact horn option (MB7389-200). 206 

We use NiMH batteries for the power bank due to their improved cold-weather performance vs. alkaline 207 
batteries (Fetcenko et al., 2007) and less stringent shipping regulations compared to lithium-ion batteries. We used 208 
Tenergy Power D-cells, rated to 10,000 mAh per cell. Each node has a power bank of 4-cells, arranged in two 209 
parallel pairs of two cells in series. A NiMH battery has a functional voltage of ~1.2 V for most of its discharge life 210 
in normal conditions, yielding a nominal supply voltage 𝑉# = 2.4 V and a nominal energy capacity of 24 Wh. 211 

We designed a custom printed circuit board (PCB) to integrate all components (Fig. 2). The PCB is a two-212 
layer board designed on a 1.6 mm FR-4 substrate. We designed a monopole PCB trace radio antenna adapted from a 213 
Texas Instruments design (Wallace, 2013). 214 
 215 
Table 2: SnoTATOS electrical characteristics 216 

 Nominal input 
voltage 

Input voltage 
operating range 

Average power 
demand 

Node 2.4 V 1.8-5.5 V 610 µW 

Server (standalone) 9.0 V 5.1-36.0 V 15.54 mW 

Server (SIMB3 
integrated) 

18 V 3.4-36.0 V 18.54 mW 

 217 

2.4 Server electronics 218 

The SnoTATOS server uses the same MCU, radio module, and antenna design as the node sensing units. However, 219 
the server is not equipped with sensors. In freestanding mode, the server is equipped with a RockBLOCK 9603 220 
Iridium Short Burst Data (SBD) modem. The standalone server is equipped with a 9 V, 388 Wh NiMH power 221 
supply. A Pololu D24V5F5 buck converter steps the supply voltage down to 5 V to supply the RockBLOCK 9603 222 
unit, and a Pololu D24V5F3 buck converter steps the supply voltage down to 3.3 V to supply the server MCU. 223 

When integrated into the SIMB3 buoy, the server is designed to use the SIMB3’s 18 V power supply. We 224 
used a Pololu D24V5F5 buck converter to step the 18 V SIMB3 supply down to 5 V to supply the server MCU. We 225 
integrated all components using a custom PCB similar to the node PCB. 226 
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2.5 Software 227 

2.5.1 Node operations 228 

The system software is written in C and C++, using the Arduino hardware abstraction layer (HAL) to interface with 229 
the MCU. The nodes follow the high-level logical flow shown in Fig. 4. When powered on, the node enters the 230 
Setup function, where it initializes the memory state, system clock, radio module, and rangefinder, and sets 231 
input/output pin states. The node then moves into the Loop function, where it will remain for its lifetime unless it is 232 
power-cycled. In Loop, the node first samples the rangefinder to obtain a snow depth reading at “wake-up” time. 233 
The node then checks its synchronization state. If it is not synced with the server (as is the case upon initial power-234 
up), it will wait at this stage until it receives a synchronization broadcast message from the server. After 235 
synchronizing with the server, the node immediately sets an RTC alarm to wake after the appropriate elapsed time 236 
(the sampling interval). The node then reads its battery voltage, packs this and the rangefinder data into a buffer, and 237 
attempts to transmit the buffer to the server. If the transmission is successful and acknowledged by the server, the 238 
node depowers all unnecessary peripherals and enters a deep sleep state until triggered by the RTC alarm. However, 239 
if more than three unsuccessful/unacknowledged transmissions occur, the node returns to an unsynced state and 240 
remains awake until resyncing with the server. We implemented this failsafe to prevent network failure in case of 241 
clock drift or other errors resulting in network desynchronization over the course of the deployment. 242 
 243 

 244 
Figure 4: Node flow diagram. The high-level logic of a SnoTATOS node equipped with only a snow surface 245 
rangefinder is shown. Additional sensors may be added, which would be read at the same stage as the surface 246 
rangefinder. 247 

2.5.2 Radio communications 248 

The radio network is implemented using LoRa, a long-range, low-power radio technology (Augustin et al., 2016). 249 
Nominal LoRa radio ranges are up to 10–20 km with clear line of sight. The RFM95 LoRa transceiver manages the 250 
physical layer of the Open Systems Interconnection (OSI) network model (Zimmermann, 1980), handling bitwise 251 
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data encoding, chirp spread spectrum (CSS) modulation, and physical transmission of the data. We used the open 252 
source RadioLib library (RadioLib - Arduino Reference, 2024) to implement the data link layer atop the physical 253 
layer; this handles data-packet to dataframe formatting and the digital interface between the MCU and the RFM95 254 
module. 255 

We developed software to implement the Network, Transport, Session, and Presentation layers of the OSI 256 
model. These handle data packet assembly, addressed packet transmission, packet receipt acknowledgment, failed 257 
transmission reattempts, packet transmission timeouts, and network collision handling. These are well established 258 
general concepts in computer networking, which we implemented in a lightweight C++ library for handling small-259 
packet data transmission in an addressed, reliable network, with options for either hub-and-spoke or mesh network 260 
topologies. We gave particular attention to robust packet acknowledgement and secure server–node transactions, 261 
since this reduces network airtime for each node (by preventing unnecessary reattempts), in turn reducing potential 262 
node–node collisions. This results in a more reliable network, with less power expended on multiple transmission 263 
reattempts and unnecessary node waketime. 264 

The system’s standard network topology is the hub-and-spoke model, where individual nodes (the 265 
“spokes”) communicate directly with the server (the “hub”). This network topology is simple to implement and is 266 
also typically the least power-intensive network model. In this topology, network sizes are limited by the 10–20 km 267 
nominal LoRa range. This range assumes line-of-sight between node and server. However, range and reliability may 268 
be reduced in complex terrain, such as in highly deformed sea ice where direct line-of-sight between the server and 269 
each node may not be possible since the sensing unit sits approximately 1.44 m above the ice surface (Figure 3), 270 
while ridges can reach a height of several meters (Duncan et al., 2018). We implemented an alternative mesh 271 
network topology to address this limitation, where data from out-of-range nodes can be relayed to the server through 272 
peers. We use a naive flooding protocol (Zahn et al., 2009) with acknowledged packet receipt. A detailed description 273 
of the node-side mesh network implementation is included in Appendix B.  274 

2.5.3 Server operations 275 

The server follows the high-level logical flow shown in Fig. 5. When powered on, the server enters the Setup 276 
function, where it initializes its memory state, system clock, radio module, SIMB3 communications (if integrated 277 
into SIMB3), and sets input/output pin states. The server then moves into the Loop function, where it will remain 278 
for its lifetime unless it is power-cycled. In Loop, the server first sets a “bedtime” alarm, which will trigger when 279 
the server wake-period ends and it is time for the server to enter standby mode. It then broadcasts a sync message to 280 
the network, and proceeds to loop through two stages until the bedtime alarm triggers.  281 

In the first stage, the server checks to see if it has received a message from a node. If it has, it writes the 282 
node’s data to the appropriate location in its memory buffer for later Iridium telemetry (standalone server) or 283 
transfer to SIMB3 (integrated server), then returns an ACK message to the originating node. In the standard hub-284 
and-spoke topology, this is a unicast message directly to the originating node. A description of the server-side mesh 285 
network operations is included in the Appendix B. 286 
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If the server is operating in standlone mode, it continues to listen for data from nodes until it is time to 287 
sleep. When it is time to sleep, the server sets a wakeup alarm corresponding to the sampling interval, transmits its 288 
data via Iridium, and enters standby mode. If the server is integrated into a SIMB3, the server adds a second stage 289 
during its waketime loop. In the second stage, the server checks to see if the SIMB3 has requested the data from the 290 
server. If the SIMB3 has requested data, the server passes the buffer to the SIMB3, then resets the buffer to default 291 
values. The server continues checking these two conditions (“Received data from a node?” and “SIMB3 requested 292 
data?”) until it is time to sleep, at which point it will set a wakeup alarm and enter standby mode. Despite the server 293 
checking the “SIMB3 requested data?” condition multiple times, the SIMB3 is expected to request data only once 294 
during a given sampling interval. However, due to communications protocols between the SIMB3 and the server, it 295 
is beneficial to respond to any hypothetical SIMB3 request as legitimate, even if the server responds with default 296 
buffer values. 297 

Under normal conditions, all nodes are expected to have transmitted their data to the server before the 298 
server transmits data, either via Iridium or to the SIMB3. The server will not wait for all nodes to transmit before 299 
transmitting data; this prevents the server from becoming unresponsive if a node fails to transmit or is otherwise 300 
inoperable.  301 
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 302 
Figure 5: Server flow diagram. Panel (a.) shows the the high-level logic flow for a standalone SnoTATOS 303 
server, and panel (b.) shows the high-level logic for a server integrated into a SIMB3 buoy.  304 

2.6 SIMB3 integration 305 

We used the I2C (Inter-Integrated Circuit) protocol to establish communications and data transfer between the server 306 
and the SIMB3. I2C is a serial communication protocol that allows a controller device (in this case, the SIMB3) to 307 
query packetized data from an addressed target device (the server). In addition to the standard I2C SDA (serial data) 308 
and SCL (serial clock) lines, we added a low-active chip select line (CS). The server and SIMB3 share a common 309 
ground line. When the SIMB3 is preparing to retrieve data from the server, it sets the CS line to ground (0 V) to 310 
notify the server. The server then prepares the data buffer for the SIMB3 and stands by until the SIMB3 retrieves the 311 
data through an I2C request or the transaction has timed out. The SIMB3 adds the retrieved data to its existing 312 
Iridium message and transmits it to a land-side server. 313 
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2.7 Bench tested power characteristics 314 

We performed laboratory tests to estimate the power characteristics of the sensing unit using the shunt-resistor 315 
method and linear circuit analysis. By measuring the voltage drop, 𝑉$, across a resistor with a known and low value, 316 
𝑅, one can use Ohm’s law (𝑉% = 𝐼𝑅) to determine the corresponding circuit current, 𝑰. With a known supply voltage, 317 
𝑉", one can then use the power law (𝑃 = 𝐼𝑉) to determine the circuit power demand, 𝑷. We used an oscilloscope to 318 
make time-resolved voltage measurements through all phases of the node’s operating cycle, then converted these 319 
measurements to time-resolved power (Fig. A2).  320 

We tested over a range of supply voltages that the node might typically experience, from 𝑉" = 1.6 V (below 321 
the buck/boost converter threshold voltage of 1.8 V) to 𝑉" = 3.3 V (above the nominal battery bank supply voltage, 322 
𝑉# = 2.4 V). We determined that at 𝑉" = 𝑉# = 2.4 V, the average circuit current across all phases of the typical 4-323 
hour duty cycle is 254 µA, and the average power demand is 610 µW. With a 24 Wh power bank (two 10,000 mAh 324 
D-cell batteries), each node has an estimated endurance of ~1,639 days, or ~4.5 years (far longer than the lifetime of 325 
any sea ice on which it is likely to be installed). However, this does not account for battery efficiency losses due to 326 
cold temperatures, nor atypical conditions such as radio transmission retries. 327 

We conducted similar power tests for the server, finding an average current draw of 1.03 mA at 𝑉" = 18 V, 328 
yielding an average power demand of 18.54 mW. This is approximately 30% of the SIMB3’s power budget (Planck, 329 
2021), yielding an estimated endurance of approximately 560 days, or slightly more than 1.5 years. Operating in 330 
standalone mode, the power supply can be reduced to 𝑉" = 3.4 V, increasing efficiency and reducing average power 331 
demand to approximately 2,500 µW. This produces a nominal endurance of 4.4 years with a 96 Wh battery bank 332 
(eight 10,000 mAh D-cell batteries). 333 

3 Case study, Lincoln Sea, April 2024–February 2025 334 

We deployed four SnoTATOS networks in the Lincoln Sea in late April and early May, 2024, during the NASA 335 
ARCSIX project (McNamee, 2024) (Fig. 6). Each network consisted of ten nodes and a server integrated into a 336 
SIMB3 buoy. The networks were named according to their associated SIMB3 buoy – 2024L, 2024O, 2024P, and 337 
2024R. We deployed the networks in multiyear ice just before the onset of surface melt. We placed the nodes 338 
randomly between 25 and 200 m from each buoy, with clear line-of-sight to the buoy. We measured initial snow 339 
depth at each node, and ice thickness and snow depth at each SIMB3. Network 2024O stopped reporting 340 
approximately one month after installation, in early June 2024. The failure of 2024O is consistent with an I2C 341 
communications failure between the server and SIMB3 MCU. Networks 2024L and 2024R ceased reporting in early 342 
November and late December, 2024, respectively. Network 2024P continued reporting until early February, 2025. 343 
The steady attrition of nodes and their location in a shear band suggest that networks 2024L, 2024R, and 2024P 344 
were destroyed by ice dynamics. We will now describe the general results from these installations. We include data 345 
from network 2024O in summary visualizations for completeness, however, because the time series is relatively 346 
short, we do not consider these data in our analysis. 347 
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 354 
Figure 6: Drift tracks of four SnoTATOS networks deployed in the Lincoln Sea in April and May, 355 
2024. 356 

 357 
The mean conditions for all nodes at the time of installation of each of the four networks are given in Table 358 

3. The time series of snow depth and surface melt for all nodes at each network is shown in Fig. 7. We observed 359 
between 0.05 and 0.10 m of snow accumulation at each network between installation in late April and late May. 360 
Surface melt in the region began in late May, after which snow depth decreased steadily at all nodes, reaching 0 m 361 
between 12 June and 8 July. On average, snow persisted longest at network 2024P, which also had the deepest initial 362 
snow cover (Fig. 8). Ice surface melt then commenced, continuing until early August (Fig. 9). 363 
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 366 
Figure 7: Time series scatterplots of surface position at four SnoTATOS networks. Time series data of 367 
surface position is shown for each node at the four ARCSIX SnoTATOS networks. “Surface position” is the 368 
position of the surface sensed by the ultrasonic rangefinder (air–snow or air–ice interface) relative to the 369 
initial snow–ice interface (surface position 0). Each node initially demonstrates a positive surface position 370 
value, indicating a positive snow depth. Snow depth increases until around early June at all nodes. Snow melt 371 
then begins around mid-June, continuing at each node until the surface position reaches 0, indicating 372 
complete snow melt and the onset of ice surface melt. Ice surface melt continues until early August. From 373 
that point on, any positive change in surface position indicates new snow accumulation. 374 

 375 
The results show substantial variability in initial snow depth, magnitude and timing of surface melt, and 376 

snow accumulation. Mean initial snow depths varied between networks by up to 26% (0.23 m at 2024R vs. 0.31 m 377 
at 2024L and 2024P). Within the networks, initial snow depth variability ranged from 26% at network 2024R to 378 
42% at network 2024L. 379 
 380 
Table 3: ARCSIX summary conditions 381 

Network 
name 

Duration Initial ice 
thickness 
(m) 

Mean initial 
snow depth ± 
standard 
deviation (m) 

Mean ice 
surface 
melt (m) 

Mean 
combined ice 
equivalent 
surface melt 
(m) 

Site description 
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2024L 29 April–1 
November, 
2024 

1.96 0.31 ± 0.13 0.23 ± 
0.11 

0.33 ± 0.08 Level multiyear 
ice (MYI) floe. 
Potential snow-
filled hummocks, 
rendering a 
smooth surface.  

2024O 5 May–1 
June, 2024 

1.72 0.29 ± 0.09 ~ ~ Large MYI or SYI 
pan with relatively 
level surface. May 
have experienced 
little surface melt. 

2024P 6 May, 2024–
4 February, 
2025 

2.16 0.31 ± 0.10 0.20 ± 
0.06 

0.31 ± 0.05 Hummocky MYI 
floe in ridged area. 
Floe too thick to 
drill in some 
places (> 4 m). 

2024R 4 May–25 
November, 
2024 

2.40 0.23 ± 0.06 0.23 ± 
0.11 

0.30 ± 0.11 Hummocky MYI 
floe.  

Deleted: hummocks which 389 
Deleted:  has 390 

Deleted: 3 January, 2025a391 



 

 17 

 392 
Figure 8: Box-and-whisker time series of surface position at four SnoTATOS networks. Each box-and-393 
whisker shows the spatial distribution of the ten-day-average surface position for a given network. The lower 394 
and upper edge of each box show the first and third quartiles, the bar in the box shows the median, and the 395 
whiskers indicate the minimum and maximum non-outlier values. Outliers are shown as open blue circles, 396 
and are defined as more than 1.5 times the interquartile range lesser or greater than the first and third quartiles, 397 
respectively. The small, dotted markers and interpolated line show the spatial mean for each ten-day bin. The 398 
square, grey markers indicate the sample size (number of nodes) included in the distribution at each time 399 
step, with a separate Y-axis shown on the right of each pane. 400 
 401 

We computed the ice equivalent snow melt (snow–ice equivalent; SIE) using Eq. 1   402 
    𝐻"&' = 𝜌"/𝜌& ∗ 𝐻"#(),     (1) 403 

where 𝜌& is the density of sea ice (0.9 g cm-3, Perovich et al., 2003), 𝜌" is the density of snow (0.3 g cm-3, Sturm et 404 
al., 2002), 𝐻"#() is the observed snow melt, and 𝐻"&' is the SIE melt. We combined 𝐻"&' with the observed ice 405 
surface melt to determine the total ice equivalent surface melt for each station. Average ice-equivalent melt was 0.33 406 
m at 2024L, 0.31 m at 2024P and 0.30 m at 2024R, indicating very similar net surface melt across the region. Net 407 
ice-only surface melts were also quite similar with 0.23 m at L, 0.20 m at 2024P and 0.23 m at 2024R. The network 408 
with the deepest initial snow depth (2024P) also had the smallest ice melt, presumably because deeper snow 409 
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increased albedo and physically protected the ice, delaying surface melt onset (Fig. 9). Compared to variability 423 
between regions or years within the Arctic (e.g., Perovich (2014) or Planck (2022)), however, these variations in 424 
mean behavior are quite small. 425 

A key note here is that variability in surface melt (both ice surface melt and combined equivalent melt) was 426 
relatively low between networks, the largest variability being a 13% difference in ice surface melt between 2024R 427 
and 2024P (2024R higher), and a 9% difference in combined equivalent melt between 2024L and 2024R (2024L 428 
higher). However, melt variability within networks was higher, at 31–46% for ice surface melt, and 15–38% for 429 
combined equivalent melt. This suggests that networks of this size (on the order of ten nodes) may be adequate for 430 
accurately capturing the local variability of surface melt. We note that the surface melt variability seen here was 431 
lower than on SHEBA and MOSAiC, where the maximum differences in observed surface ice melt were 55% and 432 
71% (Perovich, 2002; Raphael, 2024). We recommend a more thorough evaluation of the number of stations 433 
required to capture surface melt variability. 434 

Snow accumulation began soon after the conclusion of surface melt, in early to mid August. Network 435 
2024L saw 0.08 m snow accumulation by 16 October, then a decrease to 0.04 m snow depth by 26 October, when 436 
the network ceased reporting. The air temperature record suggests that the decrease was caused by wind removal 437 
rather than surface melt. Network 2024R saw 0.14 m of new snow by 15 November, when it also ceased returning 438 
data. Network 2024P saw a mean snow accumulation of 0.45 m and a range of 0.12–0.74 m by 4 February, 2025.  439 
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 450 
Figure 9: Box-and-whisker plot showing the distribution of ice surface melt onset and surface melt end 451 
dates. Ice surface melt onset is shown in orange, and surface melt end is shown in blue for the nodes within 452 
each network. Network 2024O is excluded since the network stopped reporting before surface melt onset. 453 
“All” shows the combined distribution of all active nodes in 2024R, 2024P, and 2024L. 454 
 455 

 Despite relatively small geographical separation, snow accumulation varied significantly between 456 
networks. We compare the snow accumulation at networks 2024L, 2024P, and 2024R during the period from 457 
freezeup around early August, through 26 October, when network 2024L failed. The networks were deployed within 458 
113 km of each other, and by 26 October, networks 2024L and 2024P were still within 98 km of each other. 459 
Meanwhile, network 2024R drifted to 306 km from network 2024L, and 398 km from network 2024P. During this 460 
period, 0.04 m of snow accumulated at network 2024L, 0.25 m of snow accumulated at network 2024P, and 0.14 m 461 
of snow accumulated at network 2024R. This indicates a roughly 84% difference in snow accumulation between 462 
networks 2024L and 2024P in that period, despite their relative proximity. This falls between the 99% season-long 463 
range in snow accumulation observed during SHEBA (Perovich, 2002) and the 71% range observed during 464 
MOSAiC (Raphael, 2024). 465 

Further, the variability of snow accumulation within each network is evident in the widening box-and-466 
whisker distributions in Fig. 8. This variability increases as accumulation continues through the winter at network 467 
2024R and, in particular, at network 2024P. The attrition of nodes at network 2024P during this period prompted us 468 
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to consider whether the increase in the interquartile range (IQR) is an artifact of the declining sampling size or a real 485 
signal. Because the increase in IQR occurs primarily during a period when the sample size is constant (n = 4), we 486 
suggest that the increase in the IQR is a real signal that is amplified by the small sample size. 487 

Finally, the range of snow depth on 26 October was approximately equal to the range at time of installation 488 
for network 2024L, slightly higher at network 2024R, and substantially higher at network 2024P. This is potentially 489 
the result of both interannual as well as spatial variability (due to ice advection).  490 

As many studies have confirmed, snow depth on sea ice is highly variable; this case study suggests that 491 
SnoTATOS can observe that variability, though the number of nodes needed to fully constrain it is unclear. In order 492 
to facilitate efficient use of resources and enable accurate, error-constrained data collection, we recommend further 493 
research into the number and arrangement of sampling points needed to measure the spatial and temporal variability 494 
of the snow cover on Arctic sea ice. Such a study should investigate the errors produced when using various sample 495 
sizes and patterns to estimate snow depth mean and variance at the floe scale, and, ultimately, identify the minimum 496 
number of stations typically needed to constrain these statistics. Sturm (2009) conducted a limited study by 497 
resampling snow depth transect data with consecutively decreasing sample sizes, however, this study was limited to 498 
three one-dimensional transects, all collected in the same location on the same date. A more extensive study with a 499 
similar construct should be undertaken by resampling data collected across multiple locations, instances, and ice 500 
types. We also suggest testing various spatial arrangements of the sample points (random, gridded, etc.). 501 

4 Conclusions 502 

This work documents the development, testing, and a case study deployment of SnoTATOS, a new autonomous 503 
system for collecting distributed, in situ snow depth measurements on sea ice. Responding to community calls for 504 
the widespread snow depth measurements that are needed to understand the changing Arctic sea ice system, and 505 
recognizing the lack of suitable, affordable tools, we set out to create a low-cost, easy-to-use system to fill the gap. 506 
The resulting radio-networked snow depth measurement stations are only 5% of the cost and 7% of the weight of 507 
existing systems, with identical measurement functionality. A case study deployment of four SnoTATOS networks 508 
in the Lincoln Sea in April 2024 1) validates the functionality of SnoTATOS, including the system’s ease of 509 
transport, rapid installation, and collection of high-quality, in situ snow depth and surface melt measurements, 2) 510 
demonstrates the substantial spatial and temporal variability in snow accumulation and ice surface melt at the floe 511 
scale, and 3) suggests that even relatively small SnoTATOS networks (on the order of 10 nodes) are capable of 512 
capturing that variability. Based on the last finding, we recommend focused studies to determine the number and 513 
placement of autonomous sampling stations needed to accurately capture snow accumulation, depth, and surface 514 
melt variability. 515 

The four SnoTATOS networks deployed on the ARCSIX campaign remained operational for between 26 516 
and 281 days. The character of station failures suggests that most (26) failed due to physical damage. High attrition 517 
rates resulting from ice dynamics and wildlife are a reality for autonomous instruments installed on Arctic sea ice. 518 
This, in addition to a need for more comprehensive observations of Arctic variability, is a strong motivation to 519 
transition towards the use of large, redundant networks of lightweight, inexpensive sensing stations, an approach 520 
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also recommended by Lee et al. (2022) and Webster et al. (2022). In its current permutation, SnoTATOS can 531 
accommodate additional sensors such as barometric pressure or temperature sensors. We plan to build on this 532 
technology to create a modular “polar Internet of Things” sensing system capable of hosting plug-and-play sensors, 533 
making radio-networked distributed sensing more accessible for the polar regions. We anticipate that SnoTATOS 534 
will also prove useful for monitoring snow accumulation and ice surface melt in alpine, glacier, and tundra 535 
environments. 536 

Appendix A: sensing unit components and power test 537 

 538 
Figure A1: Schematic block diagram of SnoTATOS sensing unit electronics. The figure shows the 539 
major electronics components of the SnoTATOS sensing unit. Blue blocks indicate external power and 540 
clock components for the MCU, which is shown in orange. Yellow blocks indicate I/O modules that the 541 
MCU interacts with for collecting and transmitting data. 542 
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 543 
Figure A2: Time-resolved power demand for the node and server during pre-deployment bench 544 
testing. Panel (a.) shows the power demand during the various stages of the duty cycle for a node with 𝑉" =545 
2.4 V. Panel (b.) shows the power demand during the various stages of the duty cycle for the server with 546 
𝑉" = 18 V. 547 

Appendix B: mesh network implementation 548 

The node-side logical flow for mesh network packet handling is shown in Fig. B1. During a data transmission 549 
attempt, a node will first attempt to unicast the message directly to the server. If an acknowledgment (ACK) is 550 
received, then the message has been transmitted successfully and the attempt ends. If an ACK is not received within 551 
a timeout period, the node then reattempts transmission, either repeating a unicast if the last ACK’d message was 552 
not a broadcast, or progressing directly to broadcast attempts if the node knows that the last message it successfully 553 
transmitted to the server was a broadcast message. If an ACK is not received within the allotted number of 554 
reattempts, or the timeout period expires, then the transmission attempt has failed. The attempt ends, and it is 555 
counted towards the number of allowable failed transmissions before the node is prompted to resync with the server. 556 
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 557 
Figure B1: Logical flow diagram for node-side mesh network packet handling. Panel (a.) shows the 558 
logical flow for handling a mesh network message transmission attempt. Panel (b.) shows the logical flow 559 
for handling a received mesh network message. 560 
 561 

In the mesh network model, whenever a node receives a message, it first checks whether it is a broadcast 562 
message. If it is not a broadcast message, it is implicitly a unicast ACK message from the server. The node confirms 563 
that it is an ACK message and that it is addressed to itself, and if so, records the acknowledgement. If it is a 564 
broadcast message (either from the server or via a peer), and it is not a message that it has already received, the node 565 
will first note the message ID, then process the message contents. If it is addressed to itself, it is implicitly a 566 
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broadcast ACK message originating from the server (likely received via a peer). If the node confirms that it is an 567 
ACK message with its own address, it records the acknowledgement. If it is not addressed to itself, it could be a data 568 
message originating from a peer and addressed to the server; an ACK message originating from the server and 569 
addressed to a peer, or a sync message originating from the server and addressed to the entire network. In the first 570 
two cases, the node rebroadcasts the message without further processing. In the latter (sync) case, the node first sets 571 
its synchronization flag, then rebroadcasts the message to the network. 572 

 In a mesh topology network, the server follows the logical flow shown in Fig. B2. First, the server checks 573 
to see if the received message is a broadcast or unicast message. If it is unicast, the server returns a unicast ACK. If 574 
it is a broadcast message, and if it is not a repeat message, the server broadcasts an ACK message addressed to the 575 
originating node. 576 
 577 

 578 
Figure B2: Logical flow diagram for server-side mesh network packet handling. The logical flow for 579 
receiving a mesh network message and returning an acknowledgement is shown. 580 
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