
I found this article very interesting, and I have a couple of points for the authors to consider that I 
hope I have not expressed too incoherently. 

 

First, I would like to push back against the language that features in the abstract and introduction 
stating that cloud and aerosol properties are averaged to 20 – 100 km resolution to reduce 
uncertainties. Averaging is not a strategy to deal with uncertainty. Averaging reduces random error, 
but any statistical estimation procedure can deal with such random errors, even if they are 
heteroskedastic across the samples/pixels. In fact, in the heteroskedastic case, simple averaging is 
not a good idea even if any subsequent inference is based entirely on areal averages. Beyond that, 
we know that remote sensing retrievals of cloud properties are not dominated by random error 
(e.g., radiometric noise). Instead, it is deterministic error due to algorithmic assumptions and finite 
resolution (i.e., errors are functions of the unknown cloud state) and spatially correlated errors in 
ancillary data that are the dominant sources of uncertainty. We would need to know how to model 
these deterministic errors with error covariances to propagate uncertainty. If we don’t know how 
to model these errors, it doesn’t matter whether we average or not, uncertainty is unspecified and 
the issue remains. So, the averaging is largely orthogonal to the matter of uncertainty and its 
propagation in inference. We have chosen to average; it is not a behavior that is prescribed by 
measurement limitations. Certainly, averaging doesn’t meaningfully address any significant 
measurement limitations. 

I suggest instead that conceptual simplification and practical issues of data size and computing 
power are the reason for averaging. As we have progressed in our understanding, we have moved 
from asking simple questions such as “What make more cloud?” to asking “What controls the 
intra-cell covariance of droplet concentration and liquid water path across closed-celled 
stratocumulus?” Answering the former question only requires coarse averages. As our theories 
grow in detail and subtlety we need to interpret our measurements with more nuance. This leads 
to a natural transition from only using coarse-resolution averages to analyzing the details of the 
spatial structure of cloud fields. I agree with the author’s suggested direction; that there is much 
more to learn from snapshots when we interpret them correctly.  

 

It appears to me that there is an assumed separation between the estimation of ‘the rules of the 
game’ and the knowledge that ‘the rules are invariant’ across a set of samples. To me, it is not clear 
that this is the case. When reading, I don’t see a clear definition of which geophysical variables or 
properties we can use as evidence that ‘the rules are invariant’ and which we can use to determine 
the rules themselves (i.e., constrain processes). 

To put this in more concrete terms, let’s say that we want to perform a Bayesian inference of a 
vector of parameters of a microphysical parameterization, 𝜃 using a vector of observations 𝑦. We 



need to consider the influence of the meteorological state, 𝛾, on our observations so we must 
estimate the posterior distribution of these two sets of variables together: 

𝑝(𝜃, 𝛾|𝑦) =
𝑝(𝑦|𝜃, 𝛾)𝑝(𝜃, 𝛾)

𝑝(𝑦)
(1) 

What I believe is being assumed is that these kinds of estimation problems are separable so that 

 	

𝑝(𝜃, 𝛾|𝑦) ≈ 𝑝(𝜃|𝑦!)𝑝(𝛾, 𝑦") =
𝑝(𝑦!|𝜃)𝑝(𝜃)

𝑝(𝑦!)
𝑝(𝑦"|𝛾)𝑝(𝛾)

𝑝(𝑦")
(2)	

where 𝑦! and 𝑦" are non-overlapping subsets of observations.  

For example, when we perform a reanalysis, we estimate large-scale thermodynamic and dynamic 
properties such as winds, temperature and humidity using measurements of those same properties, 
𝑦", but not measurements of cloud microphysics (𝑦!), and we do not jointly estimate the 
microphysical parameters, 𝜃. So, we obtain a maximum a posteriori estimate of the meteorological 
state (i.e., reanalysis): 

𝛾. = 	 argmax
#

𝑝(𝛾|𝑦") (3) 

Then, we use measurements of cloud properties, to estimate parameters of cloud processes 
conditioned on knowledge of the meteorological state from reanalysis: 

𝑝(𝜃|𝑦!, 𝛾.)
𝑝(𝑦!|𝜃, 𝛾.)𝑝(𝜃)

𝑝(𝑦!)
(4) 

In Eq. 4 we find the ‘rules of the game’, 𝜃, from observations under the assumption that the rules 
are invariant (fixed 𝛾.).  

For example, for the stratocumulus case, it is stated that the inversion height is horizontally 
homogeneous, so the ‘rules are invariant’, and yet variation in the inversion height appears to be 
integral to the intra-cell variability as well from Fig. 2. Is there a clear way to identify this 
separability? Again, for the stratocumulus, do we know a priori that there are no drivers that 
operate at scales between the cellular scale and ~100 km? Or are we relying on observations 
(reanalysis?) that demonstrate a lack of variance at this range of scales? For the cold-air outbreak 
trajectory example, the timescales discussed only mentions the timescale of SST gradient. Could 
there not be meteorological changes that are significant at a timescale of ~12 hours associated with 
synoptic systems that cold-air outbreaks are often part of?  

I think it would be great if the authors could be a bit more precise in how they would determine 
that the ‘rules are invariant’. Eq. 4 seems to be assumed ubiquitously. For example, we assume we 
do not need to solve a data assimilation problem to calibrate a climate model. In other words, we 
assume that “we don’t need to know the weather to project the climate”, though I’ve yet to see any 



evidence of this. Is this separability real or do we impose (assume?) a scale-break between the 
resolution of global reanalysis/climate model and the domain size of Large Eddy Simulations that 
is just an artifact of computational limitations? This is a critical assumption that also appears to 
underly the authors’ arguments, so it would be great to get their opinion on it. 

 

The authors’ notion of how processes can be inferred from snapshots is more specific than my Eq. 
4, arguing that, for Type 1 systems, there is information about a fast microphysical process (𝜃) 
even when 𝑦! are effectively contemporaneous. Am I correct in understanding that ergodicity 
implies that we can interpret the droplet effective radius profile in cumulus or the cellular structure 
in closed-celled stratocumulus using a parcel model, rather than requiring a whole LES? If this is 
true, it becomes a lot simpler (especially computationally) to evaluate the likelihood, 𝑝(𝑦!|𝜃, 𝛾.), 
and the corresponding posterior. If this is the case, it would be good for the authors to state it 
explicitly or if not, it would be good to have a more practical statement of how exactly ergodicity 
would simplify inference of processes. Even in the effective radius profiling example, there is a 
clear influence of thermodynamics through condensation rates etc., and again the issue of 
separability in the inference of a microphysical process arises. I agree that developing a deep 
understanding the mechanism for the apparent ergodicity is extremely important to justify this sort 
of observational interpretation. 

 

The notion that processes can be extracted from Type 1 snapshots suggests to me that we might 
get more value from observing systems that provide high detail and accuracy in select conditions 
(at the expense of sparse sampling) rather than those that sample everything but with little detail 
or precision. Does this align with the authors’ understanding? If so, it might be worth making a 
recommendation along those lines. 

 

Perhaps I am misunderstanding, but I have some concerns about the Type 2 cases, where it is stated 
that they may be useful after careful stratification by meteorology. If drivers such as aerosol and 
‘meteorology’ are correlated across snapshots, then stratification (or other statistical models and 
their counterfactuals) will produce biased estimates of how clouds respond to an aerosol driver 
under ‘constant meteorology’ (and vice versa). The assumption that including a variable as a 
covariate in a statistical model will control for its influence is a fallacy. For example, if the 
mechanism by which aerosol affects cloud fraction is changes in sub-cloud stability from 
precipitation suppression, then including a variable that correlates with any of the variables 
involved in this process as a covariate in a statistical model or as a stratification parameter will 
bias the apparent susceptibility (i.e., partial derivative) of cloud fraction to aerosol with respect to 
a true causal response. Statistical frameworks for analysing ‘causality’ can only untangle these 



effects when processes are resolved by the measurements, i.e., not Type 2, and all relevant 
variables in the causal graph are observed. 

The stratification approach seems to underpin the entirety of ACI analysis. It is unsurprising then 
that direct estimates of things like radiative forcing due to ACI from statistical counterfactuals 
seem highly disconnected from the actual large-scale behavior and processes, as recently found 
for liquid water path adjustments. To borrow the statistical terminology of medicine, cross-
sectional statistics (like sets of snapshots) are not definitive but can motivate proper study design 
(e.g., randomization) to estimate effect sizes. Even in a longitudinal study (i.e., tracking clouds 
with geostationary satellites), there is difficulty in untangling causality.  

I would suggest that direct estimation of ‘processes’ from statistical models built on Type 2 
observations is not going to be robust, as ‘drivers’ will also be correlated with intermediate 
variables. Instead, I would advocate for an observation-constrained model-based counterfactual in 
which Eq. 4 (or better Eq. 1) is evaluated and then the calibrated model is used to compute a 
counterfactual. In other words, I am arguing that Type 2 cases do not provide a shortcut to access 
process understanding. I think it would be helpful for the authors to be a bit more precise about 
the conditions required for Type 2 cases to be helpful for process understanding in terms of 
controlling for the variation of slow processes across snapshots.  

 

I strongly support the closing statement that existing measurement limitations should not get in the 
way of the refinement of conceptual thinking regarding how we can best extract understanding 
from measurements. In fact, I hope that refining our conceptual thinking will drive innovation in 
measurement. For example, currently satellite remote sensing measurements formulate their 
scientific accuracy requirements without any consideration of spatial error covariance (This is the 
cause of the uncertainty issue discussed first). If we show that process understanding comes from 
spatial patterns in snapshots, then the requirements should be set in terms of spatial error 
covariance. Confronting our existing algorithms with such a requirement will drive innovation.  

 

The authors make the statement: 

Line	401-402:	“At	high	solar	zenith	angles	(SZA)	retrievals	are	more	problematic	but	events	that	lie	within	the	
optimal	SZA	window	(less	than	65o;	Grosvenor	et	al.,	2018)	will	be	valuable.” 

This statement that events within the SZA < 65 are optimal and therefore valuable for studying 
cloud processes is not consistent with the available evidence. 

Here, the claim that SZA > 65 are insufficiently accurate is conflated with the claim that retrievals 
with SZA < 65 are sufficiently accurate. A reading of Grosvenor et al. 2018 and the references 
within reveals that the sufficiency of operational geostationary retrievals with SZA < 65 to be 



‘valuable’ for studying the covariance of droplet concentration and liquid water path etc. has never 
been demonstrated. The conflation of these points is a widespread fallacy in the use of satellite 
remote sensing data to study aerosol cloud interactions, i.e., “we excluded the lowest-quality data 
so now what we have left are good quality” (not just less low-quality). See Loveridge & Di 
Girolamo (2024) for more discussion of this point. 

I suggest that the authors simply follow the spirit of their closing statement and avoid distracting 
from their main point by discussing details of measurement performance. The main point of this 
paragraph, that measurements with wide field of view and high temporal frequency will be useful, 
has the same caveat as all measurements (sufficient accuracy) that are discussed in the article. I 
don’t think the authors should stress over justifying this particular type of measurement. 
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