
Response to Reviewer 2 

 

General comment: 

This paper provides a nice overview of how to obtain process information from snapshot 
measurements of cloud systems through reviewing the literature of previous observational and 
modeling studies. The previous relevant works are reviewed in the well-organized manner that 
classifies the past approaches according to relative magnitudes of time scales of phenomena 
and observations. I think that this review is enlightening and encouraging to further explore 
key fundamental processes of cloud systems through deliberate use of measurement data to 
obtain observation-based process understanding that is highly required these days to 
essentially advance numerical modeling of clouds. I only have a couple of minor comments 
listed below that I hope can be addressed easily by the authors. After the authors address those 
points, I recommend this manuscript to be published. 

We thank the reviewer for their positive comments! 

Specific points: 

Line 74-75: It is a bit unclear to me what the “observation timescale” means. At first, I 
interpreted it to be a “temporal resolution” of observation, but later I realized that this means 
what is more like a “duration of observation”. Is this interpretation correct? I would appreciate 
the authors to clarify this point to avoid possible confusion for interpreting the meaning of the 
Deborah number and the classification into Type 1 and 2. 

The reviewer is correct: the observation timescale is the duration of observation. We now 
make this clear in the revised manuscript on first usage on line 74. 

Section 2: Given a remarkable progress in satellite observations with active sensors in this 
couple of decades, I’m just curious how various types of statistical analysis with vertical 
profiling data from radar/lidar are classified into the two types the authors defined. In 
particular, I’m wondering how three statistical methods of compositing the vertical cloud 
profiles, namely, Contoured Frequency by Altitude Diagram (CFAD), Contoured Frequency 
by Temperature Diagram (CFED), and Contoured Frequency by Optical Depth Diagram 
(CFODD), are classified into the two types or any other type. A-Train satellite data is touched 
on in Section 4, but more detailed discussion of active sensor-based analysis would be 
appreciated. 

Statistical compositing methods can be applied to single storms or to large composites. Based 
on the ideas laid out here, the former is likely to yield better physical constraints than the 
latter because of the increasing likelihood of changing conditions with multi-day composites. 
We expect that changing conditions would generate more variance in e.g., CFODD plots. 

Note that one of the first examples we introduced in the original was for surface radar tracking 
a storm system over its lifetime (lines 77-80 in the revised manuscript) but we now add more 



text on statistical compositing as in work by e.g., Suzuki et al. (2010, DOI: 
10.1175/2010JAS3463.1). In keeping with our discussion of the Stephens and Haynes 
example, we now add the following text on lines 262-266: 

A related topic is the use of space-based radar and spectrometer retrievals of Z and COD, 
respectively, to interpret the relative importance of condensation growth (higher COD but 
almost no change in Z) and collision-coalescence growth (higher Z but little to no change in 
COD) (Suzuki et al., 2010). Based on the arguments above, when applied to single storm 
systems one expects such data to be of Type 1, but when compositing over many storms with 
different dynamics the analysis is expected to be of Type 2. 

Section 2.3: As a quick note on Stephens and Haynes (2007), I like to point out that the left-
hand side and right-hand side of equation (2) are not obtained from independent measurement 
information. The left-hand side quantity (P times h) is derived from re, COD and Z, according 
to the expression on the right-hand side. By carefully looking at the right-hand side, the 
timescale of auto-conversion, represented by the slope in Figure 3, is solely determined by Z. 
This correspondence of Z to the timescale comes from the assumption of Long’s collection 
kernel proportional to sixth power of particle radius that happens to coincide with the 
dependence of Z on particle radius (which is also sixth power). Constrained by this 
assumption, the variability range of the timescale (or slope in Figure 3) simply reflects the 
variability range of Z bracketed between -15dBZ and 0dBZ. This understanding of Stephens 
and Haynes (2007) should be more clearly described in the authors’ argument of Line 224-
230 to interpret “why the process rates are relatively poorly constrained”. Again, the diversity 
of the timescale is just a simple translation from the diversity of Z, according to equation (2). 
 
The reviewer is correct. We have modified the text to clarify the Stephens and Haynes 
methodology and the origin of Z on the RHS of the equation. We still keep this brief in order 
to focus on the conceptual aspects of the paper. See changes on lines  
 
230-231: Of note is that the appearance of $\bar Z$ in Eq. (2) derives from Long's collection 
kernel for small drops, which has an $r^6$ dependency. 
 
238-239: Because the kernel function is a function of $r^6$, the range of time-scales simply 
reflects the variability in $\bar Z$ bracketed between -15 dBZ and 0 dBZ. 


