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Abstract. This study applies a multigrid beta filter (MGBF) for covariance localization in ensemble-variational (EnVar) data 

assimilation instead of the conventional recursive filter (RF) to achieve faster computation in a large number of processors. 10 

The parallelization efficiency of the MGBF is higher than that of the RF because all-to-all communication to change the 

computational region of each processor is not necessary. However, the MGBF-based localization additionally requires 

horizontal variable exchange between processors; its computational cost is proportional to the number of grid points and to 

the ensemble size, and is generally more expensive than the RF. In this study, we implement the MGBF-based localization 

both for the single-scale localization and for the scale-dependent localization in the regional atmospheric EnVar data 15 

assimilation system. In addition, we clarify that applying a coarser filter grid and omitting filtering except for the coarsest 

resolution make the computation of the MGBF-based localization several times faster than that of the RF-based one without 

significantly changing the EnVar analysis. 

1 Introduction 

In ensemble-based atmospheric data assimilation (DA), background error covariance (BEC) is one of the most important 20 

factors to determine the quality of the analysis. In general, the flow-dependent BECs created by ensemble forecasts have 

large sampling error for a small ensemble size. This sampling error is mitigated by the covariance localization, which 

decreases the ensemble-based BECs between analysis variables spatially far from each other (Hamill et al., 2001; 

Houtekamer and Mitchell, 2001). In ensemble-variational (EnVar, Hamill and Snyder, 2000; Lorenc, 2003) DA, however, 

applying the localization for all analysis variables is computationally expensive in the simplest implementation, and this cost 25 

is even more expensive when using scale-dependent localization (SDL; Buehner, 2012; Buehner and Shlyaeva, 2015) to 

apply large localization lengths for the long waves. Therefore, efficient calculation is an important goal to be achieved for 

localization. 

In EnVar, the covariance localization increases the rank of the ensemble-based BEC matrix, which is attained by increasing 

the effective ensemble size with the Schur product of ensemble perturbations and the square root of the localization matrix 30 
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(Liu et al., 2009). Even in some other equivalent formulations of localization (e.g., Lorenc, 2003; Buehner, 2005; Bishop and 

Hodyss, 2009), the square root of the localization matrix is required (Ishibashi, 2015). In the simple implementation, this 

square root of the localization matrix is obtained by eigenvalue decomposition, where ignoring the tiny eigenvalues makes 

the computation faster (Liu et al., 2009). 

If the shape of localization is set to Gaussian, the square root of the localization matrix is also realized by a Gaussian filter 35 

because it is self-adjoint and its convolution is also Gaussian. Extending the earlier work of Hayden and Purser (1995) to 

variational analysis, Purser et al. (2003a) proposed the recursive filter (RF) as an efficient quasi-Gaussian filter applied to 

realize the static BEC. This RF was extended to apply to the inhomogeneous and anisotropic BEC (Purser et al., 2003b), and 

implemented in some operational DA systems as a method to realize the covariance localization as well as the static BEC 

(e.g., Wang et al., 2008, 2013; Yokota et al., 2024a). However, the RF is not necessarily parallelized efficiently when a very 40 

large number of processors are to be used because it needs to be calculated sequentially in each specific direction. 

Purser et al. (2022) proposed another method, the multigrid beta filter (MGBF), with the potential for higher computational 

efficiency than the RF when using a very large number of processors for parallel computation. Unlike the RF, the MGBF is a 

bell-shaped filter with support of finite width, where the response is a superposition of the variables filtered at progressively 

coarser resolutions. Although the MGBF requires horizontal variable exchange between processors, the amount of the 45 

exchange is small in the coarser grids. Since the filter is applied for each grid, it is efficiently parallelized horizontally. It has 

been clarified that the MGBF makes the computation of the static BEC and the ensemble covariance localization faster 

(Rancic et al., 2022, 2025). However, the detail of the impact of the MGBF for the ensemble covariance localization, 

including SDL, has not been investigated yet. 

Based on the background above, this study applies the homogeneous isotropic MGBF for the localization, including SDL, in 50 

the regional atmospheric DA system and clarifies how to make the computation faster while keeping almost the same quality 

of the analysis as with the RF-based localization. Section 2 explains the formulation of the RF- and MGBF-based 

localizations. Section 3 describes the experimental design to clarify the impact of MGBF-based localization in the regional 

DA system. Section 4 discusses the results. Section 5 gives the conclusion. 

2 Formulation 55 

2.1 Ensemble-variational (EnVar) data assimilation with scale-dependent localization (SDL) 

This study focuses on covariance localization in the Gridpoint Statistical Interpolation (GSI)-based 3DEnVar (Wang et al., 

2008, 2013). In 3DEnVar with a pure ensemble-based BEC, the analysis increment 𝛿𝐱 is obtained by minimization of the 

cost function: 

𝐽(𝐚1, … , 𝐚𝐾) =
1

2
∑ (𝐚𝑘)

𝑇L
−1(𝐚𝑘)

𝐾
𝑘=1 +

1

2
(H𝛿𝐱 − 𝐝)𝑇R−1(H𝛿𝐱 − 𝐝),     (1) 60 
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𝛿𝐱 = ∑ [

𝐚𝑘
⋮
𝐚𝑘
] ∘ 𝐱𝑘

en𝐾
𝑘=1 ,          (2) 

where 𝐚𝑘   (𝑘 = 1, … , 𝐾 ) is the 𝑁 -dimension control vector, L  is the covariance localization (𝑁 × 𝑁  matrix), R  is the 

observation error covariance (𝑀 ×𝑀 matrix), H is the linearized observation operator (𝑀 ×𝑁𝑉 matrix), and 𝐝 is the 𝑀-

dimension observation innovation vector (𝐾: the ensemble size; 𝑁: the number of grid points; 𝑀: the number of assimilated 

observations; 𝑉 : the number of analysis variables). 𝐱𝑘
en  is the 𝑁𝑉 -dimension 𝑘 -th ensemble perturbation vector (𝑘 -th 65 

ensemble member subtracted by ensemble mean and normalized by √𝐾 − 1). In this formulation, the same localization 

length is applied to all analysis variables. 

In applying SDL (Buehner and Shlyaeva, 2015), the analysis increment 𝛿𝐱 (𝑁𝑉-dimension vector) is obtained as: 

𝛿𝐱 = ∑ ∑ [

𝐚𝑘,𝑤
⋮
𝐚𝑘,𝑤

] ∘ 𝐱𝑘,𝑤
en𝑊

𝑤=1
𝐾
𝑘=1 ,         (3) 

instead of Eq. (2), where 𝐚𝑘  is extended to the 𝑁𝑊-dimension vector as 𝐚𝑘 = [

𝐚𝑘,1
⋮
𝐚𝑘,𝑊

] (𝑊: the number of scales in SDL), 𝐱𝑘
en 70 

is separated to multiple scales as 𝐱𝑘
en = ∑ 𝐱𝑘,𝑤

en𝑊
𝑤=1 , and L is extended to the 𝑁𝑊 ×𝑁𝑊 matrix as: 

L = [
L1
1/2

 𝟎
 ⋱  

𝟎  L𝑊
1/2
]E [

L1
𝑇/2

 𝟎
 ⋱  

𝟎  L𝑊
𝑇/2
],        (4) 

where L𝑤 is the 𝑁 × 𝑁 localization matrix applied for 𝑤-th scale of ensemble perturbations 𝐱𝑘,𝑤
en , and E = [

I ⋯ I

⋮ ⋱ ⋮
I ⋯ I

] is the 

𝑁𝑊 ×𝑁𝑊 matrix to combine each scale for localizing cross-scale covariances in SDL (“Cross” in Huang et al., 2021). 

2.2 Recursive filter (RF)-based localization 75 

The calculation of the localization L is accomplished by the RF (Purser et al., 2003a) in the GSI-based 3DEnVar as shown in 

Fig. 1a, where the square root of the localization matrix L𝑤  (= L𝑤
1/2
L𝑤
𝑇/2) is quasi-Gaussian and computed as: 

L𝑤
1/2 = FRF

𝑍
FRF
𝑌
FRF
𝑋

.          (5) 

FRF
𝑋

, FRF
𝑌

, and FRF
𝑍

 denote RFs in 𝑥-, 𝑦-, and 𝑧-directions, respectively (self-adjoint 𝑁 × 𝑁 matrices). These RFs should be 

applied recursively; for example, to obtain [
𝐪1
out

⋮
𝐪𝑁𝑋
out
] = FRF

𝑋 [
𝐪1
in

⋮
𝐪𝑁𝑋
in
], 80 

𝐪𝑖
mid = 𝛽𝐪𝑖

in +∑ 𝛼𝑗𝐪𝑖−𝑗
mid𝑝

𝑗=1          (6) 

is sequentially calculated from the smallest 𝑖, and after that, 

𝐪𝑖
out = 𝛽𝐪𝑖

mid +∑ 𝛼𝑗𝐪𝑖+𝑗
out𝑝

𝑗=1          (7) 
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is sequentially calculated from the largest 𝑖, where 𝐪𝑖
in, 𝐪𝑖

mid and 𝐪𝑖
out (𝑖 = 1,… ,𝑁𝑋) are 𝑁𝑌𝑁𝑍-dimension vectors (𝑁𝑋, 𝑁𝑌, 

and 𝑁𝑍 are the numbers of grid points in 𝑥-, 𝑦-, and 𝑧-directions, respectively, so 𝑁 = 𝑁𝑋𝑁𝑌𝑁𝑍). 𝐪𝑖−𝑗
mid (𝑖 − 𝑗 ≤ 0) and 𝐪𝑖+𝑗

out 85 

(𝑖 + 𝑗 ≥ 𝑁𝑋) are zero. The coefficients 𝛽 and 𝛼𝑗 (𝑗 = 1, … , 𝑝; 𝑝 is the order of RF) are set to make the filtering kernel of FRF
𝑋

 

quasi-Gaussian as: 

𝐺𝑝(𝑥)
𝑝→∞
→  𝑐𝐺 exp (−

𝑥2

𝑠2
),          (8) 

where the coefficient 𝑐𝐺 is set to satisfy ∫ [𝐺𝑝(𝑥)]
2
𝑑𝑥

∞

−∞
= 1. Since the resulting filtering kernel of FRF

𝑋 (FRF
𝑋 )

𝑇
 is the self-

convolution of 𝐺𝑝(𝑥) as: 90 

𝐺𝑝 ∗ 𝐺𝑝(𝑥) ≡ ∫ 𝐺𝑝(𝑥 − 𝑥
′)𝐺𝑝(𝑥

′)𝑑𝑥′
∞

−∞ 𝑝→∞
→  exp (−

𝑥2

2𝑠2
),      (9) 

𝑠 is the standard deviation of 𝐺∞ ∗ 𝐺∞(𝑥), which is the same as the 𝑒−1/2-folding scale 𝜎. 

Since Eqs. (6) and (7) are calculated sequentially, RF in one-direction is efficiently parallelized only in the other direction; 

for example, FRF
𝑋

 is efficiently parallelized only for 𝑁𝑌𝑁𝑍 and the parallelization for 𝑁𝑋 is impossible. Therefore, all-to-all 

communication to change the direction of parallelization, which degrades the parallelization efficiency with the large number 95 

of processors, is required to calculate FRF
𝑍
FRF
𝑌
FRF
𝑋

 (e.g., between FRF
𝑍

 and FRF
𝑌
FRF
𝑋

). Note that L itself is also calculated in 

parallel for the ensemble size 𝐾 considering the formulation in Eq. (1). 

2.3 Multigrid beta filter (MGBF)-localization 

This study suggests to calculate the localization L with MGBF instead of RF. Although the original MGBF (Purser et al., 

2022) superposes variables filtered in filter grids of multiple resolutions g𝑡 (𝑡 = 1,… , 𝑇; the grid interval of g𝑡+1 is twice 100 

coarser than g𝑡), this study applies MGBF only for the coarsest filter grid g𝑇 for faster computation as shown in Fig. 1b, 

where L𝑤
1/2

 is computed as: 

L𝑤
1/2 = Dg0←g1FBF(g1)

𝑍
Dg1←g𝑇FBF(g𝑇)

𝑌
FBF(g𝑇)
𝑋

Dg𝑇←g1,       (10) 

where Dg𝑇←g1  ( 𝑁g𝑇 × 𝑁g1  matrix) is 2x2-points bilinear interpolations with doubling the coefficients to satisfy 

Dg𝑇←g1Dg𝑇←g1
𝑇 = I, which is repeated from g1  (the finest filter grid) to g𝑇  (the coarsest filter grid), Dg1←g𝑇  (𝑁g1 × 𝑁g𝑇 105 

matrix) is linearly weighted biquadratic horizontal interpolations (down-sending) repeated from g𝑇  to g1 , and Dg0←g1 

(𝑁 ×𝑁g1 matrix) is bilinear horizontal and vertical interpolations (mapping) from g1 to the analysis grid g0 (𝑁g𝑡: the number 

of grid points in g𝑡). The finest filter grid g1 is the same as the analysis grid g0 or coarser. Note that Dg𝑇←g1 is required only 

in SDL because Dg𝑇←g1EDg𝑇←g1
𝑇 = I  in single-scale localization. FBF(g𝑡)

𝑋
, FBF(g𝑡)

𝑌
, and FBF(g𝑡)

𝑍
 denote isotropic line beta 

filters applied in each generation in 𝑥-, 𝑦-, and 𝑧-directions, respectively (self-adjoint 𝑁g𝑡 × 𝑁g𝑡 matrices); for example, the 110 

filtering kernel of  FBF(g𝑡)
𝑋

 is: 

𝐵𝑝,𝑡(𝑥) = 𝑐𝐵,𝑡(1 − 4𝑋
2)𝑝 (𝑋 ≡

|𝑥|

𝑠√2(2𝑝+3)
≤
1

2
)       (11) 
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where 𝐵𝑝,𝑡(𝑥) = 0  in 𝑋 > 1/2 , the coefficient 𝑐𝐵,𝑡  is set to satisfy ∫ [𝐵𝑝,𝑡(𝑥)]
2
𝑑𝑥

∞

−∞
= 𝜔𝑡  (𝜔𝑡 : weight of g𝑡  where 

∑ 𝜔𝑡
𝑇
𝑡=1 = 𝜔𝑇 = 1), and 𝑠  is the standard deviation of the self-convolution of 𝐵𝑝,𝑡(𝑥), which is the filtering kernel of 

FBF(g𝑡)
𝑋 (FBF(g𝑡)

𝑋 )
𝑇
 and can be shown to have the form: 115 

𝐵𝑝,𝑡 ∗ 𝛣𝑝,𝑡(𝑥) = 𝜔𝑡(1 − 𝑋)
2𝑝+1∑ 𝑎𝑖,𝑝𝑋

𝑝−𝑖(1 + 𝑋)2𝑖
𝑝
𝑖=0

(𝑋 ≤ 1).     (12) 

If we generalize the definition of binomial coefficients: 

𝐶(𝑖, 𝑗) =
𝑖!

(𝑖−𝑗)!𝑗!
,           (13) 

then the coefficients can be expressed, 

𝑎𝑖,𝑝 = ∑
𝐶(𝑝,𝑗)𝐶(𝑝−𝑖,2𝑗)𝐶(𝑖,𝑗)

𝐶(2𝑝,2𝑗)

min(𝑖,⌊(𝑝−𝑖)/2⌋)
𝑗=0 ,        (14) 120 

where ⌊⋅⌋ is the floor function. In the particular case, 𝑝 = 2, these coefficients are 𝑎0,2 = 𝑎1,2 = 𝑎2,2 = 1. The filtering 

kernel of FBF(g𝑇)
𝑋 (FBF(g𝑇)

𝑋 )
𝑇
 obtained as the self-convolution of 𝐵2,𝑇(𝑥) can be expanded as: 

𝐵2,𝑇 ∗ 𝛣2,𝑇(𝑥) = (1 − 𝑋)
5(1 + 5𝑋 + 9𝑋2 + 5𝑋3 + 𝑋4) (𝑋 ≡

|𝑥|

𝑠√14
≤ 1),    (15) 

where 𝑠 is the standard deviation of 𝐵2,𝑇 ∗ 𝐵2,𝑇(𝑥). Unlike RF, 𝑠 is smaller than the 𝑒−1/2-folding scale 𝜎 in MGBF (here, 

𝑠/𝜎~0.92852). 125 

In MGBF, not only FBF(g1)
𝑍

 but also FBF(g𝑇)
𝑋

 and FBF(g𝑇)
𝑌

 are parallelized for 𝑁𝑋𝑁𝑌 because Eq. (11) is independently applied 

for each horizontal grid point only in the finite domain near the point. It indicates that communication between processors is 

limited to the exchange of halo grid points with spatially neighboring processors and all-to-all communication is not required 

in MGBF. 

 130 

  

Figure 1: Schematics of procedures of (a) RF and (b) MGBF. 
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3 Experimental design 

To compare the computation time and the 3DEnVar analysis between RF- and MGBF-based localizations, this study 135 

conducted hourly analysis-forecast cycling experiments. The experiments consist of GSI-based pure 3DEnVar and the 

limited area model capability for the non-hydrostatic finite-volume cubed-sphere dynamical core (FV3LAM, Lin, 2004; 

Putman and Lin, 2007; Black et al., 2021) in a prototype Rapid Refresh Forecast System (RRFS, Carley et al., 2023) in 

National Centers for Environmental Prediction (NCEP). The FV3LAM applied physics schemes listed in Table 1, and 

covered the CONUS (contiguous United States) domain with the horizontal grid interval of 3 km, where the number of grid 140 

points in 𝑥-, 𝑦-, and 𝑧-directions are (1820,1092,65). The lowest level thickness and the top of the model are 8 m and 2 hPa, 

respectively. In 3DEnVar, the number of analysis grid points were set to (𝑁𝑋,𝑁𝑌,𝑁𝑍) = (910,546,65); namely the horizontal 

grid interval was twice as large as that of the FV3LAM. The larger interval of the analysis grid reduces the computational 

cost but makes the resolution of analysis increments coarser and prevents to set the localization length smaller than the grid 

interval. 145 

Figure 2 shows the schematics of the sensitivity experiments. The selected experimental period includes when Hurricane Ian 

moved from the area northeast of Florida toward South Carolina (Bucci et al., 2023). All cycling experiments started from 

the same 1 h FV3LAM deterministic forecast initiated with the pure 3DEnVar analysis at 15 UTC, 29 September 2022, 

where the first guess as the initial condition (IC) was the 3 h forecast in the Global Forecast System (GFS, horizontal grid 

interval ~ 13 km) in NCEP, and ensemble BEC was created by the 9 h 80 member global ensemble forecasts in the Global 150 

DA System (GDAS, horizontal grid interval ~ 26 km) in NCEP. After that, hourly analysis-forecast cycles with pure 

3DEnVar and FV3LAM forecasts were repeated until 00 UTC, 30 September. 

All ensemble BECs for the pure 3DEnVar analyses except at 15 UTC were created by ensemble analysis-forecast cycles [30 

member hourly FV3LAM ensemble forecasts and serial ensemble square root filter (EnSRF; Whitaker and Hamill, 2002)] 

initiated with the 9 h ensemble forecast subset (first 30 of 80 members) at 15 UTC in the GDAS. The cutoff lengths of the 155 

Gaspari-Cohn localization function (Gaspari and Cohn, 1999) in EnSRF were set to 300 km horizontally and 1.1 scale 

heights vertically. After each EnSRF analysis (just before the next ensemble forecasts), the ensemble mean was replaced 

with the variational analysis (recentering in Fig. 2) and the ensemble spread was inflated by the relaxation-to-prior spread 

method (RTPS; Whitaker and Hamill, 2012) with a factor of 0.85. 

Both deterministic and ensemble analysis-forecast cycles adopted the GFS forecasts as the lateral boundary conditions 160 

(LBCs), and assimilated observations associated with the Rapid Refresh (RAP; Benjamin et al., 2004, 2016) from METAR, 

rawinsondes, aircraft, and radial winds of Weather Surveillance Radar-1988 Doppler (WSR-88D; Crum and Alberty, 1993, 

Liu et al., 2016). Although satellite radiance, radar reflectivity, and lightning data were not assimilated directly, they were 

used in land-snow DA (Benjamin et al., 2022) and non-variational cloud analysis (Benjamin et al., 2021) to correct 

hydrometeors, temperature, and specific humidity after each 3DEnVar analysis (just before the next deterministic forecasts). 165 
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The only difference among sensitivity experiments is how to apply the localization for pure 3DEnVar (Table 2). In RF, the 

RF-based single-scale localization (𝑊 = 1; 𝑝 = 2; localization length 𝑠: 82.158 km horizontally and 3 grids vertically) was 

applied. In MGBF00–04, the RF-based horizontal localization in RF was replaced to the MGBF-based one with the same 

localization length 𝑠 and the exponent 𝑝 as that in RF. In MGBF00–02, the number of finest filter grids 𝑁g1 was the same as 

that of analysis grid, where BF was applied for the finest grid g1 in MGBF00 but the coarser grid g4 in MGBF01–02. In 170 

MGBF03–04, filter grids for g1 were horizontally coarser (𝑁g1 was smaller) than those in MGBF00–02 and the filter was 

applied for g2. In MGBF04, the filter grids were coarser also vertically, and RF-based vertical localization was replaced to 

MGBF-based one in addition to the horizontal localization. The MGBF04σ is the same as MGBF04 except with the smaller 

localization length 𝑠, which was decreased by the factor of 0.92852 to make the 𝑒−1/2-folding scale 𝜎 the same as that in RF. 

RFSDL, MGBF03SDL, MGBF04SDL, and MGBF04σSDL are the same as RF, MGBF03, MGBF04, and MGBF04σ, 175 

respectively, except for applying fourfold horizontal localization lengths additionally as larger-scale SDL (𝑊 = 2). In all 

MGBF-based localizations, g𝑡 (𝑡 = 2, … , 𝑇) was calculated in parallel after g1. Since the calculation of g1 is meaningless in 

case the weight for g1 set to zero, it was skipped for faster computation except in MGBF00–01. The number of processors 

for the parallel computation was set to 735 (35 in the 𝑥-direction and 21 in the 𝑦-direction) for all experiments. Note that 

only the first pure 3DVar analysis at 15 UTC applied the same localization as in RF for all experiments. 180 

 

Table 2: List of physics schemes used in FV3LAM. 

Physics schemes 

 

Specification 

 

Cloud microphysics 

 

Thompson-Eidhammer Aerosol Aware Microphysics (Thompson and Eidhammer 2014) 

 

Planetary boundary 

layer 

 

Mellor-Yamada-Nakanishi-Niino Eddy Diffusivity/Mass Flux (MYNN-EDMF; Nakanishi 

and Niino 2009; Olson et al. 2019; Angevine et al. 2020) 

 

Surface layer 

 

Mellor-Yamada-Nakanishi-Niino (MYNN) surface layer (Olson et al. 2021) 

 

Gravity wave 

 

Small Scale Gravity Wave Drag (SSGWD; Tsiringakis et al. 2017) and Turbulent 

Orographic Form Drag (TOFD; Beljaars et al. 2004) 

 

Land 

 

Rapid Update Cycle Land Surface Model (RUC LSM; Smirnova et al. 1997, 2000, 2016) 

 

Long and short-

wave radiation 

 

Rapid Radiative Transfer Model for Global Circulation Models (RRTMG; Mlawer et al. 

1997; Iacono et al. 2008) 

 

 



8 

 

 

Figure 2: Schematics of analysis-forecast cycles with the RRFS. 185 

 

Table 2: List of localization settings for pure 3DEnVar in sensitivity experiments. 

Name 

 

Horizontal 

filter 

Vertical 

filter 

Number of the 

finest filter grids 

𝑁g1 

 

Weight 
(𝜔1, 𝜔2, 𝜔3, 𝜔4)
(“-” indicates no 

filtering) 

Horizontal 

localization 

length s 

(km) 

 

Vertical 

localization 

length s 

(grid unit) 

 

RF 

 

RF 

 

RF 

 

- 

 

- 

 

82.158 3.0000 

MGBF00 

 

BF(g1) 

 

RF 

 

(910,546,65) 

 

(1,0,-,-) 

 

82.158 3.0000 

MGBF01 

 

BF(g4) 

 

RF 

 

(910,546,65) 

 

(0,0,0,1) 

 

82.158 3.0000 

MGBF02 

 

BF(g4) 

 

RF 

 

(910,546,65) 

 

(-,0,0,1) 

 

82.158 3.0000 

MGBF03 

 

BF(g2) 

 

RF 

 

(280,168,65) 

 

(-,1,-,-) 

 

82.158 3.0000 

MGBF04 

 

BF(g2) 

 

BF(g1) 

 

(280,168,33) 

 

(-,1,-,-) 

 

82.158 3.0000 

MGBF04σ 

 

BF(g2) 

 

BF(g1) 

 

(280,168,33) 

 

(-,1,-,-) 

 

76.286 2.7856 

RFSDL 

 

RF 

RF 

 

RF 

RF 

 

- 

- 

- 

- 

328.63 

82.158 

3.0000 

3.0000 

MGBF03SDL 

 

BF(g4) 

BF(g2) 

 

RF 

RF 

 

(280,168,65) 

(280,168,65) 

 

(-,0,0,1) 

(-,1,-,-) 

 

328.63 

82.158 

3.0000 

3.0000 

MGBF04SDL 

 

BF(g4) 

BF(g2) 

 

BF(g1) 

BF(g1) 

 

(280,168,33) 

(280,168,33) 

 

(-,0,0,1) 

(-,1,-,-) 

 

328.63 

82.158 

3.0000 

3.0000 

MGBF04σSDL 

 

BF(g4) 

BF(g2) 

 

BF(g1) 

BF(g1) 

 

(280,168,33) 

(280,168,33) 

 

(-,0,0,1) 

(-,1,-,-) 

 

305.14 

76.286 

2.7856 

2.7856 
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4 Results and discussion 

4.1 Single observation data assimilation 190 

In this subsection, the filter responses of the RF- and MGBF-based localizations are compared with single pseudo-

observation DA. Here, a single surface pressure observation was assimilated with –10 hPa innovation and 1 hPa observation 

error in the northern region of Hurricane Ian at 80° W and 31° N, where the first guess was the 1 h FV3LAM forecast at 16 

UTC, 29 September. 

Figure 3 shows analysis increments of sea-level pressure (SLP). Compared to the increments with the single-scale 195 

localization (Figs. 3a,b), the SDL created the larger scale flow-dependent increments both for the RF- and MGBF-based 

localizations (Figs. 3c,d) since the horizontal localization length in the larger-scale SDL was set to fourfold. The difference 

between the RF- and MGBF-based localizations was little compared to the difference between the single-scale localization 

and SDL. 

To clarify the difference of the responses between the RF- and MGBF-based localizations in more detail, the meridional 200 

cross-section of the ratio of analysis increments with and without the localization (analysis increments in RF, MGBF00, 

MGBF04, and MGBF04σ divided by the increment without the localization), which are regarded as the filter responses of 

each experiment, are shown in Fig. 4. While the response of RF (cyan line) was almost the same as Gaussian, that of 

MGBF00 (brown line) was a little wider, and almost consistent with Eq. (15). The difference between MGBF00 (brown line) 

and MGBF04 (pink line) was hardly visible although it was slightly underestimated near the peak in MGBF04 due to the 205 

coarser filter grid. Compared to MGBF04 (pink line), the response of MGBF04σ (yellow line) was closer to Gaussian near 

the 𝑒−1/2-folding scale while it was smaller far from the observation. 

 

 

Figure 3: Analysis increment (color, hPa) and analysis (gray contours, every 4 hPa) of SLP at 16 UTC, 29 September 2022 in the 210 
single surface pressure DA experiments (a: RF; b: MGBF04; c: RFSDL; d: MGBF04SDL). Yellow dot is the position of the 

assimilated observation. 
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Figure 4: Meridional cross-section of analysis increment of SLP at 16 UTC, 29 September 2022 in the single surface pressure DA 215 
experiments (cyan: RF; brown: MGBF00; pink: MGBF04; yellow: MGBF04σ) divided by that without spatial localization. The 

black dashed line is Gaussian and the other dashed lines are the differences from Gaussian. The horizontal dotted line is 𝒆−𝟎.𝟓 
(~0.60653) and the vertical dotted line is the 𝒆−𝟎.𝟓-folding length of Gaussian (~82.158 km), respectively. 

 

4.2 Analysis-forecast cycling experiments 220 

In this subsection, the calculation time of the RF- and MGBF-based localizations and the qualities of the resulting analyses 

are compared. Figure 5 shows the computation times for localizations in analysis-forecast cycling experiments. The time for 

horizontal filtering in MGBF01–02 was smaller than that of MGBF00 because it was applied in the coarser filter grid g4; in 

MGBF02, it was about half of that in MGBF01 due to skipping the filter for g1. However, the total time for the localization 

in MGBF00–02 was larger than that in RF because the amount of the calculation and communication between processors in 225 

up-sending and down-sending were proportional to the number of grid points, which were large in MGBF00–02. On the 

other hand, the time for the localization in MGBF03–04, which applied a coarser g1 than MGBF00–02, was shorter than that 

in RF. In particular, the time for the localization in MGBF04, which applied vertical MGBF in the coarser vertical grid, was 
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about 20 % of that in RF. In SDL, the total time for the localization was roughly twice that of single-scale localization both 

for the RF- and MGBF-based localizations, which means that the reduction of the computation time by the MGBF-based 230 

localization was also approximately twice in SDL. The reduction rate of the computation time by the MGBF-based 

localization was larger in the experiments with larger numbers of processors (not shown), which indicates that parallelization 

efficiency of the MGBF is higher than that of the RF including the all-to-all communication. Hereafter, only RF, MGBF04, 

MGBF04σ, RFSDL, MGBF04SDL, and MGBF04σSDL are focused to show the small difference of the analyses with 

computationally efficient MGBF from that with RF. 235 

Despite the large reduction of the computation time, the difference of analysis increments of SLP between the RF- and 

MGBF-based localizations was small in both experiments with the single-scale localization and the SDL (Fig. 6). The 

relatively large difference near Hurricane Ian (Figs. 6c–f) is reasonable due to the large increment there (Figs. 6a, b). In the 

experiments with SDL, the difference is slightly larger in the maritime area (Figs. 6d, f) probably because the difference 

between RF and MGBF is more obvious in the large localization applied to the large-scale ensemble-based error covariance, 240 

which is also large in the maritime area. Note that the analysis increment was not spatially smoothed even in the MGBF-

based localization with the coarse filter grid because the ensemble perturbations 𝐱𝑘,𝑤
en  in Eq. (3) was not affected by the 

MGBF. Moreover, the difference from RF (Fig. 6a) was slightly smaller in MGBF04σ (Fig. 6e) than that in MGBF04 (Fig. 

6c), and the difference from RFSDL (Fig. 6b) was also slightly smaller in MGBF04σSDL (Fig. 6f) than that in 

MGBF04SDL (Fig. 6d) even though the computation times for MGBF04σ and MGBF04σSDL were almost the same as that 245 

for MGBF04 and MGBF04SDL, respectively (not shown). 

The impact of the MGBF-based localization on the dynamical balance of the analysis was also small. Figure 7 shows the 

mean absolute pressure tendency of the forecast from the analysis at 16 UTC, 29 September. While it was smaller in the 

experiments with SDL than that with single-scale localization (consistent with Yokota et al., 2024b), the impact of the 

MGBF-based localization was relatively small; for example, the difference between RF (cyan line) and MGBF04 (pink line) 250 

was smaller than that between RF (cyan line) and RFSDL (blue line). However, this slight difference between the RF- and 

MGBF-based localizations was accumulated in the analysis-forecast cycle, and the pressure tendency of the forecast from 

the last analysis with the MGBF-based localization at 00 UTC, 30 September was larger than that with the RF-based 

localization (Fig. 8) probably because the MGBF was the compact-support filter and its filter response was limited to the 

finite region. Nevertheless, MGBF04σ (yellow line) showed a smaller deviation from RF (cyan line) than MGBF04 (pink 255 

line). Similarly, MGBF04σSDL (orange line) was closer to RFSDL (blue line) than MGBF04SDL (red line). 

Figure 9 shows the first guess departure of assimilated in-situ temperature and horizontal wind observations in the whole 

analysis-forecast cycles. For temperature, the RMSE and cold bias in the experiments with SDL were smaller than those with 

single-scale localization (consistent with Yokota et al., 2024b), and the differences between the RF- and MGBF-based 

localizations were relatively small (Figs. 9a and b). For horizontal wind, on the other hand, the degradation of the RMSE by 260 

the MGBF-based localization (pink line in Fig. 9c) were not necessarily smaller than the improvement by the SDL (blue line 

in Fig. 9c) probably because the impact of SDL on horizontal wind was smaller than that on temperature. However, the 
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difference from RF (cyan line) was smaller in MGBF04σ (yellow line) than that in MGBF04 (pink line), and the difference 

from RFSDL (blue line) was also smaller in MGBF04σSDL (orange line) than that in MGBF04SDL (red line). 

Considering the results above, the quality of the analysis in RF and RFSDL was closer to that in MGBF04σ and 265 

MGBF04σSDL than that in MGBF04 and MGBF04SDL, respectively. It may indicate that the 𝑒−0.5-folding scale of the 

localization function 𝜎  is more sensitive to the quality of the analysis than the standard deviation  𝑠 . Note that these 

differences of the analyses discussed here hardly affected the Hurricane Ian forecasts. In fact, the track forecasts and 

associated precipitation forecasts initiated with the last analyses with the MGBF-based localization at 00 UTC, 30 September 

were almost the same as those with the RF-based localization (Figs. 10 and 11a). The minimum SLP forecasts with the RF- 270 

and MGBF-based localizations were also almost the same and the differences were smaller than that with and without SDL 

(Fig. 11b). 

 

 

Figure 5: Computation time for localization [green: vertical filtering (mapping between analysis and filter grids is included for 275 
MGBF); blue: all-to-all communication (only for RF); orange: up-sending and down-sending between generations (only for 

MGBF); red: horizontal filtering (weighting is included for MGBF)] averaged from 16UTC, 29 September to 00UTC, 30 

September 2022 in each experiment. Error bars show minimum and maximum. 
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 280 

Figure 6: Analysis increment (color, hPa) and first guess (gray contours, every 4 hPa) of SLP at 16UTC, 29 September 2022, in (a) 

RF and (b) RFSDL, and difference of the SLP analysis (hPa) from RF or RFSDL (c: MGBF04–RF; d: MGBF04SDL–RFSDL; e: 

MGBF04σ–RF; f: MGBF04σSDL–RFSDL). 
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 285 

Figure 7: Mean absolute pressure tendency (hPa h–1) of the 1 h forecasts from the analysis at 16 UTC, 29 September 2022 in each 

experiment (cyan: RF; pink: MGBF04; yellow: MGBF04σ; blue: RFSDL; red: MGBF04SDL; orange: MGBF04σSDL). 

 

 

Figure 8: Same as Fig. 7 except for the first 1 h forecasts from the analysis at 00 UTC, 30 September 2022. 290 
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Figure 9: Vertical profiles of first guess departure (a,c) standard deviations (difference from RF) and (b,d) biases verified against 

assimilated in-situ observations [a,b: temperature (K); c,d: horizontal wind (m s–1)] in each cycling experiment (cyan: RF; pink: 

MGBF04; yellow: MGBF04σ; blue: RFSDL; red: MGBF04SDL; orange: MGBF04σSDL) from 15 UTC, 29 September to 00 UTC, 295 
30 September 2022. Square marks indicate significantly different from RF (confidence level ≥ 95 % in the t-test). The cyan lines 

are not shown in (a) and (c) and are almost superposed by the pink and yellow lines in (b) and (d). 
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Figure 10: Composited radar reflectivity (color, dBZ) and SLP (blue contours, every 4 hPa) analyses at 00UTC, 30 September 300 
2022, and Hurricane Ian track forecasts (black lines) in each experiment (a: RF; b: MGBF04; c: MGBF04σ; d: RFSDL; e: 

MGBF04SDL; f: MGBF04σSDL) and (g) Multi-Radar Multi-Sensor (MRMS; Smith et al., 2016) composite reflectivity and High-

Resolution Rapid Refresh (HRRR; Dowell et al., 2022) SLP analysis. White lines are Ian’s best track. 
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 305 

Figure 11: (a) Location error verified against the best track (km) and (b) minimum SLP (hPa) of Hurricane Ian forecasts 

initialized at 00UTC, 30 September 2022, in each experiment (cyan: RF; pink: MGBF04; yellow: MGBF04σ; blue: RFSDL; red: 

MGBF04SDL; orange: MGBF04σSDL). Black dotted line in (b) indicates the best track. 

 

5 Conclusions 310 

This study applied the MGBF for the ensemble covariance localization instead of the RF in the regional EnVar DA system, 

and showed how to make the computation faster than the RF. If the analysis grid was mapped to the coarser filter grid and 

the filter was applied only in the grid with the coarsest resolution, the MGBF sped the computation of the localization 

(approximately by five times with 735 processors) without a significant degradation of the quality of the analysis, both for 

the single-scale localization and for the SDL (Fig. 5). Note that the analysis increment was not spatially smoothed even in 315 

the MGBF-based localization with the coarse filter grid. 

Since this study applied the MGBF only on the grid with the coarsest resolution, the filter response was the convolution of 

the strict beta function [Eq. (15) and Fig. 4]. Unlike RF, the 𝑒−0.5-folding scale of this function was larger than the standard 

deviation, which caused the small difference of the quality of the analysis between the RF- and MGBF-based localizations. 
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However, this difference was mitigated by applying the smaller localization length for the MGBF to make the 𝑒−1/2-folding 320 

scale the same as that in RF (Figs. 6–9). An alternative would be to replace the simple beta filter with the ‘tri-beta’ line filter 

recently proposed by Purser (2024), which produces a profile more closely conforming to the intended Gaussian. 

The idea to apply the compact-support filter with the coarse resolution is the same as the Normalized Interpolated 

Convolution from an Adaptive Subgrid (NICAS) adopted in the Model for Prediction Across Scales-Atmosphere with the 

Joint Effort for Data assimilation Integration (JEDI-MPAS, Liu et al. 2022). The NICAS applies a localization matrix on the 325 

unstructured coarse filter grid and interpolates it to the analysis grid directly. On the other hand, the MGBF-based 

localization applies a filter on the structured coarse filter grid and interpolates it from the coarsest filter grid g𝑇 to the 

analysis grid g0 step by step. One advantage of the MGBF-based localization is high parallelization efficiency with the step-

by-step interpolation. However, note that the computational cost of the analysis with small localization length in MGBF is 

not necessarily smaller than that in RF since the interval of the filter grid should be smaller than the localization length. 330 

Despite the small difference of the analysis between the RF- and MGBF-based localizations, it may be significant after many 

analysis-forecast cycles since the impact of the compact-support MGBF is accumulated (Fig. 8). To make the MGBF-based 

localization further closer to the RF-based one, it may be required to apply the MGBF also in the grid with the finer 

resolution and calibrate the localization length and the weight of each resolution. 

This study showed similarity of RF and MGBF only in the single case. However, the small difference even in the case of the 335 

strong Hurricane implies the much smaller difference in general cases. The longer cycling test for more reliable verification 

is the future task since it requires huge computational resources. 

This study focused only on the computational efficiency of the homogeneous isotropic MGBF. However, the advantages of 

the MGBF compared to the RF are not only the computational efficiency but also the flexible settings for various filter 

responses including inhomogeneity and anisotropy (Purser et al., 2022). To make the shape of localization more 340 

sophisticated within the MGBF is also one of the important future tasks to be carried out. 

Code and data availability 
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