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Abstract. A huge and dangerous flood occurred in September 2024 in the upper and middle Odra river 16 

basin, including mountainous areas in south-western Poland. The event provided an opportunity to 17 

investigate the feasibility of reliable estimation of high-resolution precipitation field, which is crucial for 18 

effective flood protection. Different measurement techniques were analysed: rain gauge data, weather 19 

radar-based, satellite-based, non-conventional (CML-based) and multi-source estimates. Apart from 20 

real-time and near real-time data, later available reanalyses based on satellite information (IMERG, 21 

PDIR-Now) and numerical mesoscale model simulations (ERA5, WRF) were also examined. Reference 22 

data used to verify the reliability of the different techniques for measurement and estimation of 23 

precipitation included observations from manual rain gauges and multi-source estimates from the 24 

RainGRS system developed at IMGW for daily and hourly accumulations, respectively. Statistical 25 

analyses and visual comparisons were carried out. Among the data available in real time the best results 26 

were found for rain gauge measurements, radar data adjusted to rain gauges, and RainGRS estimates. 27 

Fairly good reliability was achieved by non-conventional CML-based measurements. In terms of offline 28 

reanalyses, mesoscale model simulations also demonstrated reasonably good agreement with reference 29 

precipitation, while poorer results were obtained by all satellite-based estimates except the IMERG. 30 

1. Introduction 31 

1.1. Motivation 32 

Precipitation is one of the most important meteorological parameters. In the case of extreme 33 

weather events, precise estimation of the precipitation field with high spatial resolution, preferably 34 
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carried out in real-time, is of crucial importance for effective flood protection (Sokol et al., 2021; 35 

Velásquez et al., 2025), especially in mountainous regions. The accurate determination of precipitation 36 

amounts is also important for subsequent studies and expert opinions. In this context, the following 37 

question arises: Are we able to measure precipitation with sufficient reliability to carry out these tasks? 38 

The ability to estimate precipitation either in real time or in near real time (i.e. with a delay of up to 39 

several minutes, half an hour at most) is crucial, but data available afterwards for detailed analysis are 40 

also valuable. 41 

Knowledge of the high-resolution spatial distribution of precipitation in real time provides the 42 

basis for generating forecasts with high resolution in time and space. Based on an extrapolation approach, 43 

nowcasting models (very short-range forecasting) generate such forecasts with very high precision but 44 

with a relatively short lead-time (Bojinski et al., 2023). This is particularly important when monitoring 45 

and forecasting severe convective phenomena (Fischer et al., 2024) for effective flood protection. 46 

The main problem in analysing the accuracy of such forecasts is the lack of a reliable reference 47 

with a sufficiently high spatial and temporal resolution. Such a reference could be the most reliable 48 

measurements or re-analyses available offline. Manual rain gauge measurements, which are most often 49 

available in the form of daily accumulations, are usually used as a reference for other measurements and 50 

estimates (e.g. Hoffmann et al., 2016). However, rain gauges only provide point measurements, making 51 

spatial representation of precipitation highly dependent on network density. In the case of a sparse 52 

network and highly spatially variable precipitation, its accurate reconstruction becomes nearly 53 

impossible. Therefore, it is necessary to carry out various comparative analyses using all available 54 

measurement and estimation techniques to select optimal solutions (Hohmann et al., 2021; Loritz et al., 55 

2021). 56 

 57 

1.2. State of the art 58 

1.2.1. High-resolution measurements of precipitation during extreme weather events 59 

In the operational practice of the National Meteorological and Hydrological Services (NMHSs), 60 

the most commonly used rainfall measurement techniques are in-situ measurements made with various 61 

types of rain gauges, weather radar observations, and satellite-derived estimates. These measurements 62 

vary in spatial resolution, technical limitations, and sensitivity to various disturbing factors, and 63 

consequently, measurement errors have a completely different structure. 64 

Rain gauges measure rainfall point-wise, i.e. only at their locations, and their reliability is affected 65 

by various factors related to meteorological conditions as well as to the failure rate and precision of the 66 

measurement, which is dependent on their design. This technique is considered the most accurate of 67 

those currently in use, but only in respect of the measurement location. Primarily, in the case of sparse 68 

rain gauge networks, point measurements do not provide reliable precipitation fields with sufficiently 69 
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high spatial resolution. One way to enhance the coverage of a given area with rain gauge measurements 70 

is to add data from personal weather stations (Garcia-Marti et al., 2023; Overeem et al., 2024). 71 

Weather radars measure the spatial distribution of the precipitation field with a very high 72 

resolution of the order of 1 km, which depends on the distance from the radar site. However, radar data 73 

is sensitive to a wide variety of disturbances, such as the interaction of the radar beam with the terrain 74 

and objects on it, varying signal propagation conditions, interference with signals from other devices 75 

emitting microwave signals, e.g. RLAN (radio local area network) transmitters and many others. As a 76 

result, sophisticated quality control algorithms are necessary, although they are not completely effective 77 

(Méri et al., 2021; Ośródka and Szturc, 2022). 78 

Operationally, the least reliable methods are those based on satellite imagery in the various spectral 79 

channels: microwave, which is the most technically challenging, as well as visible (VIS) and infrared 80 

(IR). Although satellite data are generally widely available, their reliability, except for microwave data, 81 

is relatively low, making them less commonly used in operational applications than rain gauge and radar 82 

data. In addition, their accuracy depends strongly on the season, time of day, and satellite location. A 83 

large number of satellite-based precipitation products have been designed using different spectral 84 

channels which are combined with other data, most commonly microwave active data from ground-based 85 

and satellite radars (e.g. GPM, Global Precipitation Measurement), microwave passive data from 86 

satellites in low polar orbits (e.g. MetOp of NOAA, National Oceanic and Atmospheric Administration), 87 

and mesoscale numerical model forecasts. This created the need for several comparative studies that 88 

were carried out in Europe, despite their much lower usefulness here (see, for example: Jiang et al., 2019; 89 

Navarro et al., 2020; Tapiador et al., 2020; Mahmoud et al., 2021; Peinó et al., 2025). 90 

Additionally, precipitation data may come from devices not originally designed for meteorological 91 

measurements. The most common instance uses signal attenuation measurements on commercial 92 

microwave links (CML) from mobile phone networks (van der Valk et al., 2024; Olsson et al., 2025). 93 

These data require sophisticated algorithms to convert the measurements to precipitation, but they can 94 

provide many times more data than rain gauge networks. In Europe, attempts are being made to use these 95 

data in real time (Overeem et al., 2016; Nielsen et al., 2024; Graf et al., 2020; 2024; Olsson et al., 2025) 96 

taking advantage of the fact that networks of these kinds of links are very dense, especially in urbanised 97 

areas. 98 

1.2.2. Multi-source estimates 99 

None of the measurement techniques described above demonstrates the ability to provide accurate 100 

precipitation estimation individually, but they are largely complementary. Considering that each has 101 

advantages and disadvantages, the idea is to combine data from different sources to improve the accuracy 102 

of rainfall estimation while maintaining high spatial resolution. Consequently, several merging methods 103 

have been developed to address the strengths and limitations of each measurement technique. They often 104 

include approaches based on conditional combinations of individual data (e.g., Sinclair and Pegram, 105 
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2005; Jurczyk et al., 2020b), the Kalman filter, and various versions of Kriging, such as Kriging with 106 

external drift (Sideris et al., 2014). Machine learning techniques, such as XGBoost (Mai et al., 2022; 107 

Putra et al., 2024), have been increasingly used for this purpose. Most often the merging process involves 108 

data from rain gauge and radar techniques (e.g., Goudenhoofdt and Delobbe, 2009; Ochoa-Rodriguez et 109 

al., 2019; Wijayarathne et al., 2020), and less often from the three combined techniques of rain gauge, 110 

radar and satellite (e.g., Jurczyk et al., 2020b; Yu et al., 2020; Putra et al., 2024). NOAA operationally 111 

provides the Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimates generated through 112 

integration of data from radar networks, surface and satellite observations, numerical weather prediction 113 

(NWP) models, and climatology (Zhang et al., 2016). 114 

1.2.3. Estimates based on numerical models 115 

The surface or near-surface fields of precipitation simulated by numerical weather prediction 116 

(NWP) models are now frequently used for various purposes, including research of extreme precipitation 117 

events (Bližňák et al., 2022). Atmospheric reanalyses produced by NWP models with the assimilation of 118 

available historical observations can reconstruct past meteorological conditions. They provide physically 119 

consistent datasets of variables, including surface precipitation (Hersbach et al., 2020). The current NWP 120 

models are able to simulate intense precipitation, but the agreement with rain gauge observations is still 121 

not high in terms of spatial and temporal representation of precipitation (Bližňák et al., 2019). 122 

For the characterisation of precipitation patterns, it is possible to use precipitation simulations 123 

obtained from NWP models, such as the publicly available ERA5 of ECMWF reanalyses (e.g., Subba et 124 

al., 2024). Other high-resolution mesoscale models with open-access software, such as WRF (Weather 125 

Research and Forecasting) of NCAR (Tanessong et al., 2017; Skamarock et al., 2019), can also be used. 126 

A significant upside to using such a solution, even in areas with dense in situ measurement networks, is 127 

the easy access to the data and their convenient processing. 128 

1.2.4. Problems in the verification of precipitation measurements  129 

Although several methods for verifying precipitation data have been developed over the years 130 

(e.g., Rodwell et al., 2011; Szturc et al., 2022), this issue is still challenging (Skok, 2022; Zhang et al., 131 

2025). A fundamental problem in precipitation measurements is the considerable difficulty deriving 132 

information about precipitation on the ground surface, the so-called ground truth|. Therefore, empirical 133 

verification of different measurement or estimation techniques is generally carried out indirectly through 134 

their intercomparison during field experiments. This process often involves a somewhat arbitrary 135 

selection of the most reliable measurement data or estimates based on the experience of the researchers. 136 

Rain gauges, especially manual ones, are believed to provide direct and relatively accurate data from 137 

point rainfall measurements. Thus, they are often considered the ground truth source for verifying other, 138 

mostly grid-based rainfall products, such as radar and satellite-based, multi-source, or NWP model 139 
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reanalyses (e.g., Militino et al., 2018). In a very sparse network of manual rain gauges, telemetric rain 140 

gauges can be used for this purpose, but only after advanced quality control. 141 

The problem of precipitation data verification is much more difficult in mountainous areas due to 142 

the more significant spatial variability of precipitation distribution, which is associated with complex 143 

terrain (Ouyang et al., 2021). This aspect should also be kept in mind when verifying different types of 144 

measurements (Merino et al., 2021). 145 

Furthermore, comparing the average precipitation over a grid area to a specific point value 146 

introduces some uncertainty, particularly during heavy rain (Ensor and Robeson, 2008). An analysis of 147 

findings by Sun et al. (2018), Herrera et al. (2019), and others shows that, due to the high spatial 148 

variability of precipitation, it is not possible to establish a single universal error value when comparing 149 

point and grid data. The level of the uncertainty varies depending on the nature of the precipitation. For 150 

widespread (large-scale) precipitation, the uncertainty typically ranges from about 10% to 15%. 151 

However, for intense, convective extreme precipitation, this uncertainty can rise to approximately 15% 152 

to 25% (Schellart et al., 2017; Henn et al., 2018; Tarek et al., 2021). Special care should be taken when 153 

analysing local precipitation maxima using gridded data, as noted by Sun et al. (2018) and others, who 154 

point out that these data may smooth out extreme values compared to point measurements. 155 

1.3. Objectives and structure of the paper 156 

The main objective of this work is to examine the real possibilities of precise estimation of a 157 

precipitation field with a high spatial resolution of about 1 km and a high temporal resolution of at least 158 

10 min, or one hour during intense precipitation events that cause floods in upper Odra River basin area 159 

in September 2024. All available real-time and offline measurements and estimates were verified to 160 

determine their applicability and to quantify their reliability. 161 

The paper is organised as follows: after an introductory Section 1 outlining the issues of 162 

precipitation measurement and the various techniques used, Section 2 briefly describes the 2024 flood 163 

event and the area affected. Section 3 details the precipitation data used in this work, both available in 164 

real time and with a delay for a longer period. Section 4 presents the results of the statistical verification 165 

of the data obtained by the different techniques and outcomes of the comparative analyses. Section 5 166 

provides conclusions drawn from evaluating reliability of the investigated measurements and estimates. 167 

2. Flood in Poland in the Odra river basin in 2024 168 

2.1. Characteristics of the flooded area 169 

The Odra (or Oder) is the second largest river in Poland. It forms part of the central European 170 

drainage network. The river starts in the Sudety Mountains in the Czech Republic and flows north, 171 

mainly through Polish territory, to the Baltic Sea. The river’s total length is 855 km, and the maximum 172 

elevation in its basin is 1,602 m above sea level in the Sudety (Mount Śnieżka). After the Carpathian 173 
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Mountains, the Sudety have Poland’s highest annual precipitation accumulation. At the same time, the 174 

area is characterised by high precipitation variability due to the complex orography, the natural increase 175 

in precipitation intensity with altitude, and the occurrence of precipitation shadows in the lower parts of 176 

the mountains and valleys. 177 

 178 

 179 
Figure 1: The area of the upper and middle Odra river basin in Poland.  180 

 181 

The rivers draining the Sudety Mountains and its foothills are prone to dangerous floods that can 182 

occur after high precipitation. The Odra River basin is characterised by numerous left-bank short 183 

tributaries draining rainwater from the mountains. Moreover, in the case of the Kłodzko Valley, there is 184 

a concentric system of river networks that favours the occurrence and dynamic of flood phenomena (e.g., 185 

Szalińska et al., 2014; Ligenza et al., 2021).  186 

Rain-induced floods in the Odra river basin are usually associated with low-pressure frontal 187 

centres that reach Poland and cause prolonged and intense precipitation in southern of the country. In 188 

Poland, catastrophic rainfall floods occur most frequently just in the upper and middle Odra basin, with 189 

an area of approximately 44,000 km2 (Fig. 1), on average every 10-15 years. The last ones were recorded 190 

in 1997, 2010, and 2024, the latter of which was investigated in this study. 191 
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The literature on analysing these floods is extensive, generally in Polish, but comprehensive 192 

English-language scientific studies can also be found. They address the subject from very different 193 

perspectives. Some studies cover a wider area than the Odra basin, e.g. the whole of Poland (e.g., 194 

Kundzewicz, 2014), central and eastern Europe (Bissolli et al., 2011), or the whole of central Europe 195 

(Mudelsee et al., 2004; Kimutai et al., 2024). Others describe and analyse in detail the course of floods 196 

(precipitation and river flows) in specific basins, e.g. the Odra River in Poland (Szalińska et al., 2014) 197 

or the Nysa Kłodzka River (Perz et al., 2023), which is an important tributary of the Odra River. Research 198 

suggests that climate change affects the frequency and severity of floods, leading to an increased risk of 199 

flooding (e.g. Kundzewicz et al., 2023).Detailed statistical analyses of rainfall during floods have also 200 

been carried out (e.g. Mikolajewski et al., 2025). 201 

The above studies indicate that the upper Odra River basin is highly vulnerable to flooding caused 202 

by intense precipitation in the mountainous part of the basin. This is also influenced by the shape of the 203 

river network, which favours the cumulation of floods from individual tributaries. The flood risk there 204 

occurs almost annually during the summer. 205 

2.2. Description of the flood 206 

On 12-15 September 2024, the upper and middle Odra River basin and part of the upper Vistula 207 

River basin experienced rainfall that significantly changed the hydrological situation. From 12 208 

September 2024, intense rainfall began to appear in western Poland, with accumulations of up to 60 mm 209 

in 12 hours recorded in the Eastern Sudety Mountains. The highest rainfall intensity occurred on 210 

consecutive days: from 13 September 2024 in the morning to 15 September 2024, before noon. The 211 

precipitation was associated with a low-pressure system named Boris by the national meteorological 212 

services of southern and central Europe. 213 

 214 

 215 
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Figure 2: Field of precipitation accumulation during the flood of 13-16 September 2024 (four days) for the upper and 216 
middle Odra River basin in Poland, obtained from the multi-source RainGRS Clim estimates. 217 

 218 

At many locations, the daily precipitation accumulation in this period exceeded 200 mm, and its 219 

territorial range covered mainly the Eastern Sudety Mountains. Four-day precipitation accumulation 220 

reached values above 400 mm, with the highest in the Jeseníky and Śnieżnik Mountains. They might 221 

have exceeded even 550 mm, as indicated by reanalyses RainGRS Clim (Jurczyk et al., 2023) based on 222 

estimates from the RainGRS system adjusted to observations from manual rain gauges (Fig. 2). Apart 223 

from intense, widespread precipitation, numerous thunderstorms and several associated tornadoes were 224 

recorded during these days. On 16 September, rainfall began to diminish; mainly light to moderate 225 

precipitation was observed, and in the following days, the weather in Poland was influenced by a high-226 

pressure system, with the advection of warm and dry air of continental origin.  227 

The consequence of the intensive rainfall was runoff of rainwater, high and extreme water levels 228 

in rivers, and flooding. The flood wave moved down the Odra River and its tributaries, causing numerous 229 

exceedances of warning and alarm levels.  230 

3. Data used for the flood monitoring and analyses 231 

3.1. The data used 232 

In the frame of this study, the input data used to retrieve the precipitation field (Table 1) are divided 233 

into two groups in terms of the delay in their availability: (i) in real time and near real time, (ii) not in 234 

real time (with a delay of more than 30 min). Among the latter, data from manual rain gauges (GAU 235 

Manual), characterised by the highest reliability based on knowledge of measurement techniques and 236 

experience, were selected as reference data. All other precipitation products are verified by quantitative 237 

comparison with them. 238 

  239 
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Table 1. High-resolution techniques for measurement and estimation of the precipitation field. 240 

Abbreviation Description 
Temporal 

resolution 
Spatial resolution Timeliness 

Reference data 

GAU Manual Data from manual rain gauges (Hellmann’s type) 24 h Point wise 2 months 

Data available in real time 

GAU Interpolated data from telemetric rain gauges 10 min 1.0 km 6 min 

RAD Weather radar data from POLRAD and 

neighbouring countries 

5/10 min 0.5/1.0 km 4 min 

RAD Adj Weather radar data from POLRAD and 

neighbouring countries adjusted to telemetric rain 

gauge data 

5/10 min 0.5/1.0 km 7 min 

SAT Satellite-based precipitation – combination of 

EUMETSAT NWC SAF products 

5/10 min Roughly 3.5 km x 

6.0 km* 

4 min 

H61B Satellite-based precipitation – MW-IR combination 

(EUMETSAT H SAF product) 

1, 24 h Roughly 3.5 km x 

6.0 km* 

5-10 min  

CML Interpolated estimates based on signal attenuation 

in commercial microwave links 

15 min 1.0 km Tests in progress 

(currently offline) 

GRS Multi-source estimates from RainGRS system 10 min 1.0 km 7 min 

Data available not in real time (offline) 

IMERG Satellite-based precipitation estimates of NASA, 

final analyses (IMERG Final) 

30 min Roughly 7 km x 11 

km* (0.1º x 0.1º) 

About 4 months 

PDIR-Now Satellite-based precipitation estimates of 

University of California, Irvine 

1 h Roughly 2.8 km x 

4.5 km* (0.04º x 

0.04º) 

30-60 min 

ERA5 ECMWF reanalyses (NWP-based estimates) 1 h Roughly 18 km x 28 

km* (0.25º x 0.25º) 

5 days 

WRF WRF reanalyses (with initial conditions from 

ICON model) 

1 h 1.0 km (settable) 4.5 h 

* In the area of the study basin. 241 

3.2. Operational data available in real time 242 

All measurement data require quality control (QC) employing adequately designed systems, which 243 

are often very sophisticated (Szturc et al., 2022), especially for weather radar data. These systems are 244 

dedicated to verifying the data and, if necessary, correcting them. Using different precipitation 245 

information and a cross-check approach in a QC scheme is a common practice. 246 
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3.2.1. Rain gauge measurements 247 

The network of telemetric rain gauges of IMGW – the NMHS in Poland – consists of about 650 248 

stations, mainly of the tipping bucket type. There are 158 stations in the area analysed in this work (Fig. 249 

3), which gives an average of one rain gauge per approximately 280 km2. This network is much denser 250 

in the mountains, including the Sudety Mountains than in other parts of the country, with one station per 251 

approximately 420 km2. 252 

Precipitation measurements are transmitted in the form of 10-minute accumulations. Additionally, 253 

analogous data from the Czech Republic (CHMU – the Czech NMHS) from gauges near the Polish 254 

border are also operationally available. All data are subject to quality control by the RainGaugeQC 255 

system developed at IMGW (Ośródka et al., 2022; 2025). The point measurements are interpolated using 256 

the Ordinary Kriging method to obtain a precipitation field with 1-km resolution. 257 

 258 

 259 
Figure 3: Locations of measurement stations in the upper and middle Odra River basin: telemetric rain gauges (blue 260 
dots), weather radars (brown triangles) with 150-km range (brown circles), commercial microwave links (black lines), 261 
and four manual rain gauges selected for more detailed analysis (larger blue dots). 262 

 263 

3.2.2. Weather radar measurements 264 

POLRAD, IMGW’s weather radar network, consists of 10 C-band, Doppler and polarimetric 265 

radars manufactured by Leonardo Germany. The network is supplemented by data from 10 radars from 266 

neighbouring countries, whose observations partially cover the territory of Poland (Fig. 3). The radar 267 

data are quality controlled with the RADVOL-QC system designed at IMGW (Ośródka et al., 2014; 268 

Ośródka and Szturc, 2022). The precipitation composite maps are generated based on the PseudoSRI 269 

products from individual radars with a merging algorithm that considers a combination of data quality 270 
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information and distance from the radar site (this was also developed at IMGW, Jurczyk et al., 2020a). 271 

The spatial resolution of the final field is 1 km x 1 km, and the temporal resolution is 10 min. 272 

However, it should be noted that radar estimates of precipitation in mountainous areas are usually 273 

less reliable due to disturbances arising from the interaction of the radar beam with the terrain. Therefore, 274 

algorithms for the adjustment of radar-based precipitation with rain gauges are becoming more 275 

important. A mean-field bias correction is carried out individually for each radar based on a 10-min 276 

accumulation. Then, the spatial adjustment is performed based on a comparison of past radar estimates 277 

with corresponding rain gauge data to handle non-uniform bias within the radar composite domain 278 

(Jurczyk, 2020b). 279 

 The flooding area is within the range of five Polish radars, three located in the upper and middle 280 

Odra river basin – Pastewnik (PL_PAS), Góra św. Anny (PL_GSA) and Ramża (PL_RAM), and in its 281 

vicinity – Poznan (PL_POZ) and Brzuchania (PL_BRZ). Moreover, two German radars, Protzel 282 

(GE_PRO) and Dresden (GE_DRE), and one Czech radar, Skalky (CZ_SKA), partially cover the basin 283 

area. 284 

3.2.3. Satellite measurements and estimations 285 

Satellite precipitation fields for Europe are based primarily on data from geostationary 286 

meteorological satellites of the Meteosat family, which are positioned over the equator at various 287 

longitudes. They are an important source of operational data due to their very high temporal resolution 288 

of 5 minutes and quick access of a few minutes. Their spatial resolution, which for the area of southern 289 

Poland is approx. 3.5 km x 6.0 km, is also relatively high in terms of satellite data.  290 

Depending on the availability of additional data, it is possible to generate different satellite-based 291 

estimates in real time or in near real time, such as precipitation fields based on products generated by 292 

software developed by EUMETSAT programmes. IMGW operationally uses products generated by the 293 

software of the EUMETSAT NWC SAF (2021) programme from the visible (daytime CRR-Ph and PC-294 

Ph products) and infrared (24-hour CRR and PC) data. On this basis, 10-min precipitation accumulation 295 

fields are estimated by IMGW software (Jurczyk et al., 2020b). These data are corrected by mean field 296 

bias with radar precipitation adjusted to rain gauge measurements. The H61B precipitation product of 297 

the EUMETSAT H SAF (2020) programme is also available, which, unlike the SAT product, is based 298 

only on data from the IR channel available 24 hours a day but is supplemented with observations from 299 

passive microwave sensors located on various meteorological satellites in low polar orbits. 300 

3.2.4. Other estimates 301 

Measurements of signal attenuation on commercial microwave links (CMLs) allow the calculation 302 

of the integrated precipitation along a given link with a length of several to tens of kilometres (Olsson et 303 

al., 2025). The precipitation is spatially distributed along the link in proportion to the distribution of 304 
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weather radar (RAD) precipitation along this distance (Pasierb et al., 2024). There are 400 such links in 305 

the area analysed in this study (Fig. 3), which gives an average of one link per around 100 km2. 306 

The CML-based 15-minute precipitation accumulations are spatially interpolated using inverse 307 

distance methods to obtain high-resolution 1 km x 1 km precipitation fields. The data are currently being 308 

tested at IMGW for their applicability to real-time operational applications. 309 

3.2.5. Multi-source estimates 310 

The RainGRS model combining rain gauge, radar and satellite precipitation data is used 311 

operationally at IMGW (Jurczyk et al., 2020b), applying a conditional merging technique that is a 312 

development of the Sinclair and Pegram (2005) algorithm. This method is enhanced by involving detailed 313 

quality information assigned to individual input data. The combination algorithm is divided into two 314 

stages. At first, rain gauge data are merged with radar and satellite estimates separately, taking into 315 

account their quality. Finally, the resulting two precipitation fields are combined using weights 316 

depending on the distance from the nearest radar site and the quality of the satellite precipitation. As a 317 

result, a multi-source gauge-radar-satellite field (GRS) is received, with a spatial resolution of 1 km x 1 318 

km and a temporal resolution of 10 min. 319 

3.3. Estimates not available in real time 320 

3.3.1. Manual rain gauge measurements 321 

 322 
Figure 4: Locations of manual rain gauges (blue circles) and four ones selected for more detailed analysis (larger blue 323 
dots) in the upper and middle Odra River basin. 324 

 325 
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The IMGW network of manual rain gauges consists of about 641 stations. Their operation involves 326 

employing a graduated cylinder from which the observer reads the height of the rainwater column. In 327 

Poland, such gauges are used in the Hellmann standard, however, their measurements have some 328 

limitations: (i) they are point wise, (ii) they have relatively long precipitation accumulation times of, 329 

most often, 24 hours, (iii) they require measurement processing (including quality control), so they are 330 

not available in real time. The data from manual rain gauges are the closest to reality at their locations, 331 

and therefore were selected as the point reference for the 2024 flood. There are 112 such stations in the 332 

area analysed in this study (Fig. 4), one rain gauge per approximately 395 km2. 333 

3.3.2. Satellite-based reanalyses 334 

Satellite-based reanalyses use additional information, especially from satellites on polar low Earth 335 

orbits, beyond what is available from geostationary satellites, and this improves their reliability. 336 

However, this requires more time to acquire and process data, so the delay in access to the estimates in 337 

such cases can be as long as several months (Berthomier and Perier, 2023). 338 

The Integrated Multi-satellitE Retrievals for GPM (IMERG) is a NASA product estimating global 339 

surface precipitation rates at a spatial and temporal resolution of 0.1° x 0.1° and 30 min, respectively 340 

(NASA, 2025). This product is calibrated with Global Precipitation Measurement (GPM Core 341 

Observatory) satellite data, which is based on microwave imager and the dual-frequency precipitation 342 

radar, and uses it as a baseline. It is combined with other observations from national or international 343 

satellite constellations equipped with weather radars and passive microwave and infrared sensors, as well 344 

as with rain gauge data (Huffman et al., 2020; Bogerd et al., 2021). IMERG has three runs with different 345 

delays: Early (4-hour delay), Late (14-hour) and Final (about 4 months). 346 

The PERSIANN Dynamic Infrared Rainfall Rate Near Real-Time (PDIR-Now) is a global, high-347 

resolution (0.04° x 0.04°) satellite-based precipitation estimation product developed by the University of 348 

California, Irvine (UCI) (Nguyen et al., 2020a; 2020b; Afzali Gorooh et al., 2022) (CHRS, 2025). It is 349 

based on high-frequency sampling of infrared imagery and has a timeliness of 30-60 minutes. PDIR-350 

Now considers errors due to the use of IR imagery by applying various techniques, including dynamic 351 

curve shifting (Tb-R) based on precipitation climatology. Its highest temporal resolution is 1 hour. 352 

3.3.3. Reanalyses of the NWP models 353 

The ERA5 fields (ECMWF Reanalysis v5) generated by the ECMWF (European Centre for 354 

Medium-Range Weather Forecasts) have a low resolution of 0.25° x 0.25°, which converted to distance 355 

units corresponds to grids of approximately 18 km x 26 km in Poland (ECMWF, 2025). Such data allows 356 

for an overall analysis of rainfall offline. However, it is impossible to use these reanalyses when 357 

knowledge of the course of convective phenomena at the microscale is needed, i.e. with a spatial 358 

resolution of 1 km or less. 359 

https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGHH_07/summary?keywords=%22IMERG%20final%22
https://persiann.eng.uci.edu/CHRSdata/PDIRNow/PDIRNow1hourly/
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=download
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The WRF (Weather Research and Forecasting) is a model developed at NCAR (National Center 360 

for Atmospheric Research) (NCAR, 2025). Initial conditions for simulations of precipitation during the 361 

flood analysed here were taken from the ICON-EU (Icosahedral Nonhydrostatic) model (6.5 km) 362 

developed at Deutscher Wetterdienst (German NMS, DWD, 2025). Simulations were conducted at 50 363 

vertical levels up to 50 hPa, with a horizontal resolution of 1 km and a time step of 1 hour. Thompson’s 364 

microphysics scheme (Thompson et al., 2004) was utilised in the simulations. Due to the high resolution 365 

of the computational domain, explicit wet process physics was implemented, along with the 366 

parameterisation of short-wave and long-wave radiation based on the RRTMG radiation propagation 367 

scheme, a newer version of RRTM (Iacono et al., 2008). Boundary layer processes were modelled 368 

according to the Mellor-Yamada-Nakanishi-Niino (MYNN) turbulence scheme with closure 2.5 369 

(Nakanishi and Niino, 2009). The near-surface layer was parameterised using the MYNN scheme 370 

(Nakanishi and Niino, 2006). The multi-physics Noah land surface model (Niu et al., 2011) predicts soil 371 

moisture and temperature at four depths (Jarvis, 1976). 372 

4. Reliability analysis of different techniques of precipitation measurement and estimation 373 

4.1. Methodology for verifying precipitation data 374 

The basic analyses were carried out for 1-day accumulations with reference data from manual rain 375 

gauges (GAU Manual), which we consider to be the most reliable values. These measurements are point 376 

wise, so verification of individual precipitation fields was performed only at the locations of these 377 

stations (112 ones). The data were from 13-16 September 2024, but at IMGW, measurements of 378 

meteorological daily precipitation are made at 6 UTC, i.e. the accumulation for a given day is summed 379 

from 6:00 UTC of the previous day to 6:00 UTC of the following day and assigned to the date on which 380 

the accumulation ended. Thus, the period analysed included precipitation from 6 UTC 12 September to 381 

6 UTC 16 September. 382 

The temporal distribution of heavy precipitation plays a key role, so the data available with a 1-383 

hour time step was also verified. As measurements from manual rain gauges are not available at such a 384 

short time step, the RainGRS (GRS) fields (44,218 pixels within the basin) were used as a benchmark 385 

for the verification. In this case, it was possible to conduct a spatial verification because the reference 386 

was data with a resolution of 1 km x 1 km. However, it should be noted that the GRS estimates depend 387 

on some of the verified data (GAU, RAD, RAD Adj, and SAT). 388 

The following metrics were employed: 389 

 390 

‒ Pearson correlation coefficient is a well-known metric which is sensitive to a linear relationship 391 

between two datasets and reflects agreement between estimate and reference in terms of spatial 392 

pattern: 393 

 394 

https://www.dwd.de/EN/research/weatherforecasting/num_modelling/01_num_weather_prediction_modells/icon_description.html
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CC =
∑ (𝐸𝑖−𝐸)
𝑛
𝑖=1 (𝑂𝑖−𝑂)

√∑ (𝑂𝑖−𝑂)
2𝑛

𝑖=1 ∑ (𝐸𝑖−𝐸)
2𝑛

𝑖=1

    (1) 395 

 396 

‒ root mean square error based on variance is a standard metric used in verification studies as a 397 

good measure of differences between the verified and reference values: 398 

 399 

RMSE = √
1

𝑛
∑ (𝐸𝑖 − 𝑂𝑖)

2𝑛
𝑖=1     (2) 400 

 401 

The RMSE is particularly sensitive to outliers as squaring the errors emphasizes larger 402 

deviations. 403 

 404 

‒ root relative square error is similar to RMSE, but it is scale-independent as it relates the 405 

deviations to the spread of the reference values around their mean: 406 

 407 

RRSE =
√∑ (𝐸𝑖−𝑂𝑖)

2𝑛
𝑖=1

√∑ (𝑂𝑖−𝑂)
2𝑛

𝑖=1

     (3) 408 

 409 

‒ statistical bias, which is a measure of systematic error: 410 

 411 

Bias =
1

𝑛
∑ (𝐸𝑖 −𝑂𝑖)
𝑛
𝑖=1      (4) 412 

 413 

where 𝐸𝑖 is the estimated value, 𝑂𝑖 is the reference value, 𝑖 is the gauge/pixel number, and 𝑛 is the 414 

number of gauges/pixels, whereas 𝐸 and 𝑂 are the mean values of 𝐸𝑖 and 𝑂𝑖, respectively. 415 

4.2. Precipitation fields obtained from various measurement techniques and estimation methods 416 

Daily precipitation accumulations for the flood event of 13-16 September 2024, derived from 417 

various measurement techniques and estimation methods described in this paper (Table 1), are presented 418 

below: (i) reference data from spatially interpolated manual rain gauge observations (Fig. 5), (ii) 419 

precipitation fields operationally available in real time (Fig. 6), and (iii) offline reanalyses (Fig. 7). 420 

A visual assessment of the differences between all the verified data and the reference allows the 421 

following general observations to be formulated. 422 

The GAU and multi-source GRS rain gauge fields accurately reproduce the spatial distribution of 423 

the precipitation field and are consistent with the reference in terms of values. Differences are visible 424 

mainly in the Karkonosze Mountains on the border with the Czech Republic, probably due to the 425 
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densities of the GAU Manual and GAU networks (the latter is higher in this area) and the influence of 426 

data from the Czech territory. 427 

In the case of radar-derived fields (RAD and RAD Adj), the precipitation pattern is also well 428 

represented, but the estimate based solely on radar observations (RAD) underestimates values. Therefore, 429 

unadjusted radar data should not be used, especially for quantitative precipitation estimates (WMO-No. 430 

1257, 2025). Radar data after adjustment with rain gauge measurements (RAD Adj) demonstrates good 431 

agreement concerning precipitation values.”. The radar network in the analysed flood area is relatively 432 

dense, but due to signal blocking by mountains, precipitation shadows appear in some places, which 433 

result in an underestimation of precipitation. This is particularly evident in the Kłodzko Valley which is 434 

surrounded by relatively high mountains and is one of the places most prone to catastrophic flooding.  435 

Estimates generated based on satellite data: SAT, H61B and PDIR-Now, reproduce the 436 

precipitation distribution in space very imprecisely and values are significantly lower than the reference. 437 

The IMERG reanalysis definitely represents the precipitation field better, but values are also 438 

underestimated, especially in places where accumulations are highest. The reliability of precipitation 439 

estimates based on satellite data is low, especially when they are generated from infrared channel data 440 

and are not supported by other, preferably microwave data (from radars). This mainly affects SAT 441 

estimates, but also others. It should be noted that during the analysed flood, data from visible channels 442 

was only available for about 1/3 of the time, due to the fact that for the measurements to be reliable, the 443 

sun must be sufficiently high above the horizon (above 20 degrees). Furthermore, the spatial resolution 444 

of these data is generally insufficient. 445 

The CML-based estimates represent precipitation variability quite correctly, but the values 446 

compared to the reference are slightly lower. It can be clearly seen that spatial representativity is limited 447 

due to the lower density of the links in the higher parts of the mountains, such as in the eastern part of 448 

the Kłodzko Valley. 449 

Estimates based on numerical mesoscale models (ERA5 and WRF) correctly reproduce the 450 

precipitation pattern. However, the ERA5 reanalyses have a very low spatial resolution, so they do not 451 

reflect the fine-scale structures of the precipitation field, and, in addition, the values are more 452 

underestimated than those derived from WRF simulations. 453 

 454 

 455 
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Figure 5: Reference fields from manual rain gauges for daily precipitation accumulations from 13-16 September 2024. 456 
Data are limited to the upper and middle Odra river basin area. 457 

 458 

 459 
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 460 
Figure 6: Precipitation fields available in real time for daily precipitation accumulations from 13-16 September 2024. 461 
Data are limited to the upper and middle Odra river basin area. 462 

 463 

 464 

 465 
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 466 
Figure 7: Precipitation fields available offline for daily precipitation accumulations from 13-16 September 2024. Data 467 
are limited to the upper and middle Odra river basin area. 468 

4.3. Verification of daily and hourly precipitation accumulations 469 

Daily precipitation accumulations derived from different measurement techniques and 470 

estimations, listed in Table 1, were verified against point-wise observations from manual rain gauges. 471 

Table 2 summarises the values of the characteristics defined in Section 4.1 and, additionally, the 472 

relationship between CC and RMSE values for the verified measurement techniques is shown in the 473 

graph in Fig. 8. 474 

 475 

Table 2. Values of statistics for daily precipitation accumulations from 13-16 September 2024, against data 476 

from manual rain gauges (GAU Manual) as reference. 477 

Measurement/estimation 

technique 

Mean 

(mm) 
CC (−) 

RMSE 

(mm) 

RRSE 

(−) 

Bias 

(mm) 

Reference data 

GAU Manual 41.78 - - - - 

Available in real time 

GAU 38.27 0.963 10.40 0.29 -3.50 

RAD 16.07 0.784 38.08 1.06 -25.71 

RAD Adj 36.65 0.956 12.42 0.35 -5.13 

SAT 10.02 0.395 46.06 1.28 -31.76 

H61B 18.77 0.455 39.46 1.10 -23.00 

CML 21.13 0.721 32.74 0.91 -20.65 

GRS 37.94 0.967 10.02 0.28 -3.83 

Available offline 

IMERG 27.15 0.552 33.40 0.93 -14.63 
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PDIR-Now 20.23 0.138 42.57 1.18 -21.55 

ERA5 32.63 0.748 26.00 0.72 -9.15 

WRF 30.48 0.759 26.02 0.72 -11.30 

 478 

Most of the analysed data estimate precipitation correctly, in particular the GAU, RAD Adj, and 479 

GRS fields, which exhibit an extremely high correlation coefficient (CC > 0.9), and the differences 480 

between verified and reference values are very low taking into account the magnitude of the rainfall 481 

(RMSE < 15 mm). Therefore, these fields can correctly represent precipitation with high spatial 482 

resolution for operational purposes and subsequent analyses.  483 

The ERA5 and WRF simulations performed slightly worse, with CC above 0.7, which suggests 484 

quite good agreement with the reference, but RMSE is already high, above 25 mm. WRF reanalyses 485 

turned out better with CC = 0.77 and RMSE = 25.6 mm. In the case of the RAD and CML fields, the 486 

correlation coefficient is also high (CC > 0.7), but a significant underestimation of precipitation is 487 

evident, as indicated by large RMSE values > 30 mm, with Bias of -25.7 and -20.6, respectively.  488 

The worst results were obtained for the satellite-based estimates: SAT, H61B and PDIR-Now, for 489 

which CC < 0.5 and RMSE > 35 mm, and only slightly better statistics were achieved for the IMERG 490 

estimates (CC = 0.55, RMSE = 33.4 mm). 491 

 492 

 493 
Figure 8: Scatter plot comparing CC vs RMSE for each measurement and estimation technique for daily precipitation 494 
accumulations from 13-16 September 2024, against data from manual rain gauges (GAU Manual) as reference. 495 

 496 

Further research was conducted to evaluate the usefulness of the investigated data at a higher 497 

temporal resolution – hourly instead of daily. Table 3 shows results analogous to those depicted in Table 498 

2, but the reference in this case are the RainGRS estimates (GRS fields), as measurements from manual 499 
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rain gauges are only available as daily accumulations. This data was selected as a benchmark because 500 

the correlation between the two fields (i.e. GAU Manual and GRS) for daily accumulations is the best, 501 

being as high as 0.97 and Bias is as low as -3.8 mm (Table 2). The relationship between CC and RMSE 502 

values for the verified measurement techniques is shown in the graph in Fig. 9. 503 

 504 

Table 3. Values of statistics for hourly precipitation accumulations from 13-16 September 2024, against the 505 

RainGRS estimates (GRS) as reference. 506 

Measurement/estimation 

technique 

Mean 

(mm) 
CC (−) 

RMSE 

(mm) 

RRSE 

(−) 

Bias 

(mm) 

Reference data 

GRS 1.05 - - - - 

Available in real time 

GAU (dependent) 1.03 0.906 0.60 0.41 -0.01 

RAD (dependent) 0.49 0.902 1.07 0.70 -0.56 

RAD Adj (dependent) 1.03 0.977 0.29 0.22 -0.01 

SAT (dependent) 0.33 0.256 1.75 1.21 -0.72 

H61B 0.61 0.174 1.70 1.21 -0.44 

CML 0.60 0.673 1.11 0.83 -0.45 

Available offline 

IMERG 0.94 0.529 1.39 0.98 -0.11 

PDIR-Now 0.70 0.114 1.89 1.45 -0.35 

ERA5 1.11 0.497 1.34 0.93 0.06 

WRF 0.94 0.367 1.67 1.20 -0.10 

 507 

In terms of the much higher temporal resolution of the measurements and estimates, fewer of them 508 

maintain a correspondingly high reliability. Both the GAU and RAD Adj estimates demonstrated 509 

excellent results, with CC values exceeding 0.9 and RMSE values of 0.6 mm and 0.3 mm, respectively. 510 

The raw radar data (RAD) also correlates well with the reference, achieving CC of 0.90; however, the 511 

discrepancies between values are larger, resulting in RMSE of 1.1 mm. It is important to note that the 512 

GRS products depend on all three data fields. 513 

Among the other data not involved in multi-source RainGRS combination, relatively high 514 

reliability was preserved by the CML field with the best correlation coefficient (CC = 0.67), but Bias is 515 

significant (Bias = -0.4) even though RMSE is not relatively high (RMSE = 1.1 mm). Model simulations 516 

ERA5 and WRF do not correlate well with the reference (CC = 0.50 and 0.37, respectively), and the 517 

discrepancy in value is large (RMSE are 1.3 and 1.7 mm, respectively).  518 

IMERG analyses proved to be the most reliable satellite-based products compared in this work. 519 

By incorporating multiple precipitation data sources, which takes several months, a correlation with 520 

reference (CC = 0.53) is better than both model simulations but worse than that obtained by rain gauge, 521 
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radar measurements, and even CMLs. The statistics for the other satellite-based estimates (SAT, H61B, 522 

and PDIR-Now) turned out to be much worse: CC < 0.26 and RMSE > 1.7 mm, moreover, they 523 

drastically underestimate rainfall (their negative Bias is more than 0.35 mm). 524 

 525 

 526 
Figure 9: Scatter plot comparing CC vs RMSE for each measurement and estimation technique for hourly precipitation 527 
accumulations from 13-16 September 2024, against the RainGRS estimates (GRS) as reference. 528 

 529 

4.4. Verification of extreme daily and hourly precipitation accumulations 530 

For effective flood protection, it is important to have accurate values of very high precipitation. In 531 

order to assess the reliability of the measurements and estimations of extreme accumulations, verification 532 

was conducted by introducing a threshold on the minimum reference precipitation value. 533 

The results of the statistical analysis based on daily accumulations from manual rain gauge 534 

measurements (GAU Manual) for days with recorded rainfall of 50 mm or more are presented in Table 535 

4. The relationship between CC and RMSE values for the verified measurement techniques is shown in 536 

the graph in Fig. 10. 537 

As expected, the results are noticeably worse when compared to those obtained without a 538 

limitation on precipitation magnitude (see Table 2). This is particularly evident in terms of bias, which 539 

indicates an increase in underestimation. However, a negative bias was observed for all the estimation 540 

techniques analysed, even without thresholding. This suggests a real underestimation of intense 541 

precipitation by these methods, rather than simply a result of data selection. Excellent agreement with 542 

the reference high precipitation was obtained by rain gauge observations (GAU) and estimates directly 543 

based on measurements (RAD Adj and GRS) for which CC > 0.85 and RMSE < 25 mm. The estimate 544 
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based solely on radar data (RAD) correlates quite well (CC = 0.61), but the values are strongly 545 

underestimated (RMSE = 63.8 mm, Bias = -58.1 mm).  546 

 547 

Table 4. Values of statistics for daily precipitation accumulations from 13-16 September 2024 against data 548 

from manual rain gauges (GAU Manual) as a reference with a threshold for daily precipitation of 50 mm. 549 

Measurement/estimation 

technique 

Mean 

(mm) 
CC (−) 

RMSE 

(mm) 

RRSE 

(−) 

Bias 

(mm) 

Reference data 

GAU Manual 84.38 - - - - 

Available in real time 

GAU 76.90 0.889 16.66 0.53 -7.49 

RAD 26.30 0.614 63.76 2.03 -58.08 

RAD Adj 70.81 0.880 20.18 0.64 -13.57 

SAT 14.43 0.413 75.63 2.40 -69.95 

H61B 28.42 0.283 64.20 2.04 -55.96 

CML 42.06 0.301 53.58 1.70 -42.32 

GRS 75.89 0.904 16.09 0.51 -8.49 

Available offline 

IMERG 39.75 0.336 54.82 1.74 -44.64 

PDIR-Now 23.49 0.170 68.81 2.19 -60.89 

ERA5 54.33 0.357 43.28 1.37 -30.05 

WRF 56.51 0.479 41.14 1.31 -27.87 

 550 

All satellite-based data are inconsistent with the benchmark, as indicated by the low correlation 551 

(CC < 0.42) and significant differences in precipitation values (RMSE > 50 mm). The IMERG product 552 

also has low reliability, although it outperformed the other satellite-derived estimates in previous 553 

verifications.   554 

The result of the verification of the CML estimates is quite surprising compared to the earlier ones: 555 

they have a relatively low correlation (CC = 0.30) and a rather high RMSE (53.6 mm). This can be 556 

explained by the non-uniform distribution of transmitting and receiving stations: in the mountains – 557 

where the highest precipitation was recorded – their network is much sparser compared to other areas 558 

(the opposite in the case of rain gauge networks). 559 

The ERA5 and WRF model simulations have similar errors on precipitation values (RMSE ~ 42 560 

mm), but the correlation is a bit better for the WRF model (CC = 0.48), which may be due to the much 561 

higher spatial resolution of this model. In previous verifications (Table 2), models achieved comparable 562 

results regarding both CC and RMSE. The models still outperform satellite-based estimates. 563 

 564 
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 565 
Figure 10: Scatter plot comparing CC vs RMSE for each measurement and estimation technique for daily precipitation 566 
accumulations from 13-16 September 2024 against data from manual rain gauges (GAU Manual) as a reference with a 567 
threshold of 50 mm. 568 

 569 

A similar analysis was conducted, but the reliability of measurements and precipitation estimates 570 

for high precipitation were verified using hourly accumulations instead of daily accumulations. The 571 

results are depicted in Table 5 and in the graph in Fig. 12. In this case, the reference dataset consists of 572 

RainGRS (GRS) estimates, applying a threshold for hourly precipitation accumulation of 5 mm, with the 573 

assumption that there must be at least 200 pixels (out of a total of 44,218 pixels) fulfilling this 574 

requirement in a given time step. Thresholds of 5-mm for hourly accumulations and 200 pixels for the 575 

area where such precipitation occurred (approximately 0.5% of the entire basin) were introduced to 576 

exclude data with low precipitation from the statistics. Fig. 11 shows, as an example, the multi-source 577 

GRS hyetogram at the Kamienica manual rain gauge location, which recorded the highest 4-day 578 

precipitation accumulation of all stations in the flood area.  579 

 580 
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 581 
Figure 11: Hyetogram of 1-hour RainGRS (GRS) estimates at the location of the Kamienica rain gauge station. The red 582 
line indicates the 5-mm threshold of hourly precipitation accumulations. 583 

 584 

In this verification, the statistical results are significantly worse than in Table 3, as correctly 585 

reproducing extremely high hourly precipitation accumulations is challenging. Only GAU, RAD, and 586 

RAD Adj measurements provide relatively reliable results regarding correlation with GRS (CC > 0.50). 587 

As in the previous analyses, the estimate based solely on RAD data gives a significant underestimation 588 

of rainfall (RMSE = 4.3 mm, Bias = -4.1 mm), while for the fields based on rain gauge data, these errors 589 

are much lower: RMSE for GAU and RAD Adj is 2.5 and 0.8 mm, respectively. However, it is important 590 

to note that the GRS reference depends on all estimates using rain gauge or radar data. 591 

 592 

Table 5. Values of statistics for hourly precipitation accumulations from 13-16 September 2024 against the 593 

RainGRS estimates (GRS) as a reference with a threshold for hourly precipitation of 5 mm. 594 

Measurement/estimation 

technique 

Mean 

(mm) 
CC (−) 

RMSE 

(mm) 

RRSE 

(−) 

Bias 

(mm) 

Reference data 

GRS 7.03 - - - - 

Available in real time 

GAU (dependent) 5.29 0.515 2.46 1.63 -1.75 

RAD (dependent) 2.96 0.630 4.32 2.92 -4.08 

RAD Adj (dependent) 7.02 0.907 0.76 0.57 -0.01 

SAT (dependent) 0.85 0.089 6.60 4.68 -6.19 

H61B 1.21 0.029 6.33 4.41 -5.83 

CML 3.37 0.269 4.28 2.96 -3.66 

Available offline 

IMERG 2.60 0.069 5.16 3.42 -4.44 

PDIR-Now 1.06 0.046 6.40 4.43 -5.97 

ERA5 2.27 0.062 5.24 3.57 -4.77 
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WRF 2.38 0.069 5.54 3.84 -4.66 

 595 

Among the datasets not involved in multi-source RainGRS estimation, none of the correlations 596 

exceed CC = 0.1 except for the CML estimate (CC = 0.27). The values of RMSE and Bias are also high 597 

for them (RMSE > 5 mm, Bias between -4 and -6). 598 

The conclusion from this analysis is that the estimation of extremely high precipitation fields with 599 

very high spatial (1 km) and temporal (1 hour) resolution is mainly based on weather radar observations, 600 

but these must first be adjusted to the rain gauge data. Rain gauges can also produce reliable estimates, 601 

but under the condition that a sufficiently dense network of such gauges is available. 602 

 603 

 604 
Figure 12: Scatter plot comparing CC vs RMSE for each measurement and estimation technique for hourly precipitation 605 
accumulations from 13-16 September 2024 against the RainGRS estimates (GRS) as a reference with a threshold of 5 606 
mm. 607 

 608 

4.5. Analyses for selected stations 609 

Four stations with manual rain gauges (GAU Manual) were selected to check the consistency of 610 

the precipitation estimated by different techniques and models concerning particular locations for four 611 

days with the highest values during the flood. They are located in different regions of the basin, where 612 

intense rainfall was observed (Fig. 4), moving from west to east of the Sudety Mountains: 613 

‒ Szklarska Poręba in the Karkonosze Mountains,  614 

‒ Kamienica in the Śnieżnik Mountains near the Kłodzko Valley (the highest daily as well as 4-615 

day precipitation was observed there during this flood), 616 

‒ Głuchołazy situated in the foothills of the Opawskie Mountains,  617 
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‒ Gołkowice located in the Ostrava Valley.  618 

Table A1 (in Appendix A) presents accumulations for all verified measurements and estimates for 619 

individual days and the four-day totals in these locations. In Szklarska Poręba and Kamienica, telemetric 620 

rain gauges (GAU) measured daily accumulations very close to the reference rainfall (GAU Manual), 621 

while the other two locations underestimated by about 10-20%. The daily distribution of RAD values 622 

indicates good temporal alignment with the GAU Manual, but a significant underestimation of rainfall 623 

is evident. Adjustment of the radar-based estimates to rain gauge measurements resulted in a significant 624 

increase in RAD Adj values, but they are still lower than the GAU Manual at all locations except 625 

Gołkowice. GRS precipitation accumulations for three stations (Szklarska Poręba, Kamienica and 626 

Głuchołazy) are similar to GAU, i.e. also underestimated in relation to the reference by about 10-20%. 627 

At the Gołkowice location, where there is no telemetric rain gauge, and the GAU values are derived from 628 

interpolation, the GRS estimates are very close to the RAD Adj values and overestimate the benchmark.  629 

Estimates based on CML data are significantly lower than the reference, except Szklarska Poręba, 630 

where the density of the microwave link network is relatively high. This underestimation in the other 631 

stations is probably due to the lack of links near them, so values are derived from the interpolation of 632 

slightly more distant links, usually located at lower altitudes, which record less precipitation. 633 

The variability of all satellite-based precipitation in the analysed days does not correspond well 634 

with the daily distribution of the reference. Accumulations are much lower in comparison to values 635 

measured by manual rain gauges. The IMERG reanalyses slightly outperform the others, which is similar 636 

to previous investigations.  637 

Mesoscale model simulations are also underestimated, although the WRF model does so to a lesser 638 

extent. They better reflect the temporal distribution of daily precipitation accumulations and their 639 

magnitudes than satellite data. 640 

The cumulative precipitation curves obtained from 1-hour accumulations for the same four stations 641 

are shown in Fig. 13. The GAU Manual data generated with a daily step were not included, and in 642 

consequence, the GRS estimates (see Section 4.3) were taken as a reference to assess the consistency of 643 

temporal distributions of verified precipitation. It can be seen from analyses of the curves for all four 644 

stations that the estimates on which the GRS data depend, i.e. those based on rain gauge and radar 645 

measurements, are similar to each other, although the differences between the reference and the values 646 

derived solely from radars observations are very large. In terms of the independent data, the curves for 647 

CML and WRF reflect the temporal distribution of precipitation relatively correctly. In contrast, all 648 

satellite-based estimates are highly inconsistent with the reference, taking into account precipitation 649 

variability in time, and among them, the IMERG reanalyses indicate the best temporal alignment, as in 650 

previous investigations. 651 

 652 
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653 

 654 
Figure 13: Cumulative hourly precipitation accumulations for the four stations from Table 6 for the period 13-16 655 
September 2024. 656 

4.6. Overall assessment of the various rainfall measurement techniques 657 

The evaluation of the results obtained in this study is mainly based on the numerical values 658 

summarised in Tables 2 to 5, where the reliability statistics of the individual measurements and 659 

estimations are shown. The analyses were conducted with daily accumulations from the GAU Manual 660 

(Tables 2 and 4) and 1-hour RainGRS estimates as references (Tables 3 and 5). It should be noted that 661 

the latter depends, to differing degrees, on data involved in multi-source combination GAU, RAD, and 662 

RAD Adj, and to a lesser extent on SAT product. Nevertheless, the proportions between the statistics’ 663 

values are similar using both references. This leads to the conclusion that this dependence has little 664 

influence on the final outcomes, however the following overall assessment does not include findings 665 

from the analysis of the consistency of individual data with the reference dependent on them. 666 

4.6.1. Rain gauge data 667 

Spatially interpolated telemetric precipitation data (GAU) proved to be very similar to 668 

measurements from manual rain gauges (GAU Manual), but they generally provide slightly lower values 669 

(Tables 2 and 4). The accuracy of the rain gauge observations also remains high if only heavy 670 

precipitation is considered, which is confirmed by the statistics calculated after introducing an 671 

appropriate threshold on the daily accumulations, as can be seen from a comparison of Table 4 and Table 672 

2. 673 
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Notably, 76 out of 158 telemetric rain gauges are in the same locations as manual ones in the flood 674 

area. This significantly impacts the reliability statistics calculated for the GAU data as, in the case of an 675 

interpolated field, estimated values strongly depend on the distance to the nearest station. 676 

4.6.2. Weather radar-based data 677 

Weather radars reflect the spatial and temporal distributions of the precipitation field very well, as 678 

evidenced by the very high CC correlation coefficients with the reference presented in all tables, 679 

especially Tables 2 and 4, where the benchmark data are independent of the radar measurements.  680 

Raw radar estimates RAD produced significantly underestimated precipitation values, as indicated 681 

e.g. by the very large Bias values (Tables 2 and 4). Adjusting with telemetric rain gauge data considerably 682 

improves this and makes the corrected radar-based precipitation field (RAD Adj) very close in 683 

precipitation values to both GAU Manual and GRS reference estimates. 684 

Analysing only high precipitation, i.e. after introducing an appropriate threshold on the amount of 685 

daily precipitation accumulation, the results were analogous to the analysis without applying a threshold 686 

(Tables 4 vs 2). This confirms the high reliability of the radar measurements also in the case of heavy 687 

precipitation, however the data without adjustment is subject to a large Bias. 688 

4.6.3. Satellite-based data 689 

The satellite-based real-time SAT and H61B fields, based on the products from the EUMETSAT 690 

NWC SAF and H SAF programmes respectively, turned out to be practically useless for the precipitation 691 

estimation in the case study analysed here. They correlate poorly with reference and significantly 692 

underestimate values of precipitation accumulation (Tables 2 and 3). The primary reason is that they are 693 

mainly based on data from geostationary satellites – the only kind that can be used directly for real-time 694 

measurements at high temporal resolution. Among the more advanced satellite-based precipitation 695 

products available only offline analysed in this work, it can be stated that the PDIR-Now estimates are 696 

definitely wrong. The IMERG reanalysis proved significantly better, although its reliability is also not 697 

high. 698 

If the highest daily accumulations are considered by limiting them to values above the threshold 699 

of 50 mm per day, only SAT precipitation based on NWC SAF products shows some agreement with the 700 

reference, although it is weak (Table 4). The correlations of all satellite estimates decrease dramatically 701 

for extreme 1-hour accumulations (Table 5). 702 

4.6.4. Multi-source estimates 703 

The multi-source GRS estimates are generated by the RainGRS system for the merging GAU, 704 

RAD Adj, and SAT precipitation measurements. The analyses carried out in this study showed that these 705 

fields, among all the verified data available in real time, are in the best agreement with independent 706 

reference observations from manual rain gauges (GAU Manual) (Tables 2 and 4). The metrics are 707 
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slightly better than those for spatially interpolated rain gauges, but the multi-source estimates 708 

significantly outperform the others. This results from the combination that utilises the individual inputs’ 709 

positive features (see Sects. 1.2.2 and 3.2.5). 710 

4.6.5. CML-based estimates 711 

CML-based estimates correlate relatively well with daily and hourly accumulation benchmarks, 712 

but relatively high errors relate to differences between verified and reference values: RMSE and Bias. 713 

Data estimated from the measurements of signal attenuation from commercial microwave links in 714 

precipitation are clearly better than satellite-derived fields, even those available offline, but they are 715 

worse than estimates based on rain gauge and radar information. Their reliability is similar to mesoscale 716 

model simulations in terms of daily data, however for hourly accumulations the CML-based estimates 717 

outperform them (Tables 2 and 3). This suggests better representativeness in the temporal distribution of 718 

precipitation. 719 

These relatively good statistics for CML-based data are probably because the network of links is 720 

very dense relative to the rain gauge network, which partly compensates for their much higher 721 

uncertainty. However, there are considerably fewer links in the highest, less urbanised mountainous 722 

areas, where precipitation is usually more intense and the detection of extreme precipitation is 723 

consequently subject to more significant errors (Tables 4 and 5). 724 

4.6.6. NWP-based reanalyses 725 

The NWP simulations have higher reliability than satellite data but clearly lower than radar and 726 

rain gauge measurements. Their metrics are similar when analysing daily accumulations (Table 2), 727 

whereas for hourly ones, they turned out worse in comparison with CML-based data (Table 3). 728 

The results obtained by the ERA5 and WRF models are ambiguous. In terms of daily accumulation 729 

investigations, the reliability of both models is comparable. When analysing 1-hour data (Table 3), the 730 

ERA5 reanalyses proved to be better, although their CC is not high, which indicates a more correct 731 

alignment of the precipitation variability in time. In turn, the WRF model performed better if the highest 732 

daily accumulations were considered, i.e. only above 50 mm per day (Table 4). This is probably due to 733 

the significantly (around 20 times) higher spatial resolution of the WRF model compared to ERA5, which 734 

increases their usefulness for detailed analyses of precipitation more variable in space. When it comes to 735 

extreme hourly precipitation, i.e. with a threshold for precipitation above 5 mm, none of the mesoscale 736 

models are reliable: correlations with the GRS field do not exceed CC = 0.10 for both (Table 5). 737 
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5. Conclusions 738 

In this work, detailed analyses were carried out of the reliability of different precipitation 739 

measurements and estimations during a large flood in Poland in 2024 caused by extremely high 740 

widespread precipitation in an orographically diversified basin. 741 

Their consistency was assessed with the precipitation field or point observations assumed to be 742 

closest to reality (ground truth). As a reference, data from manual rain gauges (GAU Manual) were 743 

chosen as they are considered to be the most accurate, but they are point-wise and have the limitation of 744 

a temporal resolution of 1 day. In order to test the usefulness of data with a higher 1-hour temporal 745 

resolution, RainGRS estimates (GRS) were used as a benchmark. In addition, similar analyses were 746 

conducted, but only the most intense precipitation was considered by applying appropriate thresholds 747 

(over 50 mm/day and 5 mm/hour). 748 

Comparing the various precipitation fields available in real time, the data based on telemetric rain 749 

gauge measurements (GAU) and weather radar observations after adjustment with rain gauge data (RAD 750 

Adj), as well as the multi-source estimates (GRS) derived from a combination of these two types of data 751 

supplemented with satellite information, are definitely most reliable. It can be concluded that during 752 

intense precipitation events triggering floods, even in mountainous areas, rain gauge and radar 753 

measurements are sufficient for accurate real-time monitoring of the precipitation field with high spatial 754 

and temporal resolution, even though IMGW’s measurement networks are not very dense compared to 755 

those of other European countries. 756 

Among the other precipitation data sources, CML-based estimates proved to be the most accurate. 757 

This is surprising as they are based on non-standard measurements, but their strength is the very high 758 

number of microwave links available. However, these data show a large underestimation of precipitation, 759 

indicating the need for more sophisticated quality control and unbiasing. 760 

Reliability analyses of satellite data show that they are generally of little usefulness, apart from 761 

the IMERG estimates. Their relatively good agreement with the reference is due to incorporating a higher 762 

number of different types of satellite measurements, mainly microwave. However, this involves long 763 

waiting times for the final estimates which rather excludes them from operational applications, though 764 

they can be helpful in reanalyses. 765 

The research showed the limited suitability of mesoscale model simulations for analyses with high 766 

temporal and spatial resolution. At the same time, their reliability is sufficient for use when such a 767 

requirement is not necessary. Consequently, they are not particularly useful for analyses of very intense 768 

and spatially variable precipitation. 769 

Appendix A 770 

Table A1. Comparison of daily and 4-day precipitation accumulations for 4 selected stations at locations of 771 

manual rain gauges (Szklarska Poręba, Kamienica, Głuchołazy, Gołkowice). 772 
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 Station: Szklarska Poręba Station: Kamienica 

Measurement/estimation 

technique 

13 

Sept 

14 

Sept 

15 

Sept 

16 

Sept 
4-day 

13 

Sept 

14 

Sept 

15 

Sept 

16 

Sept 
4-day 

Reference data 

GAU Manual 20.0 123.8 84.9 63.5 292.2 51.1 114.2 254.5 52.7 472.5 

Available in real time 

GAU 21.72 131.15 85.11 50.47 288.45 49.60 120.2 236.82 51.39 458.01 

RAD 10.27 40.51 22.94 12.71 86.43 26.09 27.06 52.08 12.29 117.52 

RAD Adj 13.57 120.53 69.03 38.96 242.09 48.08 80.08 179.46 40.12 347.74 

SAT 23.22 14.51 7.24 9.30 54.27 9.19 41.90 30.59 5.16 86.84 

H61B 24.63 37.53 78.68 0.42 141.26 23.90 57.44 29.77 6.28 117.38 

CML 29.89 136.66 56.68 36.03 259.26 2.50 22.38 40.24 24.77 89.89 

GRS 20.06 130.96 79.72 47.38 278.12 50.61 118.06 227.15 48.71 444.53 

Available offline 

IMERG 31.85 58.41 15.22 14.27 119.75 40.54 61.81 39.81 18.72 160.88 

PDIR-Now 42.00 35.00 31.00 4.00 112.00 29.00 40.00 19.00 11.00 99.00 

ERA5 9.18 41.43 12.75 23.17 86.53 33.51 67.34 82.21 24.69 207.75 

WRF 1.81 65.93 7.43 59.28 134.45 33.69 118.82 95.69 52.53 300.73 

 773 

 Station: Głuchołazy Station: Gołkowice 

Measurement/estimation 

technique 

13 

Sept 

14 

Sept 

15 

Sept 

16 

Sept 
4-day 

13 

Sept 

14 

Sept 

15 

Sept 

16 

Sept 
4-day 

Reference data 

GAU Manual 56.0 158.2 124.3 23.0 361.5 9.7 96.2 118.2 3.8 227.9 

Available in real time 

GAU 51.19 131.35 93.33 26.81 302.68 7.62 90.22 101.27 3.29 202.40 

RAD 19.55 39.66 26.95 9.28 95.44 3.64 49.18 51.86 2.05 106.73 

RAD Adj 53.86 135.36 93.61 28.37 311.20 7.29 111.65 120.89 4.50 244.33 

SAT 3.84 32.80 15.95 4.97 57.56 1.31 39.89 14.55 0.33 56.08 

H61B 10.90 48.14 26.09 3.64 88.77 3.63 52.41 22.20 2.67 80.90 

CML 8.95 34.09 43.32 11.76 98.12 2.50 22.14 63.43 2.11 90.18 

GRS 51.82 133.06 93.40 26.77 305.05 7.96 113.61 118.33 4.26 244.16 

Available offline 

IMERG 26.13 74.61 54.68 9.20 164.62 7.77 67.48 77.85 4.48 157.58 

PDIR-Now 15.00 28.00 21.00 5.00 69.00 6.00 39.00 20.00 6.00 71.00 

ERA5 36.01 68.28 122.77 21.64 248.70 17.09 38.64 90.38 4.66 150.76 

WRF 36.25 93.30 88.53 33.80 251.88 11.32 70.32 79.06 10.55 171.25 

 774 

 775 
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