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Abstract. A huge and dangerous flood occurred in September 2024 in the upper and middle Odra river 16 

basin, including mountainous areas in south-western Poland. The event provided an opportunity to 17 

investigate the feasibility of reliable estimation of high-resolution precipitation field, which is crucial for 18 

effective flood protection. DifferentThe widespread precipitation lasted about four days, reaching more 19 

than 200 mm daily. In order to verify the possibilities of precise estimation of the precipitation field, 20 

different  measurement techniques were analysed: rain gauge data, weather radar-based, satellite-based, 21 

non-conventional (CML-based) and multi-source estimates. Apart from real-time and near real-time 22 

data, later available reanalyses based on satellite information (IMERG, PDIR-Now) and numerical 23 

mesoscale model simulations (ERA5, WRF) were also examined. Reference data used to verify the 24 

reliability of the different techniques for measurement and estimation of precipitation included 25 

observations from manual rain gauges and multi-source estimates from the RainGRS system developed 26 

at IMGW for daily and hourly accumulations, respectively.Manual rain gauge data for daily 27 

accumulations and multi-source RainGRS estimates for hourly accumulations were used as references 28 

to evaluate the reliability of the various techniques for measurements and estimation of precipitation 29 

accumulations.  Statistical analyses and visual comparisons were carried out. Among the data available 30 

in real time the best results were found for rain gauge measurements, radar data adjusted to rain gauges, 31 

and RainGRS estimates. Fairly good reliability was achieved by non-conventional CML-based 32 

measurements. In terms of offline reanalyses, mesoscale model simulations also demonstrated 33 

reasonably good agreement with reference precipitation, while poorer results were obtained by all 34 

satellite-based estimates except the IMERG. 35 
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1. Introduction 36 

1.1. Motivation 37 

Precipitation is one of the most important meteorological parameters. In the case of extreme 38 

weather events, precise estimation of the precipitation field with high spatial resolution, preferably 39 

carried out in real-time, is of crucial importance for effective flood protection (Sokol et al., 2021; 40 

Velásquez et al., 2025), especially in mountainous regions. The accurate determination of precipitation 41 

amounts is also important for subsequent studies and expert opinions. In this context, the following 42 

question arises: Are we able to measure precipitation with sufficient reliability to carry out these tasks? 43 

The ability to estimate precipitation either in real time or in near real time (i.e. with a delay of up to 44 

several minutes, half an hour at most) is crucial, but data available afterwards for detailed analysis are 45 

also valuable. 46 

Knowledge of the high-resolution spatial distribution of precipitation in real time provides the 47 

basis for generating forecasts with high resolution in time and space. Based on an extrapolation approach, 48 

nowcasting models (very short-range forecasting) generate such forecasts with very high precision but 49 

with a relatively short lead-time (Bojinski et al., 2023). This is particularly important when monitoring 50 

and forecasting severe convective phenomena (Fischer et al., 2024) for effective flood protection. 51 

The main problem in analysing the accuracy of such forecasts is the lack of a reliable reference 52 

with a sufficiently high spatial and temporal resolution. Such a reference could be the most reliable 53 

measurements or re-analyses available offline. Manual rain gauge measurements, which are most often 54 

available in the form of daily accumulations, are usually used as a reference for other measurements and 55 

estimates (e.g. Hoffmann et al., 2016). However, rain gauges only provide point measurements, making 56 

spatial representation of precipitation highly dependent on network density. In the case of a sparse 57 

network and highly spatially variable precipitation, its accurate reconstruction becomes nearly 58 

impossible. Therefore, it is necessary to carry out various comparative analyses using all available 59 

measurement and estimation techniques to select optimal solutions (Hohmann et al., 2021; Loritz et al., 60 

2021). 61 

 62 

1.2. State of the art 63 

1.2.1. High-resolution measurements of precipitation during extreme weather events 64 

In the operational practice of the National Meteorological and Hydrological Services (NMHSs), 65 

the most commonly used rainfall measurement techniques are in-situ measurements made with various 66 

types of rain gauges, weather radar observations, and satellite-derived estimates. These measurements 67 

vary in spatial resolution, technical limitations, and sensitivity to various disturbing factors, and 68 

consequently, measurement errors have a completely different structure. 69 
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Rain gauges measure rainfall point-wise, i.e. only at their locations, and their reliability is affected 70 

by various factors related to meteorological conditions as well as to the failure rate and precision of the 71 

measurement, which is dependent on their design. This technique is considered the most accurate of 72 

those currently in use, but only in respect of the measurement location. Primarily, in the case of sparse 73 

rain gauge networks, point measurements do not provide reliable precipitation fields with sufficiently 74 

high spatial resolution. One way to enhance the coverage of a given area with rain gauge measurements 75 

is to add data from personal weather stations (Garcia-Marti et al., 2023; Overeem et al., 2024). 76 

Weather radars measure the spatial distribution of the precipitation field with a very high 77 

resolution of the order of 1 km, which depends on the distance from the radar site. However, radar data 78 

is sensitive to a wide variety of disturbances, such as the interaction of the radar beam with the terrain 79 

and objects on it, varying signal propagation conditions, interference with signals from other devices 80 

emitting microwave signals, (e.g. RLAN (radio local area network) transmitters) and many others. As a 81 

result, sophisticated quality control algorithms are necessary, although they are not completely effective 82 

(Méri et al., 2021; Ośródka and Szturc, 2022). 83 

Operationally, the least reliable methods are those based on satellite imagery in the various spectral 84 

channels: microwave, which is the most technically challenging, as well as visible (VIS) and infrared 85 

(IR). Although satellite data are generally widely available, their reliability, except for microwave data, 86 

is relatively low, making them less commonly used in operational applications than rain gauge and radar 87 

data. In addition, their accuracy depends strongly on the season, time of day, and satellite location. A 88 

large number of satellite-based precipitation products have been designed using different spectral 89 

channels which are combined with other data, most commonly microwave active data from ground-based 90 

and satellite radars (e.g. GPM, Global Precipitation Measurement), microwave passive data from 91 

satellites in low polar orbits (e.g. MetOp of NOAA, National Oceanic and Atmospheric Administration 92 

MetOp), and mesoscale numerical model forecasts. This created the need for several comparative studies 93 

that were carried out in Europe, despite their much lower usefulness here (see, for example: Jiang et al., 94 

2019; Navarro et al., 2020; Tapiador et al., 2020; Mahmoud et al., 2021; Peinó et al., 2025). 95 

Additionally, precipitation data may come from devices not originally designed for meteorological 96 

measurements. The most common instance uses signal attenuation measurements on commercial 97 

microwave links (CML) from mobile phone networks (van der Valk et al., 2024; Olsson et al., 2025). 98 

These data require sophisticated algorithms to convert the measurements to precipitation, but they can 99 

provide many times more data than rain gauge networks. In Europe, attempts are being made to use these 100 

data in real time (Overeem et al., 2016; Nielsen et al., 2024; Graf et al., 2020; 2024; Olsson et al., 2025) 101 

taking advantage of the fact that networks of these kinds of links are very dense, especially in urbanised 102 

areas. 103 

https://www.lawinsider.com/dictionary/rlan
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1.2.2. Multi-source estimates 104 

None of the measurement techniques described above demonstrates the ability to provide accurate 105 

precipitation estimation individually, but they are largely complementary. Considering that each has 106 

advantages and disadvantages, the idea is to combine data from different sources to improve the accuracy 107 

of rainfall estimation while maintaining high spatial resolution. Consequently, several merging methods 108 

have been developed to address the strengths and limitations of each measurement technique. They often 109 

include approaches based on conditional combinations of individual data (e.g., Sinclair and Pegram, 110 

2005; Jurczyk et al., 2020b), the Kalman filter, and various versions of Kriging, such as Kriging with 111 

external drift (Sideris et al., 2014). Machine learning techniques, such as XGBoost (Mai et al., 2022; 112 

Putra et al., 2024), have been increasingly used for this purpose. Most often the merging process involves 113 

data from rain gauge and radar techniques (e.g., Goudenhoofdt and Delobbe, 2009; Ochoa-Rodriguez et 114 

al., 2019; Wijayarathne et al., 2020), and less often from the three combined techniques of rain gauge, 115 

radar and satellite (e.g., Jurczyk et al., 2020b; Yu et al., 2020; Putra et al., 2024). NOAA operationally 116 

provides the Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimates generated through 117 

integration of data from radar networks, surface and satellite observations, numerical weather prediction 118 

(NWP) models, and climatology (Zhang et al., 2016). 119 

1.2.3. Estimates based on numerical models 120 

The surface or near-surface fields of precipitation simulated by numerical weather prediction 121 

(NWP) models are now frequently used for various purposes, including research of extreme precipitation 122 

events (Bližňák et al., 2022). Atmospheric reanalyses produced by NWP models with the assimilation of 123 

available historical observations can reconstruct past meteorological conditions. They provide physically 124 

consistent datasets of variables, including surface precipitation (Hersbach et al., 2020). The current NWP 125 

models are able to simulate intense precipitation, but the agreement with rain gauge observations is still 126 

not high in terms of spatial and temporal representation of precipitation (Bližňák et al., 2019). 127 

For the characterisation of precipitation patterns, it is possible to use precipitation simulations 128 

obtained from NWP models, such as the publicly available ERA5 of ECMWF reanalyses (e.g., Subba et 129 

al., 2024). Other high-resolution mesoscale models with open-access software, such as WRF (Weather 130 

Research and Forecasting) of NCAR (Tanessong et al., 2017; Skamarock et al., 2019), can also be used. 131 

A significant upside to using such a solution, even in areas with dense in situ measurement networks, is 132 

the easy access to the data and their convenient processing. 133 

1.2.4. Problems in the verification of precipitation measurements  134 

Although several methods for verifying precipitation data have been developed over the years 135 

(e.g., Rodwell et al., 2011; Szturc et al., 2022), this issue is still challenging (Skok, 2022; Zhang et al., 136 

2025). A fundamental problem in precipitation measurements is the considerable difficulty deriving 137 

information about precipitation on the ground surface, the so-called ground truth|. Therefore, empirical 138 
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verification of different measurement or estimation techniques is generally carried out indirectly through 139 

their intercomparison during field experiments. This process often involves a somewhat arbitrary 140 

selection of the most reliable measurement data or estimates based on the experience of the researchers. 141 

Rain gauges, especially manual ones, are believed to provide direct and relatively accurate data from 142 

point rainfall measurements. Thus, they are often considered the ground truth source for verifying other, 143 

mostly grid-based rainfall products, such as radar and satellite-based, multi-source, or NWP model 144 

reanalyses (e.g., Militino et al., 2018). In a very sparse network of manual rain gauges, telemetric rain 145 

gauges can be used for this purpose, but only after advanced quality control. 146 

The problem of precipitation data verification is much more difficult in mountainous areas due to 147 

the more significant spatial variability of precipitation distribution, which is associated with complex 148 

terrain (Ouyang et al., 2021). This aspect should also be kept in mind when verifying different types of 149 

measurements (Merino et al., 2021). 150 

Furthermore, comparing the average precipitation over a grid area to a specific point value 151 

introduces some uncertainty, particularly during heavy rain (Ensor and Robeson, 2008). An analysis of 152 

findings by Sun et al. (2018), Herrera et al. (2019), and others shows that, due to the high spatial 153 

variability of precipitation, it is not possible to establish a single universal error value when comparing 154 

point and grid data. The level of the uncertainty varies depending on the nature of the precipitation. For 155 

widespread (large-scale) precipitation, the uncertainty typically ranges from about 10% to 15%. 156 

However, for intense, convective extreme precipitation, this uncertainty can rise to approximately 15% 157 

to 25% (Schellart et al., 2017; Henn et al., 2018; Tarek et al., 2021). Special care should be taken when 158 

analysing local precipitation maxima using gridded data, as noted by Sun et al. (2018) and others, who 159 

point out that these data may smooth out extreme values compared to point measurements. 160 

1.3. Objectives and structure of the paper 161 

The main objective of this work is to examine the real possibilities of precise estimation of a 162 

precipitation field with a high spatial resolution of about 1 km and a high temporal resolution of at least 163 

10 min, or one hour during intense precipitation events that cause floods in upper Odra River basin area 164 

in September 2024. All available real-time and offline measurements and estimates were verified to 165 

determine their applicability and to quantify their reliability.The main objective of this work is to verify 166 

the real possibilities of precise estimation of a precipitation field with a high spatial resolution of about 167 

1 km and a high temporal resolution of at least 10 min, or one hour during intense precipitation events 168 

that cause floods in mountainous regions. The analysis was carried out for an event in the Sudety 169 

mountains in Poland (Odra River catchment area) in September 2024. All available real-time and offline 170 

measurements and estimates were verified to determine their applicability and to quantify their 171 

reliability. 172 

The paper is organised as follows: after an introductory Section 1 outlining the issues of 173 

precipitation measurement and the various techniques used, Section 2 briefly describes the 2024 flood 174 
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event and the area affected. Section 3 details the precipitation data used in this work, both available in 175 

real time and with a delay for a longer period. Section 4 presents the results of the statistical verification 176 

of the data obtained by the different techniques and outcomes of the comparative analyses. Section 5 177 

provides conclusions drawn from evaluating reliability of the investigated measurements and estimates. 178 

2. Flood in Poland in the Odra river basin in 2024 179 

2.1. Characteristics of the flooded area 180 

The Odra (or Oder) is the second largest river in Poland. It forms part of the central European 181 

drainage network. The river starts in the Sudety Mountains in the Czech Republic and flows north, 182 

mainly through Polish territory, to the Baltic Sea. The river’s total length is 855 km, and the maximum 183 

elevation in its basin is 1,602 m above sea level in the Sudety (Mount Śnieżka). After the Carpathian 184 

Mountains, the Sudety have Poland’s highest annual precipitation accumulation. At the same time, the 185 

area is characterised by high precipitation variability due to the complex orography, the natural increase 186 

in precipitation intensity with altitude, and the occurrence of precipitation shadows in the lower parts of 187 

the mountains and valleys. 188 

 189 

 190 
Figure 1.: The area of the upper and middle Odra river basin in Poland.  191 
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 192 

The rivers draining the Sudety Mountains and its foothills are prone to dangerous floods that can 193 

occur after high precipitation. The Odra River basin is characterised by numerous left-bank short 194 

tributaries draining rainwater from the Sudetymountains. Moreover, in the case of the Kłodzko Valley, 195 

there is a concentric system of river networks that favours the occurrence and dynamic of flood 196 

phenomena (e.g., Szalińska et al., 2014; Ligenza et al.Przebieg..., 2021).  197 

Rain-induced floods in the Odra river basin are usually associated with low-pressure frontal 198 

centres that reach Poland and cause prolonged and intense precipitation in southern Polandof the country. 199 

In Poland, catastrophic rainfall floods occur most frequently just in the upper and middle Odra basin, 200 

with an area of approximately 44,000 km2 (Fig. 1), on average every 10-15 years. The last ones were 201 

recorded in 1997, 2010, and 2024, and they werethe latter of which was investigated in this study. 202 

The literature on analysing these floods is extensive, generally in Polish, but comprehensive 203 

English-language scientific studies can also be found. They address the subject from very different 204 

perspectives. Some studies cover a wider area than the Odra basin, e.g. the whole of Poland (e.g., 205 

Kundzewicz, 2014 and other works by this author), central and eastern Europe (Bissolli et al., 2011), or 206 

the whole of central Europe (Mudelsee et al., 2004; Kimutai et al., 2024). Others describe and analyse in 207 

detail the course of floods (precipitation and river flows) in specific catchmentsbasins, e.g. the Odra 208 

River in Poland (Szalińska et al., 2014) or the Nysa Kłodzka River (Perz et al., 2023), which is an 209 

important tributary of the Odra River. Research suggests that climate change affects the frequency and 210 

severity of floods, leading to an increased risk of flooding (e.g. Kundzewicz et al., 2023).Other work 211 

relates to climate change, which is believed to affect the course and intensity of floods and is responsible 212 

for increasing flood risk (Kundzewicz et al., 2023). Detailed statistical analyses of rainfall during floods 213 

have also been carried out (e.g. Mikolajewski et al., 2025). 214 

The above studies indicate that the upper Odra River basin is highly vulnerable to flooding caused 215 

by intense precipitation in the mountainous part of the basin. This is also influenced by the shape of the 216 

river network, which favours the cumulation of floods from individual tributaries. The flood risk there 217 

occurs almost annually during the summer. 218 

2.2. Description of the flood 219 

On 12-15 September 2024, the upper and middle Odra River basin and part of the upper Vistula 220 

River basin experienced rainfall that significantly changed the hydrological situation. From 12 221 

September 2024, intense rainfall began to appear in western Poland, with accumulations of up to 60 mm 222 

per in 12 hours recorded in the Eastern Sudetyes Mountains. The highest rainfall intensity occurred on 223 

consecutive days: from 13 September 2024 in the morning to 15 September 2024, before noon. The 224 

precipitation was associated with a low-pressure system named Boris by the national meteorological 225 

services of southern and central Europe. 226 

  227 
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 228 

Figure 2: Field of precipitation accumulation during the flood of 13-16 September 2024 (four days) for the upper and 229 
middle Odra River basin in Poland, obtained from the multi-source RainGRS Clim estimates. 230 

 231 

At many locations, tThe daily precipitation accumulation in this period exceeded 200 mm, and its 232 

territorial range covered mainly the Eastern Sudetyes Mountains. Four-day precipitation accumulation 233 

(Kimutai et al., 2024) reached values above 400 mm, with the highest in the Jeseníky and Śnieżnik 234 

Mountains. Estimates They might have exceeded even 550 mm, as indicated by reanalyses RainGRS 235 

Clim (Jurczyk et al., 2023) based on estimates from the RainGRS system adjusted to observations from 236 

manual rain gauges (Fig. 2). based on various measurement data suggest they might even have exceeded 237 

550 mm. Apart from intense, widespread precipitation, numerous thunderstorms and several associated 238 

tornadoes were recorded during these days. On 16 September, rainfall began to diminish; mainly light to 239 

moderate precipitation was observed, and in the following days, the weather in Poland was influenced 240 

by a high-pressure system, with the advection of warm and dry air of continental origin.  241 

The consequence of the intensive rainfall was runoff of rainwater, high and extreme water levels 242 

in rivers, and flooding. The flood wave moved down the Odra River and its tributaries, causing numerous 243 

exceedances of warning and alarm levels.  244 

3. Data used for the flood monitoring and analyses 245 

3.1. The data used 246 

In the frame of this study, the input data used to retrieve the precipitation field (Table 1) are divided 247 

into two groups in terms of the delay in their availability: (i) in real time and near real time, (ii) not in 248 

real time (with a delay of more than 30 min). Among the latter, data from manual rain gauges (GAU 249 

Mmanual), characterised by the highest reliability based on knowledge of measurement techniques and 250 
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experience, were selected as reference data. All other precipitation products are verified by quantitative 251 

comparison with them. 252 

  253 
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Table 1. High-resolution techniques for measurement and estimation of the precipitation field. 254 

Abbreviation Description 
Temporal 

resolution 
Spatial resolution Timeliness 

Reference data 

GAU Manual Data from manual rain gauges (Hellmann’s type) 24 h Point wise 2 months 

Data available in real time 

GAU Interpolated data from telemetric rain gauges 10 min 1.0 km 6 min 

RAD Weather radar data from POLRAD and 

neighbouring countries 

5/10 min 0.5/1.0 km 4 min 

RAD Adj Weather radar data from POLRAD and 

neighbouring countries adjusted to telemetric rain 

gauge data 

5/10 min 0.5/1.0 km 7 min 

SAT Satellite-based precipitation – combination of 

EUMETSAT NWC SAF products 

5/10 min Roughly 3.5 km x 

6.0 km*Roughly 5-

6 km for Poland 

4 min 

H61B Satellite-based precipitation – MW-IR combination 

(EUMETSAT H SAF product) 

1, 24 h Roughly 3.5 km x 

6.0 km*Roughly 5-

6 km for Poland 

5-10 min  

CML Interpolated estimates based on signal attenuation 

in commercial microwave links 

15 min 1.0 km Tests in progress 

(currently offline) 

GRS Multi-source estimates from RainGRS system 10 min 1.0 km 7 min 

Data available not in real time (offline) 

GRS Clim Multi-source reanalyses from RainGRS adjusted to 

manual rain gauges 

24 h 1.0 km 2 months 

IMERG Satellite-based precipitation estimates of NASA, 

final analyses (IMERG Final) 

30 min Roughly 7 km x 11 

km* (0.1º x 

0.1º)0.1º x 0.1º 

About 4 months 

PDIR-Now Satellite-based precipitation estimates of 

University of California, Irvine 

1 h Roughly 2.8 km x 

4.5 km* (0.04º x 

0.04º)0.04º x 0.04º 

30-60 min 

ERA5 ECMWF reanalyses (NWP-based estimates) 1 h Roughly 18 km x 28 

km* (0.25º x 

0.25º)0.25° x 0.25°* 

5 days 

WRF WRF reanalyses (with initial conditions from 

ICON model) 

1 h 1.0 km (settable) 4.5 h 

* In the area of the study basin.Roughly 18 km x 26 km. 255 
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3.2. Operational data available in real time 256 

All measurement data require quality control (QC) employing adequately designed systems, which 257 

are often very sophisticated (Szturc et al., 2022), especially for weather radar data. These systems are 258 

dedicated to verifying the data and, if necessary, correcting them. Using different precipitation 259 

information and a cross-check approach in a QC scheme is a common practice. 260 

3.2.1. Rain gauge measurements 261 

The network of telemetric rain gauges of IMGW – the NMHS in Poland – consists of about 650 262 

stations, mainly of the tipping bucket type. There are 158 stations in the area analysed in this work (Fig. 263 

23), which gives an average of one rain gauge per approximately 280 km2. This network is much denser 264 

in the mountains, including the Sudety Mountains than in other parts of the country, with one station per 265 

approximately 420 km2. 266 

Precipitation measurements are transmitted in the form of 10-minute accumulations. Additionally, 267 

analogous data from the Czech Republic (CHMU – the Czech NMHS) from gauges near the Polish 268 

border are also operationally available. All data are subject to quality control by the RainGaugeQC 269 

system developed at IMGW (Ośródka et al., 2022; 2025). The point measurements are interpolated using 270 

the Ordinary Kriging method to obtain a precipitation field with 1-km resolution. 271 

 272 



12 

 

273 

 274 
Figure 23: Locations of measurement stations in the upper and middle Odra River basin: telemetric rain gauges (blue 275 
dots), weather radars (brown triangles) with 150-km range (brown circles), commercial microwave links (black lines), 276 
and four manual rain gauges selected for more detailed analysis (larger blue dots).Locations of telemetric rain gauges 277 
(blue dots) in the upper and middle Odra River basin, meteorological radars (brown triangles) covering this basin, and 278 
four manual rain gauges selected for more detailed analysis (larger blue dots). 279 

 280 

3.2.2. Weather radar measurements 281 

POLRAD, IMGW’s weather radar network, consists of 10 C-band, Doppler and polarimetric 282 

radars manufactured by Leonardo Germany. The network is supplemented by data from 10 radars from 283 

neighbouring countries, whose observations partially cover the territory of Poland (Fig. 32). The radar 284 
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data are quality controlled with the RADVOL-QC system designed at IMGW (Ośródka et al., 2014; 285 

Ośródka and Szturc, 2022). The precipitation composite maps are generated based on the PseudoSRI 286 

products from individual radars with a merging algorithm that considers a combination of data quality 287 

information and distance from the radar site (this was also developed at IMGW, Jurczyk et al., 2020a). 288 

The spatial resolution of the final field is 1 km x 1 km, and the temporal resolution is 10 min. 289 

However, it should be noted that radar estimates of precipitation in mountainous areas are usually 290 

less reliable due to disturbances arising from the interaction of the radar beam with the terrain. Therefore, 291 

algorithms for the adjustment of radar-based precipitation with rain gauges are becoming more 292 

important. A mean-field bias correction is carried out individually for each radar based on a 10-min 293 

accumulation. Then, the spatial adjustment is performed based on a comparison of past radar estimates 294 

with corresponding rain gauge data to handle non-uniform bias within the radar composite domain 295 

(Jurczyk, 2020b). 296 

 The flooding area is within the range of five Polish radars, three located in the upper and middle 297 

Odra river basin – Pastewnik (PL_PAS), Góra św. Anny (PL_GSA) and Ramża (PL_RAM), and in its 298 

vicinity – Poznan (PL_POZ) and Brzuchania (PL_BRZ). Moreover, two German radars, Protzel 299 

(GE_PRO) and Dresden (GE_DRE), and one Czech radar, Skalky (CZ_SKA), partially cover the basin 300 

area. 301 

3.2.3. Satellite measurements and estimations 302 

Satellite precipitation fields for Europe are based primarily on data from geostationary 303 

meteorological satellites of the Meteosat family, which are positioned over the equator at various 304 

longitudes. They are an important source of operational data due to their very high temporal resolution 305 

of 5 minutes and quick access of a few minutes. Their spatial resolution, which for the area of southern 306 

Poland is approx. 3.5 km x 6.0 km, is also relatively high in terms of satellite data.  307 

Depending on the availability of additional data, it is possible to generate different satellite-based 308 

estimates in real time or in near real time, such as precipitation fields based on products generated by 309 

software developed by EUMETSAT programmes. IMGW operationally uses products generated by the 310 

software of the EUMETSAT NWC SAF (2021) programme from the visible (daytime CRR-Ph and PC-311 

Ph products) and infrared (24-hour CRR and PC) data. On this basis, 10-min precipitation accumulation 312 

fields are estimated by IMGW software (Jurczyk et al., 2020b). These data are corrected by mean field 313 

bias with radar precipitation adjusted to rain gauge measurements. The H61B precipitation product of 314 

the EUMETSAT H SAF (2020) programme is also available, which, unlike the SAT product, is based 315 

only on data from the IR channel available 24 hours a day but is supplemented with observations from 316 

passive microwave sensors located on various meteorological satellites in low polar orbits. 317 
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3.2.4. Other estimates 318 

Measurements of signal attenuation on commercial microwave links (CMLs) allow the calculation 319 

of the integrated precipitation along a given link with a length of several to tens of kilometres (Olsson et 320 

al., 2025). The precipitation is spatially distributed along the link in proportion to the distribution of 321 

weather radar (RAD) precipitation along this distance (Pasierb et al., 2024). Although the differences 322 

were insignificant, this approach proved the best when comparing the results obtained by various tested 323 

methods with reference precipitation. There are 400 such links in the area analysed in this study (Fig. 3), 324 

which gives an average of one link per around 100 km2. 325 

 326 

 327 
Figure 3: Locations of commercial microwave links (black lines) in the upper and middle Odra River basin and four 328 
manual rain gauges selected for more detailed analysis (larger blue dots). 329 

 330 

The CML-based 15-minute precipitation accumulations are spatially interpolated using inverse 331 

distance methods to obtain high-resolution 1 km x 1 km precipitation fields. The data are currently being 332 

tested at IMGW for their applicability to real-time operational applications. 333 

3.2.5. Multi-source estimates 334 

The RainGRS model combining rain gauge, radar and satellite precipitation data is used 335 

operationally at IMGW (Jurczyk et al., 2020b), applying a conditional merging technique that is a 336 

development of the Sinclair and Pegram (2005) algorithm. This method is enhanced by involving detailed 337 

quality information assigned to individual input data. The combination algorithm is divided into two 338 

stages. At first, rain gauge data are merged with radar and satellite estimates separately, taking into 339 

account their quality. Finally, the resulting two precipitation fields are combined using weights 340 
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depending on the distance from the nearest radar site and the quality of the satellite precipitation. As a 341 

result, a multi-source gauge-radar-satellite field (GRS) is received, with a spatial resolution of 1 km x 1 342 

km and a temporal resolution of 10 min. 343 

3.3. Estimates not available in real time 344 

3.3.1. Manual rain gauge measurements 345 

346 

 347 
Figure 4: Locations of manual rain gauges (blue circles) and four ones selected for more detailed analysis (larger blue 348 
dots) in the upper and middle Odra River basin.Locations of manual rain gauges (blue dots) in the upper and middle 349 
Odra River basin and four manual rain gauges selected for more detailed analysis (larger blue dots). 350 
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 351 

The IMGW network of manual rain gauges consists of about 641 stations. Their operation involves 352 

employing a graduated cylinder from which the observer reads the height of the rainwater column. In 353 

Poland, such gauges are used in the Hellmann standard, however, their measurements have some 354 

limitations: (i) they are point wise, (ii) they have relatively long precipitation accumulation times of, 355 

most often, 24 hours, (iii) they require measurement processing (including quality control), so they are 356 

not available in real time. The data from manual rain gauges are the closest to reality at their locations, 357 

and therefore they arewere selected as the point reference for the 2024 flood. There are 112 such stations 358 

in the area analysed in this study (Fig. 4), one rain gauge per approximately 395 km2. 359 

3.3.2. Multi-source GRS Clim reanalyses 360 

RainGRS Clim is an extension of the RainGRS system, with the implementation of manual rain 361 

gauge measurements as an additional source of precipitation information (Jurczyk et al., 2023). The data 362 

are incorporated into the GRS Clim estimates through adjustments carried out in a spatially distributed 363 

manner. Thanks to the application of observations from the gauges, which are considered most 364 

trustworthy, the reliability of the climate multi-source estimates is significantly increased. However, the 365 

products are only available after a longer period of approximately two months, due to the verification of 366 

the manual rain gauge data. This also involves reducing the temporal resolution of the final estimates to 367 

one day, but the spatial resolution remains the same (1 km x 1 km). 368 

3.3.32. Satellite-based reanalyses 369 

Satellite-based reanalyses use additional information, especially from satellites on polar low Earth 370 

orbits, beyond what is available from geostationary satellites, and this improves their reliability. 371 

However, this requires more time to acquire and process data, so the delay in access to the estimates in 372 

such cases can be as long as several months (Berthomier and Perier, 2023). 373 

The Integrated Multi-satellitE Retrievals for GPM (IMERG) is a NASA product estimating global 374 

surface precipitation rates at a spatial and temporal resolution of 0.1° x 0.1° and 30 min, respectively 375 

(https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGHH_07/summary?keywords=%22IMERG%20final376 

%22NASA, 2025). This product is calibrated with Global Precipitation Measurement (GPM Core 377 

Observatory) satellite data, which is based on microwave imager and the dual-frequency precipitation 378 

radar, and uses it as a baseline. It is combined with other observations from national or international 379 

satellite constellations equipped with weather radars and passive microwave and infrared sensors, as well 380 

as with rain gauge data (Huffman et al., 2020; Bogerd et al., 2021).This product uses Global Precipitation 381 

Measurement (GPM) satellite data as a baseline and inter-calibrates. It combines them with other 382 

observations from international satellite constellations (from space-based radars, passive microwave and 383 

infrared sensors) and data from rain gauges (Huffman et al., 2020; Bogerd et al., 2021). IMERG has three 384 

runs with different delays: Early (4-hour delay), Late (14-hour) and Final (about 4 months). 385 

https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGHH_07/summary?keywords=%22IMERG%20final%22
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The PERSIANN Dynamic Infrared Rainfall Rate Near Real-Time (PDIR-Now) is a global, high-386 

resolution (0.04° x 0.04°) satellite-based precipitation estimation product developed by the University of 387 

California, Irvine (UCI) (Nguyen et al., 2020a; 2020b; Afzali Gorooh et al., 2022) 388 

(https://persiann.eng.uci.edu/CHRSdata/PDIRNow/PDIRNow1hourly/CHRS, 2025). It is based on 389 

high-frequency sampling of infrared imagery and has a timeliness of 30-60 minutes. PDIR-Now 390 

considers errors due to the use of IR imagery by applying various techniques, including dynamic curve 391 

shifting (Tb-R) based on precipitation climatology. Its highest temporal resolution is 1 hour. 392 

3.3.43. Reanalyses of the NWP models 393 

The ERA5 fields (ECMWF Reanalysis v5) generated by the ECMWF (European Centre for 394 

Medium-Range Weather Forecasts) have a low resolution of 0.25° x 0.25°, which converted to distance 395 

units corresponds to grids of approximately 18 km x 26 km in Poland 396 

(https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=downloadECMWF, 2025). 397 

Such data allows for an overall analysis of rainfall offline. However, it is impossible to use these 398 

reanalyses when knowledge of the course of convective phenomena at the microscale is needed, i.e. with 399 

a spatial resolution of 1 km or less.This makes it impossible to use these reanalyses when knowledge of 400 

the course of convective phenomena at the microscale is needed, i.e. with a spatial resolution of 1 km or 401 

less. However, a general offline analysis of short-lived meteorological phenomena is possible. 402 

The WRF (Weather Research and Forecasting) is a model developed at NCAR (National Center 403 

for Atmospheric Research, USA) (NCAR, 2025). Initial conditions for simulations of precipitation 404 

during the flood analysed here were taken from the ICON-EU (Icosahedral Nonhydrostatic) model (6.5 405 

km) developed at Deutscher Wetterdienst (German NMS, 406 

https://www.dwd.de/EN/research/weatherforecasting/num_modelling/01_num_weather_prediction_mo407 

dells/icon_description.htmlDWD, 2025). Simulations were conducted at 50 vertical levels up to 50 hPa, 408 

with a horizontal resolution of 1 km and a time step of 1 hour. Thompson’s microphysics scheme 409 

(Thompson et al., 2004) was utilised in the simulations. Due to the high resolution of the computational 410 

domain, explicit wet process physics was implemented, along with the parameterisation of short-wave 411 

and long-wave radiation based on the RRTMG radiation propagation scheme, a newer version of RRTM 412 

(Iacono et al., 2008). Boundary layer processes were modelled according to the Mellor-Yamada-413 

Nakanishi-Niino (MYNN) turbulence scheme with closure 2.5 (Nakanishi and Niino, 2009). The near-414 

surface layer was parameterised using the MYNN scheme (Nakanishi and Niino, 2006). The multi-415 

physics Noah land surface model (Niu et al., 2011) predicts soil moisture and temperature at four depths 416 

(Jarvis, 1976). 417 

https://persiann.eng.uci.edu/CHRSdata/PDIRNow/PDIRNow1hourly/
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=download
https://www.dwd.de/EN/research/weatherforecasting/num_modelling/01_num_weather_prediction_modells/icon_description.html
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4. Reliability analysis of different techniques of precipitation measurement and estimation 418 

4.1. Methodology for verifying precipitation data 419 

The basic analyses were carried out for 1-day accumulations with reference data from manual rain 420 

gauges (GAU Manual), which we consider re treated as to be the most reliable values. These 421 

measurements are point wise, so verification of individual precipitation fields was performed only at the 422 

locations of these stations (112 ones). The data were from 13-16 September 2024, but at IMGW, 423 

measurements of meteorological daily precipitation are made at 6 UTC, i.e. the accumulation for a given 424 

day is summed from 6:00 UTC of the previous day to 6:00 UTC of the following day and assigned to the 425 

date on which the accumulation ended. Thus, the period analysed included precipitation from 6 UTC 12 426 

September to 6 UTC 16 September. 427 

The temporal distribution of heavy precipitation plays a key role, so the data available with a 1-428 

hour time step was also verified. As measurements from manual rain gauges are not available at such a 429 

short time step, the RainGRS (GRS) fields (44,218 pixels within the basin) were used as a benchmark 430 

for the verification. In this case, it was possible to conduct a spatial verification because the reference 431 

was data with a resolution of 1 km x 1 km. However, it should be noted that the GRS estimates depend 432 

on some of the verified data (GAU, RAD, RAD Adj, and SAT). 433 

The following metrics were employed: 434 

 435 

‒ Pearson correlation coefficient is a well-known metric which is sensitive to a linear relationship 436 

between two datasets and reflects agreement between estimate and reference in terms of spatial 437 

pattern: 438 

 439 

CC =
∑ (𝐸𝑖−𝐸)
𝑛
𝑖=1 (𝑂𝑖−𝑂)

√∑ (𝑂𝑖−𝑂)
2𝑛

𝑖=1 ∑ (𝐸𝑖−𝐸)
2𝑛

𝑖=1

    (1) 440 

 441 

‒ root mean square error based on variance is a standard metric used in verification studies as a 442 

good measure of differences between the verified and reference values: 443 

 444 

RMSE = √
1

𝑛
∑ (𝐸𝑖 − 𝑂𝑖)

2𝑛
𝑖=1     (2) 445 

 446 

The RMSE is particularly sensitive to outliers as squaring the errors emphasizes larger 447 

deviations. 448 

 449 

‒ root relative square error is similar to RMSE, but it is scale-independent as it relates the 450 

deviations to the spread of the reference values around their mean: 451 
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 452 

RRSE =
√∑ (𝐸𝑖−𝑂𝑖)

2𝑛
𝑖=1

√∑ (𝑂𝑖−𝑂)
2𝑛

𝑖=1

     (3) 453 

 454 

‒ statistical bias, which is a measure of systematic error: 455 

 456 

Bias =
1

𝑛
∑ (𝐸𝑖 −𝑂𝑖)
𝑛
𝑖=1      (4) 457 

 458 

where 𝐸𝑖 is the estimated value, 𝑂𝑖 is the reference value, 𝑖 is the gauge/pixel number, and 𝑛 is the 459 

number of gauges/pixels, whereas 𝐸 and 𝑂 are the mean values of 𝐸𝑖 and 𝑂𝑖, respectively. 460 

4.2. Precipitation fields obtained from various measurement techniques and estimation methods 461 

Daily precipitation accumulations for the flood event of 13-16 September 2024, derived from 462 

various measurement techniques and estimation methods described in this paper (Table 1), are presented 463 

below: (i) reference data from spatially interpolated manual rain gauge observations (Fig. 5), (ii) 464 

precipitation fields operationally available in real time (Fig. 6), and (iii) offline reanalyses (Fig. 7). 465 

A visual assessment of the differences between all the verified data and the reference allows the 466 

following general observations to be formulated. 467 

The GAU and multi-source GRS rain gauge fields accurately reproduce the spatial distribution of 468 

the precipitation field and are consistent with the reference in terms of values. Differences are visible 469 

mainly in the Karkonosze Mountains on the border with the Czech Republic, probably due to the 470 

densities of the GAU Manual and GAU networks (the latter is higher in this area) and the influence of 471 

data from the Czech territory. 472 

In the case of radar-derived fields (RAD and RAD Adj), the precipitation pattern is also well 473 

represented, but the estimate based solely on radar observations (RAD) underestimates values. Therefore, 474 

unadjusted radar data should not be used, especially for quantitative precipitation estimates (WMO-No. 475 

1257, 2025). Radar data after adjustment with rain gauge measurements (RAD Adj) demonstrates good 476 

agreement concerning precipitation values.”In the case of radar-derived fields (RAD and RAD Adj), the 477 

precipitation pattern is also well represented, but the estimate based solely on radar observations (RAD) 478 

underestimates values. Radar data after adjustment with rain gauge measurements (RAD Adj) 479 

demonstrates good agreement concerning precipitation values. The radar network in the analysed flood 480 

area is relatively dense, but due to signal blocking by mountains, precipitation shadows appear in some 481 

places, which result in an underestimation of precipitation. This is particularly evident in the Kłodzko 482 

Valley which is surrounded by relatively high mountains and is one of the places most prone to 483 

catastrophic flooding.  484 
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Estimates generated based on satellite data: SAT, H61B and PDIR-Now, reproduce the 485 

precipitation distribution in space very imprecisely and values are significantly lower than the reference. 486 

The IMERG reanalysis definitely represents the precipitation field better, but values are also 487 

underestimated, especially in places where accumulations are highest. The reliability of precipitation 488 

estimates based on satellite data is low, especially when they are generated from infrared channel data 489 

and are not supported by other, preferably microwave data (from radars). This mainly affects SAT 490 

estimates, but also others. It should be noted that during the analysed flood, data from visible channels 491 

was only available for about 1/3 of the time, due to the fact that for the measurements to be reliable, the 492 

sun must be sufficiently high above the horizon (above 20 degrees). Furthermore, the spatial resolution 493 

of these data is generally insufficient. 494 

The CML-based estimates represent precipitation variability quite correctly, but the values 495 

compared to the reference are slightly lower. It can be clearly seen that spatial representativity is limited 496 

due to the lower density of the links in the higher parts of the mountains, such as in the eastern part of 497 

the Kłodzko Valley. 498 

The GRS Clim data are in very good agreement with the reference regarding both spatial 499 

distribution and values, but it should be remembered that they are dependent. GRS Clim reanalyses, like 500 

estimates based on radar observations (RAD, RAD Adj, and GRS), demonstrate more significant 501 

precipitation variability than fields resulting from interpolation of point values. 502 

Estimates based on numerical mesoscale models (ERA5 and WRF) correctly reproduce the 503 

precipitation pattern. However, the ERA5 reanalyses have a very low spatial resolution, so they do not 504 

reflect the fine-scale structures of the precipitation field, and, in addition, the values are more 505 

underestimated than those derived from WRF simulations. 506 

 507 

 508 
Figure 5: Reference fields from manual rain gauges for daily precipitation accumulations from 13-16 September 2024. 509 
Data are limited to the upper and middle Odra river basin area. 510 

 511 
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 513 
Figure 6: Precipitation fields available in real time for daily precipitation accumulations from 13-16 September 2024. 514 
Data are limited to the upper and middle Odra river basin area. 515 

 516 

 517 
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 518 

 519 
Figure 7: Precipitation fields available offline for daily precipitation accumulations from 13-16 September 2024. Data 520 
are limited to the upper and middle Odra river basin area. 521 

4.3. Verification of daily and hourly precipitation accumulations 522 

Daily precipitation accumulations derived from different measurement techniques and 523 

estimations, listed in Table 1, were verified against point-wise observations from manual rain gauges. 524 

Table 2 summarises the values of the characteristics defined in Section 4.1 and, additionally, the results 525 

for the two statistics, CC and RMSE, are shown in the graphs in Fig. 8.the relationship between CC and 526 

RMSE values for the verified measurement techniques is shown in the graph in Fig. 8. 527 

 528 

Table 2. Values of statistics for daily precipitation accumulations from 13-16 September 2024, against data 529 

from manual rain gauges (GAU Manual) as reference. 530 

Measurement/estimation 

technique 

Mean 

(mm) 
CC (−) 

RMSE 

(mm) 

RRSE 

(−) 

Bias 

(mm) 
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Reference data 

GAU Manual 41.78 - - - - 

Available in real time 

GAU 38.27 0.963 10.40 0.29 -3.50 

RAD 16.07 0.784 38.08 1.06 -25.71 

RAD Adj 36.65 0.956 12.42 0.35 -5.13 

SAT 10.02 0.395 46.06 1.28 -31.76 

H61B 18.77 0.455 39.46 1.10 -23.00 

CML 21.13 0.721 32.74 0.91 -20.65 

GRS 37.94 0.967 10.02 0.28 -3.83 

Available offline 

GRS Clim (dependent) 42.32 0.985 6.29 0.17 0.55 

IMERG 27.15 0.552 33.40 0.93 -14.63 

PDIR-Now 20.23 0.138 42.57 1.18 -21.55 

ERA5 32.63 0.748 26.00 0.72 -9.15 

WRF 30.48 0.759 26.02 0.72 -11.30 

 531 

Most of the analysed data estimate precipitation correctly, in particular the GAU, RAD Adj, and 532 

GRS fields, which exhibit an extremely high correlation coefficient (CC > 0.9), and the differences 533 

between verified and reference values are very low taking into account the magnitude of the rainfall 534 

(RMSE < 15 mm). Therefore, these fields can correctly represent precipitation with high spatial 535 

resolution for operational purposes and subsequent analyses. The best statistics were achieved for the 536 

GRS Clim estimates, but they depend on the reference data. 537 

The ERA5 and WRF simulations performed slightly worse, with CC above 0.7, which suggests 538 

quite good agreement with the reference, but RMSE is already high, above 25 mm. WRF reanalyses 539 

turned out better with CC = 0.77 and RMSE = 25.6 mm. In the case of the RAD and CML fields, the 540 

correlation coefficient is also high (CC > 0.7), but a significant underestimation of precipitation is 541 

evident, as indicated by large RMSE values > 30 mm, with Bias of -25.7 and -20.6, respectively.  542 

The worst results were obtained for the satellite-based estimates: SAT, H61B and PDIR-Now, for 543 

which CC < 0.5 and RMSE > 35 mm, and only slightly better statistics were achieved for the IMERG 544 

estimates (CC = 0.55, RMSE = 33.4 mm). 545 

 546 
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 547 

Figure 8: Scatter plot comparing CC vs RMSE for each measurement and estimation technique for daily precipitation 548 
accumulations from 13-16 September 2024, against data from manual rain gauges (GAU Manual) as reference. 549 

  550 
Figure 8: Values of CC and RMSE statistics for daily precipitation accumulation from 13-16 September 2024, against 551 
data from manual rain gauges (GAU Manual). 552 

 553 

Further research was conducted to evaluate the usefulness of the investigated data at a higher 554 

temporal resolution – hourly instead of daily. Table 3 shows results analogous to those depicted in Table 555 

2, but the reference in this case are the RainGRS estimates (GRS fields), as measurements from manual 556 

rain gauges are only available as daily accumulations. This data was selected as a benchmark because 557 

the correlation between the two fields (i.e. GAU Manual and GRS) for daily accumulations is the best, 558 

being as high as 0.97 and Bias is as low as -3.6 8 mm (Table 2). The relationship between CC and RMSE 559 

values for the verified measurement techniques is shown in the graph in Fig. 9. 560 

 561 

Table 3. Values of statistics for hourly precipitation accumulations from 13-16 September 2024, against the 562 

RainGRS estimates (GRS) as reference. 563 
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Measurement/estimation 

technique 

Mean 

(mm) 
CC (−) 

RMSE 

(mm) 

RRSE 

(−) 

Bias 

(mm) 

Reference data 

GRS 1.05 - - - - 

Available in real time 

GAU (dependent) 1.03 0.906 0.60 0.41 -0.01 

RAD (dependent) 0.49 0.902 1.07 0.70 -0.56 

RAD Adj (dependent) 1.03 0.977 0.29 0.22 -0.01 

SAT (dependent) 0.33 0.256 1.75 1.21 -0.72 

H61B 0.61 0.174 1.70 1.21 -0.44 

CML 0.60 0.673 1.11 0.83 -0.45 

Available offline 

IMERG 0.94 0.529 1.39 0.98 -0.11 

PDIR-Now 0.70 0.114 1.89 1.45 -0.35 

ERA5 1.11 0.497 1.34 0.93 0.06 

WRF 0.94 0.367 1.67 1.20 -0.10 

 564 

In terms of the much higher temporal resolution of the measurements and estimates, fewer of them 565 

maintain a correspondingly high reliability. Both the GAU and RAD Adj estimates demonstrated 566 

excellent results, with CC values exceeding 0.9 and RMSE values of 0.6 mm and 0.3 mm, respectively. 567 

The raw radar data (RAD) also correlates well with the reference, achieving CC of 0.90; however, the 568 

discrepancies between values are larger, resulting in RMSE of 1.1 mm. It is important to note that the 569 

GRS products depend on all three data fields. 570 

Among the other data not involved in multi-source RainGRS combination, relatively high 571 

reliability was preserved by the CML field with the best correlation coefficient (CC = 0.67), but Bias is 572 

significant (Bias = -0.4) even though RMSE is not relatively high (RMSE = 1.1 mm). Model simulations 573 

ERA5 and WRF do not correlate well with the reference (CC = 0.50 and 0.37, respectively), and the 574 

discrepancy in value is large (RMSE are 1.3 and 1.7 mm, respectively).  575 

IMERG analyses proved to be the most reliable satellite-based products compared in this work. 576 

By incorporating multiple precipitation data sources, which takes several months, a correlation with 577 

reference (CC = 0.53) is better than both model simulations but worse than that obtained by rain gauge, 578 

radar measurements, and even CMLs. The statistics for the other satellite-based estimates (SAT, H61B, 579 

and PDIR-Now) turned out to be much worse: CC < 0.26 and RMSE > 1.7 mm, moreover, they 580 

drastically underestimate rainfall (their negative Bias is more than 0.35 mm). 581 

 582 
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 583 

Figure 9: Scatter plot comparing CC vs RMSE for each measurement and estimation technique for hourly precipitation 584 
accumulations from 13-16 September 2024, against the RainGRS estimates (GRS) as reference. 585 

 586 

4.4. Verification of extreme daily and hourly precipitation accumulations 587 

For effective flood protection, it is important to have accurate values of very high precipitation. In 588 

order to assess the reliability of the measurements and estimations of extreme accumulations, verification 589 

was conducted by introducing a threshold on the minimum reference precipitation value. 590 

The results of the statistical analysis based on daily accumulations from manual rain gauge 591 

measurements (GAU Manual) for days with recorded rainfall of 50 mm or more are presented in Table 592 

4.The outcome of statistical analysis using as a benchmark daily accumulations from manual rain gauge 593 

measurements (GAU manual) with a threshold for precipitation of 50 mm is presented in Table 4. The 594 

relationship between CC and RMSE values for the verified measurement techniques is shown in the 595 

graph in Fig. 10. 596 

As expected, the results are noticeably worse when compared to those obtained without a 597 

limitation on precipitation magnitude (see Table 2). This is particularly evident in terms of bias, which 598 

indicates an increase in underestimation. However, a negative bias was observed for all the estimation 599 

techniques analysed, even without thresholding. This suggests a real underestimation of intense 600 

precipitation by these methods, rather than simply a result of data selection.The results are clearly worse, 601 

as expected, compared to those without a limit on rainfall magnitude (Table 2).  Excellent agreement 602 

with the reference high precipitation was obtained by rain gauge observations (GAU) and estimates 603 

directly based on measurements (RAD Adj and GRS) for which CC > 0.85 and RMSE < 25 mm. The 604 
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estimate based solely on radar data (RAD) correlates quite well (CC = 0.61), but the values are strongly 605 

underestimated (RMSE = 63.8 mm, Bias = -58.1 mm).  606 

 607 

Table 4. Values of statistics for daily precipitation accumulations from 13-16 September 2024 against data 608 

from manual rain gauges (GAU Manual) as a reference with a threshold for daily precipitation of 50 mm. 609 

Measurement/estimation 

technique 

Mean 

(mm) 
CC (−) 

RMSE 

(mm) 

RRSE 

(−) 

Bias 

(mm) 

Reference data 

GAU Manual 84.38 - - - - 

Available in real time 

GAU 76.90 0.889 16.66 0.53 -7.49 

RAD 26.30 0.614 63.76 2.03 -58.08 

RAD Adj 70.81 0.880 20.18 0.64 -13.57 

SAT 14.43 0.413 75.63 2.40 -69.95 

H61B 28.42 0.283 64.20 2.04 -55.96 

CML 42.06 0.301 53.58 1.70 -42.32 

GRS 75.89 0.904 16.09 0.51 -8.49 

Available offline 

GRS Clim (dependent) 85.32 0.950 10.03 0.32 0.94 

IMERG 39.75 0.336 54.82 1.74 -44.64 

PDIR-Now 23.49 0.170 68.81 2.19 -60.89 

ERA5 54.33 0.357 43.28 1.37 -30.05 

WRF 56.51 0.479 41.14 1.31 -27.87 

 610 

All satellite-based data are inconsistent with the benchmark, as indicated by the low correlation 611 

(CC < 0.42) and significant differences in precipitation values (RMSE > 50 mm). The IMERG product 612 

also has low reliability, although it outperformed the other satellite-derived estimates in previous 613 

verifications.   614 

The result of the verification of the CML estimates is quite surprising compared to the earlier ones: 615 

they have a relatively low correlation (CC = 0.30) and a rather high RMSE (53.6 mm). This can be 616 

explained by the non-uniform distribution of transmitting and receiving stations: in the mountains – 617 

where the highest precipitation was recorded – their network is much sparser compared to other areas 618 

(the opposite in the case of rain gauge networks). 619 

The ERA5 and WRF model simulations have similar errors on precipitation values (RMSE ~ 42 620 

mm), but the correlation is a bit better for the WRF model (CC = 0.48), which may be due to the much 621 

higher spatial resolution of this model. In previous verifications (Table 2), models achieved comparable 622 

results regarding both CC and RMSE. The models still outperform satellite-based estimates. 623 

 624 
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 625 

Figure 10: Scatter plot comparing CC vs RMSE for each measurement and estimation technique for daily precipitation 626 
accumulations from 13-16 September 2024 against data from manual rain gauges (GAU Manual) as a reference with a 627 
threshold of 50 mm. 628 

 629 

A similar analysis was conducted, but the reliability of measurements and precipitation estimates 630 

for high precipitation were verified using hourly accumulations instead of daily accumulations. The 631 

results are depicted in Table 5 and in the graph in Fig. 12. In this case, the reference dataset consists of 632 

RainGRS (GRS) estimates, applying a threshold for hourly precipitation accumulation of 5 mm, with the 633 

assumption that there must be at least 200 pixels (out of a total of 44,218 pixels) fulfilling this 634 

requirement in a given time step. Thresholds of 5-mm for hourly accumulations and 200 pixels for the 635 

area where such precipitation occurred (approximately 0.5% of the entire basin) were introduced to 636 

exclude data with low precipitation from the statistics. Fig. 9 11 shows, as an example, the multi-source 637 

GRS hyetogram at the Kamienica manual rain gauge location, which recorded the highest 4-day 638 

precipitation accumulation of all stations in the flood area. Only twenty hourly precipitation 639 

accumulations exceeding 5 mm were observed during this period, thus this threshold can be considered 640 

appropriate for verification of high precipitation for this flood event. 641 

 642 
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 643 
Figure 911: Hyetogram of 1-hour RainGRS (GRS) estimates at the location of the Kamienica rain gauge station. The 644 
red line indicates the 5-mm threshold of hourly precipitation accumulations. 645 

 646 

In this verification, the statistical results are significantly worse than in Table 3, as correctly 647 

reproducing extremely high hourly precipitation accumulations is challenging. Only GAU, RAD, and 648 

RAD Adj measurements provide relatively reliable results regarding correlation with GRS (CC > 0.50). 649 

As in the previous analyses, the estimate based solely on RAD data gives a significant underestimation 650 

of rainfall (RMSE = 4.3 mm, Bias = -4.1 mm), while for the fields based on rain gauge data, these errors 651 

are much lower: RMSE for GAU and RAD Adj is 2.5 and 0.8 mm, respectively. However, it is important 652 

to note that the GRS reference depends on all estimates using rain gauge or radar data. 653 

 654 

Table 5. Values of statistics for hourly precipitation accumulations from 13-16 September 2024 against the 655 

RainGRS estimates (GRS) as a reference with a threshold for hourly precipitation of 5 mm. 656 

Measurement/estimation 

technique 

Mean 

(mm) 
CC (−) 

RMSE 

(mm) 

RRSE 

(−) 

Bias 

(mm) 

Reference data 

GRS 7.03 - - - - 

Available in real time 

GAU (dependent) 5.29 0.515 2.46 1.63 -1.75 

RAD (dependent) 2.96 0.630 4.32 2.92 -4.08 

RAD Adj (dependent) 7.02 0.907 0.76 0.57 -0.01 

SAT (dependent) 0.85 0.089 6.60 4.68 -6.19 

H61B 1.21 0.029 6.33 4.41 -5.83 

CML 3.37 0.269 4.28 2.96 -3.66 

Available offline 

IMERG 2.60 0.069 5.16 3.42 -4.44 

PDIR-Now 1.06 0.046 6.40 4.43 -5.97 

ERA5 2.27 0.062 5.24 3.57 -4.77 
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WRF 2.38 0.069 5.54 3.84 -4.66 

 657 

Among the datasets not involved in multi-source RainGRS estimation, none of the correlations 658 

exceed CC = 0.1 except for the CML estimate (CC = 0.27). The values of RMSE and Bias are also high 659 

for them (RMSE > 5 mm, Bias between -4 and -6). 660 

The conclusion from this analysis is that the estimation of extremely high precipitation fields with 661 

very high spatial (1 km) and temporal (1 hour) resolution is mainly based on weather radar observations, 662 

but these must first be adjusted to the rain gauge data. Rain gauges can also produce reliable estimates, 663 

but under the condition that a sufficiently dense network of such gauges is available.The conclusion of 664 

this analysis is that reconstructing extreme precipitation fields with very high spatial (1-km) and temporal 665 

(1-hour) resolution relies primarily on direct rain gauge measurements, provided there is a reasonably 666 

dense network of stations. Radar observations can also yield reliable results, but they must first be 667 

adjusted to rain gauge data. However, these conclusions are limited by the dependency of the multi-668 

source GRS estimates on GAU, RAD, Rad Adj, and SAT measurement data. 669 

 670 

 671 

Figure 12: Scatter plot comparing CC vs RMSE for each measurement and estimation technique for hourly precipitation 672 
accumulations from 13-16 September 2024 against the RainGRS estimates (GRS) as a reference with a threshold of 5 673 
mm. 674 

 675 

4.5. Analyses for selected stations 676 

Four stations with manual rain gauges (GAU Manual) were selected to check the consistency of 677 

the precipitation estimated by different techniques and models concerning particular locations for four 678 
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days with the highest values during the flood. They are located in different regions of the basin, where 679 

intense rainfall was observed (Fig. 4), moving from west to east of the Sudety Mountains: 680 

‒ Szklarska Poręba in the Karkonosze Mountains,  681 

‒ Kamienica in the Śnieżnik Mountains near the Kłodzko Valley (the highest daily as well as 4-682 

day precipitation was observed there during this flood),  683 

‒ Głuchołazy situated in the foothills of the Opawskie Mountains,  684 

‒ Gołkowice located in the Ostrava Valley.  685 

Table 6 A1 (in Appendix A) presents accumulations for all verified measurements and estimates 686 

for individual days and the four-day totals in these locations. In Szklarska Poręba and Kamienica, 687 

telemetric rain gauges (GAU) measured daily accumulations very close to the reference rainfall (GAU 688 

Manual), while the other two locations underestimated by about 10-20%. The daily distribution of RAD 689 

values indicates good temporal alignment with the GAU Manual, but a significant underestimation of 690 

rainfall is evident. Adjustment of the radar-based estimates to rain gauge measurements resulted in a 691 

significant increase in RAD Adj values, but they are still lower than the GAU Manual at all locations 692 

except Gołkowice. GRS precipitation accumulations for three stations (Szklarska Poręba, Kamienica and 693 

Głuchołazy) are similar to GAU, i.e. also underestimated in relation to the reference by about 10-20%. 694 

At the Gołkowice location, where there is no telemetric rain gauge, and the GAU values are derived from 695 

interpolation, the GRS estimates are very close to the RAD Adj values and overestimate the benchmark. 696 

The GRS Clim precipitation accumulations best agree with the reference and differ by less than 6%, 697 

however, it should be remembered that they are generated by adjusting GRS products to manual rain 698 

gauge measurements. 699 

Estimates based on CML data are significantly lower than the reference, except Szklarska Poręba, 700 

where the density of the microwave link network is relatively high. This underestimation in the other 701 

stations is probably due to the lack of links near them, so values are derived from the interpolation of 702 

slightly more distant links, usually located at lower altitudes, which record less precipitation. 703 

The variability of all satellite-based precipitation in the analysed days does not correspond well 704 

with the daily distribution of the reference. Accumulations are much lower in comparison to values 705 

measured by manual rain gauges. The IMERG reanalyses slightly outperform the others, which is similar 706 

to previous investigations.  707 

Mesoscale model simulations are also underestimated, although the WRF model does so to a lesser 708 

extent. They better reflect the temporal distribution of daily precipitation accumulations and their 709 

magnitudes than satellite data. 710 

 711 

The cumulative precipitation curves obtained from 1-hour accumulations for the same four stations 712 

are shown in Fig. 1013. The GAU Manual and GRS Clim data generated with a daily step were not 713 

included, and in consequence, the GRS estimates (see Section 4.3) were taken as a reference to assess 714 

the consistency of temporal distributions of verified precipitation. It can be seen from analyses of the 715 
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curves for all four stations that the estimates on which the GRS data depend, i.e. those based on rain 716 

gauge and radar measurements, are similar to each other, although the differences between the reference 717 

and the values derived solely from radars observations are very large. In terms of the independent data, 718 

the curves for CML and WRF reflect the temporal distribution of precipitation relatively correctly. In 719 

contrast, all satellite-based estimates are highly inconsistent with the reference, taking into account 720 

precipitation variability in time, and among them, the IMERG reanalyses indicate the best temporal 721 

alignment, as in previous investigations. 722 

 723 

  724 
 725 

  726 
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727 

 728 

Figure 1013: Cumulative hourly precipitation accumulations for the four stations from Table 6 for the period 13-16 729 
September 2024. 730 

4.6. Overall assessment of the various rainfall measurement techniques 731 

The evaluation of the results obtained in this study is mainly based on the numerical values 732 

summarised in Tables 2 to 5, where the reliability statistics of the individual measurements and 733 

estimations are shown. The analyses were conducted with daily accumulations from the GAU Manual 734 

(Tables 2 and 4) and 1-hour RainGRS estimates as references (Tables 3 and 5). It should be noted that 735 

the latter depends, to differing degrees, on data involved in multi-source combination GAU, RAD, and 736 

RAD Adj, and to a lesser extent on SAT product. Nevertheless, the proportions between the statistics’ 737 

values are similar using both references. This leads to the conclusion that this dependence has little 738 

influence on the final outcomes, however the following overall assessment does not include findings 739 

from the analysis of the consistency of individual data with the reference dependent on them. 740 

4.6.1. Rain gauge data 741 

Spatially interpolated telemetric precipitation data (GAU) proved to be very similar to 742 

measurements from manual rain gauges (GAU Manual), but they generally provide slightly lower values 743 

(Tables 2 and 4). The accuracy of the rain gauge observations also remains high if only heavy 744 

precipitation is considered, which is confirmed by the statistics calculated after introducing an 745 

appropriate threshold on the daily accumulations, as can be seen from a comparison of Table 4 and Table 746 

2. 747 
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Notably, 76 out of 158 telemetric rain gauges are in the same locations as manual ones in the flood 748 

area. This significantly impacts the reliability statistics calculated for the GAU data as, in the case of an 749 

interpolated field, estimated values strongly depend on the distance to the nearest station. 750 

4.6.2. Weather radar-based data 751 

Weather radars reflect the spatial and temporal distributions of the precipitation field very well, as 752 

evidenced by the very high CC correlation coefficients with the reference presented in all tables, 753 

especially Tables 2 and 4, where the benchmark data are independent of the radar measurements.  754 

Raw radar estimates RAD produced significantly underestimated precipitation values, as indicated 755 

e.g. by the very large Bias values (Tables 2 and 4). Adjusting with telemetric rain gauge data considerably 756 

improves this and makes the corrected radar-based precipitation field (RAD Adj) very close in 757 

precipitation values to both GAU Manual and GRS reference estimates. 758 

Analysing only high precipitation, i.e. after introducing an appropriate threshold on the amount of 759 

daily precipitation accumulation, the results were analogous to the analysis without applying a threshold 760 

(Tables 4 vs 2). This confirms the high reliability of the radar measurements also in the case of heavy 761 

precipitation, however the data without adjustment is subject to a large Bias. 762 

4.6.3. Satellite-based data 763 

The satellite-based real-time SAT and H61B fields, based on the products from the EUMETSAT 764 

NWC SAF and H SAF programmes respectively, turned out to be practically useless for the precipitation 765 

estimation in the case study analysed here. They correlate poorly with reference and significantly 766 

underestimate values of precipitation accumulation (Tables 2 and 3). The primary reason is that they are 767 

mainly based on data from geostationary satellites – the only kind that can be used directly for real-time 768 

measurements at high temporal resolution. Among the more advanced satellite-based precipitation 769 

products available only offline analysed in this work, it can be stated that the PDIR-Now estimates are 770 

definitely wrong. The IMERG reanalysis proved significantly better, although its reliability is also not 771 

high. 772 

If the highest daily accumulations are considered by limiting them to values above the threshold 773 

of 50 mm per day, only SAT precipitation based on NWC SAF products shows some agreement with the 774 

reference, although it is weak (Table 4). The correlations of all satellite estimates decrease dramatically 775 

for extreme 1-hour accumulations (Table 5). 776 

4.6.4. Multi-source estimates 777 

The multi-source GRS estimates are generated by the RainGRS system for the merging GAU, 778 

RAD Adj, and SAT precipitation measurements. The analyses carried out in this study showed that these 779 

fields, among all the verified data available in real time, are in the best agreement with independent 780 

reference observations from manual rain gauges (GAU Manual) (Tables 2 and 4). The metrics are 781 



36 

 

slightly better than those for spatially interpolated rain gauges, but the multi-source estimates 782 

significantly outperform the others. This results from the combination that utilises the individual inputs’ 783 

positive features (see Sects. 1.2.2 and 3.2.5). 784 

The GRS Clim product, which is a reanalysis of the GRS field obtained by its adjustment with 785 

GAU manual rain gauges, has the best metrics, including when compared to GRS data. In particular, 786 

characteristics related to precipitation values, such as RMSE and Bias, have improved. However, it 787 

should be noted that the precipitation estimates generated by GRS Clim depend on the reference. Their 788 

usefulness is limited by a poor temporal resolution of one day and a long waiting time of two months 789 

due to the quality control of GAU manual data.  790 

4.6.5. CML-based estimates 791 

CML-based estimates correlate relatively well with daily and hourly accumulation benchmarks, 792 

but relatively high errors relate to differences between verified and reference values: RMSE and Bias. 793 

Data estimated from the measurements of signal attenuation from commercial microwave links in 794 

precipitation are clearly better than satellite-derived fields, even those available offline, but they are 795 

worse than estimates based on rain gauge and radar information. Their reliability is similar to mesoscale 796 

model simulations in terms of daily data, however for hourly accumulations the CML-based estimates 797 

outperform them (Tables 2 and 3). This suggests better representativeness in the temporal distribution of 798 

precipitation. 799 

These relatively good statistics for CML-based data are probably because the network of links is 800 

very dense relative to the rain gauge network, which partly compensates for their much higher 801 

uncertainty. However, there are considerably fewer links in the highest, less urbanised mountainous 802 

areas, where precipitation is usually more intense and the detection of extreme precipitation is 803 

consequently subject to more significant errors (Tables 4 and 5). 804 

4.6.6. NWP-based reanalyses 805 

The NWP simulations have higher reliability than satellite data but clearly lower than radar and 806 

rain gauge measurements. Their metrics are similar when analysing daily accumulations (Table 2), 807 

whereas for hourly ones, they turned out worse in comparison with CML-based data (Table 3). 808 

The results obtained by the ERA5 and WRF models are ambiguous. In terms of daily accumulation 809 

investigations, the reliability of both models is comparable. When analysing 1-hour data (Table 3), the 810 

ERA5 reanalyses proved to be better, although their CC is not high, which indicates a more correct 811 

alignment of the precipitation variability in time. In turn, the WRF model performed better if the highest 812 

daily accumulations were considered, i.e. only above 50 mm per day (Table 4). This is probably due to 813 

the significantly (around 20 times) higher spatial resolution of the WRF model compared to ERA5, which 814 

increases their usefulness for detailed analyses of precipitation more variable in space. When it comes to 815 
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extreme hourly precipitation, i.e. with a threshold for precipitation above 5 mm, none of the mesoscale 816 

models are reliable: correlations with the GRS field do not exceed CC = 0.10 for both (Table 5). 817 

5. Conclusions 818 

In this work, detailed analyses were carried out of the reliability of different precipitation 819 

measurements and estimations during a large flood in Poland in 2024 caused by extremely high 820 

widespread precipitation in an orographically diversified basin. 821 

Their consistency was assessed with the precipitation field or point observations assumed to be 822 

closest to reality (ground truth). As a reference, data from manual rain gauges (GAU Manual) were 823 

chosen as they are considered to be the most accurate, but they are point-wise and have the limitation of 824 

a temporal resolution of 1 day. In order to test the usefulness of data with a higher 1-hour temporal 825 

resolution, RainGRS estimates (GRS) were used as a benchmark. In addition, similar analyses were 826 

conducted, but only the most intense precipitation was considered by applying appropriate thresholds 827 

(over 50 mm/day and 5 mm/hour). 828 

Comparing the various precipitation fields available in real time, the data based on telemetric rain 829 

gauge measurements (GAU) and weather radar observations after adjustment with rain gauge data (RAD 830 

Adj), as well as the multi-source estimates (GRS) derived from a combination of these two types of data 831 

supplemented with satellite information, are definitely most reliable. It can be concluded that during 832 

intense precipitation events triggering floods, even in mountainous areas, rain gauge and radar 833 

measurements are sufficient for accurate real-time monitoring of the precipitation field with high spatial 834 

and temporal resolution, even though IMGW’s measurement networks are not very dense compared to 835 

those of other European countries. 836 

Among the other precipitation data sources, CML-based estimates proved to be the most accurate. 837 

This is surprising as they are based on non-standard measurements, but their strength is the very high 838 

number of microwave links available. However, these data show a large underestimation of precipitation, 839 

indicating the need for more sophisticated quality control and unbiasing. 840 

Reliability analyses of satellite data show that they are generally of little usefulness, apart from 841 

the IMERG estimates. Their relatively good agreement with the reference is due to incorporating a higher 842 

number of different types of satellite measurements, mainly microwave. However, this involves long 843 

waiting times for the final estimates which rather excludes them from operational applications, though 844 

they can be helpful in reanalyses. 845 

The research showed the limited suitability of mesoscale model simulations for analyses with high 846 

temporal and spatial resolution. At the same time, their reliability is sufficient for use when such a 847 

requirement is not necessary. Consequently, they are not particularly useful for analyses of very intense 848 

and spatially variable precipitation. 849 
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Appendix A 850 

Table 6A1. Comparison of daily and 4-day precipitation accumulations for 4 selected stations at locations of 851 

manual rain gauges (Szklarska Poręba, Kamienica, Głuchołazy, Gołkowice). 852 

 Station: Szklarska Poręba Station: Kamienica 

Measurement/estimation 

technique 

13 

Sept 

14 

Sept 

15 

Sept 

16 

Sept 
4-day 

13 

Sept 

14 

Sept 

15 

Sept 

16 

Sept 
4-day 

Reference data 

GAU Manual 20.0 123.8 84.9 63.5 292.2 51.1 114.2 254.5 52.7 472.5 

Available in real time 

GAU 21.72 131.15 85.11 50.47 288.45 49.60 120.2 236.82 51.39 458.01 

RAD 10.27 40.51 22.94 12.71 86.43 26.09 27.06 52.08 12.29 117.52 

RAD Adj 13.57 120.53 69.03 38.96 242.09 48.08 80.08 179.46 40.12 347.74 

SAT 23.22 14.51 7.24 9.30 54.27 9.19 41.90 30.59 5.16 86.84 

H61B 24.63 37.53 78.68 0.42 141.26 23.90 57.44 29.77 6.28 117.38 

CML 29.89 136.66 56.68 36.03 259.26 2.50 22.38 40.24 24.77 89.89 

GRS 20.06 130.96 79.72 47.38 278.12 50.61 118.06 227.15 48.71 444.53 

Available offline 

GRS Clim (dependent) 21.04 130.36 91.76 61.44 304.60 54.92 120.88 249.00 58.24 483.04 

IMERG 31.85 58.41 15.22 14.27 119.75 40.54 61.81 39.81 18.72 160.88 

PDIR-Now 42.00 35.00 31.00 4.00 112.00 29.00 40.00 19.00 11.00 99.00 

ERA5 9.18 41.43 12.75 23.17 86.53 33.51 67.34 82.21 24.69 207.75 

WRF 1.81 65.93 7.43 59.28 134.45 33.69 118.82 95.69 52.53 300.73 

 853 

 Station: Głuchołazy Station: Gołkowice 

Measurement/estimation 

technique 

13 

Sept 

14 

Sept 

15 

Sept 

16 

Sept 
4-day 

13 

Sept 

14 

Sept 

15 

Sept 

16 

Sept 
4-day 

Reference data 

GAU Manual 56.0 158.2 124.3 23.0 361.5 9.7 96.2 118.2 3.8 227.9 

Available in real time 

GAU 51.19 131.35 93.33 26.81 302.68 7.62 90.22 101.27 3.29 202.40 

RAD 19.55 39.66 26.95 9.28 95.44 3.64 49.18 51.86 2.05 106.73 

RAD Adj 53.86 135.36 93.61 28.37 311.20 7.29 111.65 120.89 4.50 244.33 

SAT 3.84 32.80 15.95 4.97 57.56 1.31 39.89 14.55 0.33 56.08 

H61B 10.90 48.14 26.09 3.64 88.77 3.63 52.41 22.20 2.67 80.90 

CML 8.95 34.09 43.32 11.76 98.12 2.50 22.14 63.43 2.11 90.18 

GRS 51.82 133.06 93.40 26.77 305.05 7.96 113.61 118.33 4.26 244.16 

Available offline 

GRS Clim (dependent) 54.89 150.68 116.45 22.55 344.57 10.55 103.73 122.89 4.58 241.75 

IMERG 26.13 74.61 54.68 9.20 164.62 7.77 67.48 77.85 4.48 157.58 
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PDIR-Now 15.00 28.00 21.00 5.00 69.00 6.00 39.00 20.00 6.00 71.00 

ERA5 36.01 68.28 122.77 21.64 248.70 17.09 38.64 90.38 4.66 150.76 

WRF 36.25 93.30 88.53 33.80 251.88 11.32 70.32 79.06 10.55 171.25 

 854 

 855 
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