Response to Reviewer 1

General comments

This manuscript investigates the effects of leaf pigmentation changes and crop residues on the surface energy balance of winter wheat, by improving the ORCHIDEE-CROP model with dynamic albedo, soil evaporation, and surface roughness parameterizations. The study is clearly presented, methodologically sound, and provides valuable insights into biophysical processes often overlooked in land surface models. Some aspects, however, would benefit from refinement:

[Response] Thank you so much for your time in reviewing our manuscript and for your positive feedback on our work. Following your suggestions, the revision of this manuscript is as follows:

(1) Added a sensitivity analysis of key model parameters to analyze the variability of residue effects. The corresponding methodology and results of the sensitivity test were described in section 2.6 and section 3.5; (2) Expanded the discussion of model limitations and uncertainties in section 4.5.

For more details, please find our responses to all of your comments below.

Major Comments

1. <u>The site-to-site variability in residue effects (on evaporation and roughness) deserves more explicit discussion of limitations.</u>

[Response] We agree about the need to clarify site-to-site variability in residue effects. We acknowledge that in reality, residue characteristics and environmental conditions differ substantially among sites. Variations in residue amount, texture, and decomposition rate, as well as differences in soil properties, humidity, wind, and radiation, all influence soil evaporation and surface roughness. These factors together lead to diverse residue effects on energy and water fluxes across locations. In the current version of ORCHIDEE-CROP, however, the representation of residue effects on soil evaporation and surface roughness is intentionally simplified to balance model complexity with the scarcity of data to constrain parameterization. Specifically, the impact of residues on soil conductance (β_4) was represented by an initial reduction factor of 0.5 at the start of the residue covering period that linearly decreases with residue decomposition (Section 2.3.3). While residue influence on surface roughness (Z_0) was prescribed using a fixed residue height (0.5 m), derived from average measurements across five winter-wheat sites (Section 2.3.4, Table S3). These assumptions are uniform across all sites and therefore cannot explicitly represent local variation in residue characteristics, soil properties, or atmospheric conditions.

Despite these simplifications, site-to-site variability in simulated residue effects still emerges from interactions between these uniform parameters and local environmental conditions. Differences in climate (temperature, humidity, radiation, wind speed) and soil state (texture, moisture) modulate the realized impact of residues on soil evaporation and energy partitioning, leading to variable outcomes across sites (Figs. 4, S5-S6, and S9).

To clarify these points in the manuscript, first, we added text in section 4.5 explicitly acknowledging the uniform treatment and its implications with the following sentences:

Lines 634-643: "One possible source of bias during the residue covering period may be the simplification of model parameters. In the present version of ORCHIDEE-CROP, the effects of crop residues on surface-atmosphere coupling are quantified by modulating β_4 and Z_0 . Both variables are described with uniform assumptions to balance model complexity with the scarcity of data to constrain parameterization. Specifically, the impact of residues on β_4 was represented by an initial reduction

factor of 0.5 at the start of the residue covering (Section 2.3.3). While residue influence on Z_0 was prescribed using a fixed residue height (0.5 m), derived from the average of measurements across five winter-wheat sites (Section 2.3.4). These parameter choices are uniform across all sites and therefore cannot explicitly represent local variation in residue characteristics, soil properties, atmospheric conditions and management practices. As a result, the model is incapable of fully resolving site-specific residue impacts, which potentially contribute to the bias of simulated LE and H at certain sites."

Second, we performed a sensitivity test showing how varying the parameters β_4 and residue height modifies results and uncertainty ranges (see details in Comment 2). The new sensitivity analysis indicates that Z_0 , determined by residue height, and β_4 exert primary controls on the surface-atmosphere water-heat exchange (Fig. S13). A $\pm 30\%$ change in residue height consistently weakens the amplitude of flux responses, suggesting that the baseline value of 0.5 m setting may overestimate residue effects on evaporation and turbulent fluxes. Variations in β_4 strongly influence surface temperature, soil evaporation, sensible and latent heat fluxes, underscoring that the site-specific parametrisation of β_4 is essential to capture site-to-site differences in the effects of crop residues. The strong sensitivity to β_4 also highlights the need to better constrain this parameter in future model developments with an appropriate spatial dataset to force the model. Finally, we expanded the discussion to outline future model improvements that could better capture local variability through site-specific residue parameterization, explicit residue energy budgets, and linkage to management on residue cover.

Line 678-683: "[...]. Future model developments should include explicit residue modules and site-specific parameterization to better capture spatial heterogeneity in residue impacts on energy and water fluxes. For example, integrating the canopy interception modules developed by crop models to ORCHIDEE-CROP is a good strategy to better represent the residue impact on the hydrological dynamics, such as modules from CropSyst and RZWQM (Kozak et al., 2007). Moreover, an open-sourced global database from dedicated field trials monitoring energy exchange is required for parametrizing and evaluating this model development."

2. <u>The treatment of uncertainties and sensitivity to input data and climate scenarios could be expanded.</u>

[Response] We agree with this valuable comment regarding the treatment of uncertainties and the sensitivity of model results to input data and climate scenarios. In the revised manuscript, we have expanded both the uncertainty discussion and the sensitivity analyses to address this point more explicitly.

(1) To assess the influence of climate variability on residue impacts, we performed 10-year simulations under both current and drying climate scenarios (section 3.4). Under current climate conditions, residues slightly increased soil water content at 12.5 % soil depth by 0.19±0.27 kg m⁻², with no significant multi-year carry-over due to compensating drainage losses. In the drying scenario, the soil water increase (0.22±0.21 kg m⁻²) was comparable in magnitude but more effective in retaining moisture between seasons, reflecting the dominant control of evaporation under reduced precipitation. The larger and statistically significant soil temperature decrease (-0.28±0.57 °C) under drying conditions further highlights enhanced surface cooling linked to increased surface albedo. Together, these experiments demonstrate that the magnitude and persistence of residue impacts on soil water content, soil temperature, and energy partitioning are climate-dependent, and the model captures interactions between residue properties and hydrometeorological conditions under specific climate conditions.

- (2) The uncertainty induced by input data mainly comes from three aspects. First, while site-based meteorological forcing (e.g., air temperature, wind speed, humidity) ensures site representativeness, 2 ClieNFarm sites lack flux observations and were therefore driven by the 6-hourly 0.5° CRU-JRA (v2.4) product. This substitution inevitably limits the ability of this model to reproduce site-specific water and energy dynamics. Second, the bare soil albedo dataset used to estimate surface albedo carries uncertainties related to quality-restricted training samples (Yu et al., in review). For example, soil samples cannot be extracted under cloudy, snow or crop covering conditions. The vegetation index thresholding used to identify bare soil may include mixed surfaces, such as fallow with crop residues, introducing bias in soil albedo retrievals. Also, the spatial aggregation from 300 m to 0.5° smoothes the field variability of bare soil albedo, reducing the reliability of the model simulation. Third, the incomplete management information in this model, including chemical applications such as fertilizers or physical operations like tillage, constrains the ability of this model to reproduce observed variations in crop phenology, soil water content, and surface fluxes across years.
- (3) We additionally performed a parameter sensitivity analysis to test model uncertainty associated with key residue-related parameters in the improved ORCHIDEE-CROP version (section 2.6, section 3.5, section 4.5 and Figure S13). The analysis tested how surface temperature (T_{surf}), soil evaporation (E_{soil}), sensible heat flux (H), and latent heat flux (LE) respond to $\pm 10\%$, $\pm 20\%$, and $\pm 30\%$ perturbations of individual parameters, including residue height (Height) related with surface roughness, soil conductance (β_4) regulating soil evaporation, duration of surface albedo increase during residue covering period (D_{up}), empirical slopes (k_1 and k_4) in D_{up} and in surface albedo decrease stages in the modelling.

Sensitivity analyses demonstrate distinct and nonlinear sensitivities of surface energy and water fluxes to the tested parameters. Specifically, the sensitivity of T_{surf} is strongest to k_1 , which controls the rate and envelope of 15-day albedo increase and thus regulates net surface radiance. While the response of T_{surf} to β_4 is minor ($\leq 8\%$), indicating that radiative, rather than hydrological processes, dominate T_{surf} variability. The small sensitivity to D_{up} implies that the rate of surface albedo change, rather than the duration, dominantly contributes to the T_{surf} . It is understandable that E_{soil} shows the strongest dependence on β_4 , with $\pm 30\%$ perturbations resulting in 62-101% changes in E_{soil} . Parameters k_1 , k_4 , and D_{up} have secondary effects (changes of $\sim 18-36\%$). These three parameters shape the availability of surface energy for E_{soil} . It indicates that the E_{soil} is jointly controlled by albedo-induced surface radiation and evaporation ability, which aligns with our previous analysis (Figure 4(a)). The H and LE exhibit sensitivity to D_{up} , k_1 , and β_4 , consistent with the strong coupling between surface energy partitioning and atmospheric forcing (Figure 4, Figure S5, S6 and S9). We note that the strong sensitivity of E_{soil} to energy changes compared to the lagged energy balance component LE.

We included the methodology of sensitivity analysis in section 2.6, and the result in section 3.5 with the following sentences (Figure S13 is added in the supplementary information):

- (1) Lines 369-372: "Section 2.6 sensitivity analysis: We performed sensitivity tests of the major parameters (i.e. k_1 , k_4 , β_4 , Height, duration of α_{surf} increase during residue covering period (D_{up})) linking to the α_{surf} variation and the responses of the energy and water budgets, particularly for the ones without enough constraints from field observations. The sensitivity test was conducted by changing the parameters by $\pm 10\%$, $\pm 20\%$ and $\pm 30\%$ from the initial calibrated values. Their impacts on T_{surf} , H, E_{soil} and LE were evaluated."
- (2) Lines 501-516: "Section 3.5 Sensitivity of energy and water processes to parameters: Sensitivity analyses reveal pronounced nonlinear responses of land surface water and energy processes to

parameter dynamics (Fig. S13). For T_{surf} , k_I exhibits the highest sensitivity, as it governs the rate and ceiling of 15-day surface albedo increase and consequently modulates available surface radiation during the residue covering period (Fig. S13a). A $\pm 30\%$ perturbation in k_I induces 8.69% and 30.78% enhancements in surface cooling, respectively. In contrast, T_{surf} is only weakly affected by the hydrological parameter β_4 (-4.46% / +2.98% change in surface cooling for $\pm 30\%$ variations), consistent with the scenario simulations (Fig. 4b). The parameter D_{up} also shows limited influence on T_{surf} (-8.35% / +2.53% change in cooling for $\pm 30\%$ variations).

For E_{soil} , β_4 is the dominant control (Fig. S13b). A decrease or increase in β_4 from the baseline by 30% results in a 62.48% reduction or 100.85% increase in the decline of E_{soil} , respectively. The parameters k_1 , k_4 , and D_{up} also influence E_{soil} , with a $\pm 30\%$ variation leading to -32.40% / -35.53%, -17.72% / +22.35%, and -29.49% / -18.57% changes, respectively.

For H, D_{up} exerts the strongest control, followed by k_I and β_4 (Fig. S13c). Adjusting these parameters by $\pm 30\%$ alters H by -10.53% / +56.34%, -42.55% / +36.77%, and -27.60% / +27.33%, respectively. β_4 is also the most sensitive parameter for LE, reflecting its dependence on E_{soil} . $\pm 30\%$ variations in β_4 yield +89.78% / -62.16% changes in LE (Fig. S13d). In contrast, the strong sensitivity of E_{soil} to k_I does not propagate to LE, with only -2.66% / +8.21% changes observed under equivalent k_I perturbations (Fig. S13c and d)."

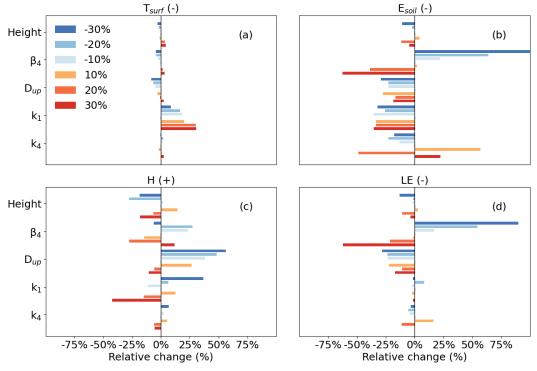


Figure S13 Relative change in residue impacts on surface temperature (T_{surf} , (a)), soil evaporation (E_{soil} , (b)), sensible heat flux (H, (c)) and latent heat flux (LE, (d)) by varying ± 10 , ± 20 and $\pm 30\%$ of residue height (Height), soil conductance (β_4), duration of surface albedo increase during residue covering period (D_{up}), slopes (k_I and k_4) in D_{up} and in surface albedo decrease stages in the modelling. Residue impacts are quantified by relative changes of variables above between ORC-AE and ORC-D. ORC-AE adjusts surface albedo, β_4 and surface roughness together in the ORCHIDEE-CROP model. ORC-D is the initial model version. Parameters are changed one by one, while the others are kept the same. '(+)' and '(-)' behind the subplot titles represent the increase and decrease of variables caused by parameters at baseline condition.

Finally, we revised and expanded the discussion of uncertainty sources in section 4.5 to clarify the limitations and uncertainty of this model improvement:

Lines 644-647: "[...], The sensitivity analysis also highlights the uncertainties introduced by parameter selection (Fig. S13). The β_4 and k_1 exert strong control over the spatiotemporal partitioning of available surface energy between LE and H. The use of fixed parameter values and limited calibration at a few sites inevitably contributes to model uncertainty and constrains the representation of local variability.

Lines 651-673: "[...], A test of quantifying the residue impact on E_{soil} at 15 field experiments distributed globally shows that residue cover exceeding 80% leads to an approximately 20-30% reduction in E_{soil} during the residue covering period (not shown). Therefore, the assumed 50% initial decline in β_4 in the improved model (Eq.16) might overestimate residue impacts, potentially explaining the lower E_{soil} and LE simulated across sites in the new model compared with both the initial model version and observations (Fig. S10).

In addition, specific hydrological processes impacted by crop residues were not accounted for here, such as water interception on the surface of residues, and uptake/release of water from residues (Kozak et al., 2007; Swella et al., 2015). Rainfall interception by residues alters the timing and magnitude of soil water input and enhances evaporation from residue surfaces, thereby modifying surface moisture and heat exchanges (Mitchell et al., 2012; Thapa et al., 2021). However, contrasting evaporation drivers in soil vs. residue layers introduce complexity to surface evaporation processes. The omission of these processes likely increases model uncertainty in biophysical simulations under variable rainfall conditions.

The input data used to drive the model introduces several structural uncertainties. First, while site-based meteorological forcing (e.g., air temperature, wind speed, humidity) ensures high representativeness, at two ClieNFarm sites meteorological observations were missing and simulations were instead driven by the 6-hourly 0.5° CRU-JRA (v2.4) product. This substitution inevitably limits the ability of our model to reproduce site-specific water and energy dynamics.

Second, the bare soil albedo dataset used to estimate surface albedo carries uncertainties related to quality-restricted training samples (Yu et al., in review). For example, soil samples cannot be extracted under cloud, snow or crop covering conditions. The vegetation index thresholding used to identify bare soil may also include mixed surfaces such as crop residues, introducing bias in soil albedo retrievals. Also, the spatial aggregation from 300 m to 0.5° smoothes the field variability of bare soil albedo, reducing the reliability of the model simulation.

Third, the incomplete representation of management practices in our model, including fertilizer and pesticide application as well as physical operations like tillage, limits the model's capacity to reproduce observed variations in crop phenology, soil water content, and surface fluxes across years."

3. <u>Figures are informative but some captions and explanations are too brief; adding interpretive detail would improve readability.</u>

[Response] We apologize for the unclear information about our figures and thank you for helping us to improve it. We included more detailed information in Figure 1-5 and Supplementary figure 3-12:

In the main text:

(1) Lines 101-119 in Figure 1: 'Figure 1 The procedure of parameterization of crop and residue albedo $(\alpha_{surf}$ and $\alpha_{res})$, soil evaporation (E_{soil}) and surface roughness (Z_0) in the ORCHIDEE-CROP model. Panel

- (A) illustrates the input datasets for albedo calibration. α_{soil} and α_{surf} are bare soil albedo (α_{soil}) and surface albedo (α_{surf}), respectively. f_{crop} and f_{res} are the gridded fractions of crop (f_{crop}) and residues (f_{res}), respectively. SW IN and SW OUT are half-hourly incoming (SW IN) and outgoing (SW OUT) solar radiance observed at 7 eddy-covariance (EC) sites. Panel (B) shows the identification of foliar yellowing and residue covering periods based on the time series of α_{surf} (black curve) and leaf area index (LAI, green curve). $T_{0.5}$ represent the dates of maximum LAI (T_0 , green dotted vertical line), albedo increase start (T_1 , orange dotted vertical line), harvest (T_2 , grey solid vertical line) and albedo increase end (T_3 , shallow-blue dotted vertical line), 30 days after harvest (T_4 , grey solid vertical line) and tillage (equals to 90 if no tillage) (T_5 , dark-blue dotted vertical line). α_{min} and α_{max} are the minimum and maximum surface albedo on T_l and T_3 . The shallow-green, orange, yellow and brown areas show the conceptual growing, maturity, residue covering and bare soil periods of winter wheat. Panel (C) describes trend fittings for crop albedo (α_{crop}) and α_{res} . Features in two plots have the same meanings as those in Panel (B). $f_{crop, yellowing}$ is the fraction of crop during the foliar yellowing period. RC is the duration of T_2 and T_5 , k_1 , k_2 , k_3 and k_4 are the fitting parameters during foliar yellowing and residue covering periods. day and t are the number of days since T_1 and T_2 , respectively. Panel (D) illustrates parameterization of α_{surf} as a weighted combination of α_{crop} , α_{res} and α_{soil} in the ORCHIDEE-CROP model. The daily α_{surf} in orange in the upper plot is derived from the new calibrated process based on k_l - k_d , compared to the old model (plot below). Panel (E) presents parameterization of surface-atmosphere exchange. β is the resistance coefficient; r_{au} , speed, C_d , q_{surf} and q_{air} are the air density (r_{au}) , wind speed (speed), drag coefficient (\mathcal{C}_d), saturated surface air moisture (q_{surf}) and specific humidity (q_{air}), respectively.
- (2) Lines 394-397 in Figure 2: 'Figure 2 The comparison of daily surface albedo (α_{surf}) predictions based on the new parameterization (Figure 1) with independent observation from five sites in Europe during (a) the foliar yellowing and (b) residue covering periods, with coefficient of determination (R^2) and root mean square error (RMSE) in the bottom-right corners. The dotted black line is the 1:1 line.'
- (3) Lines 410-416 in Figure 3: 'Figure 3 The comparison of surface albedo (α_{surf}) predicted from the old (orange dots, ORC-AE) and new (red dots, ORC-D) ORCHIDEE-CROP models and observations at Grignon site in France (gray dots) in 2018. ORC-AE represents the new model version with effects of the modified α_{surf} and the refined soil conductance (β_4) and surface roughness (Z_0), while ORC-D suggests the initial version of the model. The observed α_{surf} is computed from site radiation measurements through the Integrated Carbon Observation System (ICOS) Data Portal. The green, black and blue solid lines are the simulated start of the foliar yellowing period (shallow green area) ($T_{yellowing, start}$), harvesting date ($T_{harvest}$) and the end of residue covering period (shallow blue area) ($T_{res, end}$), respectively.'
- (4) Lines 428-436 in Figure 4: We included: "[...], the grey dotted vertical line in each plot represents zero on the y-axis." at the end of the Figure 4 caption.
- (5) Lines 479-484 in Figure 5: 'Figure 5 The 10-year cumulated effect of new parameterization of surface albedo (α_{surf}), surface roughness (Z_0) and soil conductance (β_4) on (a) soil water content (SWC) and (b) simulated daily soil temperature (T_{soil}) at 12.5 % soil depth under current and drying climate scenarios at 6 sites from 2011 to 2020. Monthly temperature and rainfall are obtained from the 6-hourly meteorological variables of the 0.5° CRU-JRA product (v2.4), shown in (c) and (d). Shown are the differences between the results from ORC-AE and ORC-D. ORC-AE represents the new model version with effects of the modified α_{surf} and the refined β_4 and Z_0 , while ORC-D suggests the initial version of the model.'

In the supplementary information:

- (1) Lines 23-31 in Figure S3: The 'old model' is replaced with 'initial version'; Line 29: The 'shallow green' & 'shallow blue' are replaced by 'shallow-green' & 'shallow-blue'; Line 30: 'The grey dotted vertical line in each plot represents zero on the y-axis.' is added.
- (2) Lines 35-42 in Figure S4: The '(orange dots)' & '(red dots)' are replaced with '(orange dots, ORC-D)' & '(red dots, ORC-AE)'; Line 37: The 'eddy covariance' is replaced by 'radiation'; Line 39: 'The black and blue solid lines are the simulated harvesting dates ($T_{harvest}$) and the recorded tillage date ($T_{tillage}$), respectively.' is deleted; Line 40-41: The 'shallow green area' & 'shallow blue area' are replaced by '(shallow-green area) ($T_{yellowing, start}$)' & '(shallow-blue area) ($T_{res, end}$)'; and 'harvesting date' is replaced with 'harvesting date ($T_{harvest}$)'.
- (3) Lines 45-52 in Figure S5: The 'old model' is replaced with 'initial version'; '[...]. The grey dotted vertical line in each plot represents zero on the y-axis.' is added.
- (4) Lines 61 in Figure S6: 'The grey dotted vertical line in each plot represents zero on the y-axis.' is added.
- (5) Lines 65-73 in Figure S7: 'Daily changes of total soil water content (SWC) (a) and SWC in different layers up to 2 m (b) in ORC-A' is replaced with '(a) Daily changes of total soil water content (SWC) in ORC-A'; Line 70-72: 'The grey dotted vertical line in each plot represents zero on the y-axis.' and '(b) Daily changes of SWC in different soil layers up to 2 m in ORC-AE compared to the initial version averaged over the harvested years across the twelve sites.' are added.
- (6) Lines 76-85 in Figure S8: The 'old model' is replaced with 'initial version'; the 'ORC-AE extends these modifications by adjusting surface albedo' is replaced with 'ORC-AE adjusts surface albedo'.
- (7) Lines 88-95 in Figure S9: 'The grey horizontal dotted line in each plot represents zero on the y-axis.' is added.
- (8) Lines 98-106 in Figure S10: The 'ORC-AE (green boxes) extends these modifications by adjusting α_{surf} ' is replaced with 'ORC-AE adjusts α_{surf} '; Line 101: The 'old model' is replaced with 'initial version'; Line 105: 'The grey horizontal dotted line in each plot represents zero on the y-axis.' is added.
- (9) Lines 109-117 in Figure S11: The 'ORC-AE (green boxes) extends these modifications by adjusting α_{surf} ' is replaced with 'ORC-AE adjusts α_{surf} '; Line 112: The 'old model' is replaced with 'initial version'; Line 116: 'The grey horizontal dotted line in each plot represents zero on the y-axis.' is added.
- (10) Lines 120-130 in Figure S12: 'The daily difference of latent and sensible heat flux (LE and H) between model simulations and observations across different soil water content intervals (SWC, %) during residue covering periods and the subsequent bare soil periods at 4 sites. ORC-AE (R-new and BS-new) adjusts surface albedo (α_{surf}), soil resistance (β_d) and surface roughness (Z_0) together in the ORCHIDEE-CROP model. ORC-D (R-old and BS-old) is the initial version. Observations were obtained from daily eddy-covariance measurements via the Integrated Carbon Observation System (ICOS) Data Portal. The periods of residue covering and bare soil were extracted by identifying site photos. 'R', 'BS' and 'OSS' in each plot

represent residues, bare soil and observation. '; Line 130: 'The mixing boxes for SWC intervals mean no data' is added.

Overall, the work is solid and novel. I recommend minor revision before acceptance.

Reference

Kozak, J. A., Ahuja, L. R., Green, T. R., and Ma, L.: Modelling crop canopy and residue rainfall interception effects on soil hydrological components for semi-arid agriculture, Hydrol. Process., 21, 229-241, https://doi.org/10.1002/hyp.6235, 2007.

Mitchell, J. P., Singh, P. N., Wallender, W. W., Munk, D. S., Wroble, J. F., Horwath, W. R., and Scow, K. M.: No-tillage and high-residue practices reduce soil water evaporation, California Agriculture, 66 (2), https://doi.org/10.3733/ca.v066n02p55, 2012.

Swella, G. B., Ward, P. R., Siddique, K. H. M., and Flower, K. C.: Combinations of tall standing and horizontal residue affect soil water dynamics in rainfed conservation agriculture systems, Soil and Tillage Research, 147, 30-38, https://doi.org/10.1016/j.still.2014.11.004, 2015.

Thapa, R., Tully, K. L., Cabrera, M., Dann, C., Schomberg, H. H., Timlin, D., Gaskin, J., Reberg-Horton, C., and Mirsky, S. B.: Cover crop residue moisture content controls diurnal variations in surface residue decomposition, Agricultural and Forest Meteorology, 308-309, 108537, https://doi.org/10.1016/j.agrformet.2021.108537, 2021.