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Abstract. Doppler wind Lidars (DWLs) have been widely used to detect wind vector variations, based on ground monitoring 

of atmospheric boundary layer and wind shear. This study evaluates the performance between three DWLs and in situ balloon 

radiosonde. Lidars data comparison focuses on low altitudes (height < 2 km) from July to September 2021 from three producers: 10 

MSD (Minshida), CUIT (homemade), and WP (windprofile) Lidars. Within the research height range, comparisons show the 

root mean square errors (RMSE) for wind speed were 1.11 m s-1, 4.45 m s-1, and 5.15 m s-1, while wind direction RMSE were 

shown at 49.83°, 82.89°, and 84.87°, respectively. The measurement accuracy decreases with the altitude increase (up to 2km). 

The Lidar performance requires a certain amount of aerosol backscattering, when PM2.5 ranges within 35-50 µg m-³, MSD 

Lidar exhibited the highest wind speed correlation (R² = 0.82) with radiosonde, and the wind direction accuracy observed with 15 

the three Lidars is enhanced with the increase of aerosol concentration, indicating that particle loading is the critical factor 

affecting the wind profile. Lidar performance varied significantly with planetary boundary layer heights (PBLH), particularly, 

the Lidar performance is relatively optimal when the PBLH within 500-750 m, with the Pearson correlation coefficients (PCCs) 

of wind speed are 0.97, 0.92, and 0.72, while the wind direction is shown at 0.98, 0.75, and 0.70, respectively.  The vertical 

relationship between cloud base height (CBH) and PBLH had also varied influences on the Lidar measurements. Machine 20 

learning was used to remove anomalies and complement missing values, the random forest (RF) demonstrated superior 

performance, with the Area Under the Curve (AUC) of 0.93(CUIT) and 0.90(WP) in the Receiver Operating Characteristic 

(ROC) curves. RF-based correction of CUIT data enhanced the R² from 0.42 to 0.65. The R² between the RF-based CUIT and 

Aeolus satellite data was 0.83, indicating that the method effectively improved data, even in circumstances of anomalies. We 

proposed a new correction algorithm combined with the isolation forest (IF) and RF to handle high-dimensional and incomplete 25 

datasets. Our procedure could increase the Lidar measurement quality of wind.  
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 Introduction 

The development of the low-altitude economy depends on efficient airspace management and flight scheduling. The Lidar 

technology has laid a strong foundation for turbulence measurement, wind shear detection, gravity wave analysis, and 30 

boundary layer height estimation (Chanin et al., 1989; Harvey et al., 2015; Sathe and Mann, 2013; Shun and Chan, 2008; 

Talianu et al., 2006). The biggest, most significant risk of unmanned aerial vehicle (UAV) flight is the wind shear in the low 

layer at the boundary. DWL uses the optical Doppler effect to measure atmospheric wind speed by detecting the frequency 

shift between emitted and backscattered laser signals, offering high spatial and temporal resolution measurements(Du et al., 

2017).  35 

Conventional wind measurement systems face inherent limitations. In recent years, Lidar has successfully overcome many of 

the limitations associated with conventional detection equipment (Liu et al., 2019). For example, differing from mechanical 

anemometers, DWL can remotely measure wind speed without contact with the atmosphere (Tavakol Sadrabadi and Innocente, 

2024). Radiosondes, reckoned as the best accuracy, suffer from discontinuous temporal sampling and cannot support all-

weather monitoring (Abdunabiev et al., 2024). In observational experiments, there are phenomena leading to anomalies and 40 

missing DWL data. These errors may arise from different atmospheric conditions, for instance, the strong aerosol concentration 

and Brillouin backscattering signals may lead to errors in retrieving low-altitude wind speeds (Fahua; et al., 2021). Traditional 

Lidar data inversion methods (e.g., Velocity Azimuth Display, VAD; Doppler Beam Swinging, DBS) exhibit horizontal wind 

speed errors exceeding 10% in complex terrains (Liu et al., 2022). Differences in pulsed laser instruments can affect the 

detection efficiency and accuracy of Lidar's detection (Ge et al., 2014), as well as data processing methods (Smalikho and 45 

Banakh, 2016).  

Machine learning has been demonstrated to have the ability to solve missing values and improve DWL accuracy, such as noise 

filtering and data imputation (Lin et al., 2022; Lolli, 2023; Yang et al., 2021). Meteorological data have the characteristics of 

time series, and machine learning methodologies such as the RF and neural networks have been proved effective in unveiling 

latent patterns in wind-related time series data. The incorporation of machine learning-based validation and quality control 50 

algorithms has the potential to enhance wind measurement accuracy and facilitate the prediction of upper-level wind fields. In 

recent years, wind field data has received a lot of attention, and the RF algorithms are particularly popular (Vassallo et al., 

2020; Wang et al., 2017). For example, the RF algorithm has been used to correct numerical model wind predictions for 

weather forecasting (Wang et al., 2021), improving forecast accuracy significantly. The RF algorithm employs an ensemble 

of decision trees to mitigate overfitting and enhance prediction robustness (Hastie et al., 2009). It has been proved to enhance 55 

prediction accuracy without a substantial increase in computational cost, to be robust against multicollinearity, and to 

demonstrate considerable stability in scenarios involving anomalies (Boulesteix et al., 2011). The RF algorithm has been 

demonstrated to address missing data effectively and to manage high variability, rendering it well-suited for the preprocessing 

of wind datasets (Zhao et al., 2024b). In comparison to other algorithms, such as AdaBoost and K-nearest neighbors (KNN), 

RF demonstrates superior performance in predicting wind speed and power generation, as evidenced by reduced mean absolute 60 
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percentage error (MAPE) values (Malakouti, 2023). This study proposes the RF algorithm for Lidar wind data to develop a 

wind profile correction algorithm. For the verification of wind profiles, a radiosonde will be used to enhance the stability of 

the system and evaluate the feasibility of the algorithm (Huang et al., 2021). 

Spaceborne wind Lidar technology is also effective for wind detection (Kim et al., 2021). Satellite retrieval for wind field 

information has become an important trend for future applications. The combination of ground-based and spaceborne Lidar 65 

enables high-precision atmospheric wind speed observation, which is crucial for weather forecast and wind energy 

development, but data acquisition rates for lower atmospheric layers significantly decrease under multilayered clouds or 

optically thick cloud systems (Evgenia et al., 2021; Rennie et al., 2021). Satellites equipped with scatterometers and 

radiometers, such as Metop-A, Metop-B, and Coriolis (He et al., 2022a; Silva et al., 2022), provide wind speed and direction. 

The Aeolus satellite, launched by the European Space Agency in 2018, is the first to provide comprehensive global wind 70 

observation. It operates in a 320 km sun-synchronous orbit, following a flight path roughly along the Earth’s day-night 

boundary, and completing one orbit every 90 minutes (Evgenia et al., 2021). The satellite provides high-quality wind 

components and aerosol optical properties from the Earth’s surface to the lower stratosphere(Evgenia et al., 2021; Flament et 

al., 2021). The satellite with a 1.5 meter diameter Lidar system emits ultraviolet laser pulses and collects scattered light particles 

from the atmosphere at altitudes of 20-30 km. Wind speed, direction, and other parameters are determined by measuring the 75 

Doppler shift of the light waves (Witschas et al., 2020). This technology is one of the most effective measurements. In 2021, 

Guo et al. compared data from the European Space Agency’s satellite with domestic wind profiler RWP network measurements, 

finding a good match between the Aeolus wind product and the RWP data(Guo et al., 2021). Siying et al. examined the seasonal 

variation in Aeolus satellite detection performance in China by combining ERA5 and radiosonde data, concluding that the 

satellite’s performance is influenced by seasonal factors (Siying et al., 2021). Mie winds exhibit minimal systematic bias in 80 

regions with strong scatterers (typically clouds/aerosols), though random errors vary with signal strength. Rayleigh winds 

show small biases and random errors in the clear-sky free troposphere but face increased uncertainty in cloud-affected regions 

or the clear-sky boundary layer. Within cloud layers, Rayleigh channel signals are heavily scattered and absorbed by cloud 

particles, necessitating reliance on the Mie channel. Aeolus’ strength lies in its global coverage, whereas its weaknesses include 

vertical resolution, cloud-penetration capability, and high sensitivity to clouds. Radiosondes remain an unparalleled reference 85 

benchmark, especially for validating Aeolus under cloudy conditions-despite their spatial representativity limitations. However, 

there is still a gap between comparing and validating Aeolus satellite products and Lidar data. Joint comparisons of spaceborne 

and ground-based measurements are essential for assessing the advantages and limitations of Lidar in accurately capturing 

wind fields, which will support the integration of laser sensors and inversion algorithms in next-generation wind measurement 

satellites.  90 

This study investigates wind field measurements using three ground-based Doppler Lidar systems (CUIT, MSD, and WP 

Lidars) through a three-month comparative campaign at the Nanjiao Observatory in Beijing, collocated with radiosonde 

observations. the accuracy of the three ground-based Lidars are evaluated against radiosonde data as the reference standard. 
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The study investigates the impact of PM2.5 concentration on wind measurement performance. The effect of height on wind 

speed and direction was analyzed by comparing the Lidar performance under different PBLH and CBH conditions. The study 95 

also conducts satellite-ground validation to assess the consistency of the Aeolus Satellite. We propose a novel machine learning 

framework for wind profile correction by comparing various algorithms to optimize the data accuracy. 

2 Instruments and methods 

2.1 method and instruments 

The experiment was conducted at Beijing’s Nanjiao Observatory (39.80° N, 116.32° E, 30 m a.s.l.) from June 9 to August 31, 100 

2021, featuring a three-month intensive comparative observation campaign with multiple Lidar wind measurement systems. 

The Nanjiao Observatory, an integrated atmospheric observation base of the China Meteorological Administration. It plays a 

significant role in monitoring and predicting weather changes in the Beijing region. The observatory stands as the sole upper-

air meteorological station within a 200-kilometer radius, and launches enhanced radiosondes every day at 01:15, 07:15, and 

19:15 LST. As the radiosondes ascend with the ballon, they drift with the wind and collect upper-air wind field data. These 105 

balloons can climb to at least 40 km altitudes, providing wind field data within the region.  

As shown in Fig. 1, Three coherent DWLs—MSD (Minshida Technology Co.), CUIT (homemade), and WP (WindPrint 

S4000)—were deployed alongside daily radiosonde launches. Both the MSD Lidar and CUIT Lidar employ single-frequency 

pulsed fiber lasers with a wavelength of 1550 nm. Aerosol molecules and large particles present in the air serve as tracers of 

the wind field. Coherent DWL retrieves the atmospheric wind field by measuring the backscatter of aerosols moving with the 110 

wind field(Weickmann et al., 2009).  
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Fig. 1. Location of the Nanjiao Observatory and instruments deployed during the campaign. 

This study necessitates retrieving Aeolus satellite data from the European Space Agency (ESA) website 115 

(https://aeolus.services/) for comparative analysis. Aeolus is a wind-profiling satellite, launched by ESA in 2018. It operates 

in a 320 km Sun-synchronous orbit, following a flight path approximately aligned with Earth’s day-night terminator, 

completing an orbit every 90 minutes (Evgenia et al., 2021). The satellite is equipped with a 1.5 m diameter telescope, a 

scattering receiver to collect reflected signals, and a Doppler wind ultraviolet Lidar system named "Aladin," which operates 

with an output power comparable to a small nuclear reactor and can penetrate the atmosphere up to 30 km altitude. Its working 120 

principle involves a processing system with a 1.5 m diameter aperture emitting pulsed ultraviolet laser beams (wavelength 355 

nm) at a rate of 50 observations per second, with each beam generating billions of photons directed at the atmosphere. However, 

only a few hundred are scattered back to the satellite due to interactions with atmospheric molecules. The Doppler effect 

determines the time delay between emitted pulses and backscattered signals. The Doppler effect determines the time delay 

between emitted pulses and backscattered signals, and the wind field is observed by calculating the wind direction, speed, and 125 

displacement. The mean wind speed measurements are obtained by averaging the values obtained in vertical and horizontal 

directions. Vertical sampling is conducted within 24 altitude bins, ranging from 0.25 km to 2 km. 

A comparison of the technical specifications of Aeolus and other Lidars is presented in Table 1. The three Lidars use range 

gates to select specific distance ranges, measuring the velocity of aerosol particles within these ranges, and obtaining wind 

speeds at different altitudes. The Aeolus Level 2B (L2B) product is the Aeolus satellite's primary wind field product. It provides 130 

horizontal line-of-sight (HLOS) wind speed observations that have been atmospheric corrected and geo-located, extracting the 
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necessary L2B data variables, such as the latitude, longitude, and wind speed information within the observation time range. 

The L2B product also provides scene classification based on the backscatter ratios corresponding to winds from "cloudy" or 

"clear" atmospheric regions, generating observation types such as "Rayleigh-clear," "Rayleigh-cloudy," and "Mie-

cloudy"(Borne et al., 2024; Martin et al., 2021). 135 

The satellite-Lidar comparison in the article refers to the method proposed by Guo et al.(Guo et al., 2021). The Aeolus Level 

2B wind products represent averages over specific vertical bins (each bin spanning 0.25–2 km in height), while ground-based 

instruments achieve resolutions of 30 m/50 m/60 m. Preprocessing Steps as follows: 

Step 1: Partition the high-resolution ground-based lidar data according to Aeolus’s vertical bin boundaries. 

Step 2: Average the ground-based data within each bin to generate vertical-layer-averaged wind fields corresponding to Aeolus. 140 

Step 3: Project the averaged wind fields onto Aeolus’s line-of-sight (HLOS) direction for comparison. 

Table. 1. Instruments Technical Index. 

Index CUIT Lidar MSD Lidar Aeolus-Level 2B 

Lidar detection Height 50m~1500m 50m~5000m 0～30km 

Range resolution 50m 30m/60m 0.25-2km 

Speed measurement range 0~60m s-1 -55m s-1~55m s-1 -150m s-1-150m s-1 

Accuracy of speed 

measurement 
≤0.2m s-1 ≤0.5m s-1 1～3m s-1 

Laser pulse band 1550nm 1550nm 355nm 

Power consumption 76W 300W~1000W 850W 

Size 440mm×400mm×260mm 700mm×700mm×1300mm 4.6m×1.9m×2.0m 

Weight 21.5kg 130kg 1260kg 

Working temperature range -30℃~+50℃ -30℃~+50℃  

 

2.2 Data processing 

The collected data often have outliers in the DWL measurement process. Data use quality control can obtain accurate 145 

information about the changes in the atmospheric wind profile, which is helpful to understand and predict the atmospheric 

motion pattern. As shown in Fig. 2, the wind speed and direction data from the radiosonde, CUIT Lidar, MSD Lidar, and WP 

Lidar are height-matched through the implementation of the sliding window method, producing a comprehensive dataset that 

is arranged sequentially based on time, altitude, wind direction, and wind speed. This dataset serves as the foundation for 
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subsequent analyses. The sliding window method, widely used in signal processing and time series analysis, was applied to 150 

align datasets. This method involves strategically restricting the maximum number of data points that each window can 

accommodate, as previously outlined in the extant literature (Wang et al., 2023; Zhao et al., 2024a). The specific matching 

process, using the radiosonde height and CUIT Lidar height as an example, employs a sliding window of size 3, moving two 

positions to the right each time. In each window, a value is selected and compared with the CUIT Lidar height, with the closest 

value being selected as the matched radiosonde height. 155 

 

 

Fig. 2. The flow of Lidar and radiosonde dataset height matching. 

When measuring wind speed, sudden peaks often result in anomalous values. The isolation forest (IF) model is used to filter 

the data to identify and remove these anomalies. IF (Liu et al., 2008) is an unsupervised anomaly detection algorithm that 160 

effectively identifies anomalies in a dataset by isolating outliers(Hernandez-Mejia et al., 2024). The algorithm recursively 

partition data points into subsets using randomly selected features and thresholds (Borne et al., 2024). Anomalies require fewer 

partitions to isolate them from other data (Liu and Aldrich, 2024). Anomalous values have the characteristic of being few and 

significantly different from normal values. The IF can separate and remove anomalies without modeling the normal data, and 

identify anomalous data accurately. In constructing the binary tree structure, fewer partitions are required to isolate anomalous 165 

data, which is closer to the root, and normal data is further from the root. This feature allows for effective anomaly detection. 

The CUIT data is complete without any omission. The one with the most missing data is CUIT Lidar, where 426 out of a total 

of 2,885 data points are missing, the missing rate reaches 14.8%. The second one is WP Lidar, there are 46 missing data points, 

accounting for 1.6% of the total 2,885 points. The following algorithm will be used to optimize missing and anomalous data. 

2.2.1 Isolation tree 170 

Let 𝑇 be a node of the isolation tree (iTree). 𝑇 has two possibilities: it is either a leaf node with no children or an internal 

node with a test and exactly two children. (𝑇𝑙 , 𝑇𝑟). The test is composed of an attribute 𝑞 and split value 𝑝, where 𝑝 > 𝑞, 

which divides the data points into 𝑇𝑙  and 𝑇𝑟. 

The sample data 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛}where 𝑛 represents the number of instances in the distribution. The iTree is recursively 

constructed by splitting based on the attribute 𝑞 and split value 𝑝. The splitting process terminates when the tree reaches the 175 

height limit (|𝑋| = 1), or when all instances in 𝑋 have the same value. 
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2.2.2 Anomaly Detection 

For anomaly detection, the method primarily ranks data points based on path length or anomaly score, with the points at the 

top being considered anomalous. 

Path length: The path length ℎ(𝑥)of point 𝑥 is calculated as the distance from the root node of the iTree to the leaf node for 180 

point 𝑥. 

Anomaly score： 

After getting the path length ℎ(𝑥), the outlier scour of 𝑥 is as follows: 

𝑆(𝑥, 𝑢) = 2
−
𝐸(ℎ)

𝐶(𝑢)，                  (1) 

𝐶(𝑢) = 2𝐻(𝑢 − 1) −
2(𝑢−1)

𝑢
，                (2) 185 

Where the 𝑢 is the number of samples, and 𝐶(𝑢) is the average path length of all data in the training set. 𝐻(𝑖) is harmonic 

number,ln(𝑖) + 0.5772156649. 𝐸(ℎ)is the average path length of 𝑥 across n iTrees. 

(1) When 𝐸(ℎ) → 𝐶(𝑢), 𝑆 → 0.5; 

(2) when 𝐸(ℎ) → 0, 𝑆 → 1; 

(3) when 𝐸(ℎ) → 𝑢 − 1, 𝑆 → 0; 190 

Evaluate and remove outliers based on the anomaly score. 

(1) If 𝑆(𝑥, 𝑢) approaches 0.5, the outlier becomes less apparent. 

(2) If 𝑆(𝑥, 𝑢) approaches 0, the score is normal value. 

(3) If 𝑆(𝑥, 𝑢) approaches 1, the value is anomalous. 

2.3 Random Forest for Lidar Data 195 

To address the missing values after Lidar detection and after outlier removal, this study uses RF to correct the Lidar data. In 

the correction of Lidar data, the wind speed and direction at each altitude layer are treated as samples. Considering the 

uncertainties and errors in the original data, the RF is used for correction. By integrating multiple decision trees, RF can 

effectively handle and analyze high-dimensional complex data, accurately predicting wind speed and direction, thereby 

improving wind field data's supplementation and prediction capabilities. It is important to note that the performance of the RF 200 

model largely depends on the quality of the training data and the selection of features. Additionally, attention should be given 

to the issue of overfitting, and the model should be optimized and adjusted based on actual conditions. The RF model in this 

research is built as follows: 

Step 1: Extract a sub-sample matrix from the training matrix as the training samples. 



9 

 

Step 2: Each sample has M features. Specify a constant m where 𝑚 ≪ 𝑀 and randomly select a subset of m features from 205 

the M features. Finally, select the optimal feature subset for regression. 

Step 3: Allow the tree to continuously split until a certain height is reached. 

Step 4: Repeat the previous three steps until the regression tree is fully constructed and trained. The final output model is the 

"ensemble predictor" 𝑓(𝑥). The ensemble predictor 𝑓(𝑥). is composed of the "base learners" ℎ1(𝑥),… , ℎ𝐽(𝑥) (Cutler et 

al., 2012):  210 

𝑓(𝑥) =
1

𝐽
∑ ℎ𝐽(𝑥)
𝐽
𝑗=1 ，                  (3) 

 

2.4 Lidar data correction 

The overall data processing workflow is shown in Fig. 3. After matching the wind direction and wind speed data from the 

three Lidars with radiosonde data using the sliding window method, the data is compared under different pollution conditions, 215 

PBLH, and weather conditions to identify the optimal performing Lidar and the Lidar that requires improvement. For missing 

values caused by the instrument itself or following anomaly cleaning, cubic spline interpolation (CSI), back propagation neural 

network (BPNN), Genetic Algorithm (GA), k-nearest neighbor (KNN), and RF were used to fill the missing values. By 

comparing the correlation of each algorithm, the most suitable algorithm is identified for the final Lidar data optimization, the 

Aeolus satellite is used to verify the reliability of the algorithm further. 220 

 

Fig. 3. The total flow of data processing. 
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3 Results and discussion 

3.1 Performance Comparison of Doppler Wind Lidars 

Fig. 4 compares wind speed and direction data from MSD Lidar, CUIT Lidar, and WP Lidar with the radiosonde data at 225 

different heights. The dispersion of the scatter points represents the correlation between the Lidars and the radiosonde data. 

The WD was defined as the range from 350° to 10°, and all winds within this range were classified as northerly, which were 

not considered anomalies in the study. As shown in Fig. 4, MSD Lidar, CUIT Lidar, and WP Lidar exhibited good consistency 

with the radiosonde data in the low-altitude region below 600m. However, as the altitude increased, the dispersion of wind 

speed and direction from the three Lidars gradually increased, especially above 1500m. Regression parameters of three Lidars 230 

and radiosonde data are summarized in Table 2. MSD Lidar had a wind speed and direction slope of 0.99 and 0.81, respectively, 

with RMSE values of 1.11m s-1 and 49.83°, which were closest to the radiosonde data. CUIT Lidar showed significant 

anomalies below 750m and above 1500m, with wind speed overestimated, and wind direction RMSE reaching 82.89°. The 

performance of WP Lidar exhibited an overestimation of wind speed across all heights. Notably, the magnitude of errors was 

particularly pronounced in high-altitude regions, as evidenced by wind direction RMSE reaching 84.87°. Overall, the 235 

observation data in the low-altitude region (blue) were more stable. In contrast, the high-altitude region (red) decreased 

observation accuracy for all three Lidars due to altitude effects. This reveals an exponential decay trend in Lidar measurement 

accuracy with increasing altitude, consistent with the attenuation characteristics of Lidar backscatter signals. These results 

provide critical insights for high-precision wind field monitoring: The MSD Lidar is the preferred choice for boundary layer 

observations (<1.5km). At the same time, real-time radiosonde data correction is advised for elevated altitude applications.  240 
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Fig 4. (a) WS and (b) WD of radiosonde data and MSD Lidar at different heights; (c) WS and (d) WD of WP Lidar; Comparison of 

(e) WS and (f) WD of CUIT Lidar; color bar represents height. 

Table. 2. Regression parameters of three Lidars and radiosonde. 245 

Lidar 

 

Condition Fitted curve N RMSE 

MSD 
WS y=0.99x+0.51 2885 1.11 

WD y=0.81x+36.65 2885 49.83 

CUIT 
WS y=1.18x+0.67 2514 4.45 

WD y=0.54x+86.3 2885 82.89 

 

WP 
WS y=1.14x+1.69 2848 5.15 

 

WD y=0.48x+99.67 2885 84.87 

 

3.2 Comparative analysis of performance under different air quality conditions 

To investigate the performance of three DWLs in measuring wind speed and direction under different aerosol mass 

concentrations, the experiment integrated PM2.5 concentration data from collaborative observations with wind profile analysis. 

The PM2.5 concentrations are relatively low at the site, so the concentration range was divided into three pollution levels: L1 250 

(PM2.5 = 0–15 µg m-³), L2 (PM2.5 = 15–35 µg m-³), and L3 (PM2.5 = 35–50 µg m-³)(Wu et al., 2016). Fig. 5a – 5c present Scatter 

plots of wind speed regression relationships for the MSD, CUIT, and WP Lidars across these pollution tiers, with linear 

regression lines for L1(red), L2(green), and L3(yellow). The results show the correlation of the three Lidars in different 

pollution levels. It is evident that aerosol concentrations significantly affect the performance of Lidar in wind speed detection. 

The regression parameters of the three Lidars and radiosonde under different pollution conditions are summarized in Table 3. 255 

During L3 pollution episodes, MSD Lidar achieves the highest correlation with the radiosonde (𝑅2 = 0.82), demonstrating 

strong stability and reliability. In contrast, CUIT Lidar and WP Lidar show much lower correlations under L3 conditions 

(𝑅𝐶𝑈𝐼𝑇
2 = 0.24, 𝑅𝑊𝑃

2 = 0.04), indicating that their detection performance is significantly affected by air quality. Under L1 

conditions, the correlations for CUIT Lidar and WP Lidar are 𝑅2 = 0.35 and 𝑅2 = 0.32, with RMSE values of 1.43 m s-1 

and 1.36 m s-1, respectively. Under L2 conditions, the correlations decrease to 𝑅2 = 0.3 and 𝑅2 = 0.17, with RMSE values 260 

of 1.45 m s-1 and 1.39 m s-1, respectively. Aerosol mass concentration has a negative impact on the detection performance of 

DWL, particularly for CUIT and WP Lidars, which exhibit significant performance degradation under higher pollution levels. 

No data were collected under heavy pollution conditions (>50 µg m-³ PM2.5) during the experiment, which may be attributed 

to a decline in performance above 50 µg m-³.  



12 

 

The wind direction difference can be used to evaluate the impact of different aerosol mass concentrations on the performance 265 

of DWL. Due to the periodic nature of wind direction data, the absolute value of the wind direction difference was calculated, 

and differences exceeding 180° were excluded from the analysis. Fig. 5d – 5f illustrates the distribution of wind direction 

differences as a function of PM2.5 concentration and height. The x-axis represents aerosol mass concentration, the y-axis 

represents height, and the colorbar represents the wind direction difference. The MSD Lidar exhibits high detection accuracy, 

maintaining wind direction deviations within 20°. Under the L1 air quality, maximum deviations (D>20°) occur below 400m 270 

altitude, while within the 400-1400m range, deviations remain below 10°. For L2 conditions within this height band, deviations 

increase to 17.5°. The wind direction difference of MSD Lidar remains below 7.5° at altitudes above 1 km, indicating high 

accuracy in high-altitude detection, though with certain limitations under low aerosol concentration conditions. The CUIT 

Lidar demonstrates a heightened wind direction difference of 40°-65° when PM2.5 concentrations fall below 17 µg m-3. When 

PM2.5 concentrations increase to 17-37 µg m-³, the deviation reduces to 30°-40°. As PM2.5 concentrations increase (>40 µg m-275 

³), the difference significantly decreases to 10°-25°, indicating improved accuracy under higher pollution conditions. The WP 

Lidar demonstrates the poorest performance (<15 µg m-³ PM2.5), with deviations reaching 50°-80°. However, when PM2.5 

concentrations exceed 40 µg m-³ and altitudes exceed 800m, deviations significantly reduce to about 10°. WP's performance 

above 800m improves with deviations within 20° under L3 conditions. The observed accuracy enhancement with increasing 

aerosol concentrations (>800m altitude) likely stems from amplified laser backscattering signals caused by atmospheric 280 

particulates. This phenomenon particularly improves wind field retrieval accuracy in elevated regions. Operational deployment 

of DWL systems in polluted environments requires careful consideration of both instrument specifications and ambient aerosol 

characteristics. Overall, the observed performance improvement at L3 (35–50 μg m-³) concentrations reflects that the Lidar 

requires a certain amount of aerosol backscattering. 

 285 
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Fig 5. Comparison of radiosonde data with CUIT, MSD, WP (a-c) WS, and (d-f) WD at different heights and PM2.5 concentrations.  

Table. 3. Regression parameters of three Lidars and radiosonde under different pollution conditions. 

Lidar 

 

Level Fitted curve N R2 RMSE 

MSD 

L3 y=0.938x+0.825 61 0.82 0.66 

L2 y=0.896x+0.829 61 0.65 0.47 

L1 y=0.996x+0.599 61 0.76 0.79 

CUIT 

L3 y=0.622x+2.931 61 0.24 1.96 

L2 y=0.692x+2.499 61 0.30 

 

1.45 

 

 

L1 y=0.94x+1.12 61 0.35 1.43 

WP 

L3 y=1.451x+0.346 61 0.04 

 

2.89 

 

L2 y=1.129x+0.665 61 0.17 1.39 

L1 y=0.723x+2.545 61 0.32 1.36 
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3.3 PBLH’s impact on Doppler wind Lidars 290 

Aerosol concentrations exhibit a pronounced inverse correlation with PBLH variations. During daytime, convective updrafts 

enhance PBLH development, which promotes vertical diffusion of aerosols and reduces their near-surface concentrations (Paul 

and Das, 2022; Su et al., 2018). This section quantifies explicitly the sensitivity of Lidar wind field retrievals to PBLH 

stratification. Performance evaluations of three Lidar systems (MSD, CUIT, and WP Lidar) against radiosonde measurements 

were conducted across PBLH and CBH used by the ERA5 datasets. The time resolution of the PBLH and CBH of the ERA5 295 

reanalysis data is one hour. The three Lidars matched the time and altitude through the sliding window method. Because of 

the linear relationship, the Pearson correlation coefficient (PCC) was chosen to represent the correlation with the radiosonde. 

As shown in Fig. 6, the MSD Lidar exhibited a correlation higher than 0.85 with radiosonde wind speed across all height 

intervals, demonstrating strong accuracy and insensitivity to PBLH variations. However, its wind direction correlation notably 

decreased to 0.53 within the 1500–1750 m PBLH range, likely attributable to enhanced aerosol-layer complexity at elevated 300 

mixing heights and the small samples in this range (N = 41). Although the sample size within this PBLH is relatively less, 

wind speed was unaffected; only the poor performance in wind direction was particularly prominent. This may be due to 

complex turbulent structures and aerosol distributions leading to wind direction instability in high PBLH regions (Lothon et 

al., 2009; Su et al., 2020; Yamartino, 1984). Outside this interval, wind direction correlations remained robust (>0.70), 

indicating superior overall performance. The CUIT Lidar showed a wind speed correlation generally above 0.7, its performance 305 

was optimal in the 500-750m PBLH range （𝜌𝑊𝑆 = 0.92, 𝜌𝑊𝐷 = 0.75）, but its wind speed decreased to 0.6 at a PBLH of 

1000-1250m. The wind direction correlation dropped below 0.4 when PBLH exceeded 1500m, reflecting limitations in high-

altitude detection. The WP Lidar showed significant deficiencies in wind speed detection, with correlations below 0.72 across 

all height intervals, and its performance declined notably with increasing PBLH. 

This may be attributed to the principle of DWL, which posits that backscattering signals from aerosols play a critical role in 310 

wind speed measurement, particularly within the boundary layer and lower troposphere (He et al., 2022b; Li and Yu, 2018; 

Tan et al., 2019). The performance of Lidar is influenced by the distribution of particles, which is affected by different PBLH 

levels. At lower altitudes (<750m), all three Lidars demonstrated optimal performance, likely due to stable wind speed and 

direction, and minimal turbulence within this range, resulting in superior Lidar measurement accuracy. Conversely, the wind 

direction measurement performance declined substantially at higher altitudes (>1500m).  315 
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Fig. 6. Comparison of (a) WS and (b) WD between radiosonde data and CUIT Lidar, MSD Lidar, and WP Lidar at different PBLH; 

Color bar represents Pearson correlation coefficient. 

To further investigate the influence of PBLH on Lidar performance, the vertical relationship between CBH and PBLH (both 320 

derived from ERA5 data) was introduced to analyze atmospheric impacts on Lidar measurements. As illustrated in Fig. 6, two 

distinct PBLH ranges, 1000-1250 m and 500-750 m, were selected to examine contrasting Lidar performance (superior vs. 

inferior). The WS and WD performance of three Lidars under varying CBH and PBLH conditions is summarized in Table 4. 

When PBLH was elevated (1000-1250 m) with low clouds (CBH < 1 km), the PCCs for MSD are 0.85 (WS) and 0.93 (WD). 

Under shallow PBLH (500-750 m) with higher clouds (CBH > 750 m), MSD exhibited significantly improved PCCs of 0.97 325 

(WS) and 0.98 (WD), maintaining its superior performance. Notably, MSD and CUIT Lidars dominated in WS correlation 

(PCCs: 0.85 and 0.59, respectively) under high PBLH conditions (1000-1250 m, CBH < 1 km), which is similar to Fig. 6. In 

this case, the coupling ratio between cloud and PBLH is as high as 90%(Su, 2022), the atmosphere is usually accompanied by 

higher relative humidity(Liu, 2019), the turbulent mixing effect in the boundary layer is enhanced, and the vertical distribution 

of aerosols becomes complicated, all of which exacerbated Lidar signal interference. Conversely, PBLH was elevated (500–330 

750 m) with high clouds (CBH > 750 m), WD correlations dominated across all three Lidars (PCCs: 0.98, 0.65, and 0.59). The 

decoupling between clouds and the boundary layer fostered a stable vertical structure, confining aerosols and turbulence 

predominantly below the PBLH. This stratification minimized cloud-induced signal attenuation, enabling clearer detection of 

vertical wind profiles.  

 335 

Table. 4. The WS and WD performance of three Lidars under varying CBH and PBLH conditions.  
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Condition PBLH CBH MSD CUIT WP 

WS 

1000-1250 
>1250 0.82 0.41 0.57 

<1000 0.85 0.59 0.29 

500-750 
>750 0.97 0.48 0.64 

<500 0.91 0.85 0.80 

WD 

1000-1250 
>1250 0.76 0.55 

 

0.52 

 

 

<1000 0.93 0.52 0.28 

500-750 
>750 0.98 0.65 0.59 

<500 0.65 0.42 0.28 

 

3.4 Analysis of Correction Results of Random Forest Algorithm 

The IF filtering identified additional data gaps in both CUIT and WP Lidar datasets. To maintain temporal continuity, 

anomalous values were replaced with NaN rather than row deletion. Five interpolation algorithms—CSI, BPNN, GA, k-NN, 340 

and RF—were implemented to enhance data reliability. Fig. 7 shows the comparison of the Receiver Operating Characteristic 

(ROC) curves of five optimization algorithms. The Area Under the Curve (AUC) metrics, accompanied by 95% confidence 

intervals (CI) derived from bootstrap resampling (n=1,000). Random forest (RF_CUIT and RF_WP) demonstrated superior 

performance with the AUC of 0.93 (95% CI [0.91–0.94]) and 0.90 (95% CI [0.89–0.91]), underscoring its robustness in 

modeling non-linear relationships and high-dimensional atmospheric data. This aligns with its inherent capability to handle 345 

complex interactions within lidar-derived wind profiles. CSI’s inherent locality is characterized by using cubic functions to 

connect adjacent points (Komsta, 2010). This approach entails global fitting, thereby rendering any alteration in a single data 

point capable of affecting the entire curve. This heightened sensitivity can make the spline curve more uneven and challenging 

to manipulate, particularly for functions comprising linear segments or sudden alterations (Maglevanny and Smolar, 2016). 

Wind speed may exhibit nonlinear or abrupt variations over time and space under higher altitudes or complex airflow 350 

conditions. Cubic spline interpolation struggles to capture such non-smooth dynamic changes effectively, leading to increased 

interpolation errors. For BPNN, the sufficiency and efficiency of the training set are critical factors influencing generalization 

(Singh et al., 2023). With limited wind speed data, there is a risk of overfitting or underfitting, which may lead to unstable 

performance. Due to the inherent randomness of genetic operations, the GA does not always produce optimal solutions, 

although it can find suboptimal solutions within a reasonable time (Jurasovic and Kusek, 2010). While GA excels in global 355 

optimization, its iterative nature might hinder real-time processing efficiency, a critical factor for operational Lidar systems. 
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The k-NN algorithm is sensitive to local data structures, performing poorly in regions with sparse observations or high volatility 

(Gupta et al., 2020). The RF algorithm can handle high-dimensional datasets and capture complex nonlinear relationships 

effectively (Grimm et al., 2008; Horemans et al., 2020). RF minimizes the risk of overfitting, resulting in more reliable 

predictions by aggregating multiple decision trees (Grimm et al., 2008; Horemans et al., 2020; Li et al., 2023). Regarding 360 

interpolation, RF can effectively handle missing values, ensuring that the model remains robust and accurate (Xu et al., 2024). 

The iterative hyperparameter tuning process optimized RF’s performance, confirming its suitability for DWL data correction 

under complex atmospheric conditions. 

In summary, all algorithms significantly outperformed the random guess baseline (AUC = 0.5), and the confidence intervals 

across all methods are narrow (<0.04 AUC range), confirming their utility and reliability in wind data refinement. 365 

recommended. RF is recommended for Lidar applications, prioritizing accuracy due to its high AUC and stable CI. These 

findings highlight the importance of algorithm selection tailored to specific operational requirements in atmospheric remote 

sensing. 

 

 370 
Fig. 7. The ROC Curves between three Lidars and radiosonde after interpolation using five algorithms.  

To achieve optimal interpolation results, a parameter grid was defined with "mtry" and "ntree". "mtry" represents the number 

of features considered at each split in the RF, with 𝑚𝑡𝑟𝑦 ∈ [1,10], and "ntree" represents the number of trees, with 𝑛𝑡𝑟𝑒𝑒 ∈

[100,500]. The parameter grid was iteratively traversed in the training function to identify the optimal parameter configuration, 

with a fixed random seed ensuring computational reproducibility. 375 

Fig. 8a shows the scatter plot of wind speed data after removing anomalies using the IF and interpolating missing values with 

RF. Initial CUIT Lidar wind speed data exhibited poor agreement with radiosonde measurements (𝑅2 = 0.42). Following 

anomaly removal via the IF and RF-based interpolation, correlation improved significantly (𝑅2 = 0.65). The RF interpolation 

led to a more complete data distribution, with missing values being compensated for. 
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Fig. 8b shows the distribution of differences between CUIT Lidar and radiosonde data after algorithmic processing. The 380 

original CUIT data (green) exhibited a wide distribution with a maximum difference of 34 m s-1. The peak of the difference 

was not concentrated near 0 m s-1. After filtering the data with IF (blue), anomalies were removed, and the differences became 

more concentrated within -3-3 m s-1. The IF effectively identifies and outliers, allowing the remaining data to better align with 

the radiosonde trend. After optimizing and supplementing the data using the RF algorithm (orange), the wind speed data 

became closer to the radiosonde data, with the peak difference aligning at 0 m s-1. The range of the difference distribution 385 

further narrowed, demonstrating a high consistency between the interpolated CUIT Lidar data and the radiosonde data. The 

orange histogram exhibited significantly superior symmetry and concentration compared to the blue histogram, RF not only 

repaired missing values but also preserved the global characteristics and trends of the data. In summary, the enhanced peak 

concentration of the difference distribution validates the applicability and reliability of the RF model in correcting nonlinear 

data. These improvements are particularly pronounced in low-altitude regimes (<1 km), where boundary layer turbulence 390 

amplifies measurement uncertainties. 

 

 
Fig. 8. (a) WS scatter plot of CUIT Lidar and radiosonde after processing; (b) Comparison distribution map of the difference 

between CUIT and radiosonde after IF and RF processing. 395 

3.5 Aeolus verification 

As shown in Fig. 9, comparative analysis of Aeolus satellite products revealed enhanced wind speed retrieval precision under 

cloudy conditions (Mie-channel 𝑅2 = 0.90 ) compared to clear-sky retrievals (Rayleigh-channel 𝑅2 = 0.88 . This 

performance differential stems from amplified backscatter signals through cloud-aerosol interactions, underscoring the critical 

role of atmospheric particulates as natural scattering tracers for optimizing spaceborne wind profiling. 400 

The Aeolus satellite exhibits high consistency with radiosonde data in both channels, indicating the feasibility of using Aeolus 

for Lidar data validation. A case for a radiosonde observation on June 17, 2021, as shown in Fig. 9a and 9b, indicates that 
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CUIT Lidar data had a high proportion of missing values, with a missing rate of up to 80%. However, in this case, the 

application of RF for interpolation led to a substantial enhancement in the congruence between CUIT Lidar and radiosonde 

data, particularly within the 0.5-1 km altitude range. During the radiosonde observation on June 18 in Fig. 9c and 9d, the IF 405 

successfully identified and removed anomalies in the 200-600m range. Following RF interpolation, the correlation between 

CUIT Lidar and Aeolus satellite data exhibited a substantial enhancement, with 𝑅2 reaching 0.83. This outcome signifies 

that this method can effectively enhance data quality and accuracy, even in anomalies. But that reflects agreement on the scale 

resolvable by Aeolus, not necessarily the full resolution of the Lidar. Integrating Aeolus validation and RF-based correction 

establishes a robust framework for enhancing Lidar data reliability. These findings validate the ability of machine learning for 410 

complex atmospheric data reconstruction. 

 

Fig. 9. The relationship between interpolated CUIT Lidar, radiosonde, and Aeolus satellite data in the (a) Rayleigh and (c) Mie 

channels; and (b, d) a profile plot from a single radiosonde observation. 

4 Conclusion 415 

This study was conducted at the Nanjiao Observatory in Beijing from June 9 to August 31, 2021, using three ground-based 

DWLs (MSD, CUIT, and WP) and simultaneous radiosonde data to evaluate the performance of the Lidars under different 

conditions.  
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The results show that all Lidars demonstrate strong concordance with radiosonde wind speed measurements at the low altitude 

of 600 m. As altitude increases, the deviations in wind speed and direction from the three Lidars gradually increase. The RMSE 420 

of wind speed for MSD Lidar is 1.11 m s-1, 4.45 m s-1 for CUIT Lidar and 5.15 m s-1 for WP Lidar. In terms of wind direction, 

MSD Lidar exhibited the most accurate performance, with an RMSE of 49.83°, CUIT Lidar with an RMSE of 82.88°, and WP 

Lidar exhibited the most significant deviation with an RMSE of 84.87°. Among the three Lidars, MSD Lidar exhibited the 

highest accuracy in wind speed and wind direction measurements, closest to radiosonde measurements.  

The correlation and accuracy of wind speed measurements from MSD Lidar with radiosonde data were optimal under varying 425 

pollution conditions, as evidenced by 𝑅2 values of 0.76, 0.65, and 0.82 for L1, L2, and L3 pollution conditions, and RMSE 

values of 0.79 m s-1, 0.47 m s-1, and 0.66 m s-1, respectively. Additionally, under light pollution conditions with aerosol mass 

concentrations of 0-15 µg m-³, MSD Lidar exhibited the highest correlation with radiosonde wind speed, demonstrating its 

intense sensitivity to aerosol mass concentrations. When the aerosol concentration in the lower atmosphere increases to a 

certain level (40-50 µg m-³), Lidar can facilitate better signal reception by scattering improvement. Consequently, it is 430 

imperative to consider the impact of varying aerosol mass concentrations when detecting low-altitude wind fields to ensure 

the optimal performance of Lidar instruments.  

The PBLH significantly influences Lidar performance, with the most effect observed at PBLH of 1000-1250m, and the optimal 

performance at lower altitudes (500-750m). MSD and CUIT Lidars dominated in WS correlation (PCCs: 0.85 and 0.59, 

respectively) under high PBLH conditions (1000-1250 m, CBH < 1 km). The turbulent mixing effect in the boundary layer is 435 

enhanced, and the vertical distribution of aerosols becomes complicated, which exacerbates Lidar signal interference. 

Conversely, PBLH was elevated (500–750 m) with high clouds (CBH > 750 m), WD correlations dominated across all three 

Lidars (PCCs: 0.98, 0.65, and 0.59). The decoupling between clouds and the boundary layer fostered a stable vertical structure. 

This stratification minimized the cloud-induced signal attenuation. 

Five algorithms interpolation (CSI, BPNN, GA, k-NN, and RF) was applied to CUIT and WP Lidar, the RF demonstrated 440 

superior performance with the AUC of 0.93 (95% CI [0.91–0.94]) and 0.90 (95% CI [0.89–0.91]) in the ROC curves. And RF-

based correction of CUIT enhanced R² from 0.42 to 0.65, bringing it into closer alignment with the radiosonde data. This 

outcome underscores the efficacy of the RF correction algorithm, its reliability, and its aptitude for managing high-dimensional 

and incomplete data.  

The cloud cover has a significant impact on the DWL measurement by the comparative analysis with the Aeolus satellite 445 

product, the results revealed enhanced wind speed retrieval precision under cloudy conditions (Mie-channel 𝑅2 = 0.90) 

compared to clear-sky retrievals (Rayleigh-channel 𝑅2 = 0.88). In the case of severe anomalies, the correlation between 

CUIT Lidar and satellite data is significantly enhanced after RF interpolation, and 𝑅2 reaches 0.83.  

Overall, this study sheds light on the different factors affecting the DWLs of wind speed and wind direction, including different 

aerosol mass concentrations, PBLH and CBH conditions, Machine learning, and Satellites, and the combination of IF and RF 450 

algorithms can effectively improve the quality and accuracy of wind field data for the future research of low-altitude detection. 
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