Dear Editor and Reviewers,

Thank you for the constructive comments and suggestions provided throughout the discussion
phase, which we believe have been very helpful in clarifying and strengthening our work. In the
following, we provide our detailed, point-by-point responses. All proposed clarifications and
improvements will be incorporated in the manuscript accordingly and we give examples of these
in italics, with revised text in bold italics.

We hope that our replies convincingly demonstrate the novelty and integrated nature of this
study, which investigates how non-conventional sensors can be repurposed for environmental
monitoring and for capturing different physical manifestations of extreme events, an approach
we believe aligns closely with the aims and readership of NHESS.

We also note that since its initial submission in April, the manuscript’s preprint has received
substantial interest on EGUsphere (over 800 views and downloads), and the work has been
presented at several international conferences. Elements of the methodology are already being

incorporated into ongoing projects and operational platforms https:/seedpsd.infp.ro/noise/ ,
http://tropo.gnutsoftware.com/NIEP/ , https://reactive.infp.ro/events/infra/

Please find below our detailed responses. The reviewers’ comments appear in black, and our
replies are provided in blue.

Reviewer #1:

This manuscript gathers together seismic, infrasound, GNSS and meteorological data for a
rainfall episode in Romania in late August 2024. The authors claim that this approach can lead to
a “holistic understanding of storm evolution”; however, I can not see in the manuscript which is
the contribution of putting together these different kind of datasets to such a better
understanding. In my opinion, the manuscript only shows that strong rainfall episodes can be
identified in seismic, infrasound and GNSS data, a fact that is widely known. In my opinion, this
work do not deserve publication in a high-rated journal as NHESS.

Thank you for your insights. These made us realise that perhaps we haven't emphasized the core
issues in our manuscript clearly.

Firstly, we would like to clarify that the event analyzed in this study was not an ordinary
rainfall episode, but an exceptional, record-breaking storm for the western Black Sea region,
with the highest 24-hour and monthly rainfall totals ever measured on the Black Sea Coast
(343.6 mm at a single station, compared to the previous record of 159.1 mm from 1947) and
significant associated impacts. Within hours, heavy rainfall, strong winds, and coastal flooding
caused widespread disruption: roads and infrastructure were damaged, and communities along
the shoreline were heavily affected. This was not just another summer storm: its scale and
impacts made it a defining event for the region, which motivated us to look at it in detail using
both conventional and unconventional monitoring tools.


https://seedpsd.infp.ro/noise/
http://tropo.gnutsoftware.com/NIEP/
https://reactive.infp.ro/events/infra/

Secondly, we disagree with the assertion that the utility of GNSS-derived PWYV, infrasound
signals, and high-frequency seismic noise in storm monitoring is "widely known" in the sense
implied. To our knowledge, only a few very recent papers (e.g. Dias et al., 2023 - Scientific
Reports; Rindraharisaona et al., 2022 - Earth and Space Science; Coviello et al., 2024 - Natural
Hazards) have proposed using high-frequency seismic envelopes to track storm dynamics.
Similarly, although GNSS techniques are well established within geodetic communities, their
adoption in operational weather monitoring and hazard assessment remains limited. Individually,
some literature exists on repurposing these sensors for environmental monitoring, but this is far
from common knowledge and certainly not routine practice.

Thirdly, regarding our use of “holistic understanding”, its meaning lies in the multiple storm
aspects captured by these non conventional sensors: ground vibrations that can support
nowcasting or complement vulnerable or rare gauge data, atmospheric acoustics linked to
pressure disturbances and lightning, atmospheric moisture build-up detectable more than 100 km
away (with potential early-warning value), and changes in the sea state inferred from
long-distance microseismic energy, all contextualized with satellite observations. This is what
we meant by "holistic". While the potential of these individual sensors has been suggested in
recent studies, operational or case-based demonstrations remain rare and largely unexplored in
integrated form.

Given these considerations, we believe the work offers a novel and practically relevant
contribution toward storm characterization and supports the development of more resilient,
multi-sensor environmental monitoring strategies. This approach directly addresses key topics
within the NHESS scope: innovative monitoring of natural hazards, interdisciplinary observation
strategies, and improved understanding of high-impact weather under a changing climate. We
therefore believe that the manuscript provides a timely contribution that is well aligned with the
aims and readership of NHESS.

My most important concerns have to do with:

1) The real contribution of analyzing different dataset to a better understanding of the storm
evolution is not really explained

In the revised version, we clarify that “storm evolution” refers to the sequence of physical
processes leading from moisture accumulation to convective initiation, peak rainfall,
thunderstorm electrification, and coastal marine response. Each dataset captures a distinct part of
this sequence: GNSS-PWV reflects atmospheric moisture buildup prior to convection,
infrasound records thunder-generated acoustic waves and pressure disturbances, high-frequency
seismic noise captures localized raindrop impacts, microseisms document changes in sea state,
and ERAS and MTG lightning provide mesoscale meteorological context. When combined, these
observations outline a coherent and temporally resolved picture of the storm’s development,
intensification, and decay. A short discussion has been added in Section 5 to clarify this
contribution:



“Storm evolution, in the meteorological sense, describes the sequence of processes from
pre-storm atmospheric moisture accumulation to convective initiation, peak rainfall, electrical
activity, and the associated marine response along coastal areas. The multi-sensor dataset
used here captures these different stages: GNSS-PWV documents the build-up of column
water vapor before convective onset, infrasound detects lightning-generated acoustic waves
and pressure disturbances during the mature convective phase, high-frequency seismic noise
reflects the timing and spatial progression of intense rainfall at the surface, microseisms
respond to storm-driven changes in sea state, and ERA5/MTG provide the mesoscale structure
that ties these geophysical signals together. By observing the same storm through these
complementary physical pathways, we can outline a more detailed picture of how the storm
developed, intensified, and decayed than is possible from individual datasets.”

2) I think that having access to direct measurements of meteorological parameters is an
essential point for this kind of studies . In this contribution, the detailed seismic or infrasonic
data is compared to 1-hour long estimations of rainfall derived from large-scale models. Why not
to compare each seismic/infrasound station with the closer meteorological site??

Ideally, co-located in-situ meteorological observations would be used for validation. Although
we submitted multiple formal requests to the National Meteorological Agency (ANM), we were
only granted access to very limited ground-truth data from two stations. One rain gauge located a
few kilometers from the seismic station is included in the new Figure 4. The second gauge,
however, was available for only a 24-hour interval and was situated nearly 30 km from any of
our sensors, limiting its usefulness for systematic comparison.

Given this sparse temporal and spatial coverage, we rely primarily on ERAS reanalysis products
to characterize the broader meteorological context. Although local deviations can occur near
steep or complex terrain, numerous studies have shown that ERAS5 reliably captures storm
timing, intensity patterns, and mesoscale organization, precisely the aspects most relevant for our
multi-sensor correlation analysis. Given these strengths, and considering the unavailability of
local station measurements despite multiple requests to ANM, we maintain that ERAS is an
appropriate and scientifically defensible choice for this study. We hope the reviewer agrees that
this limitation does not compromise the overall interpretation, particularly since our focus is on
the relationships among seismic, geodetic, infrasound, satellite, and meteorological indicators
and their temporal co-evolution, rather than on point-scale hydrological validation.

In Section 3.5 we also added: “ERAS5 has been extensively validated (Jiao et al., 2021; Wu et
al., 2022; Soci et al., 2024) and is widely used in studies of storm evolution and precipitation
dynamics (e.g. Dullart et al., 2020; Tiberia et al., 2021; Price et al., 2025), making it a suitable
choice for the mesoscale processes examined here.”

Dullaart, J.C., Muis, S., Bloemendaal, N. and Aerts, J.C. (2020) Advancing global storm surge modelling
using the new ERAS climate reanalysis. Climate Dynamics, 54(1), 1007-1021.

Tiberia, A., Mascitelli, A., D adderio, L.P, Federico, S., Marisaldi, M., Porcu, F., Realini, E., Gatti, A.,
Ursi, A., Fuschino, F. and Tavani, M. (2021) Time evolution of storms producing terrestrial gamma-ray
flashes using ERAS reanalysis data, GPS, lightning and geostationary satellite observations. Remote
Sensing, 13(4), 784.



Jiao, D., Xu, N., Yang, F. and Xu, K. (2021) Evaluation of spatial-temporal variation performance of
ERAS5 precipitation data in China. Scientific Reports, 11(1), 17956.

Price, 1., Sanchez-Gonzalez, A., Alet, F., Andersson, TR., El-Kadi, A., Masters, D., Ewalds, T., Stott, J.,
Mohamed, S., Battaglia, P. and Lam, R. (2025) Probabilistic weather forecasting with machine learning.
Nature, 637(8044), 84-90.

Soci, C., Hersbach, H., Simmons, A., Poli, P, Bell, B., Berrisford, P, Horanyi, A., Mufioz-Sabater, J.,
Nicolas, J., Radu, R. and Schepers, D. (2024) The ERAS global reanalysis from 1940 to 2022. Quarterly
Journal of the Royal Meteorological Society, 150(764), 4014-4048.

Wu, G., Qin, S., Mao, Y., Ma, Z. and Shi, C. (2022) Validation of precipitation events in ERAS to gauge
observations during warm seasons over eastern China. Journal of Hydrometeorology, 23(5), 807-822.

3) The authors state in the introduction that the precipitation totals reached values of 120-220
mm, corresponding to an exceptional episode. However, the total precipitation graphics in
Figures 4 and 5 show maximum hourly values not reaching 3.5 mm, for a total amount of
precipitation of about 30-40 mm, values that would correspond to a modest rainfall episode. I
guess that this probably arise from the use of a general precipitation model, but I think that it do
not makes sense to discuss the correlation of different datasets to non-representative
meteorological variables.

Figure la presents the map of accumulated precipitation, where the darker colours highlight the
areas exceeding the median threshold along the coast. Ideally, ground-truth observations from all
meteorological stations would be available. However, as mentioned before, despite repeated
requests, the Romanian National Meteorological Agency (ANM) declined to provide these data.
We were only able to obtain very limited records from two stations but these were insufficient to
create time-lapse maps and would not be consistent with seismic or infrasound data far from
them. Nevertheless, as discussed elsewhere in our responses, ERAS is a well-established and
extensively validated reanalysis dataset, widely used in both scientific research and operational
applications. We therefore consider its use in this case study to be justified and we hope it will
not be regarded as a limitation that undermines our results. In Section 2 we have also added: “In
August 2024, Romania experienced severe flooding, largely driven by a storm that brought
unusual precipitation patterns to the Black Sea coastal region. Exceptional precipitation totals
were recorded over south-eastern Romania in particular in Mangalia (234.7 mm), Agigea (145
mm), and Tuzla (118 mm), leading to significant flooding in coastal towns (Figure 1). Over 800
emergency calls prompted large-scale intervention by ISU Dobrogea, focusing on evacuations,
debris clearance, and infrastructure restoration (Antonescu et al. 2024). According to the

National Meteorological Agency official records
(https:/www.meteoromania.ro/clim/caracterizare-lunara/cc 2024 08.html), one of the coastal

stations at Mangalia, recorded a total of 343.6 mm of precipitation in August 2024, breaking
the previous record of 159.1 mm from 1947, and significantly surpassing the average monthly
precipitation values for this area (Figure Ic). A remarkable 234.7 mm of this total fell in a
single day on August 31, 2024, highlighting the event's exceptional intensity.”

We were also able to obtain a very small set of precipitation values from one station near the
coast only from an official report of the ANM


https://www.meteoromania.ro/clim/caracterizare-lunara/cc_2024_08.html

(https://www.meteoromania.ro/clim/caracterizare-lunara/cc_2024 08.html) and we replotted
Figure 5 using these recorded values for every 10 minutes at Mangalia station. The new plot
showed an even better correlation with high frequency seismic energy.

a. Precipitation at Mangalia station
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Regarding the gridded ERAS datasets plotted as snapshots in Figure 5, which also clearly show
the correspondence between high seismic noise energy at high frequencies and larger
precipitation amplitudes, it is important to note that these amplitudes appear lower because they
represent hourly averages over the ERAS5 grid cell. This is consistent with the ERAS
documentation, which states: “Care should be taken when comparing model parameters with
observations, because observations are often local to a particular point in space and time, rather
than representing averages over a model grid box” (https://codes.ecmwf.int/grib/param-db/228).
Accordingly, we have added a clarification in the text: “Figure 5 shows three snapshots of
hourly plots of gridded precipitation data from ERAS, which have a lower amplitude than
point measurements at the Mangalia station, due to the averaging over the grid block.”

4) Meteorological data is reduced to the ERAS global precipitation model. The possible
contribution of wind to seismic and infrasound noise or the relationship between humidity and
GNSS-derived water content is not commented at all.


https://www.meteoromania.ro/clim/caracterizare-lunara/cc_2024_08.html
https://codes.ecmwf.int/grib/param-db/228

We have added observed wind values at one station near the infrasound station AGIR and the
seismic station EFOR and added a brief discussion on the comparison between these datasets in
relation to wind. The analysis can be continued between the relationship of humidity and
GNSS-derived water content and a more detailed analysis can be done accompanied by a figure,
thus enhancing the clarity and interpretability of the analysis. In consequence this analysis can be
an asset for a better understanding and adding significant value to the article.

5) The correlation between different parameters is only discussed qualitatively all along the
manuscript, and in some cases it is unclear. I have the feeling that all along the discussion, only
those results leading to “positive” correlations are commented, ignoring those showing
contradictions. Some examples include:

5.1) the main peak in precipitation in Fig 4 a matches pretty well the seismic amplitudes, but
neither of the other peaks have a good correlation (just overriding panels a and ¢ this becomes
evident)

Indeed, as shown in Figure 4, the main precipitation peak (around midnight, 30-31 August)
coincides very clearly with the strongest seismic amplitude in both the envelope and
spectrogram. The other precipitation peaks are not as clearly visible in the seismic signal, which
we believe reflects a meaningful physical constraint: only rainfall exceeding a certain intensity
(or kinetic energy) threshold may produce detectable high-frequency seismic noise.This
interpretation aligns with recent findings, such as Rindraharisaona et al. (2022), which highlight
the role of raindrop size and impact energy in determining seismic detectability.

In the revised manuscript, we added a higher resolution precipitation series from a nearby rain
gauge station and we also included a brief discussion suggesting this threshold effect as a
possible explanation for the selective seismic visibility of precipitation peaks: “However, this
correspondence is not uniform across all rainfall episodes. While the main precipitation
maximum on 30-31 August produces a clear and sustained seismic response, several
lower-intensity precipitation pulses show a much weaker or no recognizable signature in
either the seismic envelope or spectrogram. This behaviour is consistent with previous work
(e.g., Rindraharisaona et al., 2022), which demonstrates that only rainfall above a certain
intensity, or involving sufficiently large drops, generates impact forces strong enough to be
detected by broadband seismometers. Qur observations therefore reflect both strong positive
correlations during intense rainfall and the lack of seismic expression for weaker
precipitation. This selective sensitivity supports the interpretation that high-frequency seismic
noise can reliably track strong rainfall peaks but is less responsive to light or moderate
precipitation, an important nuance when interpreting multi-sensor relationships in this study.”

5.2) panels a) and b) in Fig. 8 show a clear similarity, but panel ¢) has a different peak and panel
d) a very different pattern; this is not discussed in the text

In the revised manuscript, we added: “Centroid and rolloff show parallel behavior because they
are both frequency-domain descriptors tied to the distribution of spectral energy, and so both
respond strongly to the same uplift in energy during the storm’s peak. Spectral flux, by
contrast, quantifies inter-frame spectral change, so its peak occurs where the spectrum
transitions most rapidly, even when that does not coincide with the maximum absolute energy
(e.g. Pasztor et al., 2023). Finally, the zero-crossing rate reflects time-domain volatility, not
spectral shape, which explains its distinct pattern, such as the storm’s later stages may



introduce broadband turbulence or noise components that boost zero crossings independently
of the spectral shifts visible in the first two panels. While the individual features varied over
time, it is the combination of these features through K-means clustering that effectively
identifies the time frame corresponding to the main precipitation episode. Zero-crossings
exhibited more variable patterns, reflecting high-frequency fluctuations, but the joint
clustering of all features robustly captures the timing of the storm’s most intense phases.”

5.3) The purple clusters in Fig. 9 b) correspond to very different precipitation values; again, this
is not commented/discussed, just stating that “These segments exhibit clear matches’ with storm
evolution”

Our original statement ("clear matches") was too broad. In the revised manuscript, we will
clarify that only certain clusters align closely with peak precipitation and seismic activity, while
others represent lower-energy or non-precipitation-dominated periods. In the revised manuscript
we added this additional description: “K-means clustering separated the acoustic data into six
groups with distinct spectral and amplitude characteristics (Figure 9). These clusters highlight
acoustic states that may relate to different environmental conditions during the monitoring
period. For example, Cluster 0 coincides with periods of intense precipitation and stronger
winds, while Cluster 1 captures intervals with moderate amplitudes but persistently elevated
background acoustic levels, without corresponding rainfall or wind peaks. Cluster 2 reflects
calmer conditions with low amplitudes and little or no precipitation. Transitional patterns also
arise, such as Cluster 3, which appear before intervals grouped in Cluster 1 and mark
intermediate acoustic activity. Overall, the clustering approach demonstrates that combining
multiple features reveals consistent acoustic regimes and can help differentiate environmental
conditions, without relying on any single parameter. ”
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5.4) The area encompassing more lightning strikes in Fig. 10, (located to the SW of AGIR) has a
low number of detections and no backazimuthal determination seems to be calculated from
inland strikes

Figure 10 shows the AGIR detection capability between 29 and 31 August 2024, i.e., the TOTAL
number of infrasound detections - this means that not all of these infrasound detections could be
associated with the lightnings observed by the MTG system. We have added a small explanation
of this association procedure in Section 4.2.2 of the revised manuscript: “Association between
infrasound detections into 0.5 to 7 Hz frequency band and lightning flashes detected by MTG
Lightning Imager within 50 km from the AGIR infrasound station was investigated, assuming
direct wave propagation path. Acoustic signatures of lightning activity show short-lived
disturbances with dominant frequency of approx. 3 Hz and amplitudes up to about 3.5 Pa. In
order to automatically associate AGIR observations with MTG detections, a relationship



between infrasound time-of-arrival and time of discharge signals (after Assink et al, 2008) is
applied:

t =ty +d/c+ At

where d is the distance between discharge and the infrasound array, ¢ = 340m/s, and At =
+10s. A maximum deviation of 10 degrees between observed infrasound backazimuth and

backazimuth of MTG detections is allowed In this case, only 6,4% of lightning discharges
could be associated with AGIR infrasound detections.”
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- Assink, J. D., L. G. Evers, 1. Holleman, and H. Paulssen (2008), Characterization of infrasound
from lightning, Geophys. Res. Lett., 35, L15802, doi:10.1029/2008GL034193

5.5) Is is hard to detect any trend in the colored points in Fig 11b

The figure colours will be updated to observe also the trend of the precipitation before the event
and after the event, taking into consideration that we have processed 12 days before and after the
maximum of the event.

6) The authors claim that using K-means clustering has been a “key aspect of the analysis”.
However, it is difficult for me to see which are these aspects. In Fig. 9, | would say that the
spectrogram contains much more information that the clustering graph. Besides, no explanation
on how and why the parameters of this clustering have been chosen

A spectrogram is a dense, high-redundancy object. It contains everything, but the useful
information is spread across tens of thousands of time-frequency samples. K-means, applied to
feature vectors, does something different: it compresses that high-dimensional acoustic evolution
into a set of discrete temporal regimes. This method offers segments where the storm behaves
acoustically in a similar way. We would also like to note that before applying K-means clustering
we performed covariance pruning on the full feature set. This step ensured that clustering was
not driven by redundant descriptors. Specifically, we computed the covariance matrix of all
extracted time—frequency features across the entire dataset. Pairs of features exhibiting very high



covariance were identified as redundant, since they describe nearly identical changes in the
spectral distribution. For each such group, only one representative feature was retained in the
final clustering vector. This reduced the dimensionality of the feature space while preserving the
independent acoustic information relevant to storm evolution. By applying covariance pruning,
the K-means algorithm operated on a set of features that contributed non-overlapping physical
information rather than multiple versions of the same underlying behaviour. This procedure also
mitigates the effect noted by the reviewer: while centroid and rolloff follow nearly identical
patterns, they do not exert disproportionate influence on the clustering, because only one of them
is included after pruning.

We revise the description of these features in Section 3.2 : “These features describe how energy
and frequency content evolve over time, providing insights into the structure of the infrasound
signal. Parameters such as spectral centroid and spectral rolloff are standard descriptors in
acoustic signal analysis and are suitable here because they effectively capture shifts in
dominant frequency produced by lightning-generated acoustic waves or the passage of
pressure disturbances, while spectral flux highlights changes in broadband acoustic energy
(Pasztor et al., 2023). Spectral entropy reflects the complexity of the frequency distribution,
which increases during turbulent atmospheric conditions, and the zero-crossing rate, mean,
and variance of the power spectrum summarize overall activity and variability. This feature set
provides a compact representation of the signal suitable for unsupervised machine-learning
approaches such as clustering, techniques widely used in data mining to identify patterns in
multidimensional time—frequency data (e.g., Coates and Ng, 2012), and allows us to
distinguish physically interpretable stages of storm-induced changes in the infrasound
wavefield.”

The features that were kept and z-scored after pruning are:

Feature Evolution - Waveform 1 (z-scored)
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We also added an additional explanation concerning the choice of the number of clusters: “The
optimal number of clusters was determined using the elbow method, which evaluates

10



within-cluster variance as a function of cluster number. To select the most informative
features, we applied covariance pruning, and the temporal evolution of the features was
visualized to ensure meaningful representation. This procedure resulted in seven six clusters,
providing a balanced representation of the infrasound dynamics while avoiding
over-segmentation or overfitting. By combining multiple features in the clustering, this
method captures the evolving acoustic states of the storm in a compact, interpretable form.”

7) Concerning seismic data, during years a discussion has been open between those relating the
microseismic peak amplitudes to air pressure or oceanic waves. However, it is now widely
accepted that the amplitude of the microseismic peak is related to oceanic waves. On contrary, it
is less clear which is the contribution of open waters and coastal zones to the primary and
secondary peaks. If the amplitudes of the microseismic peak is discussed, this is the subject that
should considered; Figures 6 and 7 just document that during stormy days, the microseismic
noise is higher; this is a well-known feature, which could be observed in most of the seismic
stations distributed worldwide

We agree that the link between microseismic noise and oceanic wave activity is well established,
and that increased microseismic amplitudes during storms is a known phenomenon. However,
our focus is not on the microseismic bands alone. In fact, the high-frequency seismic noise (>30
Hz), which has only recently gained attention for storm monitoring, plays a central role in our
analysis.

To our knowledge, only a handful of recent studies (e.g. Dias et al., 2023 - Scientific Reports;
Rindraharisaona et al., 2022 - Earth and Space Science; Coviello et al., 2024 - Natural Hazards)
have explored the use of high-frequency seismic noise to track storm evolution, precipitation, or
related atmospheric processes.

Figures 6 and 7, showing microseismic bands, were included not to re-document a known effect,
but rather to demonstrate the complementary nature of seismic observations across different
frequency bands. They support the broader goal of the paper: to highlight the repurposing
potential of seismic sensors for environmental monitoring as part of a multi-sensor approach,
alongside GNSS, infrasound, and satellite data.

This integrative perspective and the focus on emerging seismic applications beyond classical
microseism analysis, is, we believe, both timely and relevant to the NHESS scope.

8) Concerning infrasound data, no explanation of which is the utility of parameters as
spectral centroid, flux etc. is provided. Non-specialist readers need to know if these are
parameters routinely calculated to discuss specific characteristics of the signal. The close
relationship between infrasound and seismic data, widely documented my many contributions, is
not commented at all.

In the Methods section 3.2, we added: “Parameters such as spectral centroid and spectral
rolloff are standard descriptors in acoustic signal analysis and are suitable here because they
effectively capture shifts in dominant frequency produced by lightning-generated acoustic
waves or the passage of pressure disturbances, while spectral flux highlights changes in
broadband acoustic energy (Pdsztor et al., 2023). Spectral entropy reflects the complexity of
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the frequency distribution, which increases during turbulent atmospheric conditions, and the
zero-crossing rate, mean, and variance of the power spectrum summarize overall activity and
variability. This feature set provides a compact representation of the signal suitable for
unsupervised machine-learning approaches such as clustering, techniques widely used in data
mining to identify patterns in multidimensional time—frequency data (e.g., Coates and Ng,
2012), and allows us to distinguish physically interpretable stages of storm-induced changes in
the infrasound wavefield.”

Coates, A. and Ng, A.Y.: Learning feature representations with k-means. In Neural Networks: Tricks of the Trade:
Second Edition (pp. 561-580). Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

In the Discussion section, we included additional contextualization of our results, drawing on
relevant literature that supports and aligns with our findings: “... the observed spectral similarity
between the infrasound signals and high-frequency seismic envelopes suggests a coupled
seismo-acoustic response to the storm. This implies that the same atmospheric forcing, such as
pressure fluctuations from rainfall and wind, generates complementary signals in the
atmosphere (infrasound) and the ground (seismic waves). Our findings are consistent with
other studies of intense weather systems, where coupled microbarom-microseism signals have
been shown to track storm structure and evolution (e.g., Butler & Aucan, 2018; Smirnov,
2021). The coherent acoustic and seismic responses to atmospheric-oceanic pressures, as also
documented in Distributed Acoustic Sensing studies (Taweesintananon et al., 2023) and surf
studies (Francoeur et al., 2025), reinforce the interpretation of a shared source mechanism.
Therefore, a major and logical next step is to move beyond analyzing these datasets in parallel
and to perform joint clustering of seismo-acoustic data (e.g. Floroiu et al., 2025).”

Butler, R. and Aucan, J.: Multisensor, microseismic observations of a hurricane transit near the ALOHA cabled
observatory. Journal of Geophysical Research: Solid Earth, 123(4), 3027-3046, 2018.

Floroiu, 1., Anghel, A., Petrescu, L. and Datcu, M.: Clustering and Feature-Based Similarity Retrieval of Infrasound
Events during Two Storms in Constanta, Romania, International Conference on Machine Intelligence for
GeoAnalytics and Remote Sensing (MIGARS), Bucharest, Romania, 2025, 14,
https.//doi.org/10.1109/MIGARS67156.2025.11231952, 2025.

Francoeur, J.W., Matoza, R.S., Ortiz, H.D. and De Negri, R.: Identification of transient seismo-acoustic signals from
crashing ocean waves: template matching and location of discrete surf events. Geophysical Journal International,
243(2), ggaf317, 2025.

Smirnov, A., De Carlo, M., Le Pichon, A., Shapiro, N.M. and Kulichkov, S.: Characterizing the oceanic ambient
noise as recorded by the dense seismo-acoustic Kazakh network. Solid Earth, 12(2), 503-520, 2021.

Taweesintananon, K., Landre, M., Potter, J.R., Johansen, S.E., Rorstadbotnen, R.A., Bouffaut, L., Kriesell, H.J.,
Brenne, JK., Haukanes, A., Schjelderup, O. and Storvik, F.: Distributed acoustic sensing of ocean-bottom
seismo-acoustics and distant storms: A case study from Svalbard, Norway. Geophysics, 88(3), B135-B150, 2023.

9) The authors do not seem to be aware that the infrasound recordings related to lightning are in
fact the acoustic waves generated by the associated thunders. Different works, including some of
those included in the manuscript references list, have showed that the acoustic waves generated
by thunders are recorded systematically by nearby seismic stations.
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We are aware that infrasound signals associated with lightning originate from acoustic waves
generated by thunder. In our study, we systematically isolated coherent infrasound signals using
the PMCC algorithm, estimating propagation parameters such as back-azimuth, arrival time,
amplitude, and frequency. We then cross-referenced these detections with METEOSAT
Lightning Imager observations to identify which signals are likely associated with thunder.

To be more clear, in the revised manuscript we added: “ “The PMCC method targets signals
generated by atmospheric sources such as lightning (i.e., associated thunders) or other pressure
disturbances, operating in the low-frequency range of 0.7 to 7 Hz.” and added “Infrasound
associated with thunderstorms, primarily generated by acoustic waves from thunder, has been
studied previously and shown to be detectable at distances ranging from tens to hundreds of
kilometers (e.g., Assink et al., 2008; Sindelarova et al., 2015; Sindeldiovd et al., 2021).
Nevertheless, infrasound arrays detect signals from multiple storm-related sources, not just
thunder (e.g., Waxler et al., 2024). In the present study, we build on this understanding by
integrating these signals with seismic, satellite, meteorological, and water vapor observations
to investigate what these complementary datasets reveal about storm evolution in a coastal
environment.”

While the thunder-infrasound link is established (Assink et al., 2008; Sindelarova et al., 2015;
Sindelafova et al., 2021), the novelty of our work lies in integrating infrasound with
METEOSAT satellites and meteorological  observations to provide a comprehensive,
multidisciplinary view of storm evolution. Beyond simple detection, this approach helps
distinguish thunder-related signals from other acoustic events, demonstrating the potential for
near-real-time storm monitoring and analysis.

Assink, J. D., Evers, L. G., Holleman, 1., and Paulssen, H.: Characterization of infrasound from lightning,
Geophysical Research Letters, 35, L15802, https://doi.org/10.1029/2008GL034193, 2008.

Sindeldiova, J., Chum, J., Skripnikova, K., and Base, J.: Atmospheric infrasound observed during intense
convective storms on 9—10 July 2011, Journal of Atmospheric and Solar-Terrestrial Physics, 122, 66—74,
https://doi.org/10.1016/j.jastp.2014.10.014, 2015.

Sindeldrova, T, De Carlo, M., Czanik, C., Ghica, D., Kozubek, M., Podolskd, K., BasSe, J., Chum, J., and
Mitterbauer, U.: Infrasound signature of the post-tropical storm Ophelia at the Central and Eastern
European Infrasound Network, Journal of Atmospheric and Solar-Terrestrial Physics, 217, 105603,
https://doi.org/10.1016/j.jastp.2021. 105603, 2021.

Waxler, R., Frazier, W. G., Talmadge, C. L., Liang, B., Hetzer, C., Buchanan, H., and Audette, W. E.:
Analysis of infrasound array data from tornadic storms in the southeastern United States, Journal of the
Acoustical Society of America, 156, 1903—1919, https.://doi.org/10.1121/10.0028815, 2024.

10) If seismic and infrasound data is used, the contribution of other sources of vibration and/or
sound should be considered; which is the contribution of anthropogenic noise to each of the
stations?

To clarify the contribution of anthropogenic noise we added a few more details in the revised

manuscript. Regarding seismic sources, in Section 4.1, we added: ‘Anthropogenic seismic noise
is typically strongest at low to mid frequencies (<25 Hz), where day-night variations reflect
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traffic, human activity, and transient signals from machinery, while higher-frequency bands
(25-45 Hz) may include periodic contributions from rotating equipment (e.g., Gross & Ritter,
2008; Diaz et al., 2017). The bandwidth targeting rainfall in this case is between 30-50 Hz,
which is above the dominant frequency content of most anthropogenic sources and overlaps
with raindrop-impact energy documented in recent rainfall-seismic studies.”

Anthropogenic seismic noise does not significantly affect the microseismic band (0.1-1 Hz).
Human-generated vibrations predominantly occupy frequencies above 1 Hz, while long-period
microseisms are produced by ocean wave interactions and are coherent over large distances.
The temporal evolution of the microseismic energy observed in this study matches changes in
wave state associated with the storm rather than any local activity. Similar to the findings of
Gross & Ritter (2009), the sub-Hz frequency range is dominated by natural sources, with
anthropogenic contributions being negligible.”

Diaz, J., Ruiz, M., Sanchez-Pastor, P.S. and Romero, P, 2017. Urban seismology: On the origin of earth vibrations
within a city. Scientific reports, 7(1), p.15296.

Groos, J.C. and Ritter, JR.R., 2009. Time domain classification and quantification of seismic noise in an urban
environment. Geophysical Journal International, 179(2), pp.1213-1231.

Regarding infrasound signal, in Section 4.2.2 we added: “Anthropogenic noise sources, such as
wind turbines (e.g., Jakobsen, 2005), industrial machinery (Gastmeier and Howe, 2008), and
road traffic (Grafkina et al., 2019), are well-documented challenges for infrasound studies
because they often generate persistent, periodic, or tonal signals that can mask natural
atmospheric phenomena. The AGIR infrasound array used here is located in a semi-rural
setting, distant from major roads and industrial facilities, which reduces the likelihood of local
anthropogenic contamination. Several independent lines of evidence indicate that such
contamination is negligible in this case study. First, the strongest infrasound signatures
occurred during night-time hours, when human activity is minimal. Second, both the
clustering and PMCC analyses identify transient signals with energy peaking around ~3 Hz,
which contrasts sharply with the more continuous or harmonic spectral patterns typically
produced by anthropogenic sources. Third, the temporal alignment of these acoustic
signatures with independent observations of lightning and precipitation provides strong
confirmation that the detected infrasound variability is storm-related rather than
anthropogenic in origin.”

Jakobsen, J., 2005. Infrasound emission from wind turbines. Journal of low frequency noise, vibration and active
control, 24(3), pp.145-155.

Gastmeier, W.J. and Howe, B., 2008. Recent studies of infrasound from industrial sources. Canadian Acoustics,
36(3), pp.58-59.

Grafkina, M.V, Nyunin, B.N. and Sviridova, E.Y., 2019. Environmental monitoring and simulation of infrasound
generating mechanism of traffic flow. Journal of Ecological Engineering, 20(7).

Furthermore, the figure below shows AGIR detection capability for August 2024 (upper) and
infrasound PMCC detections of 30 August 2024 at AGIR station (lower). This image shows the
azimuth and frequency of sporadic events detected in the infrasound array using PMCC, which
clearly stand out from the mean azimuth of events detected throughout the month of August.
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Azimuth (°) vs Mean Time
AGIR - J214 2024/08/01 10:08:43 (31) -> J244 2024/08/31 23:38:35 (35), 8230 detections
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29-31 August 2024

In my opinion, if the manuscript goal is to prove that the integration of multiple sensors has a
clear utility to study storm evolution, much work is needed, including a better analysis of the
existing data and a modelling effort. The work done by the authors can be useful to show that a
strong storm can be detected not only by meteorological instruments but also by other sensors.
However, this is something that is well-known by researches in each of the different fields and,
in my opinion, does not deserve publication in NHESS.

There are two points in this comment that we believe are important to clarify, as also mentioned
in the response to the first comment. The idea that these sensors are “widely known” for storm
monitoring overstates their maturity. Even within their respective fields, many of these methods
are relatively new and still under active development. GNSS-derived PWV has shown promising
results for tracking atmospheric moisture buildup, but it is still transitioning from research to
operational use, particularly in regions like Eastern Europe. High-frequency seismic noise (>30
Hz) has only recently been explored for detecting rainfall and storm intensity, with just a few
studies published (e.g. Dias et al., 2023; Rindraharisaona et al., 2022). Infrasound for lightning
detection is not yet standardized or routinely integrated into weather monitoring systems. While
each of these sensing techniques may be known in isolation, they have not been used together in
a coordinated, observational framework to monitor storm events. To our knowledge, this is_the

first study to combine these data types during a real storm, demonstrating the potential of
multi-sensor integration across geophysical and atmospheric domains

Regarding the suggestion for a joint quantitative or modeling-based analysis: we believe that
such an approach, while important for future work, would not be appropriate for the current
study. Each sensor responds to different physical processes during the storm: GNSS-PWV may
reflect long-term moisture buildup, high-frequency seismic noise captures localized raindrop
impacts, microseisms - wave-seafloor coupling from ocean swell, and infrasound - pressure
fronts and lightning discharges. Because these sensors probe_distinct atmospheric or geophysical
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phenomena, each with its own spatial and temporal scales. a direct mathematical correlation or a

common model would be conceptually flawed. Even fully instrumented meteorological
measurements (ex:radar, disdrometers, barometers) do not always correlate tightly, because they

observe different parts of the storm system. We see this as an important point: the value of
integration lies not in numerical correlation but in_complementarity, each sensor providing a

unique window into the storm’s evolution. This is why we opted for a gualitative, physically

informed analysis, which we believe is more meaningful at this stage. In the revised manuscript,
we will clarify this explicitly and include a short discussion on why correlation across these

domains is not only impractical but scientifically inappropriate without careful physical
modeling of each signal pathway, which is beyond the current scope but certainly part of future
work.

Reviewer #2:

The manuscript presents a multi-sensor case study of the August 2024 Black Sea storm using
seismic, infrasound, GNSS-derived PWYV, and MTG-Lightning Imager, with ERAS. The concept
is strong and relevant. However, quantitative validation, methodological transparency, and
operational feasibility need to be strengthened before publication. A clear, reproducible
verification procedure is necessary

Major comments
1) Seismic—rainfall linkage remains qualitative

Section 4.1 shows >30 Hz seismic envelopes and spectrograms and network snapshots that
visually vary with ERAS precipitation, but the evidence is descriptive. To increase credibility, the
relation should be verified against independent observations (rain gauges and/or radar), with
objective statistical metrics. Because the paper claims this as potentially useful for early warning,
it would also help to outline a minimal streaming detection approach.

We thank the reviewer for this comment. Independent rain-gauge or radar data would indeed
allow formal statistical validation; however, despite several formal requests, the Romanian
National Meteorological Agency declined to share station-level precipitation observations for the
period studied. In this context, we used ERAS, which provides robust precipitation estimates
based on assimilation of global observations and is widely used in research and operational
applications.

Our analysis shows that high-frequency (>30 Hz) seismic amplitudes and spectrograms closely
track the temporal evolution of precipitation in ERAS (Figures 4-5). Qualitative visualizations
indicate that only precipitation above certain cumulative thresholds produces clear seismic
responses. This effect likely depends on physical factors such as raindrop size and impact
velocity, meaning that lower-intensity rainfall may not generate detectable seismic signals. For
this reason, formal statistical metrics such as direct cross-correlations could be misleading at this
stage, and a qualitative, physically informed analysis remains appropriate to interpret the causal
linkage between rainfall and seismic response.
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To address the reviewer’s interest in early-warning potential, we have added a brief discussion of
how high-frequency seismic signals could be monitored in near real time to flag intense rainfall,
providing a conceptual basis for a minimal streaming detection workflow.

2) Infrasound-lightning linkage lacks association statistics

PMCC detections rise during the event and coincide qualitatively with MTG-LI flashes. A
concise matching procedure together with summary statistics is necessary for quantitative
evidence.

In the revised manuscript, in Section 3.3, we have added the following details:

“Associations between infrasound detections and lightning flashes detected by MTG within 50
km of the AGIR infrasound station were investigated by assuming direct-path acoustic
propagation and a correspondence between infrasound time-of-arrival and the MTG lightning
discharge time (after Assink et al., 2008):

t=tyre +d/c + AL,

where ddd is the distance between the lightning discharge and the infrasound station,c =
340m/s, and At = =£10s accounts for timing uncertainty. Additionally, a maximum angular
deviation of 10° between the observed infrasound backazimuth and the MTG-derived
backazimuth is permitted for an association to be accepted.”

AGIR
360 T =
> © Lightnings
@& ° Infrasound detections
300
240 82
] ? © 9
= 8
2 @ 5 °
-— 180 — o oo grQ)Oo‘) A
3 1 e Ry 3 o
3 | ° g &L & s
1T I | §
120 - - .& % 0 - 2 js
1 3 ST BT &,
1 8 f““’»%ﬁ’ $
b » 8 o
i o
60 | o & @ o
Jo o @
Qo
[e]
4 o ©
0 L e e e B e e L AN s s s s s s s s L s e s s s s e s
29/08/24 30/08/24 31/08/24 01/09/24

Date

Figure 10.c Associations between events detected by the AGIR infrasound array and the MTG satellite
database.

Assink, J. D., L. G. Evers, 1. Holleman, and H. Paulssen (2008), Characterization of infrasound
from lightning, Geophys. Res. Lett., 35, L15802, doi:10.1029/2008GL034193
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3) K-means clustering?
The 30-min infrasound feature set is reasonable, yet the fixed choice of k = 7 is not justified.

We thank the reviewer for this question. The number of clusters (6) was determined using the
elbow method, which identifies the optimal cluster count by examining the rate of decrease in
within-cluster variance. To further refine the features, we applied covariance pruning, which
selects the most informative features for each cluster. The evolution of these features over time
was also visualized to ensure they meaningfully capture the variability in the infrasound signals.
These combined procedures guided the choice of six clusters as providing a balanced
representation of the infrasound dynamics while avoiding overfitting.

In the revised manuscript, in Section 3.2 we added: “The optimal number of clusters was
determined using the elbow method, which evaluates within-cluster variance as a function of
cluster number. To select the most informative features, we applied covariance pruning, and
the temporal evolution of the features was visualized to ensure meaningful representation.
This procedure resulted in six clusters for subsequent analysis.”

4) ERAS as verification?

ERAS provides useful meteorological background but should not be treated as ground truth for
validating other sensors, particularly for localized coastal extremes. Verification should rely on
observational datasets (gauges, radar, wave/tide sensors where relevant).

We fully agree that in an ideal setting, verification should rely on in-situ observational datasets
such as gauges or radar. Unfortunately, despite multiple formal requests, we were unable to
obtain station-level precipitation measurements from the Romanian National Meteorological
Agency for the specific period of interest; the only data they were willing to provide were
gridded reanalysis fields, which offer no independent ground-truth reference. Given this
constraint, we used ERAS5 not as definitive “truth,” but as a physically consistent and widely
validated meteorological baseline. ERAS is the EU’s flagship ECMWF reanalysis product and is
generally considered one of the most robust large-scale precipitation datasets available,
particularly for providing synoptic-scale context. We have clarified this limitation in the
manuscript and adjusted the wording to avoid implying that ERAS represents direct
observational validation.

6) Methodological transparency and reproducibility.

Key processing details are missing. Parameters for seismic and PMCC processing can improve
reproducibility.

Regarding seismic data, instrument correction, and filtering are standard processing steps which
would not require additional details for replication. They correspond to one-line commands in
seismic processing codes and we mentioned the bandwidth for each applied filter and the type of
filter (Butterworth) in the text. Spectrograms and PPSDs are also quite straightforward from a
seismologist’s point of view, but, for clarity, we added more details: * Spectrograms of these
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filtered seismic traces were computed using short-time Fourier transforms implemented in the
scipy.signal package, with the default 256-sample window length used for each segment, to
visualise signatures of the hydro-meteorological phenomena in the frequency content of ground
vibrations.

Potential environmental signals in the seismic data were also investigated using power spectral
density (PSD) analysis. To account for variations over time, a Probabilistic Power Spectral
Density (PPSD) method was applied. The continuous waveform was divided into 1-hour time
windows with 50% overlap, and a PSD was computed for each window after
instrument-response correction and basic preprocessing. These estimates were combined into
a probability distribution, providing a statistical overview of typical and transient noise levels
across frequencies.”

Regarding infrasound data processing, we added a few more details in Section 3.2 for clarity: “In
parallel with the single-station analysis, we also applied the Progressive Multi-Channel
Correlation (PMCC) method, as implemented in the DTK-PMCC software (Cansi and Le
Pichon, 2008; Le Pichon et al., 2010) [...] The PMCC algorithm was implemented using a
multi-resolution configuration following the standardization proposed by Garcés (2013), with
window lengths and frequency bands arranged in third-octave bands. A total of 19 frequency
bands were used, covering 0.1-7 Hz. Window lengths decrease logarithmically with frequency,
ranging from 258 s in the lowest band to 4 s in the highest band. A 10% time step was applied
(corresponding to 90% overlap between consecutive windows), and this scheme repeats every
decade.”

An example of this schema is shown in the figure below:
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Garcés, M.A. (2013). On infrasound standards, part 1 time, frequency, and energy scaling.
InfraMatics 2(2):13-35. https://doi.org/10.4236/inframatics. 2013.22002
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7) Section numbering.

Results currently contain two “4.1” subsections, followed by “4.4.” Consistent renumbering and
updated cross-references are needed.

Subsection numbers and all related cross-references have now been corrected in the revised
manuscript.

Minor comments

Fig. 4: “Tiem series” — “Time series”.
Corrected

Figs. 4-5: add axis units on all panels; include uncertainty shading or a baseline/reference line
for the high-frequency envelope.

In Figure 4, units are displayed on the left side axis. The high-frequency seismic envelope simply
comprises recorded ground motion parameters. The accuracy of recording the vibration is more
complex, depending on instrument response or its calibration but it’s probably around 1 nm or
less. The timing accuracy also depends on how synchronized the sensor is with its GPS (which
could result in time uncertainties of +-2 millisecond. These uncertainties in seismic recording are
insignificant in the current context.

In Figure 5, the two colour bars representing seismic noise amplitude and precipitation values are
the same for all panels.

Fig. 11 (GNSS): include a colorbar with units (mm) and state the exact day used for “a day
before”; consider annotating station IDs (coastal vs. inland).

We added a specific date in the caption as suggested. The units on the colour bar are specified
next to it, on the figure: “PWV (mm)”. We will add station annotations, as suggested, in the
revised figure.

L305: capitalize and format time as “August 29, 00:00 UTC.”
Changed as suggested.

Reduce phrases like “illustrating a correlation” or “supports a causal relationship” unless
statistics are provided; use neutral wording if results remain qualitative.

We have replaced expressions suggesting a quantitative correlation throughout the manuscript
with terms like: “presents a temporal coincidence between”, “coincided with”, “were

110 €6

contemporaneous with changes in”, “occurred during”

Ensure consistent capitalization of months and first-use expansion of abbreviations (PWYV,
PMCC, LI).

We have ensured that the months 'August' and 'September' are consistently capitalized
throughout the revised manuscript. The abbreviation 'PWV' is used throughout the manuscript. In
the Conclusions, we reintroduce the full term "Precipitable Water Vapor' to aid readers who may
not have read the full text.
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If terms like “record-breaking” or “extreme” are used, add brief quantitative context
(percentiles/ranks) or soften the phrasing.

We added more details about thai event based on an official report of the National
Meteorological Agency: “According to the National Meteorological Agency official records
(https://www.meteoromania.ro/clim/caracterizare-lunara/cc_2024_08.html), one of the coastal
stations at Mangalia, recorded a total of 343.6 mm of precipitation in August 2024, breaking
the previous record of 159.1 mm from 1947, and significantly surpassing the average monthly
precipitation values for this area (Figure Ic). A remarkable 234.7 mm of this total fell in a
single day on August 31, 2024, highlighting the event's exceptional intensity.”
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