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1 Abstract 12 

Thermokarst ponds in thawing permafrost landscapes play a considerable role in greenhouse 13 

gas (GHG) emissions despite their small size, yet they remain underrepresented in Earth 14 

system models. Transitions from hydrologically isolated thermokarst ponds in peat plateaus 15 

to connected wetlands can substantially alter GHG dynamics. However, the processes and 16 

GHG impacts of these, but the biogeochemical processes underlying these shifts are not well 17 

understood, —particularly in the sporadic permafrost zones of Fennoscandia, where such 18 

small systems are infrequently reported. To address this, we investigated At the Iškoras site in 19 

northern Norway, a peat plateau with decaying permafrost and thermokarst ponds adjacent to 20 

a wetland, we studied water chemistry, dissolved organic matter (DOM) processing, and 21 

GHG fluxes over two years at the Iškoras site in northern Norway, where a degrading peat 22 

plateau includes both thermokarst ponds and an adjacent wetland stream. Thermokarst ponds 23 

exhibited low pH, high organic acidity, and high oversaturation of dissolved carbon dioxide 24 

(CO2) and especially high dissolved methane (CH4). Adjacent wetland streams, however, 25 

with near-neutral pH, showed lower CH4 and organic acidity but significantly higher CO2 26 

emissions despite moderate saturations driven by turbulence and bicarbonate replenishment. 27 

By contrast, CO2 emissions in ponds were primarily linked to DOM mineralization. Despite 28 

differences in chemistry, DOM mineralization rates were similar between ponds and streams, 29 

suggesting that environmental factors like pH and microbial community differences 30 

counteract DOM lability variations. As permafrost decays and transitions from peat plateaus 31 

to wetlands, ponds as hotspots of CH4 emissions will disappear. However, total GHG fluxes 32 

across the peatland-wetland continuum will depend on wetland emissions, where CH4 33 

emissions usually are considerable, and the fate of organic matter within the plateau. Lateral 34 

DOM fluxes may represent a significant loss of soil organic carbon, highlighting the 35 

importance of hydrological connectivity in linking terrestrial and aquatic systems. This study 36 
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emphasizes the need to account for the relationship between hydrological and chemical 37 

processes when assessing C and GHG fluxes in permafrost-impacted regions.  38 
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1. Introduction 39 

Northern latitude permafrost regions hold one of the largest terrestrial carbon reservoirs on 40 

the planet (Schuur et al., 2008; Schuur et al., 2015; Walter et al., 2006). Although covering 41 

only about 15% of global soils, these regions store an estimated 1400-1600 Pg of organic 42 

carbon (OC) (Hugelius et al., 2014; Schuur et al., 2022; Strauss et al., 2025), making them a 43 

critical component of the global carbon (C) cycle. which store approximately 1,300 Pg of 44 

organic carbon (OC) (Hugelius et al., 2014), represent one of the largest terrestrial carbon 45 

reservoirs on Earth (Schuur et al., 2008; Schuur et al., 2015; Walter et al., 2006). Sequestered 46 

under cold and oxygen-limited conditions, this carbon (C)C is increasingly vulnerable to 47 

release as permafrost thaws due to climate warming, generating significant feedbacks that 48 

complicate predictions of future climate trajectories (Schuur et al., 2008; Schuur et al., 2015; 49 

Walter et al., 2006). As permafrost degrades, the release of greenhouse gases, particularly 50 

methane (CH4) and carbon dioxide (CO2), through the microbial decomposition of previously 51 

frozen organic matter (OM) can rapidly escalate the impact of this feedback (Schuur et al., 52 

2008; Walter et al., 2008; Wik et al., 2016; Zimov et al., 2006). While the large-scale thaw of 53 

permafrost is widely recognized (Leppiniemi et al., 2023) and permafrost regions warm three 54 

to four times faster than the global average (Meredith et al., 2019), the timing, magnitude, 55 

and pathways of carbon release remain uncertain, influenced by processes such as burial, 56 

mobilization, lateral export, and mineralization (Verdonen et al., 2023; Vonk et al., 2015). 57 

Permafrost thaw leads to irreversible landscape transformations. Peatlands in northern 58 

Norway are predominantly located in the sporadic permafrost zone, where they form 59 

distinctive landscape features such as peat plateaus and palsas. These are peat uplands and 60 

mounds with a frozen core, elevated above the water table by the formation of segregation ice 61 

(Alewell et al., 2011; Krüger et al., 2017). As these features degrade, permafrost thaw is often 62 

abrupt and subsidence and collapse is to be expected, leading to the formation of thermokarst 63 
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ponds, as excess ground ice is lost (Martin et al., 2021). More than half of the permafrost 64 

areas in the Scandinavian Peninsula are at risk of disappearing under current and projected 65 

climate conditions (Gisnås et al., 2017; Schuur et al., 2008). The areal extent of peat plateaus 66 

in this region decreased by 33%–71% between the 1950s and the 2010s, with rapid 67 

degradation observed during the last decade (Borge et al., 2017). This regional degradation 68 

mirrors processes observed across the northern hemisphere, including in the Canadian Arctic, 69 

European Russia, and the Kola Peninsula, highlighting the vulnerability of sporadic 70 

permafrost regions to warming climates (Krutskikh et al., 2023; Payette et al., 2004; Sannel 71 

and Kuhry, 2011). While the processes driving these permafrost thaw and landscape 72 

transformations, such as thermal disturbances, vegetation shifts, and subsidence, are 73 

relatively well-studied, their consequences for GHG fluxes and C cycling remain uncertain, 74 

limiting our ability to project future climate feedbacks (Holmes et al., 2022; Olefeldt et al., 75 

2021; Turetsky et al., 2020). 76 

Among the new landscape forms that emerge from degrading peat plateaus, thermokarst 77 

ponds and wetlands play a critical role in greenhouse gas dynamics. These small aquatic 78 

systems, formed by the thaw and collapse of permafrost, are characterized by high 79 

concentrations of dissolved organic carbon (DOC) and inorganic carbon (DIC) (Abnizova et 80 

al., 2012; Martin et al., 2021; Matveev et al., 2018). Thermokarst ponds, in particular, act as 81 

hotspots for CH4 and CO2 emissions due to unique biogeochemical conditions, including 82 

hydrological isolation, anoxic sediments, and high organic matter availability (in 't Zandt et 83 

al., 2020; Polishchuk et al., 2018; Vonk et al., 2015; Ward and Cory, 2015). Despite their the 84 

small size of thermokarst ponds, these waterbodies can contribute significantly to regional C 85 

fluxes, with CH4 and CO2 supersaturation levels often surpassing those of larger lakes—86 

whether thermokarst or not —or surrounding tundra ecosystems (Abnizova et al., 2012; Kuhn 87 

et al., 2018; Shirokova et al., 2012). However, their the contributions of thermokarst ponds 88 
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are often overlooked in large-scale C assessments, as they remain difficult to detect using 89 

satellite-based methods because of their small size (Holgerson and Raymond, 2016; Muster et 90 

al., 2017). 91 

As permafrost thaw progresses, the transition of isolated thermokarst ponds to interconnected 92 

wetland systems further alters GHG dynamics. While northern permafrost wetlands currently 93 

act as a C sink, the inclusion of thaw pond emissions into broader wetland carbon budgets 94 

reveals their potential to offset the sink capacity by 39% (Kuhn et al., 2018). Compared to 95 

thermokarst ponds, wetlands have sustained CH4 fluxes over larger areas due to persistent 96 

waterlogging and OM decomposition (Pirk et al., 2024; Swindles et al., 2015; Turetsky et al., 97 

2020), thus constituting important long term CH4 sources (Bansal et al., 2023). The 98 

transformation from stable permafrost to thermokarst landscapes is accompanied by shifts in 99 

hydrology, OM lability, and microbial activity, which collectively shape CO2 and CH4 100 

production pathways (Holmes et al., 2022; Laurion et al., 2020). Understanding the dynamics 101 

of these evolving permafrost and wetland systems is critical for assessing the broader impacts 102 

of permafrost thaw on regional C uptake and emissions as well as global C cycles. 103 

Northern Norway’s sporadic permafrost zone, with its abundant small thermokarst ponds and 104 

emerging wetlands, provides a valuable opportunity to investigate carbon cycling in rapidly 105 

evolving subarctic landscapesstudy such processes. The region’s rapidly degrading peat 106 

plateaus host significant C stocks, yet small aquatic systems, especially those in 107 

Fennoscandia, remain underrepresented in Earth system models (Abnizova et al., 2012; 108 

Muster et al., 2019; Muster et al., 2017). While Eexisting studies emphasize the importance 109 

of quantifying CH4 and CO2 fluxes in these environments and their implications for C 110 

budgets (Abnizova et al., 2012; Matveev et al., 2018). However, the interactions between 111 

hydrology, vegetation and carbon processing are not well understood. Yet such processes are 112 

central to key questions regarding how transitions between permafrost, thermokarst, and 113 
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wetland systems influence C dynamics, and whether these landscapes function as net C 114 

sources or sinks under changing climatic conditions (Sim et al., 2021). In particular, peatland 115 

ponds and thermokarst waterbodies exhibit unique biogeochemical cycling from lakes, driven 116 

more by internal dynamics than external watershed inputs (Arsenault et al., 2022). These 117 

differences remain poorly represented in both observational datasets and Earth system 118 

models.yet will control critical questions remain regarding how transitions between 119 

permafrost, thermokarst, and wetland systems influence C dynamics, and whether these 120 

landscapes function as net C sources or sinks under changing climatic conditions (Sim et al., 121 

2021).  122 

This study aims to address these gaps by examining the GHG dynamics and C 123 

biogeochemistry of thermokarst ponds and wetland streams in the sporadic permafrost zone 124 

of northern Norway. Over two years, we collected a novel dataset combining biogeochemical 125 

measurements with C flux data from thermokarst ponds and a wetland stream within a small 126 

permafrost peatland plateau undergoing rapid permafrost degradation. This setting captures a 127 

landscape in active transition from isolated thermokarst ponds to interconnected wetlands.we 128 

measured dissolved CO2 and CH4 concentrations, water chemistry, and OM lability to 129 

evaluate the processes driving C fluxes in these systems. We hypothesize that (1) thermokarst 130 

ponds serve as hotspots of CH4 and CO2 production relative to wetland streams, (2) the 131 

transition from isolated ponds to wetlands significantly alters GHG emission pathways, 132 

driven by shifts in hydrology and OC availability, and (3) recently mobilized OM from 133 

thawing permafrost presents a labile source of C promoting CO2 production in thermokarst 134 

water bodies compared to wetland streams. By exploring these dynamics, this study provides 135 

insights into the role of small water bodies in permafrost C feedbacks, advancing our 136 

understanding of sub-Arctic and boreal C cycling.  137 
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2. Methods 138 

2.1 Study area  139 

The Iškoras field site (69.34°N, 25.29°E; 381 m a.s.l.) is a permafrost peatland plateau 140 

located in the interior of the Finnmark province, northern Norway, on the Finnmarksvidda 141 

plateau (Fig. 1). The region of Finnmarksvidda lies between 300 and 500 m a.s.l. and is 142 

characterized by a subarctic continental climate. The topography was shaped by Pleistocene 143 

glaciations, which deposited ground moraines, glaciofluvial, and glaciolacustrine sediments 144 

(Sollid et al., 1973). The depressions in the landscape are commonly filled with peatlands 145 

(Borge et al., 2017), and peat plateaus underlain by permafrost are common. 146 

The Iškoras peat plateau covers an area of approximately 4 ha and is part of a 3.3 km2 147 

subarctic headwater catchment that drains into the Báhkiljohka river (91 km2). Mean annual 148 

air temperature and precipitation for the 30-year normal (1991-2020) period was -1.9°C ± 149 

1.0°C, and 513 ± 90 mm, respectively (Table 1). For our study period 2021 to 2022, MAAT 150 

and MAP were -1.1°C, and 589.5 mm (SeNorge, 2023). Iškoras lies within the zone of 151 

sporadic permafrost and the peat soils extend down to about 1.5 m in the plateau areas 152 

(Kjellman et al., 2018) and active layers depths up to 90 cm. The plateau exhibits a complex 153 

surface of intact and degrading palsas, along with thermokarst ponds, and is surrounded by 154 

wetlands and a stream to the northwest (Martin et al., 2019). Between 2019 and 2022, up to 155 

0.8 m of subsidence of palsas was measured at localized sites (Pirk et al., 2024). The site is 156 

located about 90 km south of the nearest coastal fjord and is dominated by mountain birch 157 

forest (Betula pubescens) and tundra vegetation, including dwarf birch (B. nana). The plateau 158 

consists primarily of low heath shrubs, Ericaceae (Empetrum nigrum, Rhododendron 159 

tomentosum), lichen crusts, mosses, and cloudberry (Rubus chamaemorus) or bare ground, 160 

while the surrounding wetlands are dominated by Sphagnum mosses, sedges (Carex spp.), 161 

and cotton grass (Eriophorum spp.) (Kjellman et al., 2018; Martin et al., 2019). 162 
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Unit Mean ± std for 1991-2020 Mean + std for 2021-2022 

annual temperature ⁰C -1.9 ± 1.0 -1.1 ± 0.4 

summer temperature ⁰C 10.4 ± 2.2 11.8 ± 0.2 

annual precipitation mm 513 ± 90 589.5 ± 62.5 

summer precipitation mm 196 ± 53 207 ± 48 

Table 1 Mean and interannual standard deviation (shown as mean ± std) of climate parameters 163 

for the Iškoras catchment for the normal period (1991–2020) and the study period 2021-2022. 164 

Summer is defined as May to September.  165 

 166 

The study area included water bodies within a peat plateau and the adjacent wetland, selected 167 

for sampling and monitoring. Measurements and samples were taken approximately monthly 168 

in the ice-free season from May until October in 2021 and 2022 (full details in Table SI 1). 169 

The waterbodies consisted of three thermokarst ponds (TK-Pond 1, 2, and 3), a seasonal 170 

drainage channel (TK-Drain) connecting the peat plateau to the wetland, and the wetland’s 171 

inlet and outlet streams (Inlet, Outlet), with the outlet also marking the terminus of the 172 

Iškoras catchment. From mid-May to early November, monitoring showed that the 173 

thermokarst ponds and Inlet were ice-free for 170 ± 5 days, while the Outlet remained ice-174 

free for 184 days (Table SI 21). 175 

The thermokarst ponds varied in hydrological connectivity and permafrost influence, 176 

reflecting differences in age and physical characteristics. TK-Pond 1 (0.4 m depth) is small 177 

and located at the peat plateau–wetland transition, experiencing periodic hydrological 178 

isolation. TK-Pond 2, the largest and deepest (1.5 m depth), lies centrally on the peat plateau, 179 

surrounded by degrading palsas. TK-Pond 3 (0.6 m depth) is situated at the plateau's edge and 180 

was initially isolated by a surrounding permafrost mound. 181 

The TK-Drain is a shallow, ephemeral drainage channel that provides the primary 182 

hydrological connection between the peat plateau and wetland. The wetland’s inlet stream 183 

(0.6 m wide, 15–40 cm deep) begins approximately 200 m upstream of the plateau, flowing 184 

through birch forest and mires without permafrost before entering the wetland where the 185 
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channel becomes less defined. The outlet stream (0.8 m wide, 30–60 cm deep) re-emerges 186 

approximately 700 m downstream at the wetland’s far end, serving as the catchment outlet. 187 

Between September 2020 and October 2022, a total of nine field campaigns were conducted 188 

for regular sampling of water chemistry, dissolved gases, CO2 emissions, GHG production 189 

using the dark incubations method, and high-frequency monitoring of water height and 190 

temperature. 191 

 192 

Figure 1 Location map of the study area in Europe (a) and the Iškoras catchment (b; determined 193 

from the outlet station Outlet). Close-up of the wetland (c) with regular sampling sites and main water 194 

flow direction. Pictures of the three main pond sites are also shown (d–f). 195 
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2.2 Water chemistry  196 

Water samples for chemical analyses were collected using standardized procedures. From 197 

each site, 500 mL unfiltered water was collected in HDPE rectangular bottles (Emballator 198 

Melledrud AB, Stockholm, Sweden) after rinsing with sample waters three times, kept dark 199 

after sampling, carried out of the field, and stored within hours after sampling at 4⁰C. The 200 

samples were then transported by car and plane back to the laboratory and delivered for 201 

chemical analysis where they were kept at 4⁰C until analysis. To ensure that our sampling 202 

procedures were suitable for the determination of nutrient concentrations, we performed a 203 

comparison of different field procedures including acidification and filtration in the field (see 204 

Supplementary information).  We found no significant differences between procedures (Table 205 

SI 4).  Chemical analysis of pH, electrical conductivity (EC), alkalinity, and concentrations of 206 

sulfate (SO4
2-), silica (SiO2), ammonium (NH4

+), nitrate (NO-
3), total phosphorous (totP), 207 

total organic carbon (TOC), DOC (filtered by 0.45 μm) and particulate organic carbon (POC) 208 

(filtered and then combusted at 1800 ̊C) in the water samples was performed at accredited 209 

laboratories at the Norwegian Institute for Water Research (NIVA); methods for analysis and 210 

quality control are described in Vogt and Skancke (2022the ICP Waters Programme Manual 211 

(Gunderson et al., 2025). The samples were not fully digested according to standard 212 

procedures required for the determination of total nitrogen (totN), hence totN values are 213 

expected to be underestimated and are therefore not shown in the manuscript, although the 214 

values were enough to confirm the dominant form of N was organic (Thrane et al., 2020) 215 

totN values were enough to confirm that the dominant form of N was organic..  216 

Absorption spectra of DOM were measured at NIVA for wavelengths between 200 and 900 217 

nm, using 1 nm intervals, with a 5 cm cuvette length and Milli-Q water as a reference, using a 218 

Lambda 40 UV/Vis spectrophotometer (Perkin Elmer, USA) and expressed in absorbance pr 219 

cm. In two samples, incomplete filtration caused excess scattering, and these spectra were 220 
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removed. The absorbance values at 254 nm (Aλ254nm) were used to calculate specific UV 221 

absorbance, expressed as sUVaThe absorbencies were used to calculate specific UV 222 

absorbency (sUVa = Aλ254nm/mg C L-1,) and the specific UV absorption ratio (SAR = 223 

Aλ254nm/Aλ400nm) was calculated for each sample. 224 

 225 

2.3 Dissolved gas analysis 226 

Dissolved gases (CO2, CH4) were sampled in the field using the acidified headspace 227 

technique (Åberg and Wallin, 2014). Duplicate gas samples were collected according to 228 

Valiente et al. (2022). with Two 50 mL syringes. These were filled and sealed underwater 229 

without air bubbles to prevent gas loss. Excess water was expelled to retain 30 mL, and 20 230 

mL of ambient air was drawn in to create a headspace. All sSamples were acidified with 0.6 231 

mL of 3% HCl to achieve pH <2, ensuring DIC was present as CO2. Equilibrium was reached 232 

by shaking for one minute, followed by a 30-second rest, repeated thrice and then 15 mL of 233 

headspace gas was transferred to 12 mL evacuated vials., and wWater temperature in the 234 

syringe was measured immediately after gas transfer. Samples were stored at room 235 

temperature and flown to southern Norway for analysis. A 15 mL ambient air sample was 236 

taken daily for background correction. 237 

Analysis was performed via automated gas chromatography (GC) at the Norwegian 238 

University of Life Sciences (NMBU), as described by Yang et al. (2015). A GC autosampler 239 

(GC-Pal, CTC, Switzerland) injected 2 mL headspace samples into an Agilent 7890A GC 240 

(Santa Clara, CA, USA) with a 20-m wide-bore Poraplot Q column at 38°C, using He as the 241 

carrier gas to separate CH4 and CO2 from Ar, N2, and O2. For calibration, certified standards 242 

of CO2 and CH4 in He were used (AGA, Germany) and N2, O2, and Ar were calibrated using 243 

laboratory air. CH4 was measured with a flame ionization detector (FID). A thermal 244 

conductivity detector (TCD) was used to measure all other gases.  245 
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Dissolved gas concentrations were calculated from headspace concentrations corrected for 246 

background air, applying temperature-adjusted Henry's law constants (Wilhelm et al., 1977) 247 

based on the recorded water temperature. At pH >4, a non-negligible amount of DIC is in the 248 

form of (bi)carbonates (HCO3
-, CO3

2-). The bicarbonate concentrations were calculated based 249 

on pH, total dissolved CO2 (after acidification), and the temperature-adjusted first 250 

dissociation constant (pK1 = 6.41 at 25°C; Stumm and Morgan (2013)) of the carbonic acid 251 

equilibrium. Dissolved CO2 was calculated as DIC minus bicarbonate. To facilitate 252 

comparisons with existing studies that report dissolved gases in µatm, we converted dissolved 253 

gas concentrations to CO2 or CH4 saturation indexes (𝐺𝐻𝐺𝑆𝐼) assuming atmospheric partial 254 

pressures of CO2 and CH4 as 400 µatm and 1.9 µatm, respectively: 255 

𝐺𝐻𝐺𝑆𝐼 =
[𝐺𝐻𝐺]

[𝐺𝐻𝐺]𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛
  256 

Where [𝐺𝐻𝐺]is the measured dissolved CO2 or CH4 concentration, and [𝐺𝐻𝐺]𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 is 257 

the concentration of dissolved CO2 or CH4 at equilibrium with their respective atmospheric 258 

partial pressure. 259 

 260 

2.4 Diffusive CO2 fluxes from water to atmosphere 261 

Measurements of CO2 fluxes from water to atmosphere (diffusive CO2 fluxes) were measured 262 

at each site for 30-60 minutes using self-made, opaque flux chambers as described by 263 

Bastviken et al. (2015) at the water-air interface. The chamber consists of a Senseair K30 264 

sensor (Senseair AB, Delsbo, Sweden) housed within a plastic bucket that records pCO2, 265 

temperature, and relative humidity every 30 seconds. Fluxes are calculated from the linear 266 

increase in pCO2 corrected for ambient temperature and humidity in the chamber (Bastviken 267 

et al., 2015) considering the internal air volume and the water surface area covered by the 268 

chamber. Single measurements with a linear increase in pCO2 with time associated with a 269 

coefficient of determination (R2) lower than 0.9 were discarded. 270 
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 271 

2.5 Dark incubations 272 

Water samples were collected for short term dark incubations started directly in the field 273 

lasting between 18 and 30 hours to estimate DOM mineralization and GHG production 274 

processing rates. Serum flasks (120 mL) were filled with 80 mL of water with a 50 mL 275 

syringe equipped with a long tube. The syringe was filled and closed under water, and the 276 

water was gently pushed at the bottom of the serum flask to prevent gas loss. The remaining 277 

40 mL were left with ambient air as headspace. The flasks were crimp-sealed with gas-tight, 278 

butyl-rubber septa, sealed, covered with aluminium foil and kept at field temperature (for 279 

maximum 6 hours), transported back from the field to be stored at room temperature (18-280 

20°C). The day following the sampling (18 to 30 hours after sampling), the incubations were 281 

stopped by adding 1.6 mL 3% HCl to reach a final pH below 2, after which gas samples were 282 

taken following the protocols described above. Results from the dark incubation were 283 

expressed as rates of DIC production over the course of the incubation period by comparison 284 

with initial DIC concentrations and reported as µMh-1: 285 

𝐷𝐼𝐶𝑟𝑎𝑡𝑒 =
[𝐷𝐼𝐶]𝑓−[𝐷𝐼𝐶]0

ℎ
    (Eq. 2) 286 

where [𝐷𝐼𝐶]𝑓 is the final solute concentrations in the dark incubation and [𝐷𝐼𝐶]0 is the initial 287 

solute concentration taken in the field (see Sect 2.3) in µM, and ℎ is the incubation duration 288 

in hours. In addition, we normalized the DIC production rate with DOC concentration to 289 

estimate DOM mineralization rates (per time unit). Also, we calculated the first-order DOM 290 

decay rate (yr-1) using the exponential decay rate model (Mostovaya et al., 2017). The 291 

exponential decay model, based on early studies on sediment diagenesis (Boudreau and 292 

Ruddick, 1991; Westrich and Berner, 1984), is often the best model to describe decay rates 293 

from bioassays in closed systems (Vähätalo et al., 2010) and has been widely used to describe 294 
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DOM degradation reactions. Under the exponential decay model, the decay constant (𝑘𝐷𝑂𝑀; 295 

yr-1) can be expressed as: 296 

𝑘𝐷𝑂𝑀 = 𝑙𝑛 (
𝐷𝑂𝐶

𝐷𝑂𝐶−([𝐷𝐼𝐶]𝑓−[𝐷𝐼𝐶]0)𝑀𝐶
) ×

8766

ℎ
   (Eq. 3) 297 

where 𝐷𝑂𝐶 is the DOC concentration in µg L-1, 𝑀𝐶 is the molecular mass of C in g mol-1 and 298 

8766 is the number of hours in a year. Where [𝐷𝐼𝐶]𝑓 was equal to or below [𝐷𝐼𝐶]0, we 299 

removed the values from the dataset assuming that the temperature correction of [𝐷𝐼𝐶]0 was 300 

not precise enough (three of 39 samples) to allow quantification of CO2 processing rates. 301 

These occurred in September 2020 and October 2021, under cold field conditions, when 302 

[𝐷𝐼𝐶]0was overestimated because of unknown sample temperature in the field. 303 

 304 

2.6 Statistical methods 305 

Statistical analyses were conducted to evaluate differences between sites for various 306 

measured parameters. One-way analysis of variance (ANOVA) was employed to test for 307 

differences among groups. Pairwise comparisons of group means were performed using 308 

Student’s t-test using JMP 18.0.11 (2024 JMP Statistical Discovery LLC). For data that did 309 

not conform to normal distribution assumptions, non-parametric methods were applied, 310 

specifically the Wilcoxon rank-sum test, to ensure robust comparisons across sites. Results 311 

are displayed in the form of connecting letters reports within the tables. Sites with the same 312 

letter (e.g., "A" or "B") indicate no statistically significant differences in the measured 313 

parameter between those groups at the p < 0.05 significance level. Groups with different 314 

letters (e.g., "A" vs. "B") are significantly different. When overlapping letters (e.g., "AB") are 315 

reported, those groups are statistically similar to others with at least one shared letter but may 316 

differ from groups with entirely distinct letters. Figures were created using the ggplot2 317 

package (Wickham, 2016) using R software (R Core Team, 2021).  318 
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3. Results 319 

3.1 Water chemistry  320 

The thermokarst water bodies were more acidic, richer in DOC and total P, and lower in 321 

SO4
2- and SiO2 compared with the wetland streams (all differences statistically significant; 322 

Table 2; Fig. 2). The low pH of the ponds is consistent with their high DOC, and thus high 323 

organic acidity. The water bodies aligned along the inverse DOC-pH relationship with TK-324 

Pond 3 exhibiting the highest DOC and lowest pHat the top, followed by TK-Pond 2 and TK-325 

Pond 1. The TK-Drain usually held an intermediate position between the thermokarst ponds 326 

and the wetland streams, which were found at the high pH – low DOC end of the DOC-pH 327 

relationshipcurve. Similar patterns were found for DOC- SO4
2- and DOC-SiO2 relationships 328 

(Fig. 2). Particulate OC concentrations were significantly higher and more variable in 329 

thermokarst ponds (1.2–3.4 mg L-1) compared to wetland streams (0.4–0.6 mg L-1), with 330 

greater variability observed at the Outlets than Inlet (Table 2).was on average <5% of TOC in 331 

the wetland streams, while POC showed considerably more variation in the thermokarst 332 

water bodies, possibly related to inputs from destabilized organic matter from the thawing 333 

permafrost.  334 

All water bodies had NO-
3

-
 concentrations at, or close to, the detection limit, while the 335 

thermokarst water bodies had considerable levels of NH4
+ contrary to the wetland streams 336 

(Table 2). Total P was highest, and most variable, in the ponds which to some extent mirrored 337 

the pattern in DOC, understandably given that in these nutrient-poor sites most P would be in 338 

an organic form just like N. Despite incomplete digestion, totN values were enough to 339 

confirm that the dominant form of N was organic. 340 

The DOM quality indicator SAR was highest in the thermokarst ponds (p<0.03). SAR was 341 

positively strongly correlated with DOC concentration (positive, R2 0.57, p<0.0001), 342 

implying that lowest SAR was found in the wetland streams. The Other DOM quality 343 
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indicators (sUVa, associated with a proxy for aromaticity,) was slightlytended to be 344 

somewhat higher in the wetland streams than in the thermokarst ponds, although the 345 

difference was not significant but did not show significant differences between wetlands and 346 

thermokarst water bodies.  347 

 348 

Table 2. Water chemistry parameters for thermokarst ponds and wetland sites during nine 349 

sampling campaign. Median values with standard deviations are shown for all water chemistry 350 

variables, except for pH, which is shown as the median with minimum and maximum values. EC: 351 

electrical conductivity; SO4
2-: Sulfate; SiO2: silica; DOC: dissolved organic carbon; sUVa: specific 352 

UV absorbency, SAR: specific UV absorption ratio; TOC: total organic carbon; NH4
+: ammonium; 353 

NO3
-: nitrate, totP: total organic phosphorous; POC: particulate organic carbon (POC, % of TOC). 354 

Letters indicate significant differences between sites for each variable (Tukey’s t-test, pairwise 355 

comparisons, p<0.05; see Sect. 2.6).  356 

 pH  EC  SO4
2-

  SiO2  
      mS m-1   mg SO4

2- L-1   mg SiO2 L-1   

TK-Pond 1 4.49 (4.16-4.79) B 2.1 (0.7) B 0.12 (0.07) C 2.4 (1.8) BC 

TK-Pond 2 4.23 (4.03-4.37) C 3.2 (0.7) A 0.18 (0.20) C 1.0 (1.0) C 

TK-Pond 3 4.06 (3.79-4.32) C 4.0 (1.6) A 0.11 (0.02) C 4.3 (1.7) B 

TK-Drain 4.79 (4.63-4.88) B 1.6 (0.1) B 0.16 (0.08) C 2.3 (1.9) BC 

Inlet 6.69 (6.11-7.36) A 2.0 (0.5) B 0.85 (0.18) A 8.7 (2.4) A 

Outlet 6.56 (6.04-6.97) A 1.9 (0.3) B 0.60 (0.25) B 8.6 (3.0) A 

         

 DOC  sUVa  SAR  TOC  

  mg C L-1   Aλ254nm/mg C L-1    Aλ254nm/Aλ400nm   mg C L-1   

TK-Pond 1 19.2 (4.4) C 3.9 (0.4) ABC 8.4 (0.3) BC 20.8 (5.1) C 

TK-Pond 2 25.7 (6.4) B 4.2 (0.3) A 8.8 (0.5) AB 27.4 (7.7) B 

TK-Pond 3 34.1 (6.8) A 3.6 (0.6) BC 9.2 (0.7) A 34.8 (9.4) A 

TK-Drain 17.3 (6.6) C 3.8 (0.4) C 8.1 (0.2) AB 19.5 (4.5) C 

Inlet 8.5 (2.1) D 4.1 (0.4) AB 7.6 (0.2) C 8.4 (1.6) D 

Outlet 9.0 (1.5) D 4.3 (0.3) A 7.8 (0.2) C 9.4 (1.6) D 

         

 NH4
+

  NO3
- 

 TotP  POC  
  µg N L-1   µg N L-1   µg P L-1   mg C L-1   

TK-Pond 1 23 (26) B 2.0 (0.0) A 27 (17) B 1.2 (0.8) B 

TK-Pond 2 94 (105) A  2.1 (0.3) A 18 (9) BC 1.8 (1.2) A 

TK-Pond 3 38 (77) AB 1.9 (0.3) A 54 (32) A 3.4 (2.8) A 

TK-Drain 33 (20) B 2.0 (0.0) A 20 (18) BC 3.3 (2.4) A 
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Inlet 2 (2) B 1.9 (0.3) A 9 (6) C 0.4 (0.2) C 

Outlet 4 (8) B 1.9 (0.3) A 7 (4) C 0.6 (0.6) C 

357 
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The inverse relationship between DOC and pH points towards organic acidity as a strong 358 

driver of pH. Additionally, the near-to-neutral pH in the wetland streams is consistent with 359 

groundwater influences from the catchment, which also would explainas well as the elevated 360 

SiO2 and SO4
2- concentrations. A limited set of water samples were analysed for base cations 361 

(Table SI 43), confirming that these were highest in the wetland streams.  362 

The water chemical composition of the ponds mirrored the impact of thawing permafrost: the 363 

TK-Pond 3 is hydrologically most isolated with the lowest pH, highest conductivity, and 364 

highest DOC. TK-Pond 1, located at the transition from peat plateau to wetland, had a higher 365 

pH and lower EC, DOC and NH4
+ than the other ponds, which is consistent with some 366 

hydrological influences from the wetland and hence less permafrost impact. TK-Pond 2 is 367 

located in the middle of the peat plateau and is by far the largest pond and, under wet 368 

conditions, hydrologically connected to neighbouring ponds. The water chemistry of TK-369 

Drain was usually most similar to that of TK-Pond 1. An example of pH and EC gradients 370 

from the peat plateau into the wetland is consistent with the influence of thermokarst 371 

waterbodies gradually becoming less dominant in the transition from the peat plateau 372 

complex to the wetland (Fig. SI1).  373 
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 374 

Figure 2. Relationships between Dissolved Organic Carbon (DOC) and various water quality 375 

parameters across different sites. The scatter plots demonstrate the relationships between dissolved 376 

organic carbon (DOC) and pH (a), sulfate (SO4
2-) (b), silica (SiO2) (c), and total organic phosphorus 377 

(totP) (d).  378 

 379 

3.2 Dissolved gases and gas evasion 380 

All water bodies were oxygenated and dissolved O2 concentrations were on average 61 to 381 

81% of water O2 saturation (Table 3). The ponds are shallow which allow for wind mixing 382 

and they host sphagnum, suggesting active O2 production through photosynthesis. All water 383 

bodies were oversaturated with CH4 and CO2. Dissolved CH4 concentrations were 2000‒5000 384 

and ~30 times higher than atmospheric equilibrium, in the ponds and in the wetland streams, 385 

respectively, indicating that all water bodies – thermokarst ponds in particular - are net 386 
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sources of CH4 to the atmosphere. The lower CH4 oversaturation in streams compared with 387 

ponds is likely related to higher CH4 losses caused by stream turbulence and/or higher 388 

production rates of CH4 in the thermokarst ponds (Fig. 3).  389 

  390 

Figure 3 Variations in carbon dioxide (CO2) and methane (CH4) concentrations in relation to 391 

pH, DOC, and totP across sampling sites. Variations in dissolved CO2 (panels a–c) and CH4 (panels 392 

d–f) across sampling sites in relation to pH, DOC and totP.The upper panels show the relationships 393 

between dissolved CO2 concentrations (μM) and pH (a), dissolved organic carbon (DOC, mg L-1) (b), 394 

and total organic phosphorous (totP, μg L-1) (c) in sampled water. The lower panels show the 395 

relationship between dissolved CH4 concentrations and pH (d), DOC (mg L-1) (e), and totP (μg L-1) (f) 396 

in sampled water. 397 

CO2 saturation indexes in the thermokarst waterbodies reached 5 to 20 while in the streams 398 

they ranged between 3 and 4 (Table 3). By contrast, the CO2 evasion from the streams (e.g. 1-399 

2 g C m-2 day-1) was higher than from the ponds (0.3-0.5 C m-2 day-1), consistent with the 400 
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higher turbulence in the streams, and the replenishment of CO2 from bicarbonates from 401 

groundwater in these streams, which is a geological rather than a recent source of CO2. 402 

Bicarbonates contributed about 60-70% to DIC in the wetland streams (with pH between 6.0 403 

and 7.4), while bicarbonates in thermokarst water bodies were almost negligible (with pH 404 

below 4.5), which is consistent with equilibrium between bicarbonates and CO2 over these 405 

pH ranges. TK-pond 3 had the lowest O2 concentrations and the highest CH4 and CO2 406 

concentrations of all thermokarst water bodies. Concentrations of CH4 and CO2DIC were 407 

positively related in the thermokarst water bodies (r2 0.48, p<0.0001, F-test) but not in the 408 

wetland streams (Fig. 4). Note that DIC in the streams is also not correlated with CH4 (Fig SI 409 

2). 410 
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411 

 412 

Figure 4 Relationships between CH4 and (a) CO2, (b) DIC forbetween thermokarst waterbodies (a), 413 

and (c) CO2, (d) DIC for Inlet and Outlet (b) sites including linear regression lines and corresponding 414 
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R² and p-value statistics. Note scale differences for CH4 between thermokarst waterbodies and the 415 

wetland streams.  416 

The CO2 emissions from the stream sites (Inlet and Outlet) were substantially larger than 417 

those from the thermokarst waterbodies (Table 3). The mean CO2 emission at the Inlet site 418 

was 1.12 ± 0.46 g C m-2 day-1, and at the Outlet site 2.20 ± 1.15 g C m-2 day-1. These values 419 

are 3 to 7 times higher than the fluxes observed from the thermokarst waterbodies, which 420 

ranged from 0.30 ± 0.22 g C m-2 day-1 (TK-Pond 2) to 0.51 ± 0.28 g C m-2 day-1 (TK-Pond 3). 421 

Annual CO2 fluxes for the ice-free period, assuming negligible flux during the ice-covered 422 

months, ranged between 51 g C m-2 yr-1 and 87 g C m-2 yr-1 for the thermokarst ponds, and 423 

the streams ranged between 190 g C m-2 yr-1 (Inlet) and 405 g C m-2 yr-1 (Outlet).  424 

Table 3. Mean and standard deviations of dissolved gas concentrations and associated metrics 425 

for thermokarst ponds and wetland sites across nine sampling campaigns. Mean concentrations 426 

of CO2 (µM) and CH4 (µM) with their respective saturation ratios, along with CO2 emission flux (g C 427 

m-2 day-1), DIC (µM), and oxygen concentrations (µM) with percent saturation. The saturation ratio is 428 

defined as the concentration divided by the equilibrium concentration between the atmosphere and 429 

water at the given temperature. For this study, DIC is considered the sum of dissolved CO2 and 430 

bicarbonate. Letters indicate significant differences between sites for each variable. 431 

 CO2  DIC CO2 emission 

  µmol L-1 

Saturation ratio 

CO2  µmol L-1 g C m-2 day-1 

TK-Pond 1 146 (82) B 7.0 (3.2) BC 149 (83) BC 0.36 (0.28) C 

TK-Pond 2 97 (39) B 5.1 (2.2) BC 98 (39) C 0.30 (0.22) C 

TK-Pond 3 369 (206) A 18.8 (11.3) A 371 (206) A 0.51 (0.28) C 

TK-Drain 161 (45) B 8.1 (2.7) B 165 (46) BC 0.37 (0.15) C 

Inlet 73 (26) B 3.1 (1.0) C 232 (59) B  1.12 (0.46) B 

Outlet 97 (24) B 4.4 (1.1) BC 241 (59) B 2.20 (1.15) A 

     

 CH4  O2  

 µmol L-1 

CH4 saturation 

ratio  µmol L-1  % saturation 

TK-Pond 1 7.8 (5.5) B 2 330 (1 719) B 273 (59) AB 81 (14) A 

TK-Pond 2 7.2 (7.2) B 2150 (2 110) B 266 (85) AB 79 (19) A 
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TK-Pond 3 16.6 (10.6) A 5 109 (3 470) A 210 (89) B 61 (22) B 

TK-Drain 9.8 (5.9) B 2976 (1973) B 260 (65) AB 77 (18) AB 

Inlet 0.1 (0.1) C 30 (15) C 297 (59) A 81 (14) A 

Outlet 0.1 (0.1) C 28 (18) C 241 (63) AB 67 (14) AB 

 432 

3.3 DOM processing rates 433 

Average DIC production rates in the different water bodies were highly variable (7.8 – 62.5 434 

µM day-1, Table 4), but tended to be highest in the thermokarst ponds compared with the 435 

wetland streams, while the TK-drain had the lowest rates (Tukey’s t-test, p<0.05. The non-436 

parametric Wilcoxon tests supported these trends, confirming minimal site-specific effects 437 

overall, with TK-Drain showing lower activity). These results reflect the in-situ processing of 438 

DOM in both thermokarst ponds and streams. The DOM mineralization rate did not vary 439 

significantly between sites and neither did the exponential decay rate kDOM (Table 4). 440 

kDOM in the thermokarst ponds ranged from 4.4 yr-1 to 9.0 yr-1 (Table 4), while the stream 441 

Outlet showed higher kDOM values from than the inlet (8.8 yr-1 and 6.3 yr-1 respectively).. 442 

The TK-Drain site was substantially lower (2.5 yr-1). 443 

Table 4. Rates of production and decay. DIC rates reflect DIC production. The DIC rate/DOC ratio 444 

indicates the relative efficiency of converting DOC to DIC, while kDOM indicates the exponential 445 

decay rate of DOM, showing how quickly DOM is decomposed over time. Letters indicate significant 446 

differences between sites for each variable (p<0.05). 447 

 DIC rate  DIC rate/DOC  kDOM  

 µM day-1  µmol g C-1 day.1  yr-1  

TK-Pond 1 27.8 (16.5) AB 67.0 (38.9) A 7.2 (4.2) A 

TK-Pond 2 19.6 (8.8) AB 41.6 (28.7) A 4.4 (3.1) A 

TK-Pond 3 62.5 (47.0) A 83.3 (78.1) A 9.0 (8.6) A 

TK-Drain 7.8 (7.4) B 23.1 (23.4) A 2.5 (2.5) A 

Inlet 11.7 (4.5) AB 59.5 (25.8) A 6.3 (2.8) A 

Outlet 20.5 (16.7) AB 82.5 (64.7) A 8.8 (7.0) A 
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4. Discussion  448 

Understanding the GHG source–sink function of degrading permafrost landscapes benefits 449 

from an integrated study of water chemistry and GHG fluxes, as hydrological and 450 

biogeochemical processes are closely linked (Frey and McClelland, 2009; Vonk et al., 2015). 451 

In particular, shifts in OM mobilization, acidity, and nutrient dynamics across different 452 

thermokarst pond stages influence C cycling and GHG production. In our study area, isolated 453 

thermokarst ponds and more hydrologically connected wetland streams represent contrasting 454 

hydrochemical environments, with ponds reflecting strong permafrost thaw inputs and 455 

streams influenced by the catchment.  456 

4.1  Water chemical contrasts between thermokarst ponds and water chemistry 457 

Thermokarst ponds and wetland streams exhibit strong contrasts in DOC concentrations and 458 

acidity, with ponds showing high DOC and low pH. The inverse relationship between DOC 459 

and pH (R2 = -0.82, p < 0.01) suggests that organic acidity is a dominant driver of pH in 460 

thermokarst ponds. The acidity is likely driven by the leaching of DOM from recently 461 

destabilized permafrost, since the ponds are hydrologically isolated from the surrounding 462 

wetland. Elevated DOM and leaching from surrounding permafrost is are observed in other 463 

thawing permafrost landscapes (Holmes et al., 2022; Ward and Cory, 2015). This is 464 

consistent with the finding that TK-Pond 3—hydrologically the most isolated—has on 465 

average the highest DOC (35 mg L-1) and the lowest pH (4.1), indicating strong organic 466 

acidity effects from destabilized permafrost and minimal exchange with the surrounding 467 

wetland. 468 

In contrast, wetland streams exhibit near-neutral pH values, which we attribute to 469 

groundwater influence. We found systematically higher HCO3
-, SO4

2-, and SiO2 in the 470 

wetland streams than in the ponds, and also higher base cations (Table SI 3). This 471 

geochemical signature is characteristic of carbonate and silicate mineral weathering occurring 472 
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along subsurface flow paths, which was found in several catchments at Iškorasfjellet, 473 

including the Báhkiljohka catchment where our study site is located (Lehmann et al. 2023). 474 

Lehmann et al. (2023) documented groundwater-driven alkalinity generation linked to both 475 

carbonate vein dissolution and silicate weathering and suggested that carbonate weathering 476 

should be considered as a potential CO2 source in the catchment. Groundwater effects on 477 

stream waters have also been found elsewhere in permafrost landscapes (Turetsky et al., 478 

2020; Vonk et al., 2015), suggesting that CO2 emissions from high pH-streams can be 479 

replenished by geogenic rather than biogenic sources, which is important to account for in 480 

GHG budgets from aquatic ecosystems.  481 

Levels of totP mirrored the pattern of DOC enrichment in thermokarst ponds (30–70 µg L-1), 482 

demonstrating that P in these nutrient-poor ponds is primarily organically bound (Frey et al., 483 

2007). In addition to DOC, permafrost thaw releases organic forms of P that can affect 484 

downstream nutrient dynamics and carbon cycling (in ‘t Zandt et al., 2020). In contrast, the 485 

lower DOC and totP found in the wetland streams reflected the influence from upstream 486 

catchment, including groundwater inputs. The higher POC concentrations in the thermokarst 487 

ponds (1.2‒3.4 mg L-1/L) compared to wetland streams (0.4‒0.6 mg L-1/L) further supports 488 

that thermokarst ponds are hotspots for OM destabilization, whereas wetland streams are 489 

more influenced by lateral transport and groundwater (Olefeldt and Roulet, 2014). 490 

The hydrochemical contrasts between thermokarst ponds and wetland streams at Iškoras, 491 

shaped by differences in DOC concentrations, acidity, and groundwater influence, are key 492 

drivers of spatial variation in GHG production and emissions across the landscape. Given the 493 

strong controls of DOC and pH on CH4 dynamics (Shirokova et al., 2012; Segers, 1998), 494 

these patterns provide important context for understanding permafrost–C feedbacks. 495 

production and, also g. Comment on: contrasts in pH: in ponds, primary driver of pH appears 496 

to be organic acidity while in streams (can be supported with reference), groundwater 497 
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influences dominate wetlands (can be supported with references that GW is enriched with 498 

carbonates, SO4, SiO2 from weathering).. Illustrates that the ponds are hydrologically 499 

isolated from the wetland, with the channel as an intermediate.  500 

The inverse relationship between DOC and pH points towards organic acidity as a strong 501 

driver of pH. Additionally, the near-to-neutral pH in the wetland streams is consistent with 502 

groundwater influences from the catchment, which also would explain the elevated SiO2 and 503 

SO4 concentrations. A limited set of water samples were analysed for base cations (Table SI 504 

3), confirming that these were highest in the wetland streams.  505 

Low pH and elevated totP concentrations are commonly related to increased DOM 506 

concentrations (Holmes et al., 2022; Ward and Cory, 2015), which could originate from 507 

destabilized permafrost (Turetsky et al., 2020).  508 

4.12 Thermokarst ponds as hotspots of methane emissions 509 

Thermokarst ponds in Iškoras display CH4 saturation indexes of 2300 to 5000 (Table 3), 510 

which is among the highest values reported in the literature for natural waterbodies, 511 

particularly in northern permafrost regions. These findings align with Shirokova et al. (2012) 512 

and Matveev et al. (2018) who documented saturation indexes of 50 to 5000 in Siberian 513 

thermokarst depressions, and of 5 to 50 in subarctic lithalsa lakes, respectively. Such high 514 

CH4 concentrations in these poorly connected, small, and relatively protected water bodies 515 

are consistent with the established inverse relationship between CH4 concentrations and water 516 

body size, hydrological connectivity, and turbulence exposure (Abnizova et al., 2012; 517 

Kankaala et al., 2013; Polishchuk et al., 2018).  518 

At Iškoras, the smallest pond, TK-Pond 3, exhibited the highest CH4 oversaturation, in 519 

combination with the highest DOC, totP, and lowest pH values mentioned earlier. This could 520 

be explained by creation of anaerobic sediments and C-rich conditions, and low pH, by 521 

permafrost thaw and limited hydrological connectivity, that in concert enhance CH4 522 
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production. The high DOM, originating from destabilized permafrost (Turetsky et al., 2020) 523 

is usually associated with low pH and elevated totP (Holmes et al., 2022; Ward and Cory, 524 

2015. Thus, CH4 oversaturation in thermokarst ponds could be related to particularly high 525 

DOC availability, and to acidic conditions that limit CH4 oxidation (Wik et al., 2016). 526 

Despite the presence of dissolved O2 in thermokarst ponds, they remained highly 527 

oversaturated in CH4. CH4 production is known to occur mainly in anoxic sediments 528 

(Bastviken et al., 2004; Clayer et al., 2016; Wik et al., 2016), from where CH4 is 529 

subsequently transported to overlying water. The microbial activity responsible for CH4 530 

production may be enhanced by the release of previously frozen OM from ongoing 531 

thermokarst development (Crevecoeur et al., 2017), as recently observed in laboratory 532 

incubations with inundated peat from the Iškoras site (Kjær, 2024). 533 

As thermokarst ponds evolve into wetlands, CH4 emission patterns may shift due to changes 534 

in hydrological connectivity and biogeochemical cycling. Pirk et al. (2024) used a space‐for‐535 

time substitution to highlight that the transition from thermokarst ponds to wetlands at 536 

Iškoras involves significant changes in GHG fluxes, finding that the degradation of palsas to 537 

thermokarst ponds led to a 17-fold increase in local GHG forcing, primarily driven by CH4 538 

and CO2 emissions. This is partly because thermokarst ponds, being spatially isolated, create 539 

localized CH4 emission hotspots (Elder et al., 2021). Wetlands, with their larger spatial extent 540 

and greater hydrological connectivity, promote slower organic matter mineralization, which 541 

can reduce CO2 emissions and increase carbon uptake (Pirk, et al., 2024). Although wetlands 542 

continue to emit CH4, these emissions become more diffuse rather than concentrated at 543 

hotspots. At the same time, wetlands can act as net carbon sinks, as CO2 uptake through plant 544 

productivity and organic matter accumulation may offset greenhouse gas emissions 545 

(Heiskanen et al., 2023; de Wit et al., 2015). This transition represents a fundamental shift 546 

from localized, CH4-dominated GHG emissions in thermokarst ponds to a more spatially 547 
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diffuse CH4 emissions in wetlands, where increased CO2 uptake and OM accumulation can 548 

contribute to a net C sink (Turetsky et al., 2020).  549 

Similarly, at Iškoras, the smallest pond exhibited the highest CH4 oversaturation, in 550 

combination with the highest DOC, totP, and lowest pH values, likely linked to 551 

destabilization of thawing permafrost combined with limited hydrological connectivity. Low 552 

pH and elevated totP concentrations are commonly related to increased DOM concentrations 553 

(Holmes et al., 2022; Ward and Cory, 2015), which could originate from destabilized 554 

permafrost (Turetsky et al., 2020).  555 

Thermokarst ponds were highly oversaturated in CH4 despite the presence of dissolved O2. 556 

CH4 production is known to occur mainly in anoxic sediments (Bastviken et al., 2004; Clayer 557 

et al., 2016; Wik et al., 2016), from where CH4 is subsequently transported to overlying 558 

water. The microbial activity responsible for CH4 production may be enhanced by fresh OM 559 

input from ongoing thermokarst development (Crevecoeur et al., 2017), as recently observed 560 

in laboratory incubations with recently inundated peat material from the Iškoras site (Kjær, 561 

2024).  562 

1.1.1 4.2 Impact of thawing peat plateaus on water chemistry  563 

The transition of permafrost-underlain peat plateaus to thermokarst ponds and further to 564 

wetlands can markedly shift the landscape-scale GHG dynamics as permafrost continues to 565 

thaw (Hugelius et al., 2020; Sannel and Kuhry, 2011). Thermokarst ponds are localized CH4 566 

hotspots; however, as these systems transition into wetlands, emissions patterns change due 567 

to altered hydrology and biogeochemistry (Holmes et al., 2022; Peura et al., 2019). In 568 

wetlands, persistent inundation creates anoxic conditions favourable for methanogenesis, 569 

often leading to significant CH4 emissions (Cui et al., 2024). Pirk et al. (2024) demonstrated 570 

that fens at Iškoras, as an example of such inundated wetland systems, emit large amounts of 571 

CH4, particularly where fresh OC is available from peat decomposition from degrading palsa 572 
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edges. Similarly, Turetsky et al. (2020) noted that newly formed wetlands, arising from 573 

permafrost thaw become additional CH4 sources due to labile OC availability. 574 

Holmes et al. (2022) observed that inundation in permafrost landscapes increases CH4 575 

emissions because of waterlogged conditions that limit oxygen diffusion and enhance 576 

anaerobic decomposition. Additionally, Kjær et al. (2024) highlighted that recently thawed 577 

permafrost peat in wetland systems, including peat from Iškoras, features a high CH4 578 

production potential due to the presence of labile C and methanogenic microbial 579 

communities. 580 

Unlike thermokarst ponds, which are spatially limited, wetlands have a wider spatial extent. 581 

The carbon balance in wetlands depends not only on CH4 fluxes but also on changes in CO2 582 

dynamics as organic matter mineralization occurs under waterlogged conditions (Turetsky et 583 

al., 2020). In this context, the transition from thermokarst ponds to wetlands represents a shift 584 

from localized emissions of both CH4 and CO2 to more spatially homogenous CH4 emissions, 585 

while CO2 is sequestered (Pirk et al., 2024). 586 

Although a focus on vertical fluxes dominates many studies, lateral DOC fluxes also play a 587 

role in carbon dynamics in permafrost-affected systems. Wetland and peatland ecosystems 588 

exhibit high rates of lateral DOC export due to hydrological connectivity (Tank et al., 2018). 589 

Beckebanze et al. (2022) reported that lateral fluxes, though smaller in magnitude compared 590 

to vertical fluxes, are essential in carbon budgets, potentially contributing to carbon loss 591 

especially during peak runoff events. These lateral DOC fluxes transport carbon from soils to 592 

aquatic systems, where it may later contribute to downstream GHG emissions or C 593 

sequestration. The potential for fens and wetlands to transition into significant GHG 594 

contributors and increased hydrological connectivity leading to greater potential lateral C 595 
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fluxes highlights the need for integrated C budget models that capture the evolving landscape 596 

dynamics in permafrost regions. 597 

4.3 Carbon dioxide dynamics in thermokarst water bodies  598 

Both thermokarst ponds and streams in Iškoras are oversaturated with CO2 (Table 3), a 599 

common feature of Arctic and subarctic aquatic systems (Allesson et al., 2022; Bastviken et 600 

al., 2004). However, the mechanisms driving CO2 fluxes differ between ponds and streams. 601 

In ponds, despite high CO2 concentrations, CO2 release is lower than in streams and likely 602 

limited by the lack of turbulence. By In contrast, streams exhibit enhanced CO2 fluxes likely 603 

due to high turbulence and carbonate inputs from groundwater, as described in section 4.1. 604 

Others have also found that groundwater influences can contribute both who emphasized the 605 

role of groundwater-derived bicarbonate and dissolved CO2 s into sustaining stream CO2 606 

fluxes in Arctic streams(Lehmann et al., 2023; Duvert et al., 2018; Winterdahl et al., 2016). 607 

This highlights that groundwater contributions of bicarbonate and dissolved CO2 must be 608 

accounted for when interpreting stream CO2 fluxes, as ignoring these inputs could lead to 609 

overestimating the importance of recently mineralized DOM or newly produced CO2 from 610 

thermokarst ponds.  611 

Quantitatively, CO2 efflux from streams at Iškoras averages 0.4 g C m⁻² day⁻¹ (Table 3), 612 

aligning closely with values observed in Siberian permafrost streams (0.3–0.5 g C m⁻² day⁻¹; 613 

(Shirokova et al., 2012)). This flux reflects is consistent with the combined influence of 614 

turbulent flow and groundwater inputs enriched in DIC , consistent with earlier findings of 615 

mineral weathering contributions to DIC at Iškorasfjellet (Lehmann et al., 2023). significant 616 

contribution of turbulent flow and bicarbonate-rich groundwater inputs, processes shown to 617 

facilitate CO2 release These findings complement observations from other regions, where 618 

turbulence and bicarbonate supply are key drivers of CO2 release in streams (Lundin et al., 619 

2013; Raymond et al., 2013). Streams likely benefit from continuous replenishment of CO2 620 



33 
 

from bicarbonates, which account for 60–70% of the DIC pool in these environmentsboreal 621 

to Arctic streams and rivers (Wallin et al., 2018; Zolkos and Tank, 2020).  622 

In contrast, CO2 emissions from ponds at Iškoras are notably low (Table 3), similar to 623 

findings of Campeau and Del Giorgio (2014), attributed to the ponds’ high DOC-to-624 

bicarbonate ratios, which restrict bicarbonate formation and subsequent CO2 production 625 

(Abnizova et al., 2012; Bastviken et al., 2004). The limited water mixing in ponds further 626 

diminishes CO2 flux due to low gas exchange rates compared to streams. However, DIC 627 

production rates in ponds (26.7–35.7 µM day-1) remain sufficient to sustain CO2 effluxes of 628 

5–10 mol C m-2 year-1, consistent with findings by (Shirokova et al., 2012), who linked DIC 629 

production directly to DOC concentrations in Arctic aquatic systems. These DIC production 630 

rates, together with our measured kDOM values (4.4–9.0 yr-1; Table 4), appear relatively 631 

elevated when compared to the mean DOC degradation rate for lakes (2.5 ± 4.0 yr-1), based 632 

on converted daily rates reported by Catalán et al. (2016).  633 

High CO2 evasion from lower-order streams is caused by high flow velocities and associated 634 

turbulence causing high gas exchanges (Schelker et al., 2016). These drivers likely explain 635 

the relatively higher CO2 efflux from Iškoras streams compared to ponds. We suggest that 636 

mineralization of DOM, influenced by DOM lability, pH and nutrients, plays a critical role 637 

for CO2 emissions of the thermokarst ponds. High molecular-weight DOM, as indicated by 638 

low sUVa and SAR values, can be more resistant to microbial processing than low-639 

molecular-weight DOM, thereby slowing DOM decay rates (Shirokova et al., 2019). Ward 640 

and Cory (2015) noted that DOM from thawing permafrost, while less aromatic and more 641 

labile compared to active layer DOM, may become limited by environmental factors such as 642 

pH and nutrient availability, resulting in lower mineralization rates. The acidic conditions in 643 

ponds could shift microbial communities and affect activity (Vigneron et al., 2019), a factor 644 

that can further limit CO2 fluxes from ponds in addition to the low gas exchange rate.  645 
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In summary, the higher CO2 fluxes observed in streams at Iškoras are likely driven by the 646 

combined effects of turbulent flow, groundwater-derived DIC, and mineral weathering 647 

inputsbicarbonate input, and mineral weathering, whereas lower emissions from ponds are 648 

shaped by organic acidity, limited hydrological connectivity, and lack of turbulencelimited 649 

surface exchange. These dynamics emphasize the need to account for the interaction of 650 

hydrological and chemical factors when assessing the fate of destabilized OM in water bodies  651 

C fluxes in permafrost-impacted regions. 652 

4.4 Climate feedback implications 653 

The distinct roles of CH4 and CO2 in the Iškoras landscape underscore their unique climate 654 

feedback potentials. The transition from thermokarst ponds to wetlands modifies the overall 655 

GHG footprint of the peatland-wetland continuum, balancing the loss of localized CH4 656 

emission hotspots with the emergence of sustained, long-term CH4 emissions from wetlands, 657 

while the fate of organic matter currently stored in permafrost remains uncertain. At the same 658 

time, CO2 fluxes from the streams and rivers may increase due to enhanced hydrological 659 

connectivity and increased organic matter input (Zolkos et al., 2019), in agreement with the 660 

results of our study. At Iškoras, the small spatial extent of the permafrost area limits its 661 

overall impact on the catchment-scale GHG source–sink function. However, in landscapes 662 

where peat plateaus occupy a larger area, such transitions may have more significant 663 

consequences at the regional scale. These findings reflect the complex interplay of ecological 664 

and hydrological factors shaping GHG emissions in permafrost landscapes. Turetsky et al. 665 

(2020) and Pirk et al. (2024) both emphasized the need for further research on the 666 

spatiotemporal variability of these factors, particularly during thaw cycles, as shifts in 667 

hydrological connectivity, OM transport, and microbial activity can significantly influence 668 

the GHG emissions and permafrost-C feedbacks. Improving our understanding of these 669 
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dynamics is  toessential for refininge predictions of permafrost-C feedbacks in a changing 670 

climate. 671 

5. Conclusions 672 

This study highlights the distinct biogeochemical roles of thermokarst ponds and wetland 673 

streams in a landscape of sporadic permafrost in subarctic Norway. Thermokarst ponds at the 674 

Iškoras site, characterized by low pH, high organic acidity, and elevated DOC concentrations, 675 

are currently hotspots for CH4 emissions, with stable DOM lability driving sustained carbon 676 

processing. In contrast, wetland streams exhibit higher CO2 fluxes, largely driven by 677 

turbulence and bicarbonate replenishment from groundwater. Despite similarities in DOM 678 

mineralization rates between ponds and streams, environmental constraints, such as pH, 679 

microbial community composition, and hydrodynamic mixing, are likely controls of the 680 

observed differences in GHG fluxes. As thermokarst ponds transition into wetlands, they will 681 

no longer function as hotspots for CH4 emissions. Instead, CH4 emissions are likely to 682 

increase across the entire landscape, as sustained waterlogging promotes elevated CH4 683 

production. These ecological shifts, coupled with lateral DOC losses from peat plateaus, 684 

highlight the importance of hydrological connectivity in linking terrestrial and aquatic C 685 

dynamics. Such transitions emphasize the need for integrated C budget models that account 686 

for the evolving contributions of small aquatic systems to regional and global C cycles. 687 

Future research should prioritize direct measurements of CH4 fluxes, microbial community 688 

contributions to DOM decomposition under varying environmental constraints, and the 689 

temporal variability of gas production and emissions. Additionally, exploring seasonal 690 

dynamics, lateral carbon transport, and hydrological processes will provide critical insights 691 

into C cycling. Investigating catchment-scale signals, such as DOC concentrations across 692 

entire river systems and their links to permafrost contributions, can further advance our 693 

understanding of landscape-level processes. By addressing these questions, we can better 694 
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predict the trajectory of permafrost-impacted landscapes and their feedbacks to the global C 695 

cycle in a warming climate. 696 
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