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Response to Reviewers

Reviewer #3

Hereby I offer only one comment to complement other reviewer's comments on a rather
important aspect of the paper. It is not true as the authors stated that "However, as far
as we know, the influence of pressure on evaporative emissions has not been
documented, posing a challenge to our comprehension of vehicular emissions in high-
altitude regions.".

In fact, this effect of evaporative emissions on altitude has been well documented, e.g.,
in MOVES model by the US EPA (US EPA, 2024, p20, Equation 3-6). Therein, the effect
is clearly considered, i.e., "Tank vapor generated depends on the rise in fuel tank
temperature (F), ethanol content (vol. percent), Reid vapor pressure (RVP, psi) and
altitude". And there is also a table comparing model parameters appropriate for Denver,
a city that is ~1700 meters above sea level versus those for at sea level.

Therefore, it is crucial for the authors to put their study in the context of what is already
known, by changing the statement above to reflect the state of the science, and, more
importantly to reconcile the measurement inferred altitude effect with those documented

in the literature.

References
USEPA, 2024, Evaporative Emissions from Onroad Vehicles in MOVESS5, November
2024, EPA-420-R-24-014,
https://nepis.epa.gov/Exe/ZyPDF.cgi? Dockey=P101CTZI pdf (last accessed
8/10/2025).

Reply: Thank you for your critical and insightful comment. We sincerely
apologize for the inaccuracy in our original statement regarding the documentation of
attitude effects on evaporative emissions. As you correctly pointed out, the MOVES
model (USEPA, 2024) indeed incorporates the effects of altitude (pressure) on
evaporative emissions. However, empirical measurements under real-world high-
altitude conditions remain scarce. In response to your feedback, We have added the

suggested reference (USEPA, 2024) as well as another relevant study (Wang et al., 2018)
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to the reference list. We have also revised the relevant statement in the manuscript to
more accurately reflect the current state of knowledge, while highlighting the unique
contribution of our study. The amended text now reads:

Section 1 Line 45-52: The evaporation of fuels and solvents is an equilibrium
process involving hydrocarbon molecules transitioning between the gas and liquid
phases, governed primarily by temperature and pressure conditions (Huang et al., 2022).
Elevated temperatures and low pressures theoretically facilitate fuel evaporation (Huo
et al., 2024; Wang et al., 2018). However, in plateau regions, low atmospheric pressure
often coincides with cooler temperatures, resulting in competing influences that are not
yet fully quantified. Computational models such as MOVES model estimate that tank
vapor generation at 1,700 meters above sea level is approximately 1.4 times that at sea
level, indicating potentially significant altitude-enhanced emissions (US EPA, 2024).
They also underscore the critical need for empirical validation under real-world, high-
altitude conditions, which remain severely limited.

In addition, we have updated the section 3.1 to better place our study in the
context of existing knowledge on the subject.

Section 3.1 Line 128-132: When comparing the identical compositions, the
average EF in plateau tunnels is 1.9 times higher than that in the Shing Mun tunnel in
Hong Kong (50 m a.s.l.) (Ho et al., 2009). The determined ER is 3.9 and 1.9 times
higher than those in the Shing Mun tunnel and the Chung-Liao tunnel in Taiwan (330
m a.s.l.) (Chiang et al., 2007), respectively. These results are significantly higher than
the 1.4 times increase in fuel evaporation observed in Denver (1,700 m a.s.l.) relative

to sea level (US EPA, 2024).
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factors and characteristics of criteria pollutants and volatile organic compounds (VOCs)
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