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Abstract. The wave-induced breakup of sea ice contributes to the formation of the marginal ice zone in the polar oceans. Un-

derstanding how waves fragment the ice cover into individual ice floes is thus instrumental for accurate numerical simulations

of the sea ice extent and its evolution, both for operational and climate research purposes. Yet, there is currently no consen-

sus on the appropriate fracturing criterion, which should constitute the starting point of a physically sound wave–ice model.

While fracture by waves is commonly treated within a hydroelastic framework and parametrised with a maximum strain-based5

criterion, in this study we explore a different, energy-based, approach to fracturing. We introduce SWIIFT (Surface Wave

Impact on sea Ice – Fracture Toolkit), a one-dimensional model based on linear plate theory, that can produce time-domain

simulations of wave-induced fracture, into which we incorporate this energy fracture criterion. We demonstrate SWIIFT with

simple simulations that reproduce existing laboratory experiments of the fracture by waves of an analogue material, allowing

qualitative comparisons and validations of the energy fracture criterion. We find that under some wave conditions, identified by10

a dimensionless wavenumber, corresponding to in situ or laboratory wave-induced fracture, the model does not predict fracture

at constant curvature; thereby calling into question the appropriateness of parametrising sea ice fracture with a maximum strain

criterion.

1 Introduction

In the Arctic, the newly available open ocean areas (Raphael et al., 2025) have exposed sea ice to the effects of stronger and15

more frequent wave events (Thomson and Rogers, 2014). The remaining sea ice is also overall younger, thinner, more fragile

and therefore more likely to be fragmented by winds, ocean currents and waves (Stroeve et al., 2012; Stroeve and Notz, 2018).

In unconsolidated or fragmented ice, waves are less attenuated (Collins et al., 2015; Ardhuin et al., 2020) and can therefore

propagate further into the consolidated part of the ice cover – the ice pack – and break it to a greater extent, thus enabling a

wave–ice positive feedback loop (Thomson, 2022; Horvat, 2022).20
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This wave-induced breakup results in an assembly of floes with sizes ranging from a few metres to hundreds of metres,

defining what is generally referred to as the marginal ice zone (MIZ; see Dumont, 2022, and many others), a region whose

dynamics is affected by wave propagation. Fragmented sea ice behaves very differently from the consolidated ice pack. It is

more mobile, potentially reaching a free drift state, with ice internal stress no longer resisting motions imparted by winds or

currents (Alberello et al., 2020), tides (Watkins et al., 2023), or waves (Auclair et al., 2022; Womack et al., 2022), even at25

high ice concentration. It is also more sensitive to melt (Horvat et al., 2016; Thomson, 2022), as the ratio of lateral surface

(proportional to the perimeter and exposed to the ocean) to top surface (exposed to air) increases when the horizontal extent of

a floe diminishes, eventually accelerating the disintegration of smaller floes (Toyota et al., 2025). As a result, the MIZ response

to storms can result in quick and large sea ice losses (Smith et al., 2018; Blanchard-Wrigglesworth et al., 2022; Cavallo et al.,

2025), which could amplify the observed sea ice decline (Asplin et al., 2012; Thomson and Rogers, 2014). Concomitantly,30

high-frequency sea ice extent variability is missing in state-of-the-art climate models (Blanchard-Wrigglesworth et al., 2021),

in which sea ice fragmentation by waves is not accounted for. This suggests an improved representation of the MIZ in sea

ice models is essential to deliver accurate predictions of the sea ice evolution, over both short-term and climate time scales.

However, it remains challenging as the physical processes controlling sea ice breakup are still largely unascertained, or rest on

hypotheses that are not fully backed up by observations.35

The first step in this model development should be the identification of a fracture or disintegration criterion, allowing to

determine under which wave forcing (amplitude, wavelength, spectral distribution) and ice conditions (thickness, mechanical

stiffness) the ice will fragment into floes. To our knowledge, there is actually neither complete physical evidence nor clear

consensus within the sea ice community on this criterion. To our knowledge again, all the current wave breakup modelling

approaches are based on local flexural stress or strain reaching a prescribed critical value, or threshold. Behind this viewpoint40

is the consideration that maximum deformation will either occur at the crests and troughs of waves (for example, Dumont

et al., 2011) or at the wave front (Tkacheva, 2001). Voermans et al. (2020) extended this formalism by combining a strain

threshold with wave characteristics into a dimensionless quantity, the value of which separates breakup from non-breakup.

The universality of this approach was later called into question (Passerotti et al., 2022). When modelling individual floes,

any local threshold is however susceptible to be exceeded over large spans of the floes, which makes super-parametrisations45

necessary. The location of maximum strain or stress is often considered for the fracture location (Dumont et al., 2011; Williams

et al., 2017; Montiel and Squire, 2017; Mokus and Montiel, 2022), but other methods, such as computing the strain between

successive wave crests and troughs only have been used (Horvat and Tziperman, 2015).

These local threshold-based criteria are consistent with (and usually come hand in hand with) an hydroelastic representation

of the wave–ice system, on which a large fraction of the modelling research on wave–ice interaction lies (Squire, 2020). Wave-50

induced sea ice fracture has thus naturally been considered through this lens (for example, Fox and Squire, 1991; Montiel

and Squire, 2017; Zhang and Zhao, 2021; Mokus and Montiel, 2022); even though more novel and computationally involved

approaches exist (Herman, 2017; Ren et al., 2021; He et al., 2022). In the hydroelastic framework, the ice is assimilated to an

elastic plate that is thin enough for the variations in the buoyancy forces acting on it to be negligible, and that therefore conforms

exactly to the shape of the ice–ocean interface. When associated with a critical strain fracturing criterion, this framework has55
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shown agreement with observations (Kohout et al., 2016; Voermans et al., 2020). It has also allowed wave and floe-resolving

numerical simulations to generate steady-state floe size distributions (Kohout and Meylan, 2008; Horvat and Tziperman, 2015;

Mokus and Montiel, 2022), and has therefore percolated into coupled global sea ice models (Roach et al., 2019; Bateson et al.,

2020; Yang et al., 2024).

The current contribution digs into the question of the criterion for the fracturing of consolidated sea ice by waves, that60

is, flexural brittle failure. In this, we are motivated by recent laboratory results investigating the response of an ice analogue

material to wave forcing (Auvity et al., 2025). In particular, these authors highlighted that the curvature at which their material

broke is not constant, but depends monotonically on the applied wavelength. The spread in reported sea ice critical strains

(Kohout and Meylan, 2008; Voermans et al., 2020) could thus be an artefact hiding such a relationship. In this context, we

investigate an approach based on a model of fracture propagation in elastic solids (Griffith, 1921) which is common in the65

field of fracture mechanics. It opposes the energetic cost of creating new surfaces to the elastic energy stored in a material.

The resulting energy-based fracture criterion includes the effect of bending deformation as it depends on the associated elastic

deformation energy, but is non-local as it is integrated over the length of the deformed ice floe. It leads to a unique solution.

Since the original work of Griffith (1921), this model has been updated (Francfort and Marigo, 1998; Francfort, 2021) and built

upon specifically for application to sea ice (Mulmule and Dempsey, 1997; Balasoiu, 2020; Ren et al., 2021). Measurements70

of sea ice fracture toughness, which can be linked to the energetic cost of fracturing, have been compiled (Dempsey, 1991;

Schulson and Duval, 2009) and an extensive body of work also exists on freshwater ice (for example, Gharamti et al., 2021a, b).

With the intent on focusing on the wave-induced deformation and resulting fracturing of brittle ice, we have implemented

this energy-based criterion in a framework that differs from the hydroelastic representation in that the ice is not assumed to

conform to the water surface, but freely deforms within the wave field as a result of the local buoyancy and gravity forces. We75

neglect other processes affecting the seasonal ice zone (Roach et al., 2025, SIZ; see), such as thermodynamics; in particular,

we do not handle ice formation within a wave field, and we restrict our study to the case of brittle fracture, excluding the

disintegration of a more granular material (dislocation of melting or forming ice). The resulting simple, yet versatile, 1D model

also accommodates a strain-based fracture criterion. It thereby allows investigating the effect of using either criterion on the

occurrence of the fracture and, eventually, on the extent of a simulated MIZ, and shape of the associated floe size distribution.80

Importantly, our model can be stepped forward in time, so that we can use it to follow the propagation of a fracture front as a

function of time; in contrast to being able to solely recover the final, fractured state (Horvat and Tziperman, 2015; Mokus and

Montiel, 2022). We present an illustration of this capability in Sect. 2.6. In the present paper, we exploit this model in another

use case, the comparison to laboratory experiments on fracture, conducted on an analogue material to sea ice. We pursue this

comparison with the particular aim of validating-invalidating the applicability of the energy-based fracturing criterion.85

The paper is divided as follows: in Sect. 2, we give a general mathematical description of the model, including the treatment

of sea ice as an elastic plate, the formulation of the breakup criteria, and the representation of waves. In Sect. 3, we give specific

information pertaining to the numerical results we present in Sect. 4, that is, the particular setup of the model in this study. We

discuss these results in Sect. 5.
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2 Floe and fracture model90

In light of the objectives motivating our approach, stated in the introduction, we present in Sect. 2.1 the main physical hypothe-

ses made to achieve a simple, versatile, numerically efficient, yet physically sound model. In Sect. 2.2, we detail our approach

to deriving floe deformation, used as an input for the fracture parametrisations presented in Sect. 2.3, and forced by waves

discussed in Sect. 2.4. We present numerical aspects in Sect. 2.5 and conclude this Section with an example of time simulation

in Sect. 2.6.95

2.1 Main hypotheses

A common assumption behind wave–elastic plate interaction models (for example, Fox and Squire, 1991; Tkacheva, 2001;

Mokus and Montiel, 2022) is to consider the plate thin enough for variations of the buoyancy force acting on it to be negligible.

The plate is, however, subjected to the fluid pressure acting on its bottom side, and it is assumed that the plate conforms to the

fluid motion at all times. Fluid pressure is determined by solving for the fluid flow, typically by assuming a potential flow and100

harmonic solutions, with the plate exerting a boundary condition on the fluid domain. To develop the model presented herein,

we adopt a different approach, motivated by our interest in the ice deformation and fracture, whereas the focus of fluid-centred

models has historically been that of wave scattering and attenuation by the plate. The interested reader can found a comparison

between the two approaches in Appendix B.

In this study, the ice cover is considered thick enough for the local changes in buoyancy force not to be negligible. We105

do not explicitly resolve the fluid flow underneath the plate, and impose no condition on the ice–ocean interface. Instead, we

solve for the vertical deflection of the ice stemming from the local balance of gravity and buoyancy forces driven by the sea

surface displacement. The fluid surface thus acts as a forcing term, which is made aware of the presence of the ice floes only

through parametrised attenuation; a consequence is that floes can locally be immersed. While we limit ourselves to the case

of linear elasticity and linear wave forcing, our mechanical formulation interpolates between the limits of an elastic floe that110

conforms perfectly to the wave surface, and of a rigid floe only capable of solid motion, which can therefore be submerged. We

quantify this behaviour with the dimensionless wavenumber kLD, that relates the wavenumber of the forcing wave k (formally

introduced in Sect. 2.4.1) to the flexural length of the floe LD (formally introduced in Sect. 3.1). The small kLD limit (long

wave, compliant floe) corresponds to the strain formulation of Dumont et al. (2011), while the large kLD limit (short wave,

rigid floe) corresponds to their stress formulation.115

Ice formation and melt are assumed to happen at timescales beyond that of wave-induced fracture, so that they can be

neglected. We do not consider the reflection of waves at the ice–water interface (for example, Mokus and Montiel, 2022), nor

viscous deformation of the plate, the compression of an array of floes due to wave radiation (for example, Herman, 2018), or

any surge motion, and take note that the model would be more complete if the pressure forcing associated with the contact

between the ice and the water was explicitly taken into account.120
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2.2 Governing mechanical equations

Our one-dimensional model considers a fluid volume of finite or infinite depth, equipped with a Cartesian coordinate system

(x,z) where z is the vertical coordinate oriented upward, as shown in Fig. 1. We assume translational invariance in the second

horizontal direction. The domain is populated with floating ice floes of prescribed positions and lengths, which may not overlap.

Any part of the domain not covered with ice is deemed to be open water.125

As in the work of Meylan et al. (2015), we model floes as elastic plates, and we derive the deformation of the ice cover using

the Kirchhoff–Love thin-plate theory. The ice is thus considered homogeneous, isotropic, and transversally loaded by body

forces. We assume a constant thickness h along a given floe, although different floes can have different thicknesses. The two

forces acting on the ice are buoyancy and gravity. In the case of a fluid at rest (no waves), equating the gravity force per unit

area and the buoyancy force per unit area (thus applying Archimedes’ principle) allows expressing the draught of a floe, d, as130

ρihg− ρwdg = 0⇔ d=
ρi
ρw

h, (1)

where ρi is the density of the ice, ρw the density of the ocean water and g the gravitational field.

We now move away from this rest state, and impose a perturbation of the fluid surface η(x). Because the propagation speed

of elastic waves in sea ice is several orders of magnitude greater than that of surface gravity waves (Moreau et al., 2020a),

we consider this perturbation and the resulting floe deformation to be quasi-static. Thus, we only consider one independent135

variable, the space coordinate x, and no explicit time dependency. The vertical displacement w(x) corresponding to this per-

turbed state is determined by the local balance between gravity and buoyancy. The weight per unit area of the ice is still ρihg.

However, the height of displaced fluid now corresponds to the difference between the fluid surface η(x) and the displaced

bottom of the ice floe, w(x)−d. Locally, the buoyancy force per unit area is thus −ρi
[
η(x)−

(
w(x)−d

)]
g; this is illustrated

in Fig. 1. The floe is then subjected to the resulting body force140

q(x) = ρihg− ρw
[
η(x)−

(
w(x)− d

)]
g (2)

=−ρw[η(x)−w(x)]g, (3)

and projecting q onto the vertical axis gives

q(x) = ρwg[η(x)−w(x)]. (4)

Using the bending equation of a loaded plate, we then obtain a differential equation on the deflection of the floe,145

D
d4w

dx4
= ρwg

[
η(x)−w(x)

]
, (5)

where we take advantage of the simplifying hypotheses made on our geometry. In this equation, we introduced the flexural

rigidity D = Y h3

12(1−ν2) , characterising the ability of the plate to resist bending, with Y and ν the Young’s modulus and Poisson’s

ratio of the plate. We complete Eq. (5) with free-edge boundary conditions, that is, vanishing moment and force at both ends
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h
(x) [w(x) d]

z = 0

z = d

x=0 x=L

Fluid at rest Floe at rest (x) Deflected floe

Figure 1. Schematic of a deformed ice floe in a wave field. The horizontal dashed line represents the sea surface at rest in the absence of

ice, which we use as the reference level. The dashed rectangle represents a floe at rest. A perturbation of the fluid surface (solid line) in the

free-surface regions imposes a deflection of the ice floe (solid-lined shape). This corresponds to a model output, with ice thickness 50 cm,

floe length 120m, forcing wave with amplitude 20 cm and wavelengths 76.4m (open water) and 84.3m (ice-covered water).

of the ice floe of length L. We choose a reference frame local to the floe, where x= 0 corresponds to its left edge, so that the150

complete boundary problem can be written

d4w

dx4
=

(
D

ρwg

)−1[
η(x)−w(x)

]
x ∈ [0,L]

d2w

dx2
= 0 x ∈ {0,L}

d3w

dx3
= 0 x ∈ {0,L}.

(6a)

(6b)

(6c)

For prescribed wave conditions and material properties, solving Eq. (6) thus provides the deflection w of the floe.

We focus here on the bending undergone by an elastic plate because of a perturbation of its fluid foundation. We recall that

we do not explicitly resolve the fluid motion itself, nor the translational motions imparted to the plate by the fluid. In particular,155

we thus neglect surge motion, that is, ice drift in the direction of wave propagation.

2.3 Fracture

2.3.1 Energy criterion

Unlike the prevalent maximum strain formalism commonly used by the sea ice community when modelling wave–ice interac-

tions (for example, Kohout and Meylan, 2008; Dumont et al., 2011; Horvat and Tziperman, 2015; Mokus and Montiel, 2022),160

we develop a breakup criterion from the framework of fracture mechanics, based on the consideration that in solid, brittle

materials, fracture happens to minimise the internal energy associated with deformation (Griffith, 1921). In this framework, the

total energy to be minimised is the sum of the elastic energy Eel associated with the deformation (in our case, bending) of the
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material, and of the fracture energy Efr associated with the creation of new surfaces around a crack. This energy decomposition

is consistent with mode I fracturing, which in the case of our model translates to vertical fractures due to in-plane tensile stress.165

The elastic energy density (per unit length in the transverse horizontal direction, and per unit thickness) stored in a material

that is elastic, isotropic, and homogeneous, and stretched only in the longitudinal direction, is

Wel =
D

2h
κ2(x) (7)

with

κ(x) =
d2w

dx2
(8)170

the local linear floe curvature due to the deformation. Equation (7) stems from integrating the density of elastic energy (per unit

volume) along the axis normal to the neutral plane of the plate (in our case, the z-direction), and takes into account stretching

or compression in the directions of the plane (in our case, simply the x-direction). By integrating Eq. (7) along the floe, we

obtain the surface energy density,

Eel =
D

2h

L∫
0

κ2(x)dx. (9)175

The fracture energy density Efr relates to the energy required to create a new surface. In the case where the only admissible

fractures vertically break the ice through its entire thickness, we simplify the formulation from Francfort and Marigo (1998) as

Efr =NfrG (10)

with Nfr the number of fractures, and G the energy release rate. Again, note that this energy is expressed per unit surface180

normal to the x-direction.

To determine whether a floe breaks, we compare two energy states: that of the unbroken, deformed floe, and a hypothetical

state in which this floe has fractured into several fragments. In the former state, the elastic energy, noted E0
el, is that of the

deformed floe, as defined in Eq. (9). In the latter state, the total elastic energy, noted Es
el, is the sum of the elastic energies

of the individual newly broken floes. If the broken state is – from an energy standpoint – favourable, it should replace the185

unbroken state. Formally, we look for the finite set of the fracture locations, xfr = {xj | xj ∈ (0,L)}. This set has size Nfr, the

number of fractures, dividing the original floe into Nfr +1 fragments. It should minimise the free energy F defined as

F (xfr) = Efr(Nfr)+Es
el(x

fr)−E0
el (11)

with the additional constraint that for breakup to occur, we must have F < 0. In other words, a floe breaks if the elastic energy

released by the breakup exceeds the energetic cost of the breakup. If no such set can be found, we conclude that the current190

deformation of the floe is not sufficient to fracture it. The post-fracture elastic energy expands to

Es
el(x

fr) =
D

2h

Nfr∑
j=0

xj+1∫
xj

κj
2(x)dx (12)
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with x0 = 0 and xNfr+1 = L. The curvatures κj are obtained from solving Eq. (6) individually for every (at this stage, still

hypothetical) fragments.

Equation (11) has an explicit dependency to the number of fractures allowed to happen for a given quasi-static state, that195

is, at a given time. It suggests that the size of xfr should be a dimension to the minimisation problem. In practice, when

considering travelling waves, floes of reasonable size, and the succession of such quasi-static states, at most one single fracture

is admissible at a given timestep, which greatly diminishes the numerical cost of the procedure. In what follows, we will thus

use Nfr = 1, xfr = {x1}, and we will have

Es
el(x1) = E<

el (x1)+E>
el (x1) (13)200

with E<
el (x1),E

>
el (x1) the elastic energies of the left (x < x1) and right (x > x1) fragments obtained from that single fracture,

while the fracture energy reduces to Efr =G. Hence, we look for


xfr = argmin

x1∈(0,L)

(
E<

el +E>
el

)
,

F (xfr)< 0.

(14a)

(14b)

For given ice and wave conditions, fracture search can thus be conducted in a completely deterministic manner. In practice,

we proceed by sampling Es
el(x1) regularly on (0,L), ensuring the sampling rate is sufficient to capture its oscillations. We find205

the set of arguments of the peaks (the local maxima) of this discretised Es
el, which we augment with the bounds {0,L} of the

domain, to obtain an ordered sequence of at least two coordinates bounding, two by two, local minima of Es
el. We conduct

local minimisation between the bounds using Brent’s method (Virtanen et al., 2020). Finally, the smallest of these minima is

validated against Eq. (14b). If this condition is verified, its argument is the fracture location xfr. These steps are summarised in

Fig. 2, and a fracture search is illustrated in Fig. 3. Note that in this case, the asymmetry of the total energy profile comes from210

differences in wave phase at the edges of the floe, and wave attenuation by the ice cover, discussed in Sect. 2.4.

2.3.2 Strain criterion

To allow future comparisons, we additionally implement a conventional strain criterion for fracture. Under that formulation,

the floe is allowed to fracture if the bending strain ε locally exceeds a prescribed critical strain εcr, that is if

∃x |
∣∣ε(x)∣∣> εcr (15)215

with

ε(x) =−h

2

d2w

dx2
(16)

the maximum (when taking the absolute value) bending strain, here defined as evaluated at the top of the floe.

Typically, if Eq. (15) holds anywhere, it holds on continuous intervals along the floe. We illustrate this in Fig. 4. A second

criterion must then be chosen to constrain the fracture. Herein, we arbitrarily choose to consider the global strain extremum220
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Search fracture

Compute E0
el

G > E0
el G ≤ E0

el

• Sample Es
el(x1)

• Find its local maxima
• Minimise it between
successive maxima

Find, within set of minima,
the absolute minimum at xfr

F (xfr) ≥ 0 F (xfr) < 0

No fracture Fracture at xfr

Figure 2. Algorithmic steps behind a fracture search.

(single fracture). We thus have


xfr = argmax

x∈(0,L)

|ε(x)|,

|ε(xfr)|> εcr.

(17a)

(17b)

This criterion can be straightforwardly extended to the case of multiple fracture by considering all the local extrema exceeding

the critical value.

2.3.3 Values of fracture parameters225

Our two fracture parametrisations rely on two different parameters: the energy release rate G (energy criterion) or the critical

strain εcr (strain criterion). These parameters have to be measured or estimated from sea ice samples. Sea ice properties

can vary greatly based on its history and environmental conditions, such as temperature, brine fraction, or past loading rate.
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Figure 3. Illustration of a fracture search, from a situation corresponding to Fig. 1. In (a), contributions to the system’s elastic energy change

according to the coordinate of the fracture, and the total energy (that includes the fracture energy) is compared to the energy of the initial,

unfractured floe in order to determine whether fracture should occur. The vertical line locates the global minimum, xfr, of total energy which

is, according to our model, where the floe should break. In (b), representation of the deformed floe, before and after fracture at xfr. The

shaded rectangle represents the energy relaxation length, as defined in Eq. (27), centred on xfr.
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Figure 4. Strain-based fracture parametrisation, for a situation corresponding to Fig. 1. The line represents the maximum bending strain

along the floe. The shaded vertical strips indicate where the strain exceeds, in absolute value, a typical critical strain of εcr = 3× 10−5. The

crosses indicate local extrema, and the vertical line the global extrema.

Nevertheless, G and εcr are physical quantities that can be measured, and are not completely free parameters. For a detailed

compilation of sea ice property measurements, we refer the reader to Timco and Weeks (2010).230

Additionally, ice strength depends on the direction of the applied stress. We are here solely interested in failure from bending

(mode I, or opening mode; see Saddier et al. (2024)), which is compatible with Griffith’s model of fracture as well as with

wave action. In particular, in the plane strain approximation, εcr can be related to the flexural strength σf so that εcr = 1−ν2

Y σf ,

and G to the fracture toughness K1c so that G= 1−ν2

Y K2
1c. Schulson and Duval (2009) compile values of K1c in the range

75 to 150 kPam
1
2 . Wei and Dai (2021) measured values down to 26 kPam

1
2 for floating samples in the lab, a reduction that235

could be attributed to temperature or size effects (Dempsey et al., 1999). Reported values of εcr are typically in the range of

1× 10−5 to 1× 10−4 (Kohout and Meylan, 2008), even though larger value (on the order of 1× 10−3) have been reported for

lab-grown, saline ice (Herman et al., 2018). Sea ice is subject to fatigue, and repeated cyclic loading was shown to lower its

apparent flexural strength (Langhorne et al., 1998).

2.4 Forcing waves240

The main focus of this study being ice deformation and fracture, the wave component of the model is kept relatively simple. To

align with the linearity hypothesis made on elastic plates, we only consider linear plane waves. This is also in line with previous

studies (for instance, Kohout and Meylan, 2008; Dumont et al., 2011; Horvat and Tziperman, 2015; Mokus and Montiel, 2022).

2.4.1 Dispersion relations

For a prescribe angular frequency ω, we derive wavenumbers k from the dispersion relations245

ω2

g
= k tanh(kH) (18)
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in the open-water parts of the domain, and

ω2

g
=

(
D

ρwg
k4 +1− ω2

g
d

)
k tanh

(
k(H − d)

)
(19)

in the ice-covered parts. We use the single symbol k for brevity, and the appropriate dispersion relation should be understood

from context. In the right-hand side of Eq. 19, the term D
ρwgk

4 corresponds to the elastic response of the ice cover, while the250

term ω2

g d corresponds to its mass-loading response. Whether the former has a significant contribution to the dispersion relation

when the ice is heavily fragmented is debated (Sutherland and Dumont, 2018; Dumas-Lefebvre and Dumont, 2023). As it can

easily be turned off, we include it here for completeness.

We note that this relation dispersion can be derived by considering the bending of a plate conforming to a fluid surface

excited by harmonic waves. This can therefore be seen as a soft coupling of the fluid to the plate. The dispersion relation of255

plate excited by harmonic waves, without a fluid foundation, would otherwise be ω2 = D
ρih

k4.

2.4.2 Sea state

For any given floe in the domain, a linear monochromatic wave can be parametrised with two complex variables, amplitude

â and wavenumber k̂. The modulus a= |â| denotes the amplitude of the wave at the left edge of the floe, while the argument

ϕ=Ang â denotes the phase of that wave mode at the left edge of the floe. The real part of the wave number, k =Rek,260

describes wave propagation while its imaginary part α= Im k̂ describes the spatial rate of attenuation in the direction of

propagation. Following Sutherland et al. (2019), we implement a parametrisation with attenuation linear in ice thickness and

quadratic in wavenumber, so that

α=
1

4
hk2. (20)

Other parametric attenuations can easily be added to the current framework; either directly to SWIIFT’s codebase1 or by a user265

at run time. Attenuation can also be turned off altogether.

A linear polychromatic plane wave can be defined by superposition. The wave state is then

η(x) =
∑
j

Im[âj exp(k̂jx)] (21)

where the subscript j denotes spectral modes. The modal amplitudes can be derived from any spectral density S(ω), using the

relationship (Horvat and Tziperman, 2015)270

1

2
a2j = S(ωj)∆ωj (22)

where ∆ωj is the width of the angular frequency bin corresponding to the amplitude aj .

1A parametrisation derived from Yu et al. (2022) was added to a later version.
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2.4.3 Wave propagation over a finite distance

To allow for the advection of a developing sea into the ice-covered domain, we apply a semi-Gaussian kernel to the sea state.

We implement this modification to avoid the non-realistic situation of a fully developed sea appearing under a potentially275

kilometre-wide MIZ. Therefore, Eq. (21) is modified into

η(x) =
∑
j

Im
[
âj exp(k̂jx)

]
Kj(x) (23)

with

Kj(x) =

exp
(
− (x−µj)

2

2σj
2

)
x≥ µj ,

1 x≤ µj .
(24)

To each wave mode, we associate a coordinate µj . The wave is considered fully developed in the half-plane left of that280

coordinate. The parameters σj control the width of the transition between a fully developed wave, and a near-rest state (as the

wave envelop of a given mode is reduced to about 0.01% of its maximum at x= µj +3σj).

2.5 Numerical scheme

We have so far presented our framework for modelling fracture in a quasi-static state. Here, we give more details on how we

iterate from a quasi-static state to the next, and summarise the steps leading to evaluating ice floe fractures.285

2.5.1 Wave propagation–attenuation

Let τ be a model timestep. Each wave mode in Eq. (23) propagates at a phase speed

cj =
ωj

kj
. (25)

Between time tn and time tn+1, the phase ϕj of mode j increases by −ωjτ . The limit µj of the fully developed wave advances

of a distance cjτ . Therefore, we iterate in time by updating the values of our âj and µj by these quantities. A new quasi-static290

wave profile η(x) can then be computed across the domain.

2.5.2 Sea ice deformation and fracture

Once the sea surface has been computed, the resulting sea ice deflection w(x) is computed for all individual floes, which are

scanned for possible fractures. For a given floe, if µj > L ∀j (that is, the wave acting on the floe is fully grown), the deflection

can be determined analytically, as developed in Appendix A. Otherwise, we obtain a solution to Eq. (6) with a numerical solver295

(Virtanen et al., 2020). In turn, the deflection is used to compute the curvature. Depending on the chosen fracture mechanism

(energy-based or strain-based), the floes are considered for breakup, as described in Sect. 2.3.1 and 2.3.2.

If using the energy criterion, we evaluate the post-fracture total energy along the discretised floe. We use a peak detection

algorithm (Virtanen et al., 2020) to separate intervals of convex free energy (as can be identified in Fig. 3a), onto which Eq. (13)
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is minimised. If the global minimum among these local minima satisfies Eq. (14b), fracture occurs; these steps are summarised300

in Fig. 2. If using the strain criterion, we evaluate the bending strain along the discretised floe. Again, a peak detection algorithm

is run on −ε2(x) to detect convex intervals, and we conduct local minimisation on these, which is equivalent to maximising

|ε(x)|. If the global minimum satisfies Eq. (17b), fracture occurs.

The input necessary for both parametrisations is thus the floe curvature. In Sect. 2.2 and Sect. 2.4, we merely suggest a

simple mechanical model to infer this curvature from wave forcing. Other 1D models outputting the curvature field, or actual305

curvature measurements, can be substituted without having to alter the fracture formalism presented in Sect. 2.3. However,

for the fracture parametrisation to be sensible, it is necessary that the mechanical model can be stepped forward in small

time increments. Thus, we choose here not to rely on harmonic solutions to the bending problem, such as in Mokus and

Montiel (2022), as these rely on the hypothesis that a steady state has been reached in the whole fluid domain. We do so at

the cost of neglecting floe bending inertia and relaxing constraints on the fluid itself. In particular, wave scattering induced by310

different boundary conditions imposed on the fluid when transitioning between open water and ice-covered water regions is not

accounted for. A comparison between the two types of solution can be found in Appendix B. We find minor differences in terms

of floe curvature (impacting the strain parametrisation) and resulting elastic energy (impacting the energy parametrisation). We

compute the ratio of elastic energy (Eel, defined in Eq. (9)), derived from the scattering model, to that same energy derived

from SWIIFT, for the case of a polychromatic forcing. The elastic energy is, generally (77.5% of the ensemble considered),315

overestimated by SWIIFT; but the distribution of these ratios being skewed, the two models yield, on average, a similar value

(mean of the ensemble considered: 1.02, geometric mean: 0.69). Additionally, we do not find these ratios to depend on model

parameters such as ice thickness or floe length. We thus conclude that even though differences exist between the two solutions,

they are less meaningful than random fluctuations of the wave state.

2.5.3 Timestep selection320

Care must be taken when selecting a model timestep, τ . The theoretical upper limit for crack propagation in an elastic, isotropic,

and homogeneous material is set by the speed of Rayleigh waves, cR =
√

Y
2ρi(1+ν) . Using Y = 3.8GPa and ν = 0.33, values

of the Young’s modulus and Poisson’s ratio estimated in situ for sea ice (Moreau et al., 2020b), this speed is on the order of

cR ≈ 1250ms−1. As we consider cracks to instantaneously fracture floes through their thickness, we must have τ > h
cR

. For

1m thick ice, it corresponds to τ > 0.8ms. Fractures propagate faster in stiffer ice, and increasing the Young’s modulus (or325

reducing the thickness) would lower this bound, which must be considered on a case-by-case basis.

However, we also want to keep the timestep small enough that we can detect fractures as soon as it is possible for them to

occur, as delaying the onset of a fracture may affect the length of the resulting floes. Therefore, we aim to keep the ratio of

the progression of the wave front to the wave amplitude small. In the monochromatic case, with phase speed c, it translates to

having τc
a < r ⇔ τ < r ak

ω , with r < 1. Setting r = 1
5 ensures sufficient convergence. An analogous relationship can be derived330

for polychromatic cases, by substituting the amplitude by the significant wave height HS of the spectrum, and the phase speed

c by the maximum phase speed of within the sampled spectrum, so that τ < r HS

maxj cj
.
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2.6 Example of time simulation

The study of floe size distributions in relation to ice or wave parameters is out of the scope of this study. However, as an

illustration of the capabilities of SWIIFT, we present in this Section the result of a single simulation.335

We initialise the domain with a single floe of length L= 600m, thickness h= 50cm, Young’s modulus Y = 4GPa, and

Poisson’s ratio ν = 0.3. We choose to parametrise fracture with the energy criterion, and set the fracture toughness to K1c =

100kPam
1
2 , which together with the other mechanical parameters corresponds to an energy release rate G= 2.275Jm−2.

This floe is forced with waves issued from a (one-parameter) Pierson–Moskowitz spectrum, with significant wave height

HS = 0.5m (corresponding to a peak period of 3.84 s), truncated to the period interval T ∈ 1 to 15s. We discretise this spectrum340

onto 50 linearly spaced frequency bins, and thus obtain 50 tuples of amplitudes and wavelengths, which we complete with 50

initial phases sampled from a uniform distribution in 0 to 2π rad. Spatial attenuation is parametrised as defined in Equation (20).

We initialise the growth kernels Kj with standard deviations σj equal to the wavelengths, and means µj equal to three respective

standard deviations upstream from the floe. At time t= 0s, the magnitude of the surface perturbation at the left edge of the

floe, issued from wave superposition as defined in Equation (23), is about 0.2mm.345

We set the timestep τ = 1
5

HS

maxj cj
= 8.58ms. We run the simulation for 120 s; the first fracture occurs at t= 9.097s, the last

one at t= 105.497s. We present results of this fracture experiment in Fig. 5, showing a snapshot of the simulated fluid and ice

displacement along with the evolving number and lengths of the simulated fragments. A video of the simulation is available as

supplementary material (Mokus, 2025a).

3 Numerical experiment350

To evaluate the capabilities of our model, in particular, validate the energy-based fracturing approach and highlight the dif-

ference between energy and strain criteria, we choose to replicate breakup experiments conducted at the laboratory scale on

a material that served as an analogue for solid, cohesive ice (Auvity et al., 2025). These focused on quantifying the onset of

breakup, by progressively increasing the amplitude of a forcing stationary wave, at different frequencies. The experiment setup

was as follows: a water tank of length 80 cm and depth 11 cm was covered with a brittle layer of varnish, with thickness on355

the order of 100 µm. The layer was detached from the walls of the tank prior to the experiment. Stationary surface waves were

generated with a wave maker. A one-dimensional profilometry system and image-processing method were used to extract the

wave properties (frequency, amplitude, wavenumber) and determine when fracture occurred. This work is similar to that of

Saddier et al. (2024), who also conducted wave-induced fracture experiments on an analogue material at the laboratory scale,

under stationary but also progressive forcing. However, in their experiment, the material is a granular raft hold together by360

capillary forces more than a continuous solid, and breaks because of viscous stress rather than because of bending stress. The

former is directly relevant for representing the disintegration of an already fragmented and granular sea ice, that has already

been broken up or that is in a consolidation phase (transition from frazil to grease ice). As our work focuses on the fracturing

of a solid and cohesive ice cover that we treat as a continuous elastic medium, rather than on the disintegration of a granular

ice of low cohesion, we favoured the work of Auvity et al. for our comparisons.365
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Figure 5. Snapshots of a fracture experiment. In 5a, view of the domain at t= 60s. The continuous, dark line represents the fluid surface

(η(x)), and the discontinuous, lighter lines the vertical displacements (w(x)) of individual floes. The marks along the bottom spine indicate

the boundaries between fragments; the last 80m, at the right of the domain, have not yet been affected by the waves. Note that the vertical

scale is greatly exaggerated: the aspect ratio of the graph, in physical units, is 5× 10−4. Because of the thickness of the lines, some floes

appear to overlap, they actually do not. In 5b, horizontal bars show the extent of individual floes. The height of the bars indicates the order

of the floe in the array, and each group of bars, or “stair”, corresponds to a snapshot. The time of the snapshots are indicated on the y-axis,

and darker colours correspond to later times. In 5c, we show size distributions as swarmplots, omitting the rightmost fragment. Each dot

corresponds to a length as indicated by the x-axis, and within a group, the y-axis only serves to separate dots. Vertical clusters thus indicate

a concentration of observations around the corresponding length. From t= 0s to 120s, there are respectively 1, 6, 27, 52, 58, 59 and 60

fragments. 16



As we aim to replicate this experiment, in what follows, we will be using a standing wave forcing, and turn off any atten-

uation. We use our model to determine, for prescribed wavenumbers and material properties inherited from these laboratory

experiments (listed in Table 1), the critical amplitude acr at which the material starts to fracture. We do so using our energy

formulation. Our model being linear, the amplitude directly controls the deflection of the plate, and thus, its curvature and

resulting elastic energy. It is therefore an intuitive quantity to control the outputs of the model, as well as a quantity that was370

measured experimentally.

The critical amplitude can then be related to a critical curvature κcr by evaluating Eq. (8) at the coordinate of the fracture. In

turn, κcr can be used to derive a critical strain, using Eq. (16). We do not run separate experiments based on a strain criterion,

as per the results of these authors, a critical strain independent of the wave forcing does not seem to exist for this material and

therefore cannot be prescribed in numerical experiments. Even so, the results of energy-based simulations allow us to draw375

conclusions on the relevance of this type of criterion. These are discussed in Sect. 5.

3.1 Length scales

To replicate the experimental protocol of Auvity et al. (2025), we consider only monochromatic stationary forcings, so that

η(x) = asin(knx) with kn = nπ
L . The symbol L represents both the length of the plate, and of the domain. The positive integer

n is the harmonic number. The wave tank we simulate is short enough for attenuation to be considered insignificant.380

We define two additional lengths: the flexural length

LD =

(
D

ρwg

)1/4

, (26)

and the relaxation length

Lκ =

∫ xfr

0
(xfr −x)

[
κ(x)−κ<(x)

]2
dx∫ xfr

0

[
κ(x)−κ<(x)

]2
dx

+

∫ L

xfr
(x−xfr)

[
κ(x)−κ>(x)

]2
dx∫ L

xfr

[
κ(x)−κ>(x)

]2
dx

. (27)

The former is a natural length scale of our system, appearing in the bending equation (Eq. (6a)), and relates the flexural rigidity385

of the plate (that resists bending) to the reaction of the fluid it rests upon (that sustains bending). The latter gives a measure of

the distance over which the curvature of post-fracture fragments is different from the curvature of the original floe that gave

rise to these fragments. We show an example of this in Fig. 3b.

We introduced the symbols κ<(x) and κ>(x) to denote the curvature of the left and right post-breakup fragments, with

x ∈ [0,L]. By definition, κ< (respectively κ>) exists only for x ∈ [0,xfr] (respectively x ∈ [xfr,L]). We choose this integral390

definition of Lκ because the differences in pre- and post-breakup curvatures is well-represented (when moving away from the

fracture location) by a damped sine with oscillation period and attenuation rate
√
2LD, that is,

κ(x)−κ>(x)∼ sin
( x√

2LD

)
exp

(
− x√

2LD

)
, (28)

which ensues from the shape of the solution presented in Appendix A1. Therefore, except at the floe boundaries where curva-

ture is 0m−1 (as imposed by the boundary condition, Eq. (6b)), the whole length of the initial floe may participate in releasing395

17



energy. For long enough waves, the relaxation length tends to
√
2LD, that is limk→0Lκ =

√
2LD. This can be shown analyti-

cally by assuming Eq. 28.

We thus have three typical horizontal length scales:

– The wavelength λ= 2π
k , imposed by the wave forcing, and linearly tied to the domain length L through the harmonic

number n, so that L= nλ
2 .400

– The flexural length LD, that depends on the properties of the material, the density of the fluid, and gravity. Only the

former are varied in this study, with stiffer, thicker materials having a longer LD.

– The relaxation length Lκ, that quantifies the distance over which fracture modifies the system.

As we consider short wavelengths and a very thin plate, capillarity effects could in principle be important. However, because

the flexural length of the material exceeds its capillary length, these are negligible, which Auvity et al. (2025) verified exper-405

imentally. Therefore, we will not consider them either, and the dispersion relation we will be using is given in Equation (19),

dominated by the term in LD
4.

3.2 Linearity limitation

The analogue material used in the laboratory experiments of Auvity et al. (2025) requires nonlinear waves (ak ≈ 0.14) for

fracture to occur. As neither nonlinear plate nor non-linear waves are represented by our numerical model, we have to relax410

this condition, typically quantified by the wave slope ak, to observe fracture at all. Thus, we set the upper bound of our

dichotomic searches so that ak ≤ 0.5, which places us out of the linear framework our model relies on. As here, we are

qualitatively showcasing the behaviour of our model rather than quantitatively exploiting the results, we deem this limitation to

be inconsequential. For thickness and Young’s modulus typical of sea ice, fracture in our model does happen in a linear regime,

as illustrated in Fig. 3, where ak = 0.015.415

Note that we define wave slope with respect to the wave propagating underneath the elastic plate and not with respect to the

free surface waves. For a given time period, hydroelastic waves with dispersion relation Eq. (19) are typically longer than free

surface gravity waves with dispersion relation Eq. (18), making the former slightly less steep.

4 Results

The results presented in this section focus on detecting a fracture threshold using our energy formalism and comparing this420

threshold to that obtained in the laboratory experiment of Auvity et al. (2025). To do so, we use in our simulations the material

parameters issued from Auvity et al. (2025). Those are given in Table 1. We do not tune model parameters. As we are interested

in detecting the fracture threshold, and our model does not have a fatigue term, we work with strictly unrelated quasi-static

states, and we find the critical amplitude acr systematically by dichotomic search. In Sect. 4.1, we detail the influence of

varying the wavenumber exclusively. Then, in Sect. 4.2, we replicate the same protocol, while also varying the mechanical425

parameters of the plate.
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Table 1. List of model parameters and their values. Parameters followed by an asterisk are inferred from other fixed parameters.

Parameter Value

density (fluid) 1000 kgm−3

density (plate) 680 kgm−3

energy release rate 174mJm−2

flexural length* 7.50mm

flexural rigidity 3.1× 10−5 Pam3

harmonic number 3

Poisson’s ratio 0.4

thickness 158 µm

wavenumbers 21.0 to 203 radm−1

Young’s modulus* 79.2MPa

4.1 Reference case

We start by illustrating the response of our model, for a range of prescribed wavenumbers, with four quantities: the normalised

position of the fracture xfr

L , the critical amplitude and curvature, and the relaxation length. These are presented in Fig. 6.

To exemplify the deviation between our computed deflection field and the forcing fluid surface, we choose here the case of430

the third harmonic, so that L= 3π
k . We thus obtain curvature profiles that are symmetric2 with respect to x= L

2 , with three

antinodes, which can be seen in Fig. 7. From left to right, the first and third antinodes (close to the left and right edges of the

plate, respectively) are more influenced by the boundary conditions than the second one (located at the middle of the plate).

In what follows, we multiply k by the flexural length, so that to obtain the (dimensionless) wavenumber kLD. This allows

exploring the model behaviour between two limits: small kLD values thus correspond to longer waves and lower flexural435

rigidity (the plate conforms to the fluid), while high values correspond to shorter waves and higher flexural rigidity (the plate

is non-deformable). We divide Fig. 6b–d in four regions, based on different behaviours of the fracture location as predicted by

the energy criterion, identified in Fig. 6a. These regions are separated by kLD = 0.1638, 0.3275 and 0.7578. They correspond,

for increasing kLD, to fracture happening in the middle of the floe (the second curvature antinode); fracture happening close

to the first or third curvature antinode; fracture again happening in the middle of the floe; and fracture uncorrelated from any440

curvature extremum. Because of the particular wave forcing imposed in our model configuration, the free energy profile is

symmetrical with respect to the middle of the plate. Therefore, it is not numerically possible to discriminate between an energy

minimum happening at xfr or L−xfr, and in Fig. 6a, we only show the branch corresponding to xfr ≤ L
2 .

We note that, in regions 1 to 3, fracture predicted by the energy criterion does not systematically happen at the global

curvature extrema. In this third harmonic case, the global extremum is in the middle of the floe, except in the band kLD ∈445

2As would be the case for any odd harmonic number. In the case of even harmonic number, the curvature profile as a twofold rotational symmetry about

(x,κ) =
(
L
2
,0
)
. In other words, κ

(
x− L

2

)
is even-symmetric for odd harmonic wavenumbers, and odd-symmetric for even harmonic numbers.
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Figure 6. Relationships between the nondimensionalised wavenumber and normalised (with respect to plate length) fracture location (a),

critical amplitude (b), critical curvature (c), and relaxation length (d). Model parameters are provided in Table 1. In (a), three horizontal

dashed lines represent the asymptotes xfr
L

= 1
6
, 1

3
and 1

2
. In (b) to (d), vertical lines show delimitations between regions corresponding to

different behaviours of fracture location, observed on (a). The regions are numbered in (c). In the second region of (b), the triangle of height

twice its horizontal base (in loglog space and data units) gives an indication of the slope. In (d), an horizontal dashed line represents the

asymptote
√
2LD .
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[0.178,0.357]. The overlap with the region 2, defined by kLD ∈ [0.1638,0.3275], is thus not one-to-one. Additionally, in

region 2, fracture does not happen at the antinode, but in its vicinity. For kLD < 0.242, fracture is on the left of the first

antinode, and for kLD > 0.243, to its right (the situation is reversed for the third antinode). In region 4, fracture happens far

from either antinode. It seems that for increasing kLD, xfr

L → 1
3 , which corresponds to a node of the forcing.

In Fig. 7, we show examples of the behaviour of the free energy and of the along-plate curvature for these different regions.450

We compare the latter to the “conforming” curvature, κconf(x) =
d2

dx2wconf , with wconf(x) =
a

1+(kLD)4
sin(kx) the associated

displacement stemming from the fluid surface. The term at the denominator ensures that it satisfies Eq. (6a), and for long

waves, limk→0wconf = η. In Fig. 8, we show for the same examples the floe deflection, compared to the forcing amplitude,

and we indicate the relaxation length. To aid comparison, we normalise the along-floe coordinate by the floe length.

In the first two regions, both corresponding to small wavenumbers, the difference between curvature and conforming curva-455

ture (Fig. 7a, Fig. 7b) is noticeable only in the immediate vicinity of the edges of the domain. Minima of free energy correspond

roughly with extrema of curvature, and the floe deflection (Fig. 8a, Fig. 8b) follows the fluid surface. In the first region, and

to a lesser degree in the second region, the critical curvature (Fig. 6c) varies little, although a slight positive trend exists. Our

strain-based and energy-based criteria in these two regions would therefore predict virtually similar fractures. The critical am-

plitude (Fig. 6b) varies with the inverse of the squared wavenumber, that is, with the square of the wavelength. The relaxation460

length (Fig. 6d) is almost constant and tends to
√
2LD from below for decreasing wavenumbers. As the floe length is, in the

case of stationary wave forcing, inversely proportional to the wavenumber, the relaxation length normalised by the floe length

increases with the wavenumber, and is not constant across the different panels of Fig. 8.

In the third region, curvature and conforming curvature (Fig. 7c) are now dissimilar between the left (respectively right)

edge and the left (respectively right) antinode. The free energy still shows three troughs, but the trough at x= L
2 is now clearly465

more pronounced than the other two. There are still three distinct deflection extrema (Fig. 8c), synchronised with the forcing

wave, and the amplitude of deflection of the floe is slightly smaller than the forcing amplitude. From kLD ≈ 0.3057, we

locally (around the two positive deflection antinodes) have η−w > h− d. As h− d corresponds to the freeboard of the floe

at rest, this suggests parts of the deformed floe are immersed. This takes place close to the transition from the second region,

which happens at kLD = 0.3275. The non-zero deflection near the edges shows that deflection is now significantly different470

from the sine forcing. In terms of the occurrence of fracture, this region corresponds to a sharp increase in critical curvature,

incompatible with a strain-based (that is, constant critical curvature) criteria. The relaxation length, however, is still practically

constant with kLD, and a good indicator of the zone over which pre- and post-fracture modelled deflection differ. An inflexion

of the critical amplitude decrease rate is also visible. In regions 1 to 3, fracture locations near antinodes and the shape of

post-fracture deflections are consistent with mode I fracturing.475

As kLD increases, the length of the plate diminishes relatively to its flexural length. The impact of the boundary conditions

on the deflection profile is therefore amplified. This effect is sizeable in the fourth region (Fig. 8d): curvature and conforming

curvature (Fig. 7d) no longer match anywhere along the plate. This is despite staying in a regime where LD ≫ L, as kLD =

nπLD

L ≈ 10LD

L . The central free energy trough has separated into two distinct troughs corresponding to global minima, no

longer in phase with curvature extrema. This separation corresponds to the transition from the third region. The fourth region480
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Figure 7. Examples of free energy (left vertical axes, green lines) and curvature (right vertical axes, grey lines) profiles for the four regions

identified in the text. A sine curvature is shown in dashed lines as a comparison to the curvature derived from Eq. (8). The fracture locations,

determined from the energy criterion, are shown with vertical lines: the energy profiles being symmetrical with respect to the middle of the

plates, F (xfr) = F (L−xfr). The dashed horizontal lines show the zero-curvature reference.

also shows a drop in critical curvature (Fig. 6c), which has been monotonically increasing with kLD thus far. However, the

maximum curvature κ(L/2) keeps increasing irregularly with kLD, as can be seen by comparing Fig. 8c and Fig. 8d. The

critical amplitude, which seems to plateau on the right of the third region (Fig. 6b), is singular at the transition, then diminishes

again before increasing irregularly. Additionally, the edges of the fragments no longer mirror each other. There is a significant

post-fracture discontinuity in deflection, which is a characteristic of region 4, and not consistent with bending (mode I) fracture,485

but reminiscent of a sliding (mode II) or tearing (mode III) fracture. A minimum of critical curvature is reached for kLD = 1,

which also corresponds to a maximum of relaxation length. For n≥ 2, there is a single positive kLD, quickly converging to 1,

for which the slope at the edges of the floe vanishes, that is,
(
dw
dx

)
x=0,L

= 0. It corresponds to the two outside-most deflection

antinodes vanishing, leaving only the internal ones. It can be seen from the deflection profile in Fig. 8d, that compared to

Fig. 8a–c, the slope at the edges has changed sign, and that a single antinode (at the centre of the floe) remains.490
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Figure 8. Examples of pre- and post-fracture floe deflection profiles for the four regions identified in the text, normalised by the critical

amplitude. The relaxation lengths, centred on the fracture locations, are shown with shaded rectangles. We only consider the left fracture

location, where applicable. The dashed horizontal lines show the zero-deflection reference.

4.2 Influence of mechanical parameters

We further investigate the response of our model to varying mechanical parameters, by reproducing the analysis presented in

Sect. 4.1 for an ensemble of (h,Y ) pairs with 128 members. Doing so, we aim to reproduce the internal variability that stems

from laboratory conditions in the experiments of Auvity et al. (2025). We generate this ensemble through Latin hypercube

sampling, and enforce that the two variables are independent with normal marginal densities of prescribed means 100 µm495

and 70MPa, and prescribed standard deviations 20 µm and 14MPa, respectively; we show the joint density of our sample

in Fig. 9. The resulting distribution of flexural rigidities is positively skewed, with mean 7.88× 10−6 Pam3 and median

6.93× 10−6 Pam3.

23



50 100 150
Thickness (µm)

40

60

80

100

Yo
un

g'
s m

od
ul

us
 (M

Pa
)

Figure 9. Joint density and marginal densities of our (h,Y ) ensemble.

We further impose the relation

2Gh2

D
= C (29)500

between the energy release rate, the Young’s modulus, and the thickness, as derived by Auvity et al. (2025), setting the di-

mensionless material constant parameter C = 2.8× 10−4. This expression serves as a proxy establishing a value for G, which

is poorly constrained experimentally. The other parameters are kept fixed at the values presented in Table 1. We also keep

the same constraint on the wave slope, requiring acrk ≤ 0.5: depending on the precise values assumed by the thickness and

Young’s modulus, the interval of wavenumbers that leads to fracture may vary.505

4.2.1 Comparison to experimental data

We show numerical results in Fig. 10 (colour-coded lines), which we compare to experimental data from Auvity et al. (2025)

(circle and square markers). We obtain results similar to those presented in Sect. 4.1. The critical amplitude profiles do not

depend on the mechanical properties of the simulated material, up to a multiplicative constant, that increases with flexural

rigidity (or, equivalently, flexural length).510

This fact extends to the other variables shown in Fig. 6. Within the ranges of mechanical parameters explored, which are

in agreement with the values and internal variability estimated by Auvity et al. (2025), the order of magnitude of the critical

amplitude and its decreasing tendency with increasing kLD agree between the simulations and the laboratory experiments.

However, and as expected, this agreement is only qualitative. Indeed, we recall that in the experimental setting, fracture was

only obtained with nonlinear waves. It is likely the reason why the critical amplitudes measured by Auvity et al. (2025) varies as515
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Figure 10. Relation between the dimensionless wavenumber and the critical amplitude, for varying thickness and Young’s modulus. Lines are

numerical results, with the colour scale indicating the flexural rigidity, that combines the two varying parameters. Grey dots are experimental

results from Auvity et al. (2025). Pink squares are the same experimental results, with a different horizontal scaling, as described in the text.

k−1, not as k−2 as we find numerically. The differences between experimental and numerical critical amplitudes are therefore

deepened at small wavenumbers.

We also note that the way we define the relaxation length Lκ in our linear waves simulations differs from the definition

of Auvity et al., who used the full width at half-maximum (hereinafter, FWHM) of pre-fracture curvature in their nonlinear

experiments. On Fig. 10, we thus also represent the experimental critical amplitudes as a function of LD

FWHM (pink squares),520

which horizontally shifts the experimental points, in an attempt to correct the discrepancy between their nonlinear waves

forcing and our linear model.

We do not adopt their definition, as it would be incompatible with our region 4 results, where fracture does not happen

around curvature peaks or troughs, while experimental fractures always happened in the vicinity of a deflection antinode. If we

were to apply it to regions 1 to 3, we would obtain something very similar to the FWHM of sin(kx), that is 2π
3k , λ

3 . Because of525

their nonlinear wave forcing, Auvity et al. measured FWHMs that varied like λ
12 . Bending was thus concentrated in a smaller

fraction of their forcing wavelengths, and LD

FWHM can be seen as an alternative, rescaled dimensionless wavenumber. Using

this definition, we can improve the overlap between experimental and numerical results, with experimental points falling in
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Figure 11. Relationship between the nondimensionalised wavenumber and two dimensionless quantities: the energy dissipation length scaled

by the flexural length (a), and squared critical curvature scaled by thickness and energy dissipation length (b). We show ensemble averages,

for four harmonic numbers. For a given harmonic number, ensemble members are virtually identical, with coefficients of variation well below

1× 10−3 where the means are non-zero.

regions 1 to 3, where both model end experiments show the critical curvature depends on the forcing wavelength, precluding a

constant strain threshold.530

4.2.2 Impact of harmonic number and dimensionless quantities

So far, we focused on the harmonic number n= 3. However, for large enough kLD, the response of the model depends on

n, and therefore on the geometry of the domain. In particular, for even n, fracture in region 4 happens systematically in the

middle of the floe. Due to the symmetry property of the forcing, this means our model predicts fracture with κcr = 0m−1,

inconsistent with bending fracture but reminiscent of shearing or tearing fracture. The fundamental configuration, with n= 1,535

is a particular case. The maxima of deflection, curvature, and free energy happen at x= L
2 independently of kLD. We illustrate

this difference in Fig. 11 by presenting the relationships between the nondimensionalised wavenumber and two dimensionless

quantities, for different harmonic wavenumbers. We choose these two quantities because they exhibit the remarkable property

of depending on the dimensionless wavenumber, but not on the individual variations of the mechanical parameters.
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The first of these quantities, shown in Fig. 11a, is the relaxation length Lκ (as shown in Fig. 6d for the fixed parameters540

experiment), normalised by the augmented flexural length
√
2LD. We retrieve, independently of the harmonic number, the limit

limk→0Lκ =
√
2LD already stated in Sect. 3.1. Behaviours depending on the harmonic number emerge from kLD ≈ 0.4. If

all curves show a downward trend in what corresponds to kLD in regions 2 and 3, this trend is more pronounced for smaller

numbers, in particular n ∈ {1,2}. The second striking difference, is that between even and odd harmonic numbers. There

is a discontinuity at the transition from region 3 to region 4 for even numbers, with an upward jump preceding a sustained545

downward trend. This transition is continuous for n= 3. There is no region 4 behaviour for n= 1, as in this configuration,

fracture always happens at xfr

L = 1
2 .

The second dimensionless number, shown in Fig. 11b, can be built as the product of two distinct dimensionless quantities:

critical curvature multiplied by thickness (that is, twice the critical strain), and critical curvature multiplied by relaxation length.

Notably, both these quantities do depend on thickness and Young’s modulus, without showing the ordering critical amplitude550

does in Fig. 10. However, their product, κcr
2hLκ, only depends on kLD. This quantity was also derived by Auvity et al. (2025),

who interpreted it as a constant independent of the wave forcing. We do not replicate this result outside of regions 1 and 2,

that is, the wavenumber band where neither critical curvature nor relaxation length vary. As in Fig. 11a, the different curves

are indistinguishable within these two regions (that is, at small kLD), and a discontinuity exists for even harmonic numbers

between regions 3 and 4, as for these, the critical curvature drops to 0m−1 in region 4.555

Finally, it can be seen that the upper bound of the range of kLD that sees fracture happens depends on n. It first increases

with n but peaks for n= 3, and then decreases. This is despite keeping the same acrk ≤ 0.5 criterion on the wave slope. The

lower bound, however, does not change and keeps the value kLD = 0.1167. The differences between the different harmonics

in region 4 are explained by the loss of deflection extrema near the boundaries as kLD increases, which have dissimilar effects

on the deflection profile in this region for different n. For n > 2, there exists a single kLD for which the slope of the deflection560

at the edges of the plate,
(
dw
dx

)
x={0,L}, cancels. It converges exponentially towards 1, so that noting it (kLD)0, we have

log|1− (kLD)0| ∼ −n. The cancellation of the slope conveys the transition from a deflection profile with n antinodes to one

with n− 2 antinodes. When kLD keeps increasing, the higher n, the higher the variety of behaviours shown by w. However,

for large enough kLD, w(x)→ 2a
nπ for odd n, and w(x)→ 2a

n

(
− 2x

L +1
)

for even n. These are rigid motions, independent of

the forcing, corresponding respectively to heave (translation) or pitch (rotation).565

5 Discussion and conclusion

We have developed a versatile, lightweight one-dimensional model that simulates the time-dependent fracture of sea ice by

waves. This model has the particularity of solving directly for the deflection of a floe caused by the competition between

buoyancy and gravity; instead of solving for waves scattered by the presence of the floe at the ice–fluid interface, and assuming

that the deflection follows that interface. We can thus use the model to continuously explore the response of a floe to bending570

between two limits: an elastic plate conforming exactly to a fluid foundation, and an undeformable plate. We have implemented

in this model two fracture criteria. One, compatible with continuum fracture mechanics, is based on looking for a global post-
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fracture energy minimum and comparing it to the pre-fracture energy state to determine whether fracture should occur, and is

a novelty of this model. The other is compatible with the more common hydroelastic approach applied to sea ice, based on

locally comparing strain to a prescribed, constant threshold.575

The present study is centred on presenting the theoretical and numerical aspects of the model itself and validate/invalidate the

energy-based fracture criterion. We apply the model to an analogue material used in the laboratory to study wave-induced ice

fracture, in the specific setting of monochromatic stationary waves. Because no constant critical strain threshold was observed

during these experiments, but a relationship between energy release rate and other parameters of our model exists, we focus

on investigating the energy criteria. Even in this particularly simplified configuration, the response of the model in terms of580

critical amplitude or curvature is not straightforward.

Our results indicate that the critical curvature derived from an energy-based fracture depends on the forcing wave, con-

tradicting the existence of a universal critical strain. This was also observed in the laboratory (Auvity et al., 2025). In the

(dimensionless) wavenumber band where our results overlap with the experimental data from Auvity et al. (2025), we obtain

comparable critical amplitudes. However, we are not able to replicate their scaling for low kLD. Additionally, we obtain that585

for large enough kLD (region 4), the two criteria, energy-based and critical strain-based, diverge on the predicted fracture

location, in that energy-predicted fracture is uncorrelated from curvature, or strain, extrema. The fracturing behaviour in region

4 is inconsistent with bending fracture, and suggests out-of-plane shear or in-plane shear fracturing. The latter would describe

fracture propagating perpendicularly to the direction of wave propagation (that is, as someone tearing up a sheet of paper), in

contradiction with the invariance hypothesis made on the modelled plate and therefore cannot be represented in the current 1D590

model.

A possible explanation for the different relationship between critical amplitude and wavenumber observed experimentally

(acr ∼ k−1) and numerically (acr ∼ k−2, for kLD ≲ 0.6) may be that experimentally, for fracture to happen, the material

considered (varnish) required nonlinear wave forcing, which our model does not represent. In the case of ice, the linearity

assumption is, however, valid. For values corresponding to a similar experiment conducted on fresh water ice by the same595

team (personal communication with Auvity et al.), that is thicker and stiffer than their varnish, our results in terms of critical

amplitude as a function of dimensionless wavenumber are, up to multiplicative constants, identical to those presented here, and

the wave slopes required to obtain fracture are typically of the order of 0.02; well within the linear regime. Therefore, increasing

the numerical complexity of the model to accommodate nonlinear plate behaviour seems unnecessary at this stage. Another

explanation is that, while our model considers homogeneous plates with constant Young’s modulus, the material engineered by600

Auvity et al. (2025) is obtained by layering. Because of introduced vertical inhomogeneities, this process is likely to introduce

a dependency of the Young’s modulus to the obtained thickness. Further analysis of this new dataset, and in particular whether

the dependency of the curvature at failure on the wavenumber exists, is ongoing.

The key features of our model are that bending is driven exclusively by the along-plate variation of buoyancy, which cannot

be resolved by hydroelastic models, and that fracture can be controlled by an energy criterion integrated over the entire floe.605

For high kLD values, that is either large wavenumber or a stiff elastic plate, this leads to physically questionable behaviours,

such as submergence, and post-breakup deflection discontinuity across the fracture (region 4) or even fracture at zero-curvature
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(for even harmonics). We note that the possibility of submergence is the direct consequence of the weak, one-way coupling

between fluid and plate, as we only represent the response of the plate to the fluid, while ignoring the feedback response of

the fluid. This one-way coupling is a trade-off allowing us to maintain the theoretical and numerical complexity low. As a610

rationality check, we verify that the bending energy, transmitted to the plate by the fluid, is orders of magnitude less than the

gravitational potential energy of the fluid: there is thus no unaccounted energy leaks into the plate. As none of this energy is

returned to the fluid, it is likely we overestimate the likeliness of fracture.

Here, we have described the simulated behaviour as a function of kLD by distinguishing the results in 4 different regions,

based on where the fracture happens. The kLD thresholds being regions should however be regarded carefully, as they depends615

slightly on the harmonic number of the forcing, and might be a feature of stationary forcing. At field scale, with waves prop-

agating within the ice cover, the fracture front follows the wave front, in such a way that fragments are typically smaller than

the dominant wavelength (Dumas-Lefebvre and Dumont, 2023). Therefore, the increased complexity in the model behaviour

at high harmonic numbers may not be representative of natural conditions.

More experimental data is needed to confirm or infirm the behaviour of the model in the large kLD band, and whether a620

forcing-dependent trend for critical curvature exists in the case of ice. Previous wave tank fracture experiments (Dolatshah et al.,

2018) showed bending failure typically happening at kLD ≈ 1, though the uncertainties on thickness and Young’s modulus are

quite large. Other values of Young’s modulus reported for such experiments, in the low MPa range (Herman, 2018; Passerotti

et al., 2022), seem inconsistent with a cohesive, solid sheet of ice, as represented in our model. Nevertheless, these authors did

observe fracture in the range kLD ∈ [0.29,0.54] and for kLD = 0.29, respectively. Voermans et al. (2020) compiled a list of625

studies of wave-induced breakup observations. Mechanical parameters were, for the most part, not measured, but they suggest

estimations based on known empirical relations. Following their methods, we can generate ensembles of kLD wavenumbers,

that we find lying in the range kLD ∈ [1.7× 10−2,3.1] for both breaking and non-breaking cases. In the case of realistic

wave forcing, with material parameters representative of first-year sea ice, the peak of wave energy occurs in kLD bands

corresponding to what we identified as region 3 and 4. However, higher-frequency waves are also the ones most effectively630

attenuated by the ice cover, so that they contribute less to fracture.

We acknowledge our results are a first step towards the validation of the fracture formalism we propose. Planned future

work will involve using our model to study whether the choice of fracturing criterion impacts the floe size distribution resulting

from propagating wave-induced breakup, and applying it in configurations corresponding to recent and exciting observations

of transient wave-induced breakup of instrumented ice in a natural setting (Kuchly et al., 2025).635

Code and data availability. The current version of SWIIFT is available from the project website https://github.com/sasip-climate/swiift

under the APACHE-2.0 licence. The exact version of the model used to produce the results used in this paper is archived on https://doi.

org/10.5281/zenodo.15528673 (Mokus, 2025d). The input data and scripts to run the model and produce the plots for all the simulations

presented in this paper are archived on https://doi.org/10.5281/zenodo.15528650 (Mokus, 2025c). A package dedicated to reproducing the

figures, holding the necessary data but no model logic, is archived on https://doi.org/10.5281/zenodo.15230102 (Mokus, 2025b).640
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Video supplement. An animation of the simulation of fracture by a spectral wave forcing, as described in the text, is available at Mokus

(2025a).

Appendix A: Equation for the moment-deformation

We consider the boundary problem

d4w

dx4
= σ4

[
η(x)−w(x)

]
x ∈ [0,L]

d2w

dx2
= 0 x ∈ {0,L}

d3w

dx3
= 0 x ∈ {0,L}.

(A1a)

(A1b)

(A1c)

645

where η denotes the surface undergoing wave forcing, w the floe deflection, and σ = 1
LD

is the reciprocate of the flexural

length.

The surface η is typically the superposition of propagating, attenuated wave modes, so that

η(x) =
∑
j

ηj(x) (A2)

and650

ηj(x) = aj exp(−αjx)sin(kjx+ϕj), (A3)

with a wave amplitude, α wave attenuation per unit distance, k wave number, and ϕ wave phase at the left floe edge. The index

j is used with respect to a discretised wave spectrum.

Finally, we define the elastic energy per unit cross-sectional area

E =
D

2h

L∫
0

(
d2w

dx2

)2

dx. (A4)655

In the rest of this document, we will note

κ(x) =
d2w

dx2
(A5)

the curvature of the floe.

The ODE (A1a) is linear, and so are the boundary conditions fourth order ODE, but it is linear, and so are the boundary

conditions (A1b),(A1c). Here, we consider the simplified case where D and h are constant, making Eq. (A1a) a constant-660

coefficients, linear ODE.

A1 Solution to the BVP on the floe deflection

The ODE (A1a) is linear and non-homogeneous. Its general solution w is the superposition of an homogeneous solution wh

and a particular solution wp.
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A1.1 Homogeneous solution665

The characteristic polynomial of the homogeneous ODE

d4w

dx4
+σ4w(x) = 0 (A6)

associated with (A1a) is

P (s) = s4 +σ4. (A7)

It has solutions670

(1+ i)σ̃,(1− i)σ̃,(−1+ i)σ̃,(−1− i)σ̃ (A8)

with σ̃ =
√
2
2 σ. Independent solutions to (A1a) are thus

f̌ =


exp(σ̃x)(cos(σ̃x)+ isin(σ̃x))

exp(σ̃x)(cos(σ̃x)− i sin(σ̃x))

exp(−σ̃x)(cos(σ̃x)+ isin(σ̃x))

exp(−σ̃x)(cos(σ̃x)− i sin(σ̃x))

 . (A9)

Applying the full-rank linear transformation

1

2


1 1 0 0

−i i 0 0

0 0 1 1

0 0 −i i

 (A10)675

to f̌ yields the real-valued independent solutions

f =


exp(σ̃x)cos(σ̃x)

exp(σ̃x)sin(σ̃x)

exp(−σ̃x)cos(σ̃x)

exp(−σ̃x)sin(σ̃x)

 . (A11)

Finally, any linear combination fT c, with the real-valued vector

c=
[
c1, c2, c3, c4

]
(A12)

is a solution to (A6).680
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A1.2 Particular solutions

The non-homogeneous term in (A1a) can be written

σ4η(x) = σ4
∑
j

ηj(x) (A13)

= σ4
∑
j

Im
[
âje

ik̂jx
]

(A14)

with the complex amplitudes â= aeiϕ and the complex wavenumbers k̂ = k+iα. Using the exponential response formula, and685

the characteristic polynomial (A7), we obtain particular solutions of the form

wp,j = σ4 Im

[
âje

ik̂jx

k̂j
4
+σ4

]
(A15)

= Im

[
âje

ik̂jx(
k̂j/σ

)4
+1

]
(A16)

so that the particular solution to (A1a) can be written

wp =
∑
j

wp,j . (A17)690

In what follows, we will write

ãj =
âj(

k̂j/σ
)4

+1
(A18)

the complex amplitude of these solutions. As σ,kj ,αj > 0, this amplitude exists only if

kj ̸= σ̃ ∧αj ̸= σ̃. (A19)

A1.3 Coefficients of the homogeneous solution695

The coefficients of c have to be determined to enforce the boundary conditions. Enforcing these four conditions leads to the

system

DBCMBCc= r (A20)

with

DBC =


2σ̃2 0 0 0

0 2σ̃2 0 0

0 0 2σ̃3 0

0 0 0 2
√
2σ̃3

 , (A21)700
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MBC =


0 1 0 −1

−eβ sin(β) eβ cos(β) e−β sin(β) −e−β cos(β)

−1 1 1 1

−eβ sin(β+ π
4 ) eβ cos(β+ π

4 ) e−β cos(β+ π
4 ) e−β sin(β+ π

4 )

 , (A22)

where β = σ̃L, and

r = Im
∑
j


k̂2j ãj

k̂j
2
ãje

ik̂jL

ik̂3j ãj

ik̂3j ãje
ik̂jL

 . (A23)

The third and first lines of the system give705 
c1 =

1

2σ̃2

(
r1 −

r3
σ̃

)
+ c3 +2c4

c2 =
r1
2σ̃2

+ c4

(A24a)

(A24b)

and the system (A20) can be simplified to the more tractable

MII

c3
c4

=

−r3

r4

 (A25)

with

MII = 2

 sin(β)sinh(β) eβ sin(β)− cos(β)sinh(β)

−
√
2
2

[
sin(β)cosh(β)+ cos(β)sinh(β)

]
−

√
2
2 eβ − sin(β+ π

4 )sinh(β)

 . (A26)710

The determinant of MII is

∆=
√
2
[
2sin2(β)− cosh(2β)+ 1

]
(A27)

so that ∆< 0 for β > 0, and limβ→0∆= 0. Therefore, the system (A20) admits a unique solution as long as L is non-zero,

and LD finite. Solving (A25) and substituting into (A24) leads to the solution to (A20), that can be written

c=Mr (A28)715
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where the coefficients of the matrix M are

M11 =
1

Q
e−2β

[√
2sin

(
2β+

π

4

)
− e−2β

]
(A29a)

M12 =− 1

Q
e−β

[√
2cos

(
β+

π

4

)
+ e−2β

(
3sinβ− cosβ

)]
(A29b)

M13 =
1

σ̃Q
e−2β

[
sin(2β)− 1+ e−2β

]
(A29c)

M14 =
1

σ̃Q
e−β

[
cosβ− e−2β(2sinβ+cosβ)

]
(A29d)720

M21 =
1

Q
e−2β

[
−
√
2cos

(
2β+

π

4

)
+2− e−2β

]
(A29e)

M22 =

√
2

Q
e−β

[
−sin

(
β+

π

4

)
+ e−2β cos

(
β+

π

4

)]
(A29f)

M23 =
1

σ̃Q
e−2β

[
1− cos(2β)

]
(A29g)

M24 =
1

σ̃Q
e−β sinβ

[
1− e−2β

]
(A29h)

M31 =
1

Q

[
−1+

√
2e−2β cos

(
2β+

π

4

)]
(A29i)725

M32 =
1

Q
e−β

[
3sinβ+cosβ−

√
2e−2β sin

(
β+

π

4

)]
(A29j)

M33 =
1

σ̃Q

[
−1+ e−2β(sin(2β)+ 1)

]
(A29k)

M34 =
1

σ̃Q
e−β

[
cosβ− 2sinβ− e−2β cosβ

]
(A29l)

M41 =
1

Q

[
1+ e−2β

(√
2sin

(
2β+

π

4

)
− 2

)]
(A29m)

M42 =M22 (A29n)730

M43 =M23 (A29o)

M44 =M24 (A29p)

with

Q=−2σ̃2
[
(1− e−2β)

2
+2e−2β

(
cos(2β)− 1

)]
. (A30)

The coefficients of M are implicit functions of σ̃, and we note that the coefficients M1j are even-symmetric to the coefficients735

M3j , and the coefficients M2j are odd-symmetric to the coefficients M4j . This reproduces the respective evenness and oddness

of f1 and f3, and f2 and f4. The leading exponential terms for all the coefficients M1j and M2j ensure that the deflection does

not diverge for large floes.

The homogeneous solution to (A1) is then

wh(x) =
∑
j

cjfj(x) (A31)740
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with the coefficients of f given from (A28).

A1.4 Summary

The solution to the BVP (A1) is given by the sum

w(x) = wh(x)+wp(x) (A32a)

=

4∑
j=1

cjfj(x)+

Nf∑
j=1

Im
[
ãje

ik̂jx
]
. (A32b)745

The definitions of the functions fj are given in Section A1.1, the definitions of the coefficients ãj as well as the complex

wavenumbers k̂j are given in Section A1.2, and the definitions of the coefficients cj in Section A1.3. The integer Nf is the

number of frequency bins used to discretise a wave spectrum. The deflection is entirely determined by the elastic length LD,

the floe length L, and Nf tuples of amplitude a, wavenumber k, attenuation number α, and phase ϕ. Assuming independence

of these quantities, the solution is parametrised by 2+4Nf real numbers. All of these, at the exceptions of the phases taking750

values in (−π,π], are positive. They can be further constrained to physically realistic ranges.

A2 Elastic energy

A2.1 Introduction

The elastic energy of a bent floe is defined as

E =
D

2h

L∫
0

(
d2w

dx2

)2

dx. (A33)755

We introduce the floe curvature κ(x) := d2w
dx2 . From (A32), we have

κh = 2σ̃2(−c1f2 + c2f1 + c3f4 − c4f3) (A34)

κp =−
∑
j

Im[k̂2j ãje
ik̂x]. (A35)

Let us define bj := |k̂2j ãj |, βj := Ang k̂2j ãj . We can then rewrite

κp =−
∑
j

bje
−αjx sin(kjx+βj). (A36)760

Finally, we introduce the quantities

Eh =

L∫
0

κh
2dx,Ep =

L∫
0

κp
2dx,Eq =

L∫
0

κhκpdx, (A37)

which are the contribution to the elastic energy of respectively the homogeneous part of the displacement, the inhomogeneous

part of the displacement, and their quadratic interaction.
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A2.2 Homogeneous contribution765

We start by expanding Eh as

Eh = c1
2I2 + c2

2I1 + c3
2I4 + c4

2I3 +2(−c1c2I12 − c1c3I24 + c1c4I23 + c2c3I14 − c2c4I13 − c3c4I34), (A38)

with

Ij =

L∫
0

fj
2dx,Ijn =

L∫
0

fjfndx. (A39)

These integrals evaluate to770

I1 =
e2β(

√
2sin(2β+ π

4 )+ 2)− 3

8σ̃
(A40a)

I2 =
e2β(−

√
2sin(2β+ π

4 )+ 2)− 1

8σ̃
(A40b)

I3 =
−e−2β(

√
2cos(2β+ π

4 )+ 2)+3

8σ̃
(A40c)

I4 =
e−2β(

√
2cos(2β+ π

4 )− 2)+1

8σ̃
(A40d)

I12 =
−
√
2e2β cos(2β+ π

4 )+ 1

8σ̃
(A40e)775

I13 =
L

2
+

sin(2β)

4σ̃
(A40f)

I14 =
sin2β

2σ̃
(A40g)

I23 =
sin2β

2σ̃
(A40h)

I24 =
L

2
− sin(2β)

4σ̃
(A40i)

I34 =
−
√
2e−2β sin(2β+ π

4 )+ 1

8σ̃
. (A40j)780

The products of cj , cn pairs simplify little, and can be evaluated numerically.

A2.3 Particular contribution

We can expand Ep as

Ep =

Nf∑
j=1

[
bj

2Ipj +2

Nf∑
n=j+1

bjbnIj,n

]
(A41)
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with785

Ipj =
1

2

L∫
0

e−2αjx
[
1− cos

(
2kjx+2βj

)]
dx (A42a)

Ij,n =
1

2

L∫
0

e−αj,nx
[
cos

(
k−j,nx+β−

j,n

)
− cos

(
k+j,nx+β+

j,n

)]
dx (A42b)

where

αj,n := αj +αn,k
±
j,n := kj ± kn,β

±
j,n := βj ±βn. (A43)

Let us define Kj := |k̂j |, θj := Ang k̂j . Assuming αj ̸= 0, we can then evaluate790

Ipj =
1

4

[
1− e−2αjL

αj
+

sin(2βj − θj)− e−2αjL sin(2kjL+2βj − θj)

Kj

]
. (A44)

Similarly, we define K±
j,n := |k±j,n + iαj,n| and θ±j,n := Ang(k±j,n + iαj,n), which leads to

Ij,n =
1

2

[
sin(β+

j,n − θ+j,n)− e−αj,nL sin(k+j,nL+β+
j,n − θ+j,n)

K+
j,n

−
sin(β−

j,n − θ−j,n)− e−αj,nL sin(k−j,nL+β−
j,n − θ−j,n)

K−
j,n

]
. (A45)

A2.4 Quadratic interaction contribution795

We can expand Eq as

Eq =

L∫
0

−2σ̃2(−c1f2 + c2f1 + c3f4 − c4f3)
∑
j

Im[k̂2j ãje
ik̂x] (A46)

=−2σ̃2

Nf∑
j=1

bj [−c1I
q
2,j + c2I

q
1,j + c3I

q
4,j − c4I

q
3,j ] (A47)

with

Ipn,j =

L∫
0

fn(x)exp
(
−αjx

)
sin

(
kjx+βj

)
dx. (A48)800

We define

Q++
j = (σ̃+αj)

2
+(σ̃+ kj)

2 (A49a)

Q+−
j = (σ̃+αj)

2
+(σ̃− kj)

2 (A49b)

Q−+
j = (σ̃−αj)

2
+(σ̃+ kj)

2 (A49c)

Q−−
j = (σ̃−αj)

2
+(σ̃− kj)

2
, (A49d)805
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noting Q−− is non-zero under the same condition (A19) that ã exists.

Ip2,j = e−β

{
Kj

[
sin

(
θj −βj

)( 1

Q−+
− 1

Q−−

)
+ e−αjL

[
sin

(
(σ̃+ kj)L− θj +βj

)
Q−+

+
sin

(
(σ̃− kj)L+ θj −βj

)
Q−−

]]
+
√
2σ̃

[
− sin

(
βj +

π
4

)
Q−+

− cos
(
βj +

π
4

)
Q−−

+ e−αjL

[
sin

(
(σ̃+ kj)L+βj +

π
4

)
Q−+

− sin
(
(σ̃− kj)L−βj +

π
4

)
Q−−

]]}
(A50a)810

Ip1,j = e−β

{
Kj

[
cos

(
θj −βj

)( 1

Q−+
+

1

Q−−

)
+ e−αjL

[
−cos

(
(σ̃+ kj)L− θj +βj

)
Q−+

+
cos

(
(σ̃− kj)L+ θj −βj

)
Q−−

]]
+
√
2σ̃

[
cos

(
βj +

π
4

)
Q−+

− sin
(
βj +

π
4

)
Q−−

+ e−αjL

[
−cos

(
(σ̃+ kj)L+βj +

π
4

)
Q−+

+
cos

(
(σ̃− kj)L−βj +

π
4

)
Q−−

]]}
(A50b)815

Ip4,j = e−β

{
Kj

[
−sin

(
θj −βj

)( 1

Q++
− 1

Q+−

)
+ e−αjL

[
− sin

(
(σ̃+ kj)L− θj +βj

)
Q++

+
sin

(
(σ̃− kj)L+ θj −βj

)
Q+−

]]
+
√
2σ̃

[
−cos

(
βj +

π
4

)
Q++

− sin
(
βj +

π
4

)
Q+−

+ e−αjL

[
cos

(
(σ̃+ kj)L+βj +

π
4

)
Q++

− cos
(
(σ̃− kj)L−βj +

π
4

)
Q+−

]]}
(A50c)820

Ip3,j = e−β

{
Kj

[
−cos

(
θj −βj

)( 1

Q++
− 1

Q+−

)
+ e−αjL

[
cos

(
(σ̃+ kj)L− θj +βj

)
Q++

+
cos

(
(σ̃− kj)L+ θj −βj

)
Q+−

]]
+
√
2σ̃

[
− sin

(
βj +

π
4

)
Q++

− cos
(
βj +

π
4

)
Q+−

+ e−αjL

[
sin

(
(σ̃+ kj)L+βj +

π
4

)
Q++

− sin
(
(σ̃− kj)L−βj +

π
4

)
Q+−

]]}
. (A50d)825
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Appendix B: Comparison to another mechanical model

In this Section, we compare the solution to floe bending issued from the model described in this publication, SWIIFT, to results

issued from a model that solves for wave scattering from ice floes, hereafter referred to as WISIB (Mokus and Montiel, 2022).

The main difference is that in the latter case, floe deflection is derived from the interface between fluid and floe, assuming that

the floe conforms exactly to the fluid; the solution is sought assuming harmonic forcing of the plate, and incorporates forward830

and backward travelling waves, while SWIIFT only represents forward travelling waves. A consequence is the possibility for

WISIB to create constructive interference locally increasing the deformation of the plate or its curvature. Interactions between

floe lengths and wavenumbers can locally lead to resonances.

In Sect. B1, we look at curvature envelopes. In Sect. B2, we look at potential elastic energy derived from these curvatures.

B1 Curvature envelopes835

In Fig. B1, we compare curvature envelopes derived from SWIIFT or WISIB. We do so for various ice thicknesses, wave

periods, and floe lengths. By curvature envelope, we mean the maximum curvature attainable at any location along the length

of a floe; the actual curvature oscillates and reaches it at its positive antinodes. In the case of WISIB, curvature is the sum of

forward and backward travelling modes, forward and backward damped modes, and evanescent modes. As a consequence, the

envelope itself oscillates. When the wavelength is long enough compared to the floe, these oscillations disappear.840

When the wavelength gets significantly longer than the floe (for example, T = 10s and 12s and h= 25cm, most floe

lengths), the curvature envelopes are different near the edges: SWIIFT has damped terms which oscillates with spatial frequency
1√
2LD

, while WISIB has damped terms which are complex solutions to the dispersion relation Eq. (19). The former depends

only on ice thickness, while the latter depends primarily on the wave period.

B2 Energy from spectral forcing845

More than the curvature itself, what matters to our energy-based fracture parametrisation is the potential elastic energy of

a deformed floe. To compare these energies between the two models, we calculate them from the curvatures derived from

both mechanical models. We do so for a spectral forcing, corresponding to a Pierson–Moskowitz spectrum discretised onto 47

frequency bins, between 0.05Hz to 0.52Hz, with a width of 1Hz. We use Latin hypercube sampling to generate an ensemble

(size 289) of ice thicknesses, significant wave heights (parametrising the spectrum), and floe lengths, from uniform distributions850

on respectively 25 cm to 100 cm, 2m to 4m, and 50m to 400m. The spectra, integrated on the discretised frequency axis, show

a median relative error to the targets H2
S

16 of 3.3× 10−3. To each frequency bin, we associate a phase randomly sampled from

0 to 2π, to build an incoherent wave field, from which floe curvature, and eventually, elastic energy, is derived. We show the

results in Fig. B2.

The resulting energies show a dependency to each of the three chosen variables, highlighted by the regression lines on the855

top row. The energy derived from SWIIFT is generally higher than the energy derived from WISIB, and exhibit more spread.

However, the trends are similar for the energies derived from both models, so that the ratio of the two does not show any
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Figure B1. Comparison of curvature envelopes derived from SWIIFT or WISIB for different periods of wave forcing (row) and different ice

thicknesses (columns). Within each panel, from top to bottom (and darker to lighter hue) are floe lengths of 50m, 100m, 200m and 400m,

and the solid line is the SWIIFT solution, while the dashed line is the WISIB solution. The x-axes are normalised with respect to floe lengths,

and individual curvatures are normalised with respect to the maximal curvature computed with SWIIFT. We display only the positive branch

of the envelopes, which are symmetrical with respect to each corresponding y-axis. The origin of these y-axes is shown with a thin horizontal

black line.
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Figure B2. Comparison of potential elastic energy derived from SWIIFT or from WISIB. Top row: energy as a function of three parameters,

with coloured dots for SWIIFT and black dots for WISIB. Lowess regression lines are superimposed. Bottom row: on the right, ratios of

energy, as described in the text; the colours correspond to the variables of the top row, which were normalised to fit on the same axis. On the

right, distribution of the energy ratio.

dependency to either of the variables (the regression lines on bottom left panel of Fig. B2 are mostly horizontal). In the bottom

right panel of Fig. B2, we show the distribution of these ratios. It is right-skewed, and has mean 1.02 (geometric mean 0.69).

In Fig. B3, we show the correlation between our three input variables and the resulting energies. Because the trends exhibited860

on the top panel of Fig. B2 are non-linear, we use the Spearman correlation coefficient, which quantifies the monotonicity of a

relationship. As can be seen from Fig. B2, and particularly the regression lines, the energy computed from either model are very

mildly negatively correlated with thickness, mildly positively correlated with significant wave height, and clearly positively

correlated with floe length. The correlations are stronger when using WISIB, which produces less scattered results. The energy

ratio, however, is at most very lightly correlated with any of the variables.865
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Figure B3. Correlation matrix between input parameters and energy derived from SWIIFT and WISIB. We use the Spearman correlation

coefficient.
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