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Abstract. The wave-induced breakup of sea ice contributes to the formation of the marginal ice zone in the polar oceans. Un-

derstanding how waves fragment the ice cover into individual ice floes is thus instrumental for accurate numerical simulations

of the sea ice extent and its evolution, both for operational and climate research purposes. Yet, there is currently no consen-

sus on the appropriate fracturing criterion, which should constitute the starting point of a physically sound wave–ice model.

While fracture by waves is commonly treated within a hydroelastic framework and parameterised
::::::::::
parametrised with a maxi-5

mum strain-based criterion, in this study we explore a different, energy-based, approach to fracturing. We introduce SWIIFT

(Surface Wave Impact on sea Ice—Fracture Toolkit), a one-dimensional model , based on linear plate theory,
:::
that

:::
can

:::::::
produce

::::::::::
time-domain

::::::::::
simulations

::
of

::::::::::::
wave-induced

:::::::
fracture, into which we incorporate this energy fracture criterion. We demonstrate it

:::::::
SWIIFT with simple simulations that reproduce existing laboratory wave-induced breaking experiments of

::::::::::
experiments

::
of

:::
the

::::::
fracture

:::
by

:::::
waves

::
of an analogue material, allowing qualitative comparisons

::
and

::::::::::
validations

::
of

:::
the

:::::
energy

:::::::
fracture

:::::::
criterion. We10

find that under some wave conditions, identified by a dimensionless wavenumber, corresponding to in situ or laboratory wave-

induced fracture, the model does not predict fracture at constant curvature, ;
:
thereby calling into question

:::
the

:::::::::::::
appropriateness

::
of

:::::::::::
parametrising

:::
sea

:::
ice

:::::::
fracture

::::
with a maximum strain criterion.

1 Introduction

In the Arctic, the newly available open ocean areas (Raphael et al., 2025) have exposed the sea ice to the effects of stronger15

and more frequent wave events (Thomson and Rogers, 2014). The remaining sea ice is also overall younger, thinner, more

fragile and therefore more likely to be fragmented by wind
:::::
winds, ocean currents and waves (Stroeve et al., 2012; Stroeve and

Notz, 2018). In unconsolidated or fragmented ice, waves are less attenuated (Collins et al., 2015; Ardhuin et al., 2020) and can

therefore propagate further into the consolidated part of the ice cover, the ice pack, and
:::::::::
cover—the

:::
ice

:::::::::
pack—and break it to a

greater extent, thus enabling a wave–ice positive feedback loop (Thomson, 2022; Horvat, 2022).20
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This wave-induced breakup results in an assembly of floes with sizes ranging from a few metres to hundreds of metres, defin-

ing what is generally referred to as the marginal ice zone (MIZ; see Dumont, 2022, and many others),
::
a

:::::
region

::::::
whose

::::::::
dynamics

:
is
:::::::
affected

:::
by

:::::
wave

::::::::::
propagation. Fragmented sea ice behaves very differently from the consolidated ice pack. It is more mo-

bile(Auclair et al., 2022) and
:
,
:::::::::
potentially

:::::::
reaching

:
a
::::
free

::::
drift

::::
state,

::::
with

:::
ice

:::::::
internal

::::
stress

:::
no

:::::
longer

:::::::
resisting

:::::::
motions

::::::::
imparted

::
by

:::::
winds

:::
or

::::::
currents

:::::::::::::::::::
(Alberello et al., 2020)

:
,
::::
tides

::::::::::::::::::
(Watkins et al., 2023),

:::
or

:::::
waves

:::::::::::::::::::::::::::::::::::
(Auclair et al., 2022; Womack et al., 2022)25

:
,
::::
even

::
at

::::
high

:::
ice

:::::::::::
concentration.

::
It
::
is

::::
also more sensitive to melt (Thomson, 2022)

::::::::::::::::::::::::::::::
(Horvat et al., 2016; Thomson, 2022)

:
,
::
as

:::
the

::::
ratio

::
of

:::::
lateral

:::::::
surface

:::::::::::
(proportional

::
to

:::
the

::::::::
perimeter

:::
and

:::::::
exposed

:::
to

:::
the

:::::
ocean)

:::
to

:::
top

::::::
surface

::::::::
(exposed

::
to

:::
air)

::::::::
increases

:::::
when

::
the

:::::::::
horizontal

:::::
extent

:::
of

:
a
::::
floe

:::::::::
diminishes,

:::::::::
eventually

::::::::::
accelerating

:::
the

::::::::::::
disintegration

::
of

::::::
smaller

::::
floes

:::::::::::::::::
(Toyota et al., 2025). As a

result, the MIZ response to storms can result in quick and large sea ice losses (Smith et al., 2018; Blanchard-Wrigglesworth

et al., 2022), which could amplify the observed sea ice decline (Asplin et al., 2012; Thomson and Rogers, 2014). Concomi-30

tantly, high-frequency sea ice extent variability is missing in state-of-the-art climate models (Blanchard-Wrigglesworth et al.,

2021), in which sea ice fragmentation by waves is not accounted for. This suggests an improved representation of the MIZ
::
in

:::
sea

::
ice

:::::::
models is essential to deliver accurate predictions of the sea ice evolution, over both short-term and climate time scales.

However, it remains challenging as the physical processes controlling sea ice breakup are still largely unascertained, or rest on

hypotheses that are not fully backed up by observations.35

The first step in this
:::::
model

:
development should be the identification of a fracture

:
or

::::::::::::
disintegration

:
criterion, allowing to

determine under which wave forcing (amplitude, wavelength, spectral distribution) and ice conditions (thickness, mechani-

cal stiffness) the ice will break
:::::::
fragment

:::
into

:::::
floes. To our knowledge, there is actually neither complete physical evidence nor

clear consensus within the sea ice community on this criterion. To our knowledge again, all the current wave breakup modelling

approaches are based on local
::::
local flexural stress or strain reaching a prescribed critical value, or threshold. Behind this view-40

point is the consideration that maximum deformation will either occur at the crests and troughs of waves (for example, Dumont

et al., 2011) or at the wave front (Tkacheva, 2001). These thresholds are
:::::::::::::::::::
Voermans et al. (2020)

:::::::
extended

:::
this

:::::::::
formalism

:::
by

:::::::::
combining

:
a
:::::
strain

::::::::
threshold

:::::
with

::::
wave

:::::::::::::
characteristics

:::
into

::
a
::::::::::::
dimensionless

::::::::
quantity,

:::
the

:::::
value

::
of

::::::
which

::::::::
separates

:::::::
breakup

::::
from

:::::::::::
non-breakup.

::::
The

::::::::::
universality

::
of

::::
this

::::::::
approach

:::
was

::::
later

::::::
called

::::
into

:::::::
question

:::::::::::::::::::
(Passerotti et al., 2022)

:
.
:::::
When

:::::::::
modelling

::::::::
individual

:::::
floes,

:::
any

:::::
local

:::::::
threshold

::
is
:
however susceptible to be exceeded over large spans of the modelled floes, which makes45

super-parameterisations
::::::::::::::::::
super-parametrisations necessary. The location of maximum strain or stress is often considered for the

fracture location (Dumont et al., 2011; Williams et al., 2017; Montiel and Squire, 2017; Mokus and Montiel, 2022), but other

methods, such as computing the strain between successive wave crests and troughs only (Horvat and Tziperman, 2015) have

been used
:::::::::::::::::::::::::
(Horvat and Tziperman, 2015).

These
::::
local

:
threshold-based criteria are consistent with (and usually come hand in hand with) an hydroelastic representa-50

tion of the wave–ice system, on which a large fraction of the modelling research on wave–ice interaction lies (Squire, 2020).

Wave-induced sea ice fracture has thus naturally be
:::
been

:
considered through this lens (for example, Fox and Squire, 1991;

Montiel and Squire, 2017; Zhang and Zhao, 2021; Mokus and Montiel, 2022); even though more novel and computationally

involved approaches exist (Herman, 2017; He et al., 2022)
:::::::::::::::::::::::::::::::::::::::
(Herman, 2017; Ren et al., 2021; He et al., 2022). In the hydroelas-

tic framework, the ice is assimilated to an elastic plate that is thin enough for the variations in the buoyancy forces acting on55
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it to be negligible, and that therefore conforms exactly to the shape of the ice–ocean interface. When associated with a crit-

ical strain fracturing criterion, this framework has shown some agreement with observations (Kohout et al., 2016; Voermans

et al., 2020). It has also allowed wave and floe-resolving numerical simulations to generate
:::::::::
steady-state

:
floe size distributions

(Kohout and Meylan, 2008; Ren et al., 2021; Mokus and Montiel, 2022)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Kohout and Meylan, 2008; Horvat and Tziperman, 2015; Mokus and Montiel, 2022)

, and has therefore percolated into coupled global sea ice models (Roach et al., 2019; Bateson et al., 2020; Yang et al., 2024).60

The current contribution digs into the question of the fracturing criterion for the fragmentation of
::::::::
fracturing

::
of

:::::::::::
consolidated

sea ice by waves. ,
::::

that
:::
is,

::::::
flexural

::::::
brittle

::::::
failure.

:
In this, we are motivated by recent laboratory results investigating the re-

sponse of an
:::
ice analogue material to wave forcing (Auvity et al., 2025). In particular, these authors highlighted that the

curvature at which their material broke is not constant, but depends monotonically on the applied wavelength. The spread

in reported sea ice critical strains (Kohout and Meylan, 2008)
:::::::::::::::::::::::::::::::::::::::::
(Kohout and Meylan, 2008; Voermans et al., 2020) could thus65

be an artefact hiding such a relationship. In this context, we investigate an approach based on a model of fracture propa-

gation in elastic solids (Griffith, 1921) which is common in the field of fracture mechanics. It opposes the energetic cost

of creating new surfaces to the elastic energy stored in a material. The resulting energy-based fracture criterion includes

the effect of bending deformation as it depends on the associated elastic deformation energy, but is non-local as it is in-

tegrated over the length of the deformed ice floe. It leads to a unique solution. Since the original work of Griffith (1921),70

this model has been updated (Francfort and Marigo, 1998; Francfort, 2021) and built upon specifically for application to

sea ice (Mulmule and Dempsey, 1997; Balasoiu, 2020)
::::::::::::::::::::::::::::::::::::::::::::::::::::
(Mulmule and Dempsey, 1997; Balasoiu, 2020; Ren et al., 2021). Mea-

surements of sea ice fracture toughness, which can be linked to the energetic cost of fracturing, have been compiled by

Dempsey (1991)
::::::::::::::::::::::::::::::::::::
(Dempsey, 1991; Schulson and Duval, 2009) and an extensive body of work also exists on freshwater ice (for

example, Gharamti et al., 2021a, b).75

With the intent on focusing on the
:::::::::::
wave-induced

:
deformation and resulting fracturing of the

:::::
brittle ice, we have implemented

this energy-based criterion in a framework that differs from the hydroelastic representation in that the ice is not assumed to

conform to the water surface, but freely deforms within the wave field as a result of the local buoyancy and gravity forces.
:::
We

::::::
neglect

::::
other

:::::::::
processes

:::::::
affecting

:::
the

::::::::
seasonal

:::
ice

::::
zone

::::::::::::::::::::::::
(Roach et al., 2025, SIZ; see)

:
,
::::
such

::
as

:::::::::::::::
thermodynamics;

::
in

:::::::::
particular,

::
we

:::
do

:::
not

::::::
handle

:::
ice

:::::::::
formation

::::::
within

:
a
:::::

wave
:::::
field,

::::
and

:::
we

::::::
restrict

:::
our

:::::
study

::
to
::::

the
::::
case

::
of

::::::
brittle

:::::::
fracture,

:::::::::
excluding

:::
the80

:::::::::::
disintegration

::
of

:
a
:::::
more

:::::::
granular

:::::::
material

::::::::::
(dislocation

::
of

:::::::
melting

::
or

:::::::
forming

::::
ice). The resulting simple, yet versatile, 1D model

also accommodates a strain-based fracture criterion. It thereby allows investigating the effect of using either criterion on the

occurrence of the fracture and, eventually, on the extent of a simulated MIZ, and shape of the associated floe size distribution.

Another use case of this model is
:::::::::
Importantly,

::::
our

::::::
model

:::
can

:::
be

::::::
stepped

::::::::
forward

::
in

:::::
time,

::
so

::::
that

:::
we

:::
can

::::
use

::
it

::
to

::::::
follow

::
the

:::::::::::
propagation

::
of

:
a
:::::::

fracture
:::::
front

::
as

::
a
:::::::
function

::
of

:::::
time;

::
in

:::::::
contrast

::
to
::::::

being
::::
able

::
to

:::::
solely

:::::::
recover

:::
the

:::::
final,

:::::::
fractured

:::::
state85

::::::::::::::::::::::
(Mokus and Montiel, 2022)

:
.
::
In

:::
the

:::::::
present

:::::
paper,

:::
we

:::::::
exploit

:::
this

::::::
model

::
in
:::::::

another
::::
use

::::
case,

:
the comparison to laboratory

experiments on fracture, conducted on sea ice or analogue materials, which we pursue in this study
:
an

::::::::
analogue

::::::::
material

::
to

:::
sea

:::
ice.

:::
We

:::::::
pursue

:::
this

::::::::::
comparison

::::
with

::::
the

::::::::
particular

::::
aim

::
of

:::::::::::::::::::
validating-invalidating

:::
the

:::::::::::
applicability

::
of

:::
the

::::::::::::
energy-based

::::::::
fracturing

:::::::
criterion.
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The paper is divided as follows: in Sect. 2, we give a general mathematical description of the model, including the treatment90

of sea ice as an elastic plate, the formulation of the breakup criteria, and the representation of waves. In Sect. 3, we give specific

information pertaining to the numerical results we present in Sect. 4, that is, the particular setup of the model in this study. We

discuss these results in Sect. 5.

2 Floe and fracture model

::
In

::::
light

:::
of

:::
the

:::::::::
objectives

:::::::::
motivating

::::
our

::::::::
approach,

::::::
stated

::
in

::::
the

:::::::::::
introduction,

:::
we

:::::::
present

::
in

:::::
Sect.

:::
2.1

:::
the

:::::
main

::::::::
physical95

:::::::::
hypotheses

:::::
made

::
to

:::::::
achieve

::
a
::::::
simple,

::::::::
versatile,

:::::::::::
numerically

:::::::
efficient,

::::
yet

:::::::::
physically

:::::
sound

::::::
model.

:::
In

:::::
Sect.

:::
2.2,

::::
we

:::::
detail

:::
our

:::::::
approach

:::
to

:::::::
deriving

:::
floe

:::::::::::
deformation,

::::
used

::
as

:::
an

::::
input

:::
for

:::
the

:::::::
fracture

::::::::::::::
parametrisations

::::::::
presented

::
in

::::
Sect.

::::
2.3,

:::
and

::::::
forced

::
by

:::::
waves

:::::::::
discussed

::
in

::::
Sect.

::::
2.4.

:::
We

::::::
present

:::::::::
numerical

::::::
aspects

::
in

:::::
Sect.

:::
2.5

:::
and

::::::::
conclude

:::
this

:::::::
Section

::::
with

::
an

:::::::
example

:::
of

::::
time

::::::::
simulation

:::
in

::::
Sect.

:::
2.6.

:

2.1
::::

Main
::::::::::
hypotheses100

A common assumption behind wave–elastic plate interaction models (for example, Fox and Squire, 1991; Tkacheva, 2001;

Mokus and Montiel, 2022) is to consider the plate thin enough for variations of the buoyancy force acting on it to be negligible.

The plate is, however, subjected to the fluid pressure acting on its bottom side, and it is assumed that the plate conforms to the

fluid motion at all times. Fluid pressure is determined by solving for the fluid flow, typically by assuming a potential flow
:::
and

::::::::
harmonic

::::::::
solutions,

::::
with

:::
the

::::
plate

:::::::
exerting

::
a
::::::::
boundary

::::::::
condition

::
on

:::
the

:::::
fluid

::::::
domain. To develop the model presented herein,105

we adopt a different approach, motivated by our interest in the ice deformation and fracture, whereas the focus of fluid-centred

models has historically been that of wave scattering and attenuation by the plate.
::::
The

::::::::
interested

:::::
reader

:::
can

::::::
found

:
a
::::::::::
comparison

:::::::
between

:::
the

:::
two

::::::::::
approaches

::
in

::::::::
Appendix

::
B.

:

In this study, the ice cover is considered thick enough for the local changes in buoyancy force to not
:::
not

::
to

:
be negligible.

We do not explicitly resolve the fluid flow underneath the plate, and impose no condition on the ice–ocean interface. Instead,110

we solve for the vertical deflection of the ice stemming from the local balance of gravity and buoyancy forces driven by the

sea surface displacement. The fluid surface thus acts as a forcing term, which is made aware of the presence of the ice floes

only through parameterised attenuation. A
::::::::::
parametrised

::::::::::
attenuation;

::
a consequence is that floes can locally be immersed. In

fact, our model
:::::
While

:::
we

::::
limit

::::::::
ourselves

::
to

:::
the

::::
case

:::
of

:::::
linear

::::::::
elasticity

:::
and

:::::
linear

:::::
wave

:::::::
forcing,

:::
our

::::::::::
mechanical

::::::::::
formulation

interpolates between the limits of an elastic floe that conforms perfectly to the wave surface, and of a rigid floe only capable115

of solid motion, which can therefore be submerged. We quantify this behaviour with the dimensionless wavenumber kLD,

that relates the wavenumber of the forcing wave k (formally introduced in Sect. 2.4.1) to the flexural length of the floe LD

(formally introduced in Sect. 3.1). The small kLD limit (long wave, compliant floe) corresponds to the strain formulation of

Dumont et al. (2011), while the large kLD limit (short wave, rigid floe) corresponds to their stress formulation.

::
Ice

:::::::::
formation

::::
and

::::
melt

:::
are

::::::::
assumed

::
to

:::::::
happen

::
at

:::::::::
timescales

:::::::
beyond

:::
that

:::
of

::::::::::::
wave-induced

:::::::
fracture,

:::
so

:::
that

:::::
they

:::
can

:::
be120

::::::::
neglected.

:
We do not consider the reflection of waves at the ice–water interface (for example, Mokus and Montiel, 2022)nor
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the compression
:
,
:::
nor

::::::
viscous

:::::::::::
deformation

::
of

:::
the

::::
plate,

:::
the

:::::::::::
compression

::
of

::
an

:::::
array

::
of

::::
floes

:
due to wave radiation (for example,

Herman, 2018)
:
, or any surge motion, and take note that the model would be more complete if the pressure forcing associated

with the contact between the ice and the water was explicitly taken into account.

2.2 Governing mechanical equations125

Our one-dimensional model considers a fluid volume of finite or infinite depth, equipped with a Cartesian coordinate system

(x,z) where z is the vertical coordinate oriented upward, as shown in Fig. 1. We assume translational invariance in the second

horizontal direction. The domain is populated with floating ice floes of prescribed positions and lengths, which may not overlap.

Any part of the domain not covered with ice is deemed to be open water.

As in the work of Meylan et al. (2015),
:::
we

:::::
model

:::::
floes

::
as

::::::
elastic

:::::
plates,

::::
and

:::
we

:::::
derive

:
the deformation of the ice cover is130

derived using the Kirchhoff–Love thin-plate theory. The ice is thus considered homogeneous, isotropic, and transversally loaded

by body forces. We assume a constant thickness h along a given floe, although different floes can have different thicknesses.

The two forces acting on the ice are buoyancy and gravity. In the case of a fluid at rest (no waves), equating the gravity force

per unit area and the buoyancy force per unit area
::::
(thus

::::::::
applying

:::::::::::
Archimedes’

::::::::
principle)

:
allows expressing the draught of a

floe, d, as135

ρihg− ρwdg = 0⇔ d=
ρi
ρw

h, (1)

where ρi is the density of the ice, ρw the density of the ocean water and g the gravitational field.

We now move away from this rest state, and impose a perturbation of the fluid surface η(x). Because the propagation speed

of elastic waves in sea ice is several orders of magnitude greater than that of surface gravity waves (Moreau et al., 2020a),

we consider this perturbation and the resulting floe deformation to be quasi-static. Thus, we only consider one independent140

variable, the space coordinate x, and no explicit time dependency. The vertical displacement w(x) corresponding to this per-

turbed state is determined by the local balance between gravity and buoyancy. The weight per unit area of the ice is still ρihg.

However, the height of displaced fluid now corresponds to the difference between the fluid surface η(x) and the displaced

bottom of the ice floe, w(x)−d. Locally, the buoyancy force per unit area is thus −ρi
[
η(x)−

(
w(x)−d

)]
g; this is illustrated

in Fig. 1. The floe is then subjected to the resulting body force145

q(x) = ρihg− ρw
[
η(x)−

(
w(x)− d

)]
g (2)

=−ρw[η(x)−w(x)]g, (3)

and projecting q onto the vertical axis gives

q(x) = ρwg[η(x)−w(x)]. (4)

Using the bending equation of a loaded plate, we then obtain a differential equation on the deflection of the floe,150

D
d4w

dx4
= ρwg

[
η(x)−w(x)

]
, (5)

5



h
(x) [w(x) d]

z = 0

z = d

x=0 x=L

Fluid at rest Floe at rest (x) Deflected floe

Figure 1. Schematic of a deformed ice floe in a wave field. The horizontal dashed line represents the sea surface at rest in the absence of

ice, which we use as the reference level. The dashed rectangle represents a floe at rest. A perturbation of the fluid surface (solid line) in the

free-surface regions imposes a deflection of the ice floe (solid-lined shape). This corresponds to a model output, with ice thickness 50 cm,

floe length 120m, forcing wave with amplitude 20 cm and wavelengths 76.4m (open water) and 84.3m (ice-covered water).

where we take advantage of the simplifying hypotheses made on our geometry. We
:
In

::::
this

:::::::
equation,

:::
we

:
introduced the flexural

rigidity D = Y h3

12(1−ν2) , characterising the ability of the plate to resist bending, with Y and ν the Young’s modulus and Poisson’s

ratio of the plate. We complete Eq. (5) with free-edge boundary conditions, that is, vanishing moment and force at both ends

of the ice floe of length L. We choose a reference frame local to the floe, where x= 0 corresponds to its left edge, so that the155

complete boundary problem can be written

d4w

dx4
=

(
D

ρwg

)−1[
η(x)−w(x)

]
x ∈ [0,L]

d2w

dx2
= 0 x ∈ {0,L}

d3w

dx3
= 0 x ∈ {0,L}.

(6a)

(6b)

(6c)

For prescribed wave conditions and material properties, solving Eq. (6) thus provides the deflection w of the floe.

:::
We

::::
focus

::::
here

:::
on

:::
the

:::::::
bending

:::::::::
undergone

::
by

:::
an

:::::
elastic

:::::
plate

:::::::
because

::
of

:
a
:::::::::::
perturbation

::
of

::
its

::::
fluid

::::::::::
foundation.

:::
We

:::::
recall

::::
that

::
we

:::
do

:::
not

::::::::
explicitly

::::::
resolve

:::
the

::::
fluid

::::::
motion

:::::
itself,

:::
nor

:::
the

::::::::::
translational

:::::::
motions

::::::::
imparted

::
to

:::
the

::::
plate

:::
by

::
the

:::::
fluid.

::
In

:::::::::
particular,160

::
we

::::
thus

::::::
neglect

:::::
surge

:::::::
motion,

:::
that

:::
is,

:::
ice

:::
drift

:::
in

::
the

::::::::
direction

::
of

:::::
wave

::::::::::
propagation.

:

2.3 Fracture

2.3.1 Energy criterion

Unlike the prevalent maximum strain formalism commonly used by the sea ice community when modelling wave–ice interac-

tions (for example, Kohout and Meylan, 2008; Dumont et al., 2011; Horvat and Tziperman, 2015; Ren et al., 2021)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(for example, Kohout and Meylan, 2008; Dumont et al., 2011; Horvat and Tziperman, 2015; Mokus and Montiel, 2022)165

, we develop a breakup criterion from the framework of fracture mechanics, based on the consideration that in brittle, elastic
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::::
solid,

::::::
brittle materials, fracture happens to minimise the internal energy associated with deformation (Griffith, 1921). In this

framework, the total energy to be minimised is the sum of the elastic energy Eel associated with the deformation (in our case,

bending) of the material, and of the fracture energy Efr associated with the creation of new surfaces around a crack. This

energy decomposition is consistent with mode I fracturing, which in the case of our model translates to vertical fractures due170

to in-plane tensile stress.

The linear (in the x-direction) elastic energy density (per unit length in the second
::::::::
transverse

:
horizontal direction, and per

unit thickness) in a homogeneous, unstretchable and linear elastic material
:::::
stored

::
in
::

a
:::::::
material

::::
that

::
is

::::::
elastic,

::::::::
isotropic,

::::
and

::::::::::::
homogeneous,

:::
and

::::::::
stretched

::::
only

::
in

:::
the

::::::::::
longitudinal

::::::::
direction,

:
is

Wel =
D

2h
κ2(x) (7)175

with

κ(x) =
d2w

dx2
(8)

the local linear floe curvature due to the deformation. Equation (7) stems from integrating the density of elastic energy (per unit

volume) along the axis normal to the neutral plane of the plate (in our case, the z-direction), and takes into account stretching

or compression in the directions of the plane (in our case, simply the x-direction). By integrating Eq. (7) along the floe, we180

obtain the surface energy density,

Eel =
D

2h

L∫
0

κ2(x)dx. (9)

The fracture energy density Efr relates to the energy required to create a new surface. In the case where the only admissible

fractures vertically break the ice through its entire thickness, we simplify the formulation from Francfort and Marigo (1998) as

185

Efr =NfrG (10)

with Nfr the number of fractures, and G the energy release rate(analogous to the surface tension for fluids). Again, note that

this energy is expressed per unit surface normal to the x-direction.

To determine whether a floe breaks, we compare two energy states: that of the unbroken, deformed floe, and a hypothetical

state in which this floe has fractured into several fragments. In the former state, the elastic energy, noted E0
el, is that of the190

deformed floe, as defined in Eq. (9). In the latter state, the total elastic energy, noted Es
el, is the sum of the elastic energies

of the individual newly broken floes. If the broken state is—from an energy standpoint—favourable, it should replace the

unbroken state. Formally, we look for the finite set of the fracture locations, xfr = {xj | xj ∈ (0,L)}. This set has size Nfr, the

number of cracks
:::::::
fractures, dividing the original floe into Nfr +1 fragments. It should minimise the free energy F defined as

F (xfr) = Efr(Nfr)+Es
el(x

fr)−E0
el (11)195
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with the additional constraint that for breakup to occur, we must have F < 0. In other words, a floe breaks if the elastic energy

released by the breakup exceeds the energetic cost of the breakup. If no such set can be found, we conclude that the current

deformation of the floe is not sufficient to fracture it. The post-fracture elastic energy expands to

sEs
el(x

fr) =
D

2h

Nfr∑
j=0

xj+1∫
xj

κj
2(x)dx (12)

with x0 = 0 and xNfr+1 = L. The curvatures κj are obtained from solving Eq. (6) individually for every (at this stage, still200

hypothetical) fragments.

Equation (11) has an explicit dependency to the number of fractures allowed to happen for a given quasi-static state, that is,

at a given time. It suggests that the size of xfr should be a dimension to the minimization
::::::::::
minimisation

:
problem. In practice,

when considering travelling waves, floes of reasonable size, and the succession of such quasi-static states, at most one single

fracture is admissible at a given timestep, which greatly diminishes the numerical cost of the procedure. In what follows, we205

will thus use Nfr = 1, xfr = {x1}, and we will have

Es
el(x1) = E<

el (x1)+E>
el (x1) (13)

with E<
el (x1),E

>
el (x1) the elastic energies of the left (x < x1) and right (x > x1) fragments obtained from that single fracture,

while the fracture energy reduces to Efr =G. Hence, we look for
xfr = argmin

x1∈(0,L)

(
E<

el +E>
el

)
,

F (xfr)< 0.

(14a)

(14b)
210

A fracture search is represented

:::
For

:::::
given

::
ice

::::
and

:::::
wave

:::::::::
conditions,

:::::::
fracture

:::::
search

:::
can

::::
thus

:::
be

::::::::
conducted

:::
in

:
a
:::::::::
completely

:::::::::::
deterministic

:::::::
manner.

::
In

::::::::
practice,

::
we

:::::::
proceed

:::
by

:::::::
sampling

:::::::
Es

el(x1)::::::::
regularly

::
on

::::::
(0,L),

:::::::
ensuring

:::
the

::::::::
sampling

::::
rate

:
is
::::::::
sufficient

::
to

:::::::
capture

::
its

::::::::::
oscillations.

:::
We

::::
find

::
the

:::
set

::
of

:::::::::
arguments

::
of

:::
the

::::::
peaks

:::
(the

:::::
local

:::::::
maxima)

::
of

::::
this

:::::::::
discretised

::::
Es

el,:::::
which

:::
we

:::::::
augment

:::::
with

:::
the

::::::
bounds

::::::
{0,L}

::
of

:::
the

:::::::
domain,

:::
to

:::::
obtain

:::
an

:::::::
ordered

::::::::
sequence

::
of

::
at

::::
least

::::
two

::::::::::
coordinates

:::::::::
bounding,

:::
two

:::
by

::::
two,

:::::
local

::::::
minima

:::
of

:::
Es

el.::::
We

:::::::
conduct215

::::
local

:::::::::::
minimisation

:::::::
between

:::
the

:::::::
bounds

:::::
using

::::::
Brent’s

:::::::
method

::::::::::::::::::
(Virtanen et al., 2020).

:::::::
Finally,

:::
the

:::::::
smallest

::
of

:::::
these

:::::::
minima

::
is

:::::::
validated

:::::::
against

:::
Eq.

:::::
(14b).

::
If

::::
this

::::::::
condition

::
is

:::::::
verified,

::
its

::::::::
argument

::
is
:::
the

:::::::
fracture

:::::::
location

::::
xfr. :::::

These
::::
steps

:::
are

:::::::::::
summarised

in Fig. 3. The
:
2,

::::
and

:
a
:::::::
fracture

::::::
search

:
is
:::::::::

illustrated
::
in

::::
Fig.

::
3.

::::
Note

::::
that

::
in

::::
this

::::
case,

:::
the

:
asymmetry of the total energy profile

comes from differences in wave phase at the edges of the floe, and wave attenuation by the ice cover, discussed in Sect. 2.4.

2.3.2 Strain criterion220

To allow future comparisons, we additionally implement a conventional strain criterion for fracture. Under that formulation,

the floe is allowed to fracture if the bending strain ε locally exceeds a prescribed critical strain εcr, that is if

∃x |
∣∣ε(x)∣∣> εcr (15)
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Search fracture

Compute E0
el

G > E0
el G ≤ E0

el

• Sample Es
el(x1)

• Find its local maxima
• Minimise it between
successive maxima

Find, within set of minima,
the absolute minimum at xfr

F (xfr) ≥ 0 F (xfr) < 0

No fracture Fracture at xfr

Figure 2.
:::::::::
Algorithmic

::::
steps

::::::
behind

:
a
::::::
fracture

:::::
search.

with

ε(x) =−h

2

d2w

dx2
(16)225

the maximum (when taking the absolute value) bending strain, here defined as evaluated at the top of the floe.

Typically, if Eq. (15) holds anywhere, it holds on continuous intervals along the floe. We illustrate this in Fig. 4. A second

criterion must then be chosen to constrain the fracture. Herein, we arbitrarily choose to consider the global strain extremum

(single fracture). We thus have


xfr = argmax

x∈(0,L)

|ε(x)|,

|ε(xfr)|> εcr.

(17a)

(17b)
230

This criterion can be straightforwardly extended to the case of multiple fracture by considering all the local extrema exceeding

the critical value.
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Figure 3. Illustration of a fracture search, from a situation corresponding to Fig. 1. In (a), contributions to the system’s elastic energy change

according to the coordinate of the fracture, and the total energy (that includes the fracture energy) is compared to the energy of the initial,

unfractured floe in order to determine whether fracture should occur. The vertical line locates the global minimum, xfr, of total energy which

is, according to our model, where the floe should break. In (b), representation of the deformed floe, before and after fracture at xfr. The

shaded rectangle represents the energy relaxation length, as defined in Eq. (27), centred on xfr.
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Figure 4. Strain-based fracture parameterisation
:::::::::::
parametrisation, for a situation corresponding to Fig. 1. The line represents the maximum

bending strain along the floe. The shaded vertical strips indicate where the strain exceeds, in absolute value, a typical critical strain of

εcr = 3× 10−5. The crosses indicate local extrema, and the vertical line the global extrema.

2.3.3
::::::
Values

::
of

:::::::
fracture

::::::::::
parameters

:::
Our

::::
two

::::::
fracture

::::::::::::::
parametrisations

::::
rely

::
on

::::
two

:::::::
different

::::::::::
parameters:

:::
the

::::::
energy

::::::
release

::::
rate

::
G

::::::
(energy

::::::::
criterion)

:::
or

:::
the

::::::
critical

::::
strain

::::
εcr ::::::

(strain
::::::::
criterion).

::::::
These

:::::::::
parameters

:::::
have

::
to

:::
be

::::::::
measured

:::
or

::::::::
estimated

:::::
from

:::
sea

:::
ice

::::::::
samples.

::::
Sea

:::
ice

:::::::::
properties235

:::
can

::::
vary

::::::
greatly

:::::
based

:::
on

::
its

:::::::
history

:::
and

::::::::::::
environmental

::::::::::
conditions,

::::
such

::
as

:::::::::::
temperature,

:::::
brine

:::::::
fraction,

::
or

::::
past

:::::::
loading

::::
rate.

:::::::::::
Nevertheless,

::
G

:::
and

:::
εcr:::

are
::::::::
physical

::::::::
quantities

::::
that

:::
can

::
be

:::::::::
measured,

::::
and

:::
are

:::
not

:::::::::
completely

::::
free

::::::::::
parameters.

:::
For

::
a
:::::::
detailed

::::::::::
compilation

::
of

:::
sea

:::
ice

:::::::
property

::::::::::::
measurements,

:::
we

::::
refer

:::
the

::::::
reader

::
to

:::::::::::::::::::::
Timco and Weeks (2010).

:

::::::::::
Additionally,

:::
ice

:::::::
strength

:::::::
depends

:::
on

::
the

::::::::
direction

::
of

:::
the

::::::
applied

::::::
stress.

:::
We

:::
are

:::
here

::::::
solely

::::::::
interested

::
in

::::::
failure

::::
from

:::::::
bending

:::::
(mode

::
I,

::
or

:::::::
opening

::::::
mode;

:::
see

:::::::::::::::::
Saddier et al. (2024)

:
),
::::::

which
::
is

::::::::::
compatible

::::
with

::::::::
Griffith’s

:::::
model

:::
of

:::::::
fracture

::
as

::::
well

::
as
:::::

with240

::::
wave

::::::
action.

::
In

:::::::::
particular,

::
in

:::
the

::::
plane

:::::
strain

:::::::::::::
approximation,

:::
εcr:::

can
::
be

::::::
related

::
to
:::
the

:::::::
flexural

:::::::
strength

::
σf::

so
::::
that

::::::::::::
εcr =

1−ν2

Y σf ,

:::
and

::
G

::
to

:::
the

:::::::
fracture

:::::::::
toughness

::::
K1c::

so
::::

that
:::::::::::::
G= 1−ν2

Y K2
1c.

:::::::::::::::::::::::
Schulson and Duval (2009)

::::::
compile

::::::
values

::
of

::::
K1c:::

in
:::
the

:::::
range

75 to 150 kPam
1
2 .

:::::::::::::::::
Wei and Dai (2021)

::::::::
measured

:::::
values

:::::
down

:::
to 26 kPam

1
2

::
for

:::::::
floating

:::::::
samples

::
in

:::
the

:::
lab,

::
a
::::::::
reduction

::::
that

::::
could

:::
be

::::::::
attributed

::
to

::::::::::
temperature

:::
or

:::
size

::::::
effects

:::::::::::::::::::
(Dempsey et al., 1999)

:
.
::::::::
Reported

:::::
values

:::
of

:::
εcr :::

are
:::::::
typically

::
in
:::
the

:::::
range

:::
of

::::::::::::::::::
1× 10−5 to 1× 10−4

::::::::::::::::::::::
(Kohout and Meylan, 2008)

:
,
::::
even

::::::
though

:::::
larger

:::::
value

:::
(on

:::
the

:::::
order

::
of

::::::::
1× 10−3)

::::
have

:::::
been

:::::::
reported

:::
for245

:::::::::
lab-grown,

:::::
saline

:::
ice

::::::::::::::::::
(Herman et al., 2018).

::::
Sea

:::
ice

::
is

::::::
subject

::
to

:::::::
fatigue,

:::
and

::::::::
repeated

:::::
cyclic

::::::
loading

::::
was

::::::
shown

::
to

:::::
lower

:::
its

:::::::
apparent

::::::
flexural

:::::::
strength

::::::::::::::::::::
(Langhorne et al., 1998)

:
.

2.4 Forcing waves

The main focus of this study being ice deformation and fracture, the wave component of the model is kept relatively simple. To

align with the linearity hypothesis made on elastic plates, we only consider linear plane waves. This is also in line with previous250
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studies (for instance, Kohout and Meylan, 2008; Dumont et al., 2011; Horvat and Tziperman, 2015)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(for instance, Kohout and Meylan, 2008; Dumont et al., 2011; Horvat and Tziperman, 2015; Mokus and Montiel, 2022)

.

2.4.1 Dispersion relations

For a prescribe angular frequency ω, we derive wavenumbers k from the dispersion relations

ω2

g
= k tanh(kH) (18)255

in the open-water parts of the domain, and

ω2

g
=

(
D

ρwg
k4 +1− ω2

g
d

)
k tanh

(
k(H − d)

)
(19)

in the ice-covered parts. We use the single symbol k for brevity, and the appropriate dispersion relation should be understood

from context. In the right-hand side of Eq. 19, the term D
ρwgk

4 corresponds to the elastic response of the ice cover, while the

term ω2

g d corresponds to its mass-loading response. Whether the former has a significant contribution to the dispersion relation260

when the ice is heavily fragmented is debated (Sutherland and Dumont, 2018; Dumas-Lefebvre and Dumont, 2023). As it can

easily be turned off, we include it here for completeness.

We note that this relation dispersion can be derived by considering the bending of a plate conforming to a fluid surface

excited by harmonic waves. This can therefore be seen as a soft coupling of the fluid to the plate. The dispersion relation of

plate excited by harmonic waves, without a fluid foundation, would otherwise be ω2 = D
ρih

k4.265

2.4.2 Wave state

For any given floe in the domain, a linear monochromatic wave can be parameterised
::::::::::
parametrised with two complex variables,

amplitude â and wavenumber k̂. The modulus a= |â| denotes the amplitude of the wave at the left edge of the floe, while

the argument ϕ=Ang â denotes the phase of that wave mode at the left edge of the floe. The real part of the wave number,

k =Rek, describes wave propagation while its imaginary part α= Im k̂ describes the spatial rate of attenuation in the direction270

of propagation. Following Sutherland et al. (2019), we parameterise this attenuation to be
:::::::::
implement

::
a

:::::::::::::
parametrisation

::::
with

:::::::::
attenuation linear in ice thickness and quadratic in wave frequency

::::::::::
wavenumber, so that

α=
1

4
hk2. (20)

Other parametric attenuations can easily be added to the current framework, or attenuation ;
::::::

either
:::::::
directly

::
to

:::::::::
SWIIFT’s

:::::::
codebase1

:
or

:::
by

:
a
::::
user

::
at

:::
run

:::::
time.

::::::::::
Attenuation

:::
can

::::
also

::
be

:
turned off altogether.275

A linear polychromatic plane wave can be defined by superposition. The wave state is then

η(x) =
∑
j

Im[âj exp(k̂jx)] (21)

1
:
A
::::::::::
parametrisation

::::::
derived

:::
from

:::::::::::
Yu et al. (2022)

::
was

::::
added

::
to
:
a
:::
later

::::::
version.
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where the subscript j denotes spectral modes. The modal amplitudes can be derived from any spectral density S(ω), using the

relationship (Horvat and Tziperman, 2015)

1

2
a2j = S(ωj)∆ωj (22)280

where ∆ωj is the width of the angular frequency bin corresponding to the amplitude aj .

2.4.3 Wave propagation over a finite distance

To allow for the advection of a developing sea into the ice-covered domain, we apply a semi-normal
::::::::::::
semi-Gaussian

:
kernel to

the sea state. We implement this modification to avoid the non-realistic situation of a fully developed sea appearing under a

potentially kilometre-wide MIZ. Therefore, Eq. (21) is modified into285

η(x) =
∑
j

Im
[
âj exp(k̂jx)

]
Kj(x) (23)

with

Kj(x) =

exp
(
− (x−µj)

2

2σj
2

)
x≥ µj ,

1 x≤ µj .
(24)

To each wave mode, we associate a coordinate µj . The wave is considered fully developed in the half-plane left of that

coordinate. The parameters σj control the width of the transition between a fully developed wave, and a near-rest state (as the290

wave envelop of a given mode is reduced to about 0.01% of its maximum at x= µj +3σj).

2.5 Numerical scheme

We have so far presented our framework for modelling fracture in a quasi-static state. Here, we give more details on how we

iterate from a quasi-static state to the next, and summarise the steps leading to evaluating ice floe fractures.

2.5.1 Wave propagation–attenuation295

Let τ be a model timestep. Each wave mode in Eq. (23) propagates at a phase speed

cj =
ωj

kj
. (25)

Between time tn and time tn+1, the phase ϕj of mode j increases by −ωjτ . The limit µj of the fully developed wave advances

of a distance cjτ . Therefore, we iterate in time by updating the values of our âj and µj by these quantities. A new quasi-static

wave profile η(x) can then be computed across the domain.300

2.5.2 Sea ice deformation and fracture

Once the sea surface has been computed, the resulting sea ice deflection w(x) is computed for all individual floes, which are

scanned for possible fractures.

13



For a given floe, if µj > L ∀j (that is, the wave acting on the floe is fully grown), the deflection can be determined an-

alytically, as developed in Appendix A. Otherwise, we obtain a solution
:
to

:::
Eq.

:::
(6)

:
with a numerical solver (Virtanen et al.,305

2020). In turn, the deflection is used to compute the curvature. Depending on the chosen fracture mechanism (energy-based or

strain-based), the floes are considered for breakup, as described in Sect. 2.3.1 and 2.3.2.

If using the energy criterion, we evaluate the post-fracture total energy along the discretised floe. We use a peak detection

algorithm (Virtanen et al., 2020) to separate intervals of convex free energy (as can be identified in Fig. 3a), onto which Eq. (13)

is minimised. If the global minimum among these local minima satisfies Eq. (14b), fracture occurs.310

:
;
::::
these

:::::
steps

:::
are

::::::::::
summarised

::
in

::::
Fig.

::
2. If using the strain criterion, we evaluate the bending strain along the discretised floe.

Again, a peak detection algorithm is run on −ε2(x) to detect convex intervals, and we conduct local minimization
:::::::::::
minimisation

on these, which is equivalent to maximising |ε(x)|. If the global minimum satisfies Eq. (17b), fracture occurs.

:::
The

:::::
input

::::::::
necessary

:::
for

:::
both

::::::::::::::
parametrisations

::
is

::::
thus

::
the

::::
floe

::::::::
curvature.

::
In

:::::
Sect.

:::
2.2

:::
and

::::
Sect.

::::
2.4,

::
we

::::::
merely

:::::::
suggest

:
a
::::::
simple

:::::::::
mechanical

::::::
model

::
to

::::
infer

:::
this

::::::::
curvature

::::
from

:::::
wave

:::::::
forcing.

:::::
Other

::
1D

:::::::
models

::::::::
outputting

:::
the

::::::::
curvature

:::::
field,

::
or

:::::
actual

::::::::
curvature315

::::::::::::
measurements,

:::
can

::
be

:::::::::
substituted

:::::::
without

::::::
having

::
to

::::
alter

:::
the

::::::
fracture

:::::::::
formalism

::::::::
presented

::
in

::::
Sect.

::::
2.3.

::::::::
However,

::
for

:::
the

:::::::
fracture

::::::::::::
parametrisation

::
to
:::
be

:::::::
sensible,

::
it

:
is
:::::::::
necessary

:::
that

:::
the

:::::::::
mechanical

::::::
model

:::
can

::
be

:::::::
stepped

::::::
forward

::
in
:::::
small

::::
time

::::::::::
increments.

:::::
Thus,

::
we

::::::
choose

::::
here

:::
not

::
to

::::
rely

::
on

::::::::
harmonic

:::::::
solutions

::
to
:::
the

:::::::
bending

::::::::
problem,

::::
such

::
as

::
in

::::::::::::::::::::::
Mokus and Montiel (2022),

::
as

:::::
these

:::
rely

:::
on

::
the

::::::::::
hypothesis

:::
that

::
a

:::::
steady

::::
state

::::
has

::::
been

:::::::
reached

::
in

:::
the

:::::
whole

::::
fluid

:::::::
domain.

::::
We

::
do

::
so

::
at
:::
the

::::
cost

::
of

:::::::::
neglecting

::::
floe

:::::::
bending

:::::
inertia

::::
and

:::::::
relaxing

::::::::::
constraints

::
on

:::
the

:::::
fluid

:::::
itself.

:::
In

::::::::
particular,

:::::
wave

:::::::::
scattering

:::::::
induced

:::
by

:::::::
different

:::::::::
boundary

:::::::::
conditions320

:::::::
imposed

::
on

:::
the

::::
fluid

:::::
when

:::::::::::
transitioning

:::::::
between

::::
open

:::::
water

:::
and

::::::::::
ice-covered

:::::
water

::::::
regions

::
is
:::
not

:::::::::
accounted

:::
for.

::
A

::::::::::
comparison

:::::::
between

:::
the

:::
two

:::::
types

::
of

:::::::
solution

:::
can

::
be

:::::
found

::
in
:::::::::
Appendix

::
B.

:::
We

::::
find

:::::
minor

:::::::::
differences

::
in

:::::
terms

::
of

::::
floe

::::::::
curvature

:::::::::
(impacting

::
the

:::::
strain

::::::::::::::
parametrisation)

:::
and

::::::::
resulting

:::::
elastic

::::::
energy

:::::::::
(impacting

:::
the

::::::
energy

::::::::::::::
parametrisation).

::::
We

:::::::
compute

:::
the

::::
ratio

::
of

::::::
elastic

:::::
energy

:::::
(Eel,::::::

defined
::
in

:::
Eq.

::::
(9)),

:::::::
derived

::::
from

:::
the

::::::::
scattering

::::::
model,

::
to

::::
that

::::
same

::::::
energy

:::::::
derived

::::
from

::::::::
SWIIFT,

::
for

:::
the

::::
case

::
of

::
a

::::::::::::
polychromatic

::::::
forcing.

::::
The

:::::
elastic

::::::
energy

::
is,

::::::::
generally

:
(77.5%

::
of

:::
the

::::::::
ensemble

::::::::::
considered),

::::::::::::
overestimated

::
by

:::::::
SWIIFT

:
;
:::
but

:::
the325

:::::::::
distribution

::
of

:::::
these

:::::
ratios

:::::
being

:::::::
skewed,

:::
the

:::
two

::::::
models

:::::
yield,

:::
on

:::::::
average,

::
a

::::::
similar

::::
value

::::::
(mean

::
of

:::
the

::::::::
ensemble

::::::::::
considered:

::::
1.02,

:::::::::
geometric

:::::
mean:

::::::
0.69).

:::::::::::
Additionally,

:::
we

::
do

:::
not

::::
find

:::::
these

:::::
ratios

::
to

::::::
depend

:::
on

::::::
model

:::::::::
parameters

::::
such

:::
as

:::
ice

::::::::
thickness

::
or

:::
floe

::::::
length.

::::
We

::::
thus

:::::::
conclude

::::
that

::::
even

::::::
though

::::::::::
differences

::::
exist

:::::::
between

:::
the

::::
two

::::::::
solutions,

::::
they

:::
are

::::
less

::::::::::
meaningful

::::
than

::::::
random

::::::::::
fluctuations

::
of

:::
the

:::::
wave

::::
state.

:

2.5.3 Timestep selection330

Care must be taken when selecting a model timestep, τ . The theoretical upper limit for crack propagation in an elastic, isotropic,

and homogeneous material is set by the speed of Rayleigh waves, cR =
√

Y
2ρi(1+ν) . Using

:::::::::::
Y = 3.8GPa

:::
and

::::::::
ν = 0.33,

:
values of

the Young’s modulus and Poisson’s ratio estimated in situ for sea ice (for example, Moreau et al., 2020b), it
::::::::::::::::::
(Moreau et al., 2020b)

:
,
:::
this

:::::
speed is on the order of cR ≈ 1500ms−1

::::::::::::::
cR ≈ 1250ms−1. As we consider cracks to instantaneously fracture floes through

their thickness, we must have τ > h
cR

. For 1m thick ice, it corresponds to τ > 6.67× 10−4 s.
:::::::::
τ > 0.8ms.

::::::::
Fractures

:::::::::
propagate335

::::
faster

:::
in

:::::
stiffer

:::
ice,

::::
and

:::::::::
increasing

:::
the

:::::::
Young’s

:::::::
modulus

:::
(or

::::::::
reducing

:::
the

:::::::::
thickness)

:::::
would

::::::
lower

:::
this

::::::
bound,

::::::
which

::::
must

:::
be

:::::::::
considered

::
on

::
a

::::::::::
case-by-case

:::::
basis.

:
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However, we also want to keep the timestep small enough that we can detect fractures as soon as it is possible for them to

occur, as delaying the onset of a fracture may affect the length of the resulting floes. Therefore, we aim to keep the ratio of

the progression of the wave front to the wave amplitude small. In the monochromatic case, with phase speed c, it translates to340

having τc
a < r ⇔ τ < r ak

ω , with r < 1. Setting r = 1
5 ensures sufficient convergence. Analogous relationships

::
An

:::::::::
analogous

:::::::::
relationship

:
can be derived for polychromatic cases

:
,
::
by

::::::::::
substituting

:::
the

:::::::::
amplitude

:::
by

:::
the

:::::::::
significant

::::
wave

::::::
height

:::
HS:::

of
:::
the

::::::::
spectrum,

:::
and

:::
the

:::::
phase

:::::
speed

::
c

::
by

:::
the

:::::::::
maximum

:::::
phase

:::::
speed

::
of

::::::
within

:::
the

:::::::
sampled

::::::::
spectrum,

::
so

::::
that

:::::::::::
τ < r HS

maxj cj
.

2.6
:::::::

Example
::
of

::::
time

::::::::::
simulation

:::
The

:::::
study

:::
of

:::
floe

::::
size

:::::::::::
distributions

::
in

:::::::
relation

::
to

:::
ice

:::
or

::::
wave

::::::::::
parameters

::
is

:::
out

:::
of

:::
the

:::::
scope

::
of

::::
this

:::::
study.

:::::::::
However,

::
as

:::
an345

:::::::::
illustration

::
of

:::
the

:::::::::
capabilities

:::
of

:::::::
SWIIFT,

:::
we

::::::
present

::
in

::::
this

::::::
Section

:::
the

:::::
result

::
of

::
a

:::::
single

:::::::::
simulation.

:

:::
We

:::::::
initialise

:::
the

:::::::
domain

::::
with

::
a

:::::
single

::::
floe

::
of

::::::
length

::::::::::
L= 600m,

::::::::
thickness

:::::::::
h= 50cm,

:::::::
Young’s

::::::::
modulus

::::::::::
Y = 4GPa,

::::
and

::::::::
Poisson’s

::::
ratio

:::::::
ν = 0.3.

:::
We

::::::
choose

:
to
::::::::::
parametrise

:::::::
fracture

::::
with

:::
the

:::::
energy

::::::::
criterion,

:::
and

:::
set

:::
the

::::::
fracture

:::::::::
toughness

::
to

::::::::::::::::
K1c = 100kPam

1
2 ,

:::::
which

:::::::
together

::::
with

:::
the

:::::
other

:::::::::
mechanical

:::::::::
parameters

:::::::::::
corresponds

::
to

::
an

::::::
energy

::::::
release

:::
rate

:::::::::::::::
G= 2.275Jm−2.

:

::::
This

:::
floe

:::
is

::::::
forced

::::
with

::::::
waves

::::::
issued

::::
from

::
a
:::::::::::::::::

Pierson–Moskowitz
:::::::::
spectrum,

::::
with

:::::::::
significant

:::::
wave

::::::
height

:::::::::::
HS = 0.5m350

::::::::::::
(corresponding

::
to
::

a
:::::
peak

:::::
period

:::
of

:
3.84 s

:
),
:::::::::

truncated
::
to

:::
the

::::::
period

:::::::
interval

:::::::::::
T ∈ 1 to 15s.

:::
We

:::::::::
discretise

:::
this

::::::::
spectrum

:::::
onto

::
50

:::::::
linearly

:::::
spaced

:::::::::
frequency

::::
bins,

::::
and

:::
thus

::::::
obtain

::
50

::::::
tuples

::
of

:::::::::
amplitudes

:::
and

:::::::::::
wavelengths,

::::::
which

::
we

::::::::
complete

::::
with

:::
50

:::::
initial

:::::
phases

:::::::
sampled

:::::
from

:
a
:::::::
uniform

::::::::::
distribution

::
in 0 to 2π rad

:
.
::::::
Spatial

:::::::::
attenuation

::
is
:::::::::::
parametrised

::
as

:::::::
defined

::
in

:::::::
Equation

:::::
(20).

:::
We

:::::::
initialise

:::
the

::::::
growth

::::::
kernels

:::
Kj:::::

with
:::::::
standard

:::::::::
deviations

::
σj:::::

equal
::
to

:::
the

:::::::::::
wavelengths,

:::
and

::::::
means

:::
µj :::::

equal
::
to

::::
three

:::::::::
respective

:::::::
standard

:::::::::
deviations

::::::::
upstream

::::
from

:::
the

::::
floe.

:::
At

::::
time

::::::
t= 0s,

:::
the

:::::::::
magnitude

:::
of

:::
the

::::::
surface

:::::::::::
perturbation

::
at

:::
the

:::
left

::::
edge

:::
of

:::
the355

::::
floe,

::::::
issued

::::
from

:::::
wave

:::::::::::
superposition

::
as

:::::::
defined

::
in

::::::::
Equation

::::
(23),

::
is

:::::
about 0.2mm

:
.

:::
We

::
set

:::
the

::::::::
timestep

::::::::::::::::::::
τ = 1

5
HS

maxj cj
= 8.58ms.

:::
We

:::
run

:::
the

:::::::::
simulation

:::
for 120 s

:
;
:::
the

:::
first

:::::::
fracture

::::::
occurs

::
at

::::::::::
t= 9.097s,

::
the

::::
last

:::
one

::
at

::::::::::::
t= 105.497s.

:::
We

::::::
present

::::::
results

::
of

:::
this

:::::::
fracture

:::::::::
experiment

::
in

::::
Fig.

::
5,

:::::::
showing

::
a

:::::::
snapshot

::
of

:::
the

::::::::
simulated

:::::
fluid

:::
and

:::
ice

:::::::::::
displacement

::::
along

:::::
with

::
the

::::::::
evolving

::::::
number

::::
and

::::::
lengths

::
of

:::
the

::::::::
simulated

:::::::::
fragments.

::
A
:::::
video

::
of

:::
the

:::::::::
simulation

::
is

::::::::
available

::
as

::::::::::::
supplementary

:::::::
material

::
().

:
360

3 Numerical experiment

To evaluate the capabilities of our model,
:
in

:::::::::
particular,

:::::::
validate

:::
the

:::::::::::
energy-based

::::::::
fracturing

::::::::
approach

:
and highlight the differ-

ence between energy and strain criteria, we choose to replicate breakup experiments conducted at the laboratory scale on an

analogue material
:
a
:::::::
material

::::
that

:::::
served

:::
as

::
an

::::::::
analogue

:::
for

:::::
solid,

:::::::
cohesive

:::
ice

:
(Auvity et al., 2025). These focused on quan-

tifying the onset of breakup, by progressively increasing the amplitude of a forcing
::::::::
stationary wave, at different frequencies.365

The experiment setup was as follows: a water tank of length 80 cm and depth 11 cm was covered with a brittle layer of varnish,

with thickness on the order of 100 µm. The layer was detached from the walls of the tank prior to the experiment. Stationary

surface waves were generated with a wave maker. A one-dimensional profilometry system and image-processing method were

used to extract the wave properties (frequency, amplitude, wavenumber) and determine when fracture occurred.
:::
This

:::::
work

::
is
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Figure 5.
::::::::
Snapshots

::
of

:
a
::::::
fracture

:::::::::
experiment.

::
In
:::

5a,
::::
view

::
of

:::
the

::::::
domain

::
at

::::::
t= 60s.

::::
The

:::::::::
continuous,

:::
dark

::::
line

:::::::
represents

:::
the

::::
fluid

::::::
surface

:::::
(η(x)),

:::
and

:::
the

:::::::::::
discontinuous,

:::::
lighter

::::
lines

::
the

::::::
vertical

:::::::::::
displacements

:::::
(w(x))

::
of
::::::::

individual
::::
floes.

::::
The

:::::
marks

::::
along

:::
the

:::::
bottom

:::::
spine

::::::
indicate

::
the

:::::::::
boundaries

::::::
between

::::::::
fragments;

:::
the

:::
last 80m

:
,
:
at
:::

the
::::
right

::
of

:::
the

::::::
domain,

::::
have

:::
not

::
yet

::::
been

:::::::
affected

::
by

:::
the

:::::
waves.

::::
Note

:::
that

:::
the

::::::
vertical

::::
scale

:
is
::::::
greatly

::::::::::
exaggerated:

::
the

:::::
aspect

::::
ratio

::
of

:::
the

:::::
graph,

::
in

:::::::
physical

::::
units,

::
is

::::::::
5× 10−4.

::::::
Because

::
of

:::
the

:::::::
thickness

::
of

:::
the

::::
lines,

:::::
some

::::
floes

:::::
appear

::
to

::::::
overlap,

::::
they

::::::
actually

::
do

:::
not.

::
In
:::
5b,

::::::::
horizontal

:::
bars

:::::
show

::
the

:::::
extent

::
of

::::::::
individual

::::
floes.

::::
The

:::::
height

::
of

::
the

::::
bars

:::::::
indicates

::
the

:::::
order

:
of
:::

the
:::
floe

::
in
:::
the

:::::
array,

:::
and

:::
each

:::::
group

::
of

::::
bars,

::
or

::::::
“stair”,

:::::::::
corresponds

::
to

:
a
:::::::
snapshot.

::::
The

:::
time

::
of
:::
the

::::::::
snapshots

::
are

:::::::
indicated

:::
on

::
the

::::::
y-axis,

:::
and

:::::
darker

::::::
colours

::::::::
correspond

::
to
::::
later

:::::
times.

::
In

:::
5c,

::
we

:::::
show

:::
size

::::::::::
distributions

::
as

:::::::::
swarmplots,

:::::::
omitting

:::
the

:::::::
rightmost

::::::::
fragment.

::::
Each

:::
dot

:::::::::
corresponds

::
to

:
a
:::::
length

::
as

:::::::
indicated

::
by

:::
the

:::::
x-axis,

:::
and

:::::
within

::
a

:::::
group,

::
the

:::::
y-axis

::::
only

:::::
serves

::
to

::::::
separate

::::
dots.

::::::
Vertical

::::::
clusters

::::
thus

::::::
indicate

:
a
::::::::::
concentration

::
of
::::::::::

observations
::::::
around

::
the

:::::::::::
corresponding

::::::
length.

::::
From

::::::::::::
t= 0s to 120s,

:::::
there

::
are

::::::::::
respectively

::::::::::::::::::::
1, 6, 27, 52, 58, 59 and 60

::::::::
fragments. 16



::::::
similar

::
to

:::
that

::
of

:::::::::::::::::
Saddier et al. (2024)

:
,
::::
who

:::
also

:::::::::
conducted

::::::::::::
wave-induced

:::::::
fracture

::::::::::
experiments

::
on

:::
an

::::::::
analogue

:::::::
material

::
at

:::
the370

::::::::
laboratory

:::::
scale,

:::::
under

::::::::
stationary

:::
but

::::
also

::::::::::
progressive

::::::
forcing.

::::::::
However,

::
in
:::::
their

:::::::::
experiment,

:::
the

:::::::
material

::
is

:
a
::::::::
granular

:::
raft

::::
hold

:::::::
together

::
by

::::::::
capillary

:::::
forces

:::::
more

::::
than

:
a
:::::::::
continuous

:::::
solid,

:::
and

::::::
breaks

:::::::
because

::
of

:::::::
viscous

:::::
stress

:::::
rather

::::
than

:::::::
because

::
of

:::::::
bending

:::::
stress.

::::
The

::::::
former

::
is

::::::
directly

:::::::
relevant

:::
for

:::::::::::
representing

:::
the

::::::::::::
disintegration

::
of

::
an

:::::::
already

::::::::::
fragmented

:::
and

:::::::
granular

::::
sea

:::
ice,

::::
that

:::
has

::::::
already

::::
been

::::::
broken

:::
up

::
or

:::
that

::
is
::
in

::
a

:::::::::::
consolidation

:::::
phase

:::::::::
(transition

::::
from

:::::
frazil

::
to

:::::
grease

::::
ice).

:::
As

:::
our

:::::
work

::::::
focuses

:::
on

:::
the

::::::::
fracturing

::
of

:
a
:::::
solid

:::
and

::::::::
cohesive

:::
ice

::::
cover

::::
that

:::
we

::::
treat

::
as

::
a

:::::::::
continuous

:::::
elastic

::::::::
medium,

:::::
rather

::::
than

:::
on

:::
the

:::::::::::
disintegration

::
of

::
a375

:::::::
granular

::
ice

:::
of

:::
low

::::::::
cohesion,

:::
we

::::::::
favoured

:::
the

::::
work

::
of

:::::::::::
Auvity et al.

:::
for

:::
our

:::::::::::
comparisons.

As we aim to replicate this experiment, in what follows, we will be using a standing wave forcingand turn attenuation off

:
,
:::
and

::::
turn

:::
off

:::
any

::::::::::
attenuation. We use our model to determine, for prescribed wavenumbers and material properties inherited

from these laboratory experiments (listed in Table 1), the critical amplitude acr at which the material starts to fracture. We do

so using our energy formulation. Our model being linear, the amplitude directly controls the deflection of the plate, and thus,380

its curvature and
:::::::
resulting

:
elastic energy. It is therefore an intuitive quantity to control the outputs of the model, as well as a

quantity that was measured experimentally.

The critical amplitude can then be related to a critical curvature κcr by evaluating Eq. (8) at the coordinate of the fracture. In

turn, κcr can be used to derive a critical strain, using Eq. (16). We do not run separate experiments based on a strain criterion,

as per the results of these authors, a constant critical strain does not
:::::
critical

:::::
strain

:::::::::::
independent

::
of

:::
the

:::::
wave

::::::
forcing

:::::
does

:::
not385

::::
seem

::
to

:
exist for this material and therefore cannot be prescribed in our model

::::::::
numerical

:::::::::::
experiments. Even so, the results of

energy-based simulations allow us to draw conclusions on the relevance of this type of criterion.
::::
These

:::
are

::::::::
discussed

::
in
:::::
Sect.

::
5.

3.1 Length scales

To replicate the experimental protocol of Auvity et al. (2025), we consider only monochromatic stationary forcings, so that390

η(x) = asin(knx) with kn = nπ
L . The symbol L represents both the length of the plate, and of the domain. The positive integer

n is the harmonic number. The wave tank we simulate is short enough for attenuation to be considered insignificant.

We define two additional lengths: the flexural length

LD =

(
D

ρwg

)1/4

, (26)

and the relaxation length395

Lκ =

∫ xfr

0
(xfr −x)

[
κ(x)−κ<(x)

]2
dx∫ xfr

0

[
κ(x)−κ<(x)

]2
dx

+

∫ L

xfr
(x−xfr)

[
κ(x)−κ>(x)

]2
dx∫ L

xfr

[
κ(x)−κ>(x)

]2
dx

. (27)

The former is a natural length scale of our system, appearing in the bending equation (Eq. (6a)), and relates the flexural rigidity

of the plate (that resists bending) to the reaction of the fluid it rests upon (that sustains bending). The latter gives a measure of

the distance over which the curvature of post-fracture fragments is different from the curvature of the original floe that gave

rise to these fragments. We show an example
::
of

::::
this in Fig. 3b.400
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We introduced the symbols κ<(x) and κ>(x) to denote the curvature of the left and right post-breakup fragments, with

x ∈ [0,L]. By definition, κ< (respectively κ>) exists only for x ∈ [0,xfr] (respectively x ∈ [xfr,L]). We choose this integral

definition of Lκ because the differences in pre- and post-breakup curvatures is well-represented (when moving away from the

fracture location) by a damped sine with oscillation period and attenuation rate
√
2LD, that is,

κ(x)−κ>(x)∼ sin
( x√

2LD

)
exp

(
− x√

2LD

)
, (28)405

which ensues from the shape of the solution presented in Appendix A1. Therefore, except at the floe boundaries where curva-

ture is 0m−1 (as imposed by the boundary condition, Eq. (6b)), the whole length of the initial floe may participate in releasing

energy. For long enough waves, the relaxation length tends to
√
2LD, that is limk→0Lκ =

√
2LD. This can be shown analyti-

cally by assuming Eq. 28.

We thus have three typical horizontal length scales:410

– The wavelength λ= 2π
k , imposed by the wave forcing, and linearly tied to the domain length L through the harmonic

number n, so that L= nλ
2 .

– The flexural length LD, that depends on the properties of the material, the density of the fluid, and gravity. Only the

former are varied in this study, with stiffer, thicker materials having a longer LD.

– The relaxation length Lκ, that quantifies the distance over which fracture modifies the system.415

::
As

:::
we

::::::::
consider

:::::
short

:::::::::::
wavelengths

:::
and

::
a
::::
very

::::
thin

::::::
plate,

:::::::::
capillarity

::::::
effects

:::::
could

::
in
::::::::

principle
:::

be
:::::::::
important.

:::::::::
However,

::::::
because

:::
the

:::::::
flexural

:::::
length

::
of

:::
the

:::::::
material

:::::::
exceeds

:::
its

:::::::
capillary

::::::
length,

:::::
these

:::
are

:::::::::
negligible,

:::::
which

:::::::::::::::::
Auvity et al. (2025)

::::::
verified

::::::::::::
experimentally.

:::::::::
Therefore,

:::
we

:::
will

:::
not

:::::::
consider

:::::
them

:::::
either,

:::
and

:::
the

:::::::::
dispersion

::::::
relation

:::
we

::::
will

::
be

:::::
using

:
is
:::::
given

::
in

:::::::
Equation

:::::
(19),

::::::::
dominated

:::
by

:::
the

::::
term

::
in

:::::
LD

4.

3.2 Linearity limitation420

The analogue material used in the laboratory experiments of Auvity et al. (2025) requires non-linear waves
:::::::
nonlinear

::::::
waves

:::::::::
(ak ≈ 0.14)

:
for fracture to occur. As neither non-linear

:::::::
nonlinear

:
plate nor non-linear waves are represented by our numerical

model, we have to relax this condition, typically quantified by the wave slope ak, to observe fracture at all. Thus, we set the

upper bound of our dichotomic searches so that ak ≤ 0.5, which places us out of the linear framework our model relies on. As

here, we are qualitatively showcasing the behaviour of our model rather than quantitatively exploiting the results, we deem this425

limitation to be inconsequential. For thickness and Young’s modulus typical of sea ice, fracture in our model does happen in a

linear regime, as illustrated in Fig. 3, where ak = 0.015.

Note that we define wave slope with respect to the wave propagating underneath the elastic plate and not with respect to the

free surface waves. For a given time period, hydroelastic waves with dispersion relation Eq. (19) are typically longer than free

surface gravity waves with dispersion relation Eq. (18), making the former slightly less steep.430
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Table 1. List of model parameters and their values. Parameters followed by an asterisk are inferred from other fixed parameters.

Parameter Value

density (fluid) 1000 kgm−3

density (plate) 680 kgm−3

energy release rate 174mJm−2

flexural length* 7.50mm

flexural rigidity 3.1× 10−5 Pam3

harmonic number 3

Poisson’s ratio 0.4

thickness 158 µm

wavenumbers 21.0 to 203 radm−1

Young’s modulus* 79.2MPa

4 Results

The results presented in this section focus on detecting a fracture threshold , using our energy formalism , and
:::
and

:::::::::
comparing

:::
this

::::::::
threshold

::
to

::::
that

:::::::
obtained

:::
in

:::
the

:::::::::
laboratory

:::::::::
experiment

:::
of

::::::::::::::::
Auvity et al. (2025)

:
.
::
To

:::
do

:::
so,

:::
we

:::
use

::
in
::::

our
::::::::::
simulations

:::
the

material parameters issued from a laboratory experiment.
:::::::::::::::
Auvity et al. (2025)

:
.
::::::
Those

:::
are

:::::
given

::
in

:::::
Table

::
1.
::::

We
::
do

::::
not

::::
tune

:::::
model

::::::::::
parameters.

:
As we are interested in detecting the fracture threshold, and our model does not have a fatigue term, we435

work with strictly unrelated quasi-static states, and we find the critical amplitude acr systematically by dichotomic search. In

Sect. 4.1, we detail the influence of varying the wavenumber exclusively. Then, in Sect. 4.2, we replicate the same protocol,

while also varying the mechanical parameters of the plate.

4.1 Reference case

We start by illustrating the response of our model, for a range of prescribed wavenumbers, with four quantities: the normalised440

position of the fracture xfr

L , the critical amplitude and curvature, and the relaxation length. These are presented in Fig. 6.

To exemplify the deviation between our computed deflection field and the forcing fluid surface, we choose here the case of

the third harmonic, so that L= 3π
k . We thus obtain curvature profiles that are symmetric2 with respect to x= L

2 , with three

antinodes, which can be seen in Fig. 7. From left to right, the first and third antinodes (close to the left and right edges of the

plate, respectively) are more influenced by the boundary conditions than the second one (located at the middle of the plate).445

We give the model parameters in Table 1.

In what follows, we multiply k by the flexural length, so that to obtain the (dimensionless) wavenumber kLD. This allows

exploring the model behaviour between two limits: small kLD values thus correspond to longer waves and lower flexural

2As would be the case for any odd harmonic number. In the case of even harmonic number, the curvature profile as a twofold rotational symmetry about

(x,κ) =
(
L
2
,0
)
. In other words, κ

(
x− L

2

)
is even-symmetric for odd harmonic wavenumbers, and odd-symmetric for even harmonic numbers.
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Figure 6. Relationships between the nondimensionalised wavenumber and normalised (with respect to plate length) fracture location (a),

critical amplitude (b), critical curvature (c), and relaxation length (d). Model parameters are provided in Table 1. In (a), three horizontal

dashed lines represent the asymptotes xfr
L

= 1
6
, 1

3
and 1

2
. In (b) to (d), vertical lines show delimitations between regions corresponding to

different behaviours of fracture location, observed on (a). The regions are numbered in (c). In the second region of (b), the triangle of height

twice its horizontal base (in loglog space and data units) gives an indication of the slope. In (d), an horizontal dashed line represents the

asymptote
√
2LD .
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rigidity (the plate conforms to the fluid), while high values correspond to shorter waves and higher flexural rigidity (the plate

is non-deformable). We divide Fig. 6b–d in four regions, based on different behaviours of the fracture location as predicted by450

the energy criterion, identified in Fig. 6a. These regions are separated by kLD = 0.1638, 0.3275 and 0.7578. They correspond,

for increasing kLD, to fracture happening in the middle of the floe (the second curvature antinode); fracture happening close

to the first or third curvature antinode; fracture again happening in the middle of the floe; and fracture uncorrelated from any

curvature extremum. Because of the particular wave forcing imposed in our model configuration, the free energy profile is

symmetrical with respect to the middle of the plate. Therefore, it is not numerically possible to discriminate between an energy455

minimum happening at xfr or L−xfr, and in Fig. 6a, we only show the branch corresponding to xfr ≤ L
2 .

We note that, in regions 1 to 3, fracture predicted by the energy criterion does not systematically happen at the global

curvature extrema. In this third harmonic case, the global extremum is in the middle of the floe, except in the band kLD ∈
[0.178,0.357]. The overlap with the region 2, defined by kLD ∈ [0.1638,0.3275], is thus not one-to-one. Additionally, in

region 2, fracture does not happen at the antinode, but in its vicinity. For kLD < 0.242, fracture is on the left of the first460

antinode, and for kLD > 0.243, to its right (the situation is reversed for the third antinode). In region 4, fracture happens far

from either antinode. It seems that for increasing kLD, xfr

L → 1
3 , which corresponds to a node of the forcing.

In Fig. 7, we show examples of the behaviour of the free energy and of the along-plate curvature for these different regions.

We compare the latter to the “conforming” curvature, κconf(x) =
d2

dx2wconf , with wconf(x) =
a

1+(kLD)4
sin(kx) the associated

displacement stemming from the fluid surface. The term at the denominator ensures that it satisfies Eq. (6a), and for long465

waves, limk→0wconf = η. In Fig. 8, we show for the same examples the floe deflection, compared to the forcing amplitude,

and we indicate the relaxation length. To aid comparison, we normalise the along-floe coordinate by the floe length.

In the first two regions, both corresponding to small wavenumbers, the difference between curvature and conforming curva-

ture (Fig. 7a, Fig. 7b) is noticeable only in the immediate vicinity of the edges of the domain. Minima of free energy correspond

roughly with extrema of curvature, and the floe deflection (Fig. 8a, Fig. 8b) follows the fluid surface. In the first region, and470

to a lesser degree in the second region, the critical curvature (Fig. 6c) varies little, although a slight positive trend exists. Our

strain-based and energy-based criteria in these two regions would therefore predict virtually similar fractures. The critical am-

plitude (Fig. 6b) varies with the inverse of the squared wavenumber, that is, with the square of the wavelength. The relaxation

length (Fig. 6d) is almost constant and tends to
√
2LD from below for decreasing wavenumbers. As the floe length is, in the

case of stationary wave forcing, inversely proportional to the wavenumber, the relaxation length normalised by the floe length475

increases with the wavenumber, and is not constant across the different panels of Fig. 8.

In the third region, curvature and conforming curvature (Fig. 7c) are now dissimilar between the left (respectively right)

edge and the left (respectively right) antinode. The free energy still shows three troughs, but the trough at x= L
2 is now clearly

more pronounced than the other two. There are still three distinct deflection extrema (Fig. 8c), synchronised with the forcing

wave, and the amplitude of deflection of the floe is slightly smaller than the forcing amplitude. From kLD ≈ 0.3057, we480

locally (around the two positive deflection antinodes) have η−w > h− d. As h− d corresponds to the freeboard of the floe

at rest, this suggests parts of the deformed floe are immersed. This takes place close to the transition from the second region,

which happens at kLD = 0.3275. The non-zero deflection near the edges shows that deflection is now significantly different
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from the sine forcing. In terms of the occurrence of fracture, this region corresponds to a sharp increase in critical curvature,

incompatible with a strain-based (that is, constant critical curvature) criteria. The relaxation length, however, is still practically485

constant with kLD, and a good indicator of the zone over which pre- and post-fracture modelled deflection differ. An inflexion

of the critical amplitude decrease rate is also visible. In regions 1 to 3, fracture locations near antinodes and the shape of

post-fracture deflections are consistent with mode I fracturing.

As kLD increases, the length of the plate diminishes relatively to its flexural length. The impact of the boundary conditions

on the deflection profile is therefore amplified. This effect is sizeable in the fourth region (Fig. 8d): curvature and conforming490

curvature (Fig. 7d) no longer match anywhere along the plate. This is despite staying in a regime where LD ≫ L, as kLD =

nπLD

L ≈ 10LD

L . The central free energy trough has separated into two distinct troughs corresponding to global minima, no

longer in phase with curvature extrema. This separation corresponds to the transition from the third region. The fourth region

also shows a drop in critical curvature (Fig. 6c), which has been monotonically increasing with kLD thus far. However, the

maximum curvature κ(L/2) keeps increasing irregularly with kLD, as can be seen by comparing Fig. 8c and Fig. 8d. The495

critical amplitude, which seems to plateau on the right of the third region (Fig. 6b), is singular at the transition, then diminishes

again before increasing irregularly. Additionally, the edges of the fragments no longer mirror each other. There is a significant

post-fracture discontinuity in deflection, which is a characteristic of region 4, and not consistent with bending (mode I) fracture,

but reminiscent of a sliding (mode II) or tearing (mode III) fracture. A minimum of critical curvature is reached for kLD = 1,

which also corresponds to a maximum of relaxation length. For n≥ 2, there is a single positive kLD, quickly converging to 1,500

for which the slope at the edges of the floe vanishes, that is,
(
dw
dx

)
x=0,L

= 0. It corresponds to the two outside-most deflection

antinodes vanishing, leaving only the internal ones. It can be seen from the deflection profile in Fig. 8d, that compared to

Fig. 8a–c, the slope at the edges has changed sign, and that a single antinode (at the centre of the floe) remains.

4.2 Influence of mechanical parameters

We further investigate the response of our model to varying mechanical parameters, by reproducing the analysis presented in505

Sect. 4.1 for an ensemble of (h,Y ) pairs with 128 members. Doing so, we aim to reproduce the internal variability that stems

from laboratory conditions in the experiments of Auvity et al. (2025). We generate this ensemble through Latin hypercube

sampling, and enforce that the two variables are independent with normal marginal densities of prescribed means 100 µm

and 70MPa, and prescribed standard deviations 20 µm and 14MPa, respectively; we show the joint density of our sample

in Fig. 9. The resulting distribution of flexural rigidities is positively skewed, with mean 7.88× 10−6 Pam3 and median510

6.93× 10−6 Pam3.

We further impose the relation

2Gh2

D
= C (29)

between the energy release rate, the Young’s modulus, and the thickness, as derived by Auvity et al. (2025), setting the di-

mensionless material constant parameter C = 2.8× 10−4. This expression serves as a proxy establishing a value for G, which515

is poorly constrained experimentally. The other parameters are kept fixed at the values presented in Table 1. We also keep
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Figure 7. Examples of free energy (left vertical axes, green lines) and curvature (right vertical axes, grey lines) profiles for the four regions

identified in the text. A sine curvature is shown in dashed lines as a comparison to the curvature derived from Eq. (8). The fracture locations,

determined from the energy criterion, are shown with vertical lines: the energy profiles being symmetrical with respect to the middle of the

plates, F (xfr) = F (L−xfr). The dashed horizontal lines show the zero-curvature reference.

the same constraint on the wave slope, requiring acrk ≤ 0.5: depending on the precise values assumed by the thickness and

Young’s modulus, the interval of wavenumbers that leads to fracture may vary.

4.2.1 Comparison to experimental data

We show numerical results in Fig. 10 (colour-coded lines), which we compare to experimental data from Auvity et al. (2025)520

(circle and square markers). We obtain results similar to those presented in Sect. 4.1. The critical amplitude profiles do not

depend on the mechanical properties of the simulated material, up to a multiplicative constant, that increases with flexural

rigidity (or, equivalently, flexural length).

This fact extends to the other variables shown in Fig. 6. Within the ranges of mechanical parameters explored, which are in

agreement with the values and internal variability estimated by Auvity et al. (2025), the order of magnitude of the critical ampli-525
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Figure 8. Examples of pre- and post-fracture floe deflection profiles for the four regions identified in the text, normalised by the critical

amplitude. The relaxation lengths, centred on the fracture locations, are shown with shaded rectangles. We only consider the left fracture

location, where applicable. The dashed horizontal lines show the zero-deflection reference.

tude and its decreasing tendency with increasing kLD agree between the simulations and the laboratory experiments. However,

and as expected, this agreement is only qualitative. Indeed, we recall that in the experimental setting, fracture was only obtained

with non-linear
:::::::
nonlinear

:
waves. It is likely the reason why the critical amplitudes measured by Auvity et al. (2025) varies as

k−1, not as k−2 as we find numerically. The differences between experimental and numerical critical amplitudes are therefore

deepened at small wavenumbers.530

We also note that the way we define the relaxation length Lκ in our linear waves simulations differs from the definition

of Auvity et al., who used the full width at half-maximum (hereinafter, FWHM) of pre-fracture curvature in their nonlinear

experiments. On Fig. 10, we thus also represent the experimental critical amplitudes as a function of LD

FWHM (pink squares),

which horizontally shifts the experimental points, in an attempt to correct the discrepancy between their nonlinear waves

forcing and our linear model.535
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Figure 9. Joint density and marginal densities of our (h,Y ) ensemble.

We do not adopt their definition, as it would be incompatible with our region 4 results, where fracture does not happen

around curvature peaks or troughs, while experimental fractures always happened in the vicinity of a deflection antinode. If we

were to apply it to regions 1 to 3, we would obtain something very similar to the FWHM of sin(kx), that is 2π
3k , λ

3 . Because of

their nonlinear wave forcing, Auvity et al. measured FWHMs that varied like λ
12 . Bending was thus concentrated in a smaller

fraction of their forcing wavelengths, and LD

FWHM can be seen as an alternative, rescaled dimensionless wavenumber. Using540

this definition, we can improve the overlap between experimental and numerical results, with experimental points falling in

regions 1 to 3, where both model end experiments show the critical curvature depends on the forcing wavelength, precluding a

constant strain threshold.

4.2.2 Impact of harmonic number and dimensionless quantities

So far, we focused on the harmonic number n= 3. However, for large enough kLD, the response of the model depends on545

n, and therefore on the geometry of the domain. In particular, for even n, fracture in region 4 happens systematically in the

middle of the floe. Due to the symmetry property of the forcing, this means our model predicts fracture with κcr = 0m−1,

inconsistent with bending fracture but reminiscent of shearing or tearing fracture. The fundamental configuration, with n= 1,

is a particular case. The maxima of deflection, curvature, and free energy happen at x= L
2 independently of kLD. We illustrate

this difference in Fig. 11 by presenting the relationships between the nondimensionalised wavenumber and two dimensionless550

quantities, for different harmonic wavenumbers. We choose these two quantities because they exhibit the remarkable property

of depending on the dimensionless wavenumber, but not on the individual variations of the mechanical parameters.
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Figure 10. Relation between the dimensionless wavenumber and the critical amplitude, for varying thickness and Young’s modulus. Lines are

numerical results, with the colour scale indicating the flexural rigidity, that combines the two varying parameters. Grey dots are experimental

results from Auvity et al. (2025). Pink squares are the same experimental results, with a different horizontal scaling, as described in the text.

The first of these quantities, shown in Fig. 11a, is the relaxation length Lκ (as shown in Fig. 6d for the fixed parameters

experiment), normalised by the augmented flexural length
√
2LD. We retrieve, independently of the harmonic number, the limit

limk→0Lκ =
√
2LD already stated in Sect. 3.1. Behaviours depending on the harmonic number emerge from kLD ≈ 0.4. If555

all curves show a downward trend in what corresponds to kLD in regions 2 and 3, this trend is more pronounced for smaller

numbers, in particular n ∈ {1,2}. The second striking difference, is that between even and odd harmonic numbers. There

is a discontinuity at the transition from region 3 to region 4 for even numbers, with an upward jump preceding a sustained

downward trend. This transition is continuous for n= 3. There is no region 4 behaviour for n= 1, as in this configuration,

fracture always happens at xfr

L = 1
2 .560

The second dimensionless number, shown in Fig. 11b, can be built as the product of two distinct dimensionless quantities:

critical curvature multiplied by thickness (that is, twice the critical strain), and critical curvature multiplied by relaxation length.

Notably, both these quantities do depend on thickness and Young’s modulus, without showing the ordering critical amplitude

does in Fig. 10. However, their product, κcr
2hLκ, only depends on kLD. This quantity was also derived by Auvity et al. (2025),

who interpreted it as a constant independent of the wave forcing. We do not replicate this result outside of regions 1 and 2, that565

is, the wavenumber band where neither critical curvature nor relaxation length vary. As in Fig. 11a, the different curves are
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Figure 11. Relationship between the nondimensionalised wavenumber and two dimensionless quantities: the energy dissipation length scaled

by the flexural length (a), and squared critical curvature scaled by thickness and flexural
:::::
energy

::::::::
dissipation

:
length (b). We show ensemble

averages, for four harmonic numbers. For a given harmonic number, ensemble members are virtually identical, with coefficients of variation

well below 1× 10−3 where the means are non-zero.

indistinguishable within these two regions, i.e., at small kLD and a discontinuity exists for even harmonic numbers between

regions 3 and 4, as for these, the critical curvature drops to 0m−1 in region 4.

Finally, it can be seen that the upper bound of the range of kLD that sees fracture happens depends on n. It first increases

with n but peaks for n= 3, and then decreases. This is despite keeping the same acrk ≤ 0.5 criterion on the wave slope. The570

lower bound, however, does not change and keeps the value kLD = 0.1167. The differences between the different harmonics

in region 4 are explained by the loss of deflection extrema near the boundaries as kLD increases, which have dissimilar effects

on the deflection profile in this region for different n. For n > 2, there exists a single kLD for which the slope of the deflection

at the edges of the plate,
(
dw
dx

)
x={0,L}, cancels. It converges exponentially towards 1, so that noting it (kLD)0, we have

log|1− (kLD)0| ∼ −n. The cancellation of the slope conveys the transition from a deflection profile with n antinodes to one575

with n− 2 antinodes. When kLD keeps increasing, the higher n, the higher the variety of behaviours shown by w. However,

for large enough kLD, w(x)→ 2a
nπ for odd n, and w(x)→ 2a

n

(
− 2x

L +1
)

for even n. These are rigid motions, independent of

the forcing, corresponding respectively to heave (translation) or pitch (rotation).

27



5 Discussion and conclusion

We have developed a novel
::::::::
versatile,

:::::::::
lightweight

:
one-dimensional model that simulates the

:::::::::::::
time-dependent fracture of sea ice580

by waves. This model has the particularity of solving directly for the deflection of a floe caused by the competition between

buoyancy and gravity; instead of solving for waves scattered by the presence of the floe at the ice–fluid interface, and assuming

that the deflection follows that interface. We can thus use the model to continuously explore the response of a floe to bending ,

and fracture, between two limits: an elastic plate conforming exactly to a fluid foundation, and an undeformable plate. We have

implemented
::
in

:::
this

::::::
model two fracture criteria. One, compatible with continuum fracture mechanics, is based on looking for585

a global post-fracture energy minimum and comparing it to the pre-fracture energy state to determine whether fracture should

occur, and is another
:
a novelty of this model. The other is compatible with the more common hydroelastic approach applied to

sea ice, based on locally comparing strain to a prescribed,
:::::::
constant

:
threshold.

The present study is centred on presenting the theoretical and numerical aspects of the model itself
:::
and

:::::::::::::::
validate/invalidate

:::
the

:::::::::::
energy-based

::::::
fracture

::::::::
criterion. We apply the model to an analogue material used in the laboratory to study wave-induced ice590

fracture, in the specific setting of monochromatic stationary waves. Because no critical strain has been experimentally derived

for this material
:::::::
constant

::::::
critical

:::::
strain

::::::::
threshold

::::
was

::::::::
observed

::::::
during

:::::
these

::::::::::
experiments, but a relationship between energy

release rate and other parameters of our model exists, we focus on investigating the energy criteria. Even in this particularly

simplified configuration, the response of the model in terms of critical amplitude or curvature is not straightforward.

Our results indicate that the critical curvature derived from an energy-based fracture depends on the forcing wave, con-595

tradicting the existence of a universal critical strain. This was also observed in the laboratory (Auvity et al., 2025). In the

wavenumber kLD :::::::::::::
(dimensionless)

:::::::::::
wavenumber band where our results overlap with the experimental data from Auvity et al.

(2025), we obtain comparable critical amplitudes. However, we are not able to replicate their scaling for low wavenumbers

kLD. Additionally, we obtain that for large enough kLD (region 4), the two criteria
:
,
:::::::::::
energy-based

::::
and

::::::
critical

:::::::::::
strain-based,

diverge on the predicted fracture location, in that energy-predicted fracture is uncorrelated from curvature, or strain, extrema.600

The fracturing behaviour in region 4 is inconsistent with bending fracture, and suggests out-of-plane shear or in-plane shear

fracturing. The latter would describe fracture propagating perpendicularly to the direction of wave propagation (that is, as

someone tearing up a sheet of paper), in contradiction with the invariance hypothesis made on the modelled plate and therefore

cannot be represented in the current 1D model.

A possible explanation for the different relationship between critical amplitude and wavenumber observed experimentally605

(acr ∼ k−1) and numerically (acr ∼ k−2, for kLD ≲ 0.6) may be that experimentally, for fracture to happen, the material

considered (varnish) required non-linear
::::::::
nonlinear wave forcing, which our model does not represent. In the case of ice, the

linearity assumption is, however, valid. For values corresponding to a similar experiment conducted on fresh water ice by the

same team (personal communication with Auvity et al.), that is thicker and stiffer than their varnish, our results in terms of

critical amplitude as a function of dimensionless wavenumber are, up to multiplicative constants, identical to those presented610

here, and the wave slopes required to obtain fracture are typically of the order of 0.02; well within the linear regime. Therefore,

increasing the numerical complexity of the model to accommodate non-linear
::::::::
nonlinear plate behaviour seems unnecessary
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at this stage. Another explanation is that, while our model considers homogeneous plates with constant Young’s modulus,

the material engineered by Auvity et al. (2025) is obtained by layering. Because of introduced vertical inhomogeneities, this

process is likely to introduce a dependency of the Young’s modulus to the obtained thickness.
::::::
Further

:::::::
analysis

::
of

::::
this

::::
new615

::::::
dataset,

:::
and

::
in
:::::::::
particular

:::::::
whether

:::
the

::::::::::
dependency

::
of

:::
the

::::::::
curvature

::
at

:::::
failure

:::
on

:::
the

:::::::::::
wavenumber

:::::
exists,

::
is

:::::::
ongoing.

:

The key features of our model are that bending is driven exclusively by the along-plate variation of buoyancy, which cannot

be resolved by hydroelastic models, and that fracture can be controlled by an energy criterion integrated over the entire floe.

For high kLD values, that is either large wavenumber or a stiff elastic plate, this leads to physically questionable behaviours,

such as submergence, and post-breakup deflection discontinuity across the fracture (region 4) or even fracture at zero-curvature620

(for even harmonics). We note that the possibility of submergence is the direct consequence of the weak, one-way coupling

between fluid and plate, as we only represent the response of the plate to the fluid, while ignoring the feedback response of

the fluid. This one-way coupling is a trade-off allowing us to maintain the theoretical and numerical complexity low. As a

rationality check, we verify that the bending energy, transmitted to the plate by the fluid, is orders of magnitude less than the

gravitational potential energy of the fluid: there is thus no unaccounted energy leaks into the plate. As none of this energy is625

returned to the fluid, it is likely we overestimate the likeliness of fracture.

Here, we have described the simulated behaviour as a function of kLD by distinguishing the results in 4 different regions,

based on where the fracture happens. The kLD thresholds being regions should however be regarded carefully, as they depends

slightly on the harmonic number of the forcing, and might be a feature of stationary forcing. In typical field conditions
::
At

::::
field

::::
scale, with waves propagating within the ice cover, the fracture front follows the wave front, in such a way that fragments are630

typically smaller than the dominant wavelength (Dumas-Lefebvre and Dumont, 2023). Therefore, the increased complexity in

the model behaviour at high harmonic numbers may not be representative of natural conditions.

More experimental data is needed to confirm or infirm the behaviour of the model in the large kLD band, and whether a

forcing-dependent trend for critical curvature exists in the case of ice. Previous wave tank fracture experiments (Dolatshah

et al., 2018) showed bending failure typically happening at kLD ≈ 1, though the uncertainties on thickness and Young’s635

modulus are quite large. Other values of Young’s modulus reported for such experiments, in the low MPa range (Herman, 2018;

Passerotti et al., 2022), seem inconsistent with a uniform
:::::::
cohesive, solid sheet of ice, as represented in our model.

:::::::::::
Nevertheless,

::::
these

:::::::
authors

:::
did

:::::::
observe

::::::
fracture

:::
in

:::
the

:::::
range

:::::::::::::::
kLD ∈ [0.29,0.54]

::::
and

:::
for

:::::::::::
kLD = 0.29,

::::::::::
respectively.

::::::::::::::::::::
Voermans et al. (2020)

:::::::
compiled

::
a
:::
list

::
of

::::::
studies

::
of

:::::::::::
wave-induced

:::::::
breakup

:::::::::::
observations.

::::::::::
Mechanical

:::::::::
parameters

:::::
were,

:::
for

:::
the

::::
most

::::
part,

:::
not

:::::::::
measured,

:::
but

:::
they

:::::::
suggest

:::::::::
estimations

:::::
based

:::
on

::::::
known

::::::::
empirical

::::::::
relations.

::::::::
Following

::::
their

::::::::
methods,

:::
we

:::
can

:::::::
generate

:::::::::
ensembles

::
of

:::::
kLD640

::::::::::::
wavenumbers,

:::
that

:::
we

::::
find

::::
lying

:::
in

:::
the

:::::
range

::::::::::::::::::::
kLD ∈ [1.7× 10−2,3.1]

:::
for

::::
both

:::::::
breaking

::::
and

:::::::::::
non-breaking

:::::
cases.

:
In the case

of realistic wave forcing, with material parameters representative of first-year sea ice, the peak of wave energy occurs in

kLD bands corresponding to what we identified as region 3 and 4. However, higher-frequency waves are also the ones most

effectively attenuated by the ice cover, so that they contribute less to fracture.

:::
We

:::::::::::
acknowledge

:::
our

::::::
results

:::
are

::
a
::::
first

::::
step

::::::
towards

::::
the

::::::::
validation

:::
of

:::
the

:::::::
fracture

:::::::::
formalism

:::
we

:::::::
propose.

:
Planned future645

work will involve using our model to study whether the choice of fracturing criterion impacts the floe size distribution resulting
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from propagating wave-induced breakup,
::::
and

:::::::
applying

::
it
::
in

::::::::::::
configurations

::::::::::::
corresponding

::
to

::::::
recent

:::
and

:::::::
exciting

:::::::::::
observations

::
of

:::::::
transient

::::::::::::
wave-induced

:::::::
breakup

::
of

:::::::::::
instrumented

:::
ice

::
in

:
a
::::::
natural

::::::
setting

:::::::::::::::::
(Kuchly et al., 2025).

Code and data availability. The current version of SWIIFT is available from the project website https://github.com/sasip-climate/swiift

under the APACHE-2.0 licence. The exact version of the model used to produce the results used in this paper is archived on https://doi.650

org/10.5281/zenodo.15528673 (Mokus, 2025c). The input data and scripts to run the model and produce the plots for all the simulations

presented in this paper are archived on https://doi.org/10.5281/zenodo.15528650 (Mokus, 2025b). A package dedicated to reproducing the

figures, holding the necessary data but no model logic, is archived on https://doi.org/10.5281/zenodo.15230102 (Mokus, 2025a).

Appendix A: Equation for the moment-deformation

We consider the boundary problem655 

d4w

dx4
= σ4

[
η(x)−w(x)

]
x ∈ [0,L]

d2w

dx2
= 0 x ∈ {0,L}

d3w

dx3
= 0 x ∈ {0,L}.

(A1a)

(A1b)

(A1c)

where η denotes the surface undergoing wave forcing, w the floe deflection, and σ = 1
LD

is the reciprocate of the flexural

length.

The surface η is typically the superposition of propagating, attenuated wave modes, so that

η(x) =
∑
j

ηj(x) (A2)660

and

ηj(x) = aj exp(−αjx)sin(kjx+ϕj), (A3)

with a wave amplitude, α wave attenuation per unit distance, k wave number, and ϕ wave phase at the left floe edge. The index

j is used with respect to a discretised wave spectrum.

Finally, we define the elastic energy per unit cross-sectional area665

E =
D

2h

L∫
0

(
d2w

dx2

)2

dx. (A4)

In the rest of this document, we will note

κ(x) =
d2w

dx2
(A5)
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the curvature of the floe.

The ODE (A1a) is linear, and so are the boundary conditions fourth order ODE, but it is linear, and so are the boundary670

conditions (A1b),(A1c). Here, we consider the simplified case where D and h are constant, making Eq. (A1a) a constant-

coefficients, linear ODE.

A1 Solution to the BVP on the floe deflection

The ODE (A1a) is linear and non-homogeneous. Its general solution w is the superposition of an homogeneous solution wh

and a particular solution wp.675

A1.1 Homogeneous solution

The characteristic polynomial of the homogeneous ODE

d4w

dx4
+σ4w(x) = 0 (A6)

associated with (A1a) is

P (s) = s4 +σ4. (A7)680

It has solutions

(1+ i)σ̃,(1− i)σ̃,(−1+ i)σ̃,(−1− i)σ̃ (A8)

with σ̃ =
√
2
2 σ. Independent solutions to (A1a) are thus

f̌ =


exp(σ̃x)(cos(σ̃x)+ isin(σ̃x))

exp(σ̃x)(cos(σ̃x)− i sin(σ̃x))

exp(−σ̃x)(cos(σ̃x)+ isin(σ̃x))

exp(−σ̃x)(cos(σ̃x)− i sin(σ̃x))

 . (A9)

Applying the full-rank linear transformation685

1

2


1 1 0 0

−i i 0 0

0 0 1 1

0 0 −i i

 (A10)

to f̌ yields the real-valued independent solutions

f =


exp(σ̃x)cos(σ̃x)

exp(σ̃x)sin(σ̃x)

exp(−σ̃x)cos(σ̃x)

exp(−σ̃x)sin(σ̃x)

 . (A11)
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Finally, any linear combination fT c, with the real-valued vector

c=
[
c1, c2, c3, c4

]
(A12)690

is a solution to (A6).

A1.2 Particular solutions

The non-homogeneous term in (A1a) can be written

σ4η(x) = σ4
∑
j

ηj(x) (A13)

= σ4
∑
j

Im
[
âje

ik̂jx
]

(A14)695

with the complex amplitudes â= aeiϕ and the complex wavenumbers k̂ = k+iα. Using the exponential response formula, and

the characteristic polynomial (A7), we obtain particular solutions of the form

wp,j = σ4 Im

[
âje

ik̂jx

k̂j
4
+σ4

]
(A15)

= Im

[
âje

ik̂jx(
k̂j/σ

)4
+1

]
(A16)

so that the particular solution to (A1a) can be written700

wp =
∑
j

wp,j . (A17)

In what follows, we will write

ãj =
âj(

k̂j/σ
)4

+1
(A18)

the complex amplitude of these solutions. As σ,kj ,αj > 0, this amplitude exists only if

kj ̸= σ̃ ∧αj ̸= σ̃. (A19)705

A1.3 Coefficients of the homogeneous solution

The coefficients of c have to be determined to enforce the boundary conditions. Enforcing these four conditions leads to the

system

DBCMBCc= r (A20)
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with710

DBC =


2σ̃2 0 0 0

0 2σ̃2 0 0

0 0 2σ̃3 0

0 0 0 2
√
2σ̃3

 , (A21)

MBC =


0 1 0 −1

−eβ sin(β) eβ cos(β) e−β sin(β) −e−β cos(β)

−1 1 1 1

−eβ sin(β+ π
4 ) eβ cos(β+ π

4 ) e−β cos(β+ π
4 ) e−β sin(β+ π

4 )

 , (A22)

where β = σ̃L, and

r = Im
∑
j


k̂2j ãj

k̂j
2
ãje

ik̂jL

ik̂3j ãj

ik̂3j ãje
ik̂jL

 . (A23)715

The third and first lines of the system give
c1 =

1

2σ̃2

(
r1 −

r3
σ̃

)
+ c3 +2c4

c2 =
r1
2σ̃2

+ c4

(A24a)

(A24b)

and the system (A20) can be simplified to the more tractable

MII

c3
c4

=

−r3

r4

 (A25)

with720

MII = 2

 sin(β)sinh(β) eβ sin(β)− cos(β)sinh(β)

−
√
2
2

[
sin(β)cosh(β)+ cos(β)sinh(β)

]
−

√
2
2 eβ − sin(β+ π

4 )sinh(β)

 . (A26)

The determinant of MII is

∆=
√
2
[
2sin2(β)− cosh(2β)+ 1

]
(A27)

so that ∆< 0 for β > 0, and limβ→0∆= 0. Therefore, the system (A20) admits a unique solution as long as L is non-zero,

and LD finite. Solving (A25) and substituting into (A24) leads to the solution to (A20), that can be written725

c=Mr (A28)
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where the coefficients of the matrix M are

M11 =
1

Q
e−2β

[√
2sin

(
2β+

π

4

)
− e−2β

]
(A29a)

M12 =− 1

Q
e−β

[√
2cos

(
β+

π

4

)
+ e−2β

(
3sinβ− cosβ

)]
(A29b)

M13 =
1

σ̃Q
e−2β

[
sin(2β)− 1+ e−2β

]
(A29c)730

M14 =
1

σ̃Q
e−β

[
cosβ− e−2β(2sinβ+cosβ)

]
(A29d)

M21 =
1

Q
e−2β

[
−
√
2cos

(
2β+

π

4

)
+2− e−2β

]
(A29e)

M22 =

√
2

Q
e−β

[
−sin

(
β+

π

4

)
+ e−2β cos

(
β+

π

4

)]
(A29f)

M23 =
1

σ̃Q
e−2β

[
1− cos(2β)

]
(A29g)

M24 =
1

σ̃Q
e−β sinβ

[
1− e−2β

]
(A29h)735

M31 =
1

Q

[
−1+

√
2e−2β cos

(
2β+

π

4

)]
(A29i)

M32 =
1

Q
e−β

[
3sinβ+cosβ−

√
2e−2β sin

(
β+

π

4

)]
(A29j)

M33 =
1

σ̃Q

[
−1+ e−2β(sin(2β)+ 1)

]
(A29k)

M34 =
1

σ̃Q
e−β

[
cosβ− 2sinβ− e−2β cosβ

]
(A29l)

M41 =
1

Q

[
1+ e−2β

(√
2sin

(
2β+

π

4

)
− 2

)]
(A29m)740

M42 =M22 (A29n)

M43 =M23 (A29o)

M44 =M24 (A29p)

with

Q=−2σ̃2
[
(1− e−2β)

2
+2e−2β

(
cos(2β)− 1

)]
. (A30)745

The coefficients of M are implicit functions of σ̃, and we note that the coefficients M1j are even-symmetric to the coefficients

M3j , and the coefficients M2j are odd-symmetric to the coefficients M4j . This reproduces the respective evenness and oddness

of f1 and f3, and f2 and f4. The leading exponential terms for all the coefficients M1j and M2j ensure that the deflection does

not diverge for large floes.

The homogeneous solution to (A1) is then750

wh(x) =
∑
j

cjfj(x) (A31)
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with the coefficients of f given from (A28).

A1.4 Summary

The solution to the BVP (A1) is given by the sum

w(x) = wh(x)+wp(x) (A32a)755

=

4∑
j=1

cjfj(x)+

Nf∑
j=1

Im
[
ãje

ik̂jx
]
. (A32b)

The definitions of the functions fj are given in Section A1.1, the definitions of the coefficients ãj as well as the complex

wavenumbers k̂j are given in Section A1.2, and the definitions of the coefficients cj in Section A1.3. The integer Nf is the

number of frequency bins used to discretise a wave spectrum. The deflection is entirely determined by the elastic length LD,

the floe length L, and Nf tuples of amplitude a, wavenumber k, attenuation number α, and phase ϕ. Assuming independence760

of these quantities, the solution is parametrised by 2+4Nf real numbers. All of these, at the exceptions of the phases taking

values in (−π,π], are positive. They can be further constrained to physically realistic ranges.

A2 Elastic energy

A2.1 Introduction

The elastic energy of a bent floe is defined as765

E =
D

2h

L∫
0

(
d2w

dx2

)2

dx. (A33)

We introduce the floe curvature κ(x) := d2w
dx2 . From (A32), we have

κh = 2σ̃2(−c1f2 + c2f1 + c3f4 − c4f3) (A34)

κp =−
∑
j

Im[k̂2j ãje
ik̂x]. (A35)

Let us define bj := |k̂2j ãj |, βj := Ang k̂2j ãj . We can then rewrite770

κp =−
∑
j

bje
−αjx sin(kjx+βj). (A36)

Finally, we introduce the quantities

Eh =

L∫
0

κh
2dx,Ep =

L∫
0

κp
2dx,Eq =

L∫
0

κhκpdx, (A37)

which are the contribution to the elastic energy of respectively the homogeneous part of the displacement, the inhomogeneous

part of the displacement, and their quadratic interaction.775
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A2.2 Homogeneous contribution

We start by expanding Eh as

Eh = c1
2I2 + c2

2I1 + c3
2I4 + c4

2I3

+2(−c1c2I12 − c1c3I24 + c1c4I23

+ c2c3I14 − c2c4I13 − c3c4I34), (A38)780

with

Ij =

L∫
0

fj
2dx,Ijn =

L∫
0

fjfndx. (A39)

These integrals evaluate to

I1 =
e2β(

√
2sin(2β+ π

4 )+ 2)− 3

8σ̃
(A40a)

I2 =
e2β(−

√
2sin(2β+ π

4 )+ 2)− 1

8σ̃
(A40b)785

I3 =
−e−2β(

√
2cos(2β+ π

4 )+ 2)+3

8σ̃
(A40c)

I4 =
e−2β(

√
2cos(2β+ π

4 )− 2)+1

8σ̃
(A40d)

I12 =
−
√
2e2β cos(2β+ π

4 )+ 1

8σ̃
(A40e)

I13 =
L

2
+

sin(2β)

4σ̃
(A40f)

I14 =
sin2β

2σ̃
(A40g)790

I23 =
sin2β

2σ̃
(A40h)

I24 =
L

2
− sin(2β)

4σ̃
(A40i)

I34 =
−
√
2e−2β sin(2β+ π

4 )+ 1

8σ̃
. (A40j)

The products of cj , cn pairs simplify little, and can be evaluated numerically.

A2.3 Particular contribution795

We can expand Ep as

Ep =

Nf∑
j=1

[
bj

2Ipj +2

Nf∑
n=j+1

bjbnIj,n

]
(A41)
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with

Ipj =
1

2

L∫
0

e−2αjx
[
1− cos

(
2kjx+2βj

)]
dx (A42a)

Ij,n =
1

2

L∫
0

e−αj,nx
[
cos

(
k−j,nx+β−

j,n

)
− cos

(
k+j,nx+β+

j,n

)]
dx (A42b)800

where

αj,n := αj +αn,k
±
j,n := kj ± kn,β

±
j,n := βj ±βn. (A43)

Let us define Kj := |k̂j |, θj := Ang k̂j . Assuming αj ̸= 0, we can then evaluate

Ipj =
1

4

[
1− e−2αjL

αj
+

sin(2βj − θj)− e−2αjL sin(2kjL+2βj − θj)

Kj

]
. (A44)

Similarly, we define K±
j,n := |k±j,n + iαj,n| and θ±j,n := Ang(k±j,n + iαj,n), which leads to805

Ij,n =
1

2

[
sin(β+

j,n − θ+j,n)− e−αj,nL sin(k+j,nL+β+
j,n − θ+j,n)

K+
j,n

−
sin(β−

j,n − θ−j,n)− e−αj,nL sin(k−j,nL+β−
j,n − θ−j,n)

K−
j,n

]
. (A45)

A2.4 Quadratic interaction contribution

We can expand Eq as

Eq =

L∫
0

−2σ̃2(−c1f2 + c2f1 + c3f4 − c4f3)
∑
j

Im[k̂2j ãje
ik̂x] (A46)810

=−2σ̃2

Nf∑
j=1

bj [−c1I
q
2,j + c2I

q
1,j + c3I

q
4,j − c4I

q
3,j ] (A47)

with

Ipn,j =

L∫
0

fn(x)exp
(
−αjx

)
sin

(
kjx+βj

)
dx. (A48)

We define

Q++
j = (σ̃+αj)

2
+(σ̃+ kj)

2 (A49a)815

Q+−
j = (σ̃+αj)

2
+(σ̃− kj)

2 (A49b)

Q−+
j = (σ̃−αj)

2
+(σ̃+ kj)

2 (A49c)

Q−−
j = (σ̃−αj)

2
+(σ̃− kj)

2
, (A49d)
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noting Q−− is non-zero under the same condition (A19) that ã exists.

Ip2,j = e−β

{
Kj

[
sin

(
θj −βj

)( 1

Q−+
− 1

Q−−

)
820

+ e−αjL

[
sin

(
(σ̃+ kj)L− θj +βj

)
Q−+

+
sin

(
(σ̃− kj)L+ θj −βj

)
Q−−

]]
+
√
2σ̃

[
− sin

(
βj +

π
4

)
Q−+

− cos
(
βj +

π
4

)
Q−−

+ e−αjL

[
sin

(
(σ̃+ kj)L+βj +

π
4

)
Q−+

− sin
(
(σ̃− kj)L−βj +

π
4

)
Q−−

]]}
(A50a)

Ip1,j = e−β

{
Kj

[
cos

(
θj −βj

)( 1

Q−+
+

1

Q−−

)
825

+ e−αjL

[
−cos

(
(σ̃+ kj)L− θj +βj

)
Q−+

+
cos

(
(σ̃− kj)L+ θj −βj

)
Q−−

]]
+
√
2σ̃

[
cos

(
βj +

π
4

)
Q−+

− sin
(
βj +

π
4

)
Q−−

+ e−αjL

[
−cos

(
(σ̃+ kj)L+βj +

π
4

)
Q−+

+
cos

(
(σ̃− kj)L−βj +

π
4

)
Q−−

]]}
(A50b)

Ip4,j = e−β

{
Kj

[
−sin

(
θj −βj

)( 1

Q++
− 1

Q+−

)
830

+ e−αjL

[
− sin

(
(σ̃+ kj)L− θj +βj

)
Q++

+
sin

(
(σ̃− kj)L+ θj −βj

)
Q+−

]]
+
√
2σ̃

[
−cos

(
βj +

π
4

)
Q++

− sin
(
βj +

π
4

)
Q+−

+ e−αjL

[
cos

(
(σ̃+ kj)L+βj +

π
4

)
Q++

− cos
(
(σ̃− kj)L−βj +

π
4

)
Q+−

]]}
(A50c)

Ip3,j = e−β

{
Kj

[
−cos

(
θj −βj

)( 1

Q++
− 1

Q+−

)
835

+ e−αjL

[
cos

(
(σ̃+ kj)L− θj +βj

)
Q++

+
cos

(
(σ̃− kj)L+ θj −βj

)
Q+−

]]
+
√
2σ̃

[
− sin

(
βj +

π
4

)
Q++

− cos
(
βj +

π
4

)
Q+−

+ e−αjL

[
sin

(
(σ̃+ kj)L+βj +

π
4

)
Q++

− sin
(
(σ̃− kj)L−βj +

π
4

)
Q+−

]]}
. (A50d)

Appendix B:
::::::::::
Comparison

:::
to

:::::::
another

::::::::::
mechanical

::::::
model
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::
In

:::
this

:::::::
Section,

:::
we

:::::::
compare

:::
the

:::::::
solution

::
to

:::
floe

:::::::
bending

::::::
issued

::::
from

:::
the

:::::
model

::::::::
described

::
in

::::
this

::::::::::
publication,

:::::::
SWIIFT,

::
to

::::::
results840

:::::
issued

::::
from

::
a
:::::
model

::::
that

:::::
solves

:::
for

:::::
wave

::::::::
scattering

::::
from

:::
ice

:::::
floes,

:::::::
hereafter

:::::::
referred

::
to

::
as
:::::::
WISIB

::::::::::::::::::::::
(Mokus and Montiel, 2022)

:
.

:::
The

:::::
main

::::::::
difference

::
is

:::
that

:::
in

::
the

:::::
latter

:::::
case,

:::
floe

::::::::
deflection

::
is
:::::::
derived

::::
from

:::
the

:::::::
interface

::::::::
between

::::
fluid

:::
and

::::
floe,

::::::::
assuming

::::
that

::
the

::::
floe

::::::::
conforms

::::::
exactly

::
to

:::
the

:::::
fluid;

:::
the

:::::::
solution

::
is

::::::
sought

::::::::
assuming

::::::::
harmonic

::::::
forcing

::
of

:::
the

:::::
plate,

::::
and

::::::::::
incorporates

:::::::
forward

:::
and

::::::::
backward

::::::::
travelling

::::::
waves,

:::::
while

::::::::
SWIIFT

::::
only

::::::::
represents

:::::::
forward

::::::::
travelling

::::::
waves.

::
A
:::::::::::
consequence

::
is

:::
the

:::::::::
possibility

:::
for

::::::
WISIB

::
to

:::::
create

::::::::::
constructive

::::::::::
interference

::::::
locally

:::::::::
increasing

:::
the

::::::::::
deformation

::
of

:::
the

:::::
plate

::
or

::
its

:::::::::
curvature.

::::::::::
Interactions

:::::::
between845

:::
floe

:::::::
lengths

::::
and

:::::::::::
wavenumbers

:::
can

::::::
locally

::::
lead

::
to

::::::::::
resonances.

:

::
In

::::
Sect.

:::
B1,

:::
we

::::
look

::
at
::::::::
curvature

:::::::::
envelopes.

::
In

:::::
Sect.

:::
B2,

:::
we

::::
look

::
at

:::::::
potential

::::::
elastic

::::::
energy

::::::
derived

:::::
from

::::
these

::::::::::
curvatures.

B1
:::::::::
Curvature

:::::::::
envelopes

::
In

::::
Fig.

:::
B1,

:::
we

::::::::
compare

::::::::
curvature

:::::::::
envelopes

::::::
derived

:::::
from

:::::::
SWIIFT

:::
or

::::::
WISIB.

::::
We

::
do

:::
so

:::
for

:::::::
various

:::
ice

::::::::::
thicknesses,

:::::
wave

::::::
periods,

::::
and

:::
floe

:::::::
lengths.

:::
By

::::::::
curvature

::::::::
envelope,

:::
we

:::::
mean

:::
the

:::::::::
maximum

::::::::
curvature

::::::::
attainable

::
at

:::
any

:::::::
location

:::::
along

:::
the

::::::
length850

::
of

:
a
::::
floe;

:::
the

::::::
actual

::::::::
curvature

::::::::
oscillates

:::
and

:::::::
reaches

:
it
::
at
:::
its

:::::::
positive

::::::::
antinodes.

:::
In

:::
the

::::
case

::
of

:::::::
WISIB,

::::::::
curvature

::
is

:::
the

:::
sum

:::
of

::::::
forward

::::
and

::::::::
backward

::::::::
travelling

::::::
modes,

:::::::
forward

:::
and

:::::::::
backward

::::::
damped

:::::::
modes,

:::
and

:::::::::
evanescent

::::::
modes.

:::
As

::
a

:::::::::::
consequence,

:::
the

:::::::
envelope

:::::
itself

::::::::
oscillates.

:::::
When

:::
the

::::::::::
wavelength

::
is

::::
long

::::::
enough

:::::::::
compared

::
to

:::
the

::::
floe,

::::
these

::::::::::
oscillations

::::::::
disappear.

:

:::::
When

:::
the

:::::::::
wavelength

::::
gets

::::::::::
significantly

::::::
longer

:::
than

:::
the

::::
floe

:::
(for

::::::::
example,

::::::::::::::
T = 10s and 12s

:::
and

:::::::::
h= 25m,

::::
most

:::
floe

::::::::
lengths),

::
the

::::::::
curvature

:::::::::
envelopes

:::
are

:::::::
different

::::
near

:::
the

:::::
edges:

::::::::
SWIIFT

:::
has

::::::
damped

:::::
terms

::::::
which

::::::::
oscillates

::::
with

:::::
spatial

:::::::::
frequency

::::::

1√
2LD

,855

::::
while

:::::::
WISIB

:::
has

:::::::
damped

:::::
terms

:::::
which

:::
are

::::::::
complex

:::::::
solutions

::
to
:::
the

:::::::::
dispersion

:::::::
relation

:::
Eq.

::::
(19).

::::
The

::::::
former

:::::::
depends

::::
only

:::
on

::
ice

:::::::::
thickness,

:::::
while

:::
the

::::
latter

:::::::
depends

::::::::
primarily

:::
on

:::
the

::::
wave

::::::
period.

:

B2
:::::::
Energy

::::
from

:::::::
spectral

:::::::
forcing

::::
More

::::
than

::::
the

::::::::
curvature

:::::
itself,

:::::
what

::::::
matters

:::
to

:::
our

:::::::::::
energy-based

:::::::
fracture

:::::::::::::
parametrisation

::
is
::::

the
:::::::
potential

::::::
elastic

::::::
energy

:::
of

:
a
::::::::
deformed

::::
floe.

:::
To

::::::::
compare

:::::
these

:::::::
energies

:::::::
between

::::
the

:::
two

:::::::
models,

:::
we

::::::::
calculate

:::::
them

::::
from

::::
the

::::::::
curvatures

:::::::
derived

:::::
from860

::::
both

:::::::::
mechanical

:::::::
models.

:::
We

:::
do

::
so

:::
for

:
a
:::::::
spectral

:::::::
forcing,

:::::::::::
corresponding

::
to
::
a
::::::::::::::::
Pierson–Moskowitz

::::::::
spectrum

:::::::::
discretised

::::
onto

:::
47

::::::::
frequency

::::
bins,

:::::::
between

:
0.05Hz to 0.52Hz

:
,
::::
with

:
a
:::::
width

::
of

:
1Hz.

:::
We

:::
use

:::::
Latin

:::::::::
hypercube

::::::::
sampling

::
to

:::::::
generate

:::
an

::::::::
ensemble

::::
(size

::::
289)

::
of

:::
ice

::::::::::
thicknesses,

::::::::
significant

:::::
wave

::::::
heights

::::::::::::
(parametrising

:::
the

:::::::::
spectrum),

:::
and

::::
floe

::::::
lengths,

:::::
from

::::::
uniform

:::::::::::
distributions

::
on

::::::::::
respectively 25 cm to 100 cm, 2m to 4m,

::::
and 50m to 400m

:
.
:::
The

:::::::
spectra,

::::::::
integrated

:::
on

:::
the

:::::::::
discretised

::::::::
frequency

::::
axis,

:::::
show

:
a
::::::
median

:::::::
relative

::::
error

::
to

:::
the

::::::
targets

:::

H2
S

16::
of
:
3.3× 10−3

:
..
:::
To

::::
each

::::::::
frequency

::::
bin,

:::
we

:::::::
associate

::
a
:::::
phase

::::::::
randomly

:::::::
sampled

:::::
from865

::::::
0 to 2π,

::
to
:::::
build

:::
an

:::::::::
incoherent

::::
wave

:::::
field,

::::
from

::::::
which

:::
floe

:::::::::
curvature,

::::
and

:::::::::
eventually,

:::::
elastic

:::::::
energy,

::
is

:::::::
derived.

:::
We

:::::
show

:::
the

:::::
results

::
in

::::
Fig.

:::
B2.

:

:::
The

::::::::
resulting

:::::::
energies

:::::
show

:
a
::::::::::
dependency

::
to

:::::
each

::
of

:::
the

::::
three

:::::::
chosen

::::::::
variables,

:::::::::
highlighted

:::
by

:::
the

:::::::::
regression

::::
lines

:::
on

:::
the

:::
top

::::
row.

:::
The

::::::
energy

:::::::
derived

::::
from

:::::::
SWIIFT

::
is

::::::::
generally

::::::
higher

::::
than

:::
the

::::::
energy

::::::
derived

:::::
from

::::::
WISIB,

::::
and

::::::
exhibit

::::
more

:::::::
spread.

::::::::
However,

:::
the

:::::
trends

::::
are

::::::
similar

:::
for

:::
the

:::::::
energies

:::::::
derived

:::::
from

::::
both

:::::::
models,

::
so

::::
that

:::
the

::::
ratio

:::
of

:::
the

::::
two

::::
does

:::
not

:::::
show

::::
any870

::::::::::
dependency

::
to

:::::
either

::
of

:::
the

:::::::
variables

::::
(the

:::::::::
regression

::::
lines

::
on

::::::
bottom

::::
left

::::
panel

::
of
::::
Fig.

:::
B2

:::
are

::::::
mostly

::::::::::
horizontal).

::
In

:::
the

::::::
bottom

::::
right

:::::
panel

::
of

:::
Fig.

::::
B2,

:::
we

::::
show

:::
the

::::::::::
distribution

::
of

:::::
these

:::::
ratios.

::
It

::
is

:::::::::::
right-skewed,

:::
and

::::
has

::::
mean

::::
1.02

::::::::::
(geometric

::::
mean

::::::
0.69).

39



No
rm

. c
ur

va
tu

re

T = 4 s, h = 25 cm T = 4 s, h = 50 cm T = 4 s, h = 100 cm

No
rm

. c
ur

va
tu

re

T = 6 s, h = 25 cm T = 6 s, h = 50 cm T = 6 s, h = 100 cm

No
rm

. c
ur

va
tu

re

T = 8 s, h = 25 cm T = 8 s, h = 50 cm T = 8 s, h = 100 cm

No
rm

. c
ur

va
tu

re

T = 10 s, h = 25 cm T = 10 s, h = 50 cm T = 10 s, h = 100 cm

0.00 0.25 0.50 0.75 1.00
Normalised length

No
rm

. c
ur

va
tu

re

T = 12 s, h = 25 cm

0.00 0.25 0.50 0.75 1.00
Normalised length

T = 12 s, h = 50 cm

0.00 0.25 0.50 0.75 1.00
Normalised length

T = 12 s, h = 100 cm

Figure B1.
:::::::::
Comparison

::
of

:::::::
curvature

::::::::
envelopes

::::::
derived

::::
from

::::::
SWIIFT

::
or

::::::
WISIB

::
for

:::::::
different

:::::
periods

::
of
:::::
wave

:::::
forcing

:::::
(row)

:::
and

::::::
different

:::
ice

::::::::
thicknesses

::::::::
(columns).

::::::
Within

::::
each

::::
panel,

::::
from

:::
top

::
to

:::::
bottom

::::
(and

:::::
darker

::
to

:::::
lighter

::::
hue)

::
are

:::
floe

::::::
lengths

::
of 50m, 100m, 200m and 400m

:
,

:::
and

::
the

::::
solid

:::
line

::
is

::
the

:::::::
SWIIFT

::::::
solution,

:::::
while

::
the

::::::
dashed

:::
line

::
is

::
the

::::::
WISIB

::::::
solution.

::::
The

:::::
x-axes

::
are

:::::::::
normalised

:::
with

::::::
respect

::
to

:::
floe

::::::
lengths,

:::
and

:::::::
individual

::::::::
curvatures

:::
are

::::::::
normalised

::::
with

:::::
respect

::
to

:::
the

:::::::
maximal

:::::::
curvature

:::::::
computed

::::
with

::::::
SWIIFT

:
.
::
We

::::::
display

::::
only

::
the

::::::
positive

::::::
branch

:
of
:::

the
::::::::
envelopes,

:::::
which

::
are

::::::::::
symmetrical

:::
with

::::::
respect

::
to

:::
each

:::::::::::
corresponding

:::::
y-axis.

::::
The

::::
origin

::
of

::::
these

:::::
y-axes

::
is

:::::
shown

::::
with

:
a
:::
thin

::::::::
horizontal

::::
black

:::
line.
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Figure B2.
:::::::::
Comparison

::
of

:::::::
potential

:::::
elastic

:::::
energy

::::::
derived

::::
from

::::::
SWIIFT

::
or
::::
from

::::::
WISIB.

:::
Top

::::
row:

:::::
energy

::
as
::
a

::::::
function

::
of

::::
three

:::::::::
parameters,

:::
with

:::::::
coloured

::::
dots

::
for

:::::::
SWIIFT

:::
and

:::::
black

:::
dots

:::
for

:::::
WISIB

:
.
::::::
Lowess

::::::::
regression

::::
lines

:::
are

:::::::::::
superimposed.

::::::
Bottom

:::
row:

:::
on

:::
the

::::
right,

:::::
ratios

::
of

:::::
energy,

::
as

:::::::
described

::
in
:::
the

::::
text;

::
the

::::::
colours

::::::::
correspond

::
to
:::
the

:::::::
variables

::
of

::
the

:::
top

::::
row,

::::
which

::::
were

:::::::::
normalised

::
to

::
fit

::
on

:::
the

::::
same

:::
axis.

:::
On

:::
the

::::
right,

:::::::::
distribution

::
of

::
the

:::::
energy

:::::
ratio.

::
In

:::
Fig.

::::
B3,

::
we

:::::
show

:::
the

:::::::::
correlation

:::::::
between

:::
our

::::
three

:::::
input

::::::::
variables

:::
and

:::
the

:::::::
resulting

::::::::
energies.

:::::::
Because

:::
the

:::::
trends

::::::::
exhibited

::
on

:::
the

:::
top

:::::
panel

::
of

::::
Fig.

::
B2

:::
are

::::::::::
non-linear,

::
we

:::
use

:::
the

:::::::::
Spearman

:::::::::
correlation

:::::::::
coefficient,

::::::
which

::::::::
quantifies

:::
the

:::::::::::
monotonicity

::
of

::
a

::::::::::
relationship.

:::
As

:::
can

::
be

::::
seen

::::
from

::::
Fig.

:::
B2,

:::
and

::::::::::
particularly

:::
the

:::::::::
regression

::::
lines,

:::
the

::::::
energy

::::::::
computed

:::::
from

:::::
either

:::::
model

:::
are

::::
very875

:::::
mildly

:::::::::
negatively

:::::::::
correlated

::::
with

:::::::::
thickness,

:::::
mildly

:::::::::
positively

:::::::::
correlated

::::
with

:::::::::
significant

::::
wave

:::::::
height,

:::
and

::::::
clearly

:::::::::
positively

::::::::
correlated

::::
with

:::
floe

::::::
length.

::::
The

::::::::::
correlations

:::
are

:::::::
stronger

:::::
when

::::
using

:::::::
WISIB,

:::::
which

::::::::
produces

::::
less

:::::::
scattered

::::::
results.

::::
The

::::::
energy

::::
ratio,

::::::::
however,

::
is

::
at

::::
most

::::
very

::::::
lightly

::::::::
correlated

::::
with

::::
any

::
of

:::
the

::::::::
variables.

41



Th
ick

ne
ss

SW
H

Fl
oe

 le
ng

th

En
er

gy
 (S

W
IIF

T)

En
er

gy
 (W

IS
IB

)

En
er

gy
 ra

tio

Thickness

SWH

Floe length

Energy (SWIIFT)

Energy (WISIB)

Energy ratio

1.00

-0.01 1.00

0.00 0.01 1.00

-0.10 0.20 0.71 1.00

-0.22 0.35 0.89 0.75 1.00

-0.13 0.10 -0.13 -0.65 -0.05 1.00
1.00
0.75
0.50
0.25

0.00
0.25
0.50
0.75
1.00

Figure B3.
::::::::
Correlation

:::::
matrix

:::::::
between

::::
input

:::::::::
parameters

:::
and

:::::
energy

::::::
derived

::::
from

:::::::
SWIIFT

:::
and

:::::
WISIB

:
.
:::
We

:::
use

:::
the

:::::::
Spearman

:::::::::
correlation

::::::::
coefficient.
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