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Abstract:  12 

Machine learning-based parameter regionalization is an important method for 13 

flood prediction in ungauged mountainous catchments. However, single machine 14 

learning parameter regionalization often exhibits limitations in prediction accuracy and 15 

robustness. Therefore, this study proposes a multi-machine learning ensemble 16 

regionalization method that integrates Gradient Boosting Machine (GBM), K-Nearest 17 

Neighbors (KNN), and Extremely Randomized Trees (ERT) methods (GBM-KNN-18 

ERT) to regionalize the sensitive parameters of the Topography-Based Subsurface 19 

Storm Flow (Top-SSF) model. Validated across 80 mountainous catchments in 20 

southwestern China, the GBM-KNN-ERT method demonstrates superior performance 21 

with 90% of ungauged catchments achieving the Nash-Sutcliffe Efficiency (NSE) 22 

above 0.9, representing a 67.44% improvement over the best single machine learning 23 

parameter regionalization. Notably, the GBM-KNN-ERT method shows improved 24 

robustness to climate change and changes in the number of donor catchments compared 25 

to other regionalization methods. An optimal balance between accuracy and 26 

computational efficiency was achieved using 20-40 high quality donor catchments 27 
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(NSE greater than 0.85). This study provides systematic evidence that multi-machine 28 

learning ensemble can effectively address regionalization challenges in ungauged 29 

mountainous regions, offering a reliable tool for water resource management and flood 30 

disaster mitigation. 31 

Keywords: Flood prediction; Regionalization; Ungauged mountainous catchments; 32 

Top-SSF model;  33 
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Highlights: 35 

1. Proposes a novel multi-machine learning ensemble regionalization method 36 

2. The GBM-KNN-ERT method increases the percentage of catchments with high-37 

accuracy flood predictions (NSE >0.9) to 90%, which is a 67.44% improvement 38 

over the best single machine learning method. 39 

3. The GBM-KNN-ERT method exhibits greater stability under climate change. 40 

  41 



 

3 

1. Introduction 42 

Floods in mountainous catchments, encompassing both flash floods and general 43 

larger-scale flood events which can be derived from mountainous upland catchments, 44 

pose a significant threat to human safety and property, particularly in regions lacking 45 

sufficient observational data (Luo et al., 2015; Zhai et al., 2018). While hydrological 46 

models like the Topography-Based Subsurface Storm Flow (Top-SSF) model (Li et al., 47 

2024) offer promising simulation capabilities, their application in ungauged catchments 48 

is severely limited by the absence of calibration data (Choi et al., 2023; Liu et al., 2018). 49 

Effective parameter regionalization methods are therefore essential for transferring 50 

hydrological knowledge from gauged to ungauged regions, enabling reliable flood 51 

prediction in ungauged mountainous catchment (Garambois et al., 2015; Ragettli et al., 52 

2017; Xu et al., 2018). 53 

Parameter regionalization is a crucial method for flood prediction in ungauged 54 

catchments (Arsenault et al., 2023; Guo et al., 2021; Kratzert et al., 2019; Zhang et al., 55 

2020). Compared to purely data-driven methods, parameter regionalization offers 56 

enhanced physical interpretability (Nearing et al., 2024; Tang et al., 2023; Zhang et al., 57 

2024). Existing parameter regionalization methods can be broadly classified into three 58 

categories: similarity-based, hydrological signatures-based, and regression-based 59 

(Arsenault et al., 2019; Wu et al., 2023). Similarity-based methods rely on the 60 

assumption that catchments with similar characteristics exhibit similar hydrological 61 

responses, considering spatial proximity (Arsenault et al., 2019; Pugliese et al., 2018; 62 

Yang et al., 2018) and physical similarity (similar climatic and land cover conditions 63 
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have similar hydrological characteristics) (Kanishka and Eldho, 2017; Papageorgaki 64 

and Nalbantis, 2016). Hydrological signature-based methods use hydrological 65 

signatures (quantitative metrics that describe statistical or dynamic properties of 66 

streamflow) as an intermediate link, establishing relationships first between model 67 

parameters and signatures, and then between signatures and catchment descriptors to 68 

facilitate parameter transfer (McMillan, 2021; Zhang et al., 2018). Regression-based 69 

methods, which directly link hydrological model parameters to catchment descriptors, 70 

are widely used due to their simplicity and computational efficiency (Guo et al., 2021; 71 

Kratzert et al., 2019; Song et al., 2022; Wu et al., 2023). However, the performance of 72 

regression-based methods is frequently constrained by the inherent nonlinearity in the 73 

relationships between model parameters and catchment descriptors, coupled with the 74 

difficulty in adequately capturing spatial heterogeneity, especially within complex 75 

mountainous terrain (Wu et al., 2023). 76 

Recent advances in machine learning offer potential solutions by capturing 77 

nonlinear patterns in high-dimensional data. Such as Decision Tree (DT), Extremely 78 

Randomized Trees (ERT), Gradient Boosting Machine (GBM), K-Nearest Neighbor 79 

(KNN), Random Forest (RF), and Support Vector Machines (SVM) have shown 80 

promise in parameter regionalization (Golian et al., 2021; Song et al., 2022). However, 81 

existing machine learning-based parameter regionalization studies predominantly focus 82 

on runoff prediction at coarser temporal scales (daily or monthly) (Li et al., 2022; Wu 83 

et al., 2023), leaving a significant gap in high-resolution (hourly or sub-hourly) flood 84 
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prediction in ungauged mountainous catchments. Moreover, these studies often rely on 85 

single machine learning methods to estimate all hydrological model parameters (Golian 86 

et al., 2021; Song et al., 2022; Wu et al., 2023). Given that different machine learning 87 

methods operate on distinct principles (Jordan and Mitchell, 2015; Zounemat-Kermani 88 

et al., 2021) and hydrological model parameters represent diverse hydrological 89 

processes (Li et al., 2024), a single machine learning method may not adequately 90 

capture the complexity of model parameter estimation (Golian et al., 2021; Wu et al., 91 

2023). Therefore, exploring the multi-machine learning ensemble methods is essential 92 

to improve the accuracy of high-resolution flood prediction in ungauged mountainous 93 

catchments. 94 

Southwest China's mountainous regions are particularly vulnerable to frequent 95 

floods, leading to ecosystem degradation through habitat disruption and biodiversity 96 

loss (Gan et al., 2018). The abundance of ungauged catchments in this region poses a 97 

significant challenge to reliable flood prediction. To address this critical issue, we 98 

systematically evaluate the performance of a novel multi-machine learning ensemble 99 

method for regionalizing Top-SSF model parameters across 80 representative 100 

catchments (mean area: 1,586 km²) in Southwest China. By assessing ensemble method 101 

robustness under climate change and with varying donor catchment configurations, this 102 

study aims to significantly enhance flood prediction accuracy in ungauged mountainous 103 

catchments, contributing to improved ecosystem resilience, enhanced human safety, 104 

and more effective water resource management in the face of escalating climatic 105 
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pressures. 106 

2. Study area and datasets 107 

2.1. Study area 108 

This study investigated 80 mountainous catchments in Southwestern China, 109 

encompassing Sichuan, Yunnan, Guangxi, Guizhou, and Chongqing provinces (Fig. 1). 110 

This region exhibits diverse climatic zones, including subtropical monsoon, plateau 111 

mountain, and tropical monsoon climates. The selected catchments have an average 112 

area of 1,586 km² (ranging from 109 to 6,564km2), with elevations ranging from 63 to 113 

6,284 meters. Mean annual temperature varies from 15 to 20°C, and annual 114 

precipitation ranges from 1,200 to 1,800 mm (Li et al., 2016), with approximately 80% 115 

of the annual precipitation occurring during summer and autumn, contributing to 116 

frequent flooding events (Cheng et al., 2019). These catchments are situated within a 117 

heavily forested region, the second largest in China (Hua et al., 2018), with forest cover 118 

ranging from 3% to 92% (mean: 51%), influencing evapotranspiration and runoff 119 

generation. Dominant soil types, according to the Genetic Soil Classification of China 120 

(Shi et al., 2004), include purple soil (12.20%), yellow soil (11.39%), and red soil 121 

(9.52%), each with distinct hydrological properties. 122 
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  123 

Fig.1. Geographical distribution of the 80 gauged catchments used, with locations of 124 

hydrometry station (red points) and major rivers indicated. 125 

2.2. Datasets 126 

Hourly flow data (2015–2018) for 80 mountainous catchments in China were 127 

sourced from the Hydrological Bureau of the Ministry of Water Resources, through 128 

China's hydrologic yearbooks, encompassing a spectrum of events from flash floods 129 

and general floods which can be derived from mountainous upland catchments. Hourly 130 

rainfall data (2015–2018) were obtained from ground meteorological stations across 131 

China (http://en.weather.com.cn), providing crucial input for hydrological modelling. 132 

Additional meteorological variables, including temperature, wind speed, dewpoint 133 

temperature, and surface net solar radiation, were obtained from the ERA5 hourly 134 

dataset (1940–present) (Hersbach et al., 2023), ensuring comprehensive atmospheric 135 

forcing. Relative humidity was estimated using dewpoint temperature. Historical 136 
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(1901–2021) and projected future (SSP585, 2022–2100) temperature and precipitation 137 

data for China, averaged from the EC-Earth3, GFDL-ESM4, and MRI-ESM2-0 models 138 

at 1 km resolution, were obtained from "A Big Earth Data Platform for Three Poles" to 139 

assess the impact of climate change (Ding and Peng, 2020) (http://poles.tpdc.ac.cn). 140 

Topographic data, including a 30-m resolution Digital Elevation Model (DEM), used 141 

for river network and topographic index derivation, were obtained from EARTHDATA 142 

and used for river network delineation and topographic index derivation 143 

(https://search.earthdata.nasa.gov/search). Forest cover data (30-m resolution) were 144 

sourced from the Global Forest Cover and Forest Change Map 145 

(https://www.noda.ac.cn/), providing information on vegetation characteristics. Bulk 146 

density (BD) data were derived from the Soil Database of China for Land Surface 147 

Modelling (Dai et al., 2013). Soil hydraulic parameters, specifically saturated hydraulic 148 

conductivity (Ks_CH) for Clapp and Hornberger functions and the pore-connectivity 149 

parameter (L) for van Genuchten and Mualem functions, were acquired from the China 150 

Dataset of Soil Hydraulic Parameters Using Pedotransfer Functions for Land Surface 151 

Modeling (Shangguan et al., 2013). 152 

 153 

 154 

 155 

 156 

 157 
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Table 1. Model forcing data and catchment descriptors information. 158 

Data type Name Unit Function 

Hydro-

meteorology 

Rainfall mm 
 Input for hydrological 

model 

Flood m3/s 
Used for model calibration 

(hourly resolution) 

Temperature K 

Input for hydrological model  

Surface pressure Pa 

Dewpoint temperature K 

wind speed m/s 

Surface net solar radiation j/m2 

Relative humidity % 

1 km monthly precipitation (1901-2021) mm 

Multi-year surface average 

as catchment descriptors 

 1 km monthly temperature (1901-2021) ℃ 

1 km monthly temperature (2022-2100, SSP5-

8.5, EC-Earth3, GFDL-ESM4, MRI-ESM2-0) 
℃ 

1 km monthly precipitation (2022-2100, 

SSP5-8.5, EC-Earth3, GFDL-ESM4, MRI-

ESM2-0) 

mm 

Soil 

characteristics  

Soil bulk density (BD) g/cm3 

Surface average as 

catchment descriptors 

Pore-connectivity parameter (L) for the van 

Genuchten and Mualem functions 
- 

Saturated hydraulic conductivity (Ks_CH) of 

the Clapp and Hornberger Functions  

cm d-

1 

Topography 

Forest cover (FC) % 

DEM m 

Topographic index - 

Slope mm-1 

Catchment area km2 

3. Methodology 159 

3.1. Hydrological model 160 

Top-SSF is a semi-distributed hydrological model based on the well-established 161 

TOPMODEL framework, which delineates sub-basins based on the topographic index. 162 

It retains the key advantages of TOPMODEL, such as its parsimonious structure, 163 

physical interpretability, and ease of parameter transfer (Beven et al., 2021; Gao et al., 164 
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2018), consists of 15 parameters representing six key hydrological components: canopy 165 

interception, infiltration, evapotranspiration, unsaturated zone moisture transport, 166 

subsurface storm flow, and flow routing (Li et al., 2024). In the Top-SSF model, flood 167 

can be comprised of four components: infiltration-excess overland flow, saturation-168 

excess overland flow, subsurface storm flow, and groundwater discharge.  169 

Infiltration-excess overland flow occurs when the rainfall intensity exceeds the 170 

infiltration capacity. In this study, infiltration is simulated using the Green-Ampt model. 171 

When surface ponding occurs, the infiltration rate is determined by solving the Green-172 

Ampt equation iteratively, for which the Newton-Raphson method is employed. The 173 

infiltration rate (𝑓𝑖𝑛) is given by： 174 

𝑓𝑖𝑛 =  −
𝐾s(𝐶𝐷+𝐹𝑠𝑎𝑡𝑟𝑡)

𝑆𝑧𝑚(1−e(𝐹𝑠𝑎𝑡𝑟𝑡/Sz𝑚)) 
   (1) 175 

where,𝑓𝑖𝑛is the infiltration rate (m/h)；𝐾s is surface hydraulic conductivity (m/h)；CD 176 

is capillary drive (m); 𝐹𝑠𝑎𝑡𝑟𝑡  is the initial cumulative infiltration (m); 𝑆𝑧𝑚  is the 177 

maximum water storage capacity in the unsaturated zone (m). 178 

Saturation excess overland flow occurs at computational cell 𝑖  when the 179 

groundwater table depth, 𝑆𝑖 is less than or equal to zero (i.e., 𝑆𝑖 ≤ 0, indicating the 180 

water table has reached the surface). It is calculated as: 181 

 𝑟𝑠,𝑖 = 𝑚𝑎𝑥{𝑆𝑢𝑧𝑖 − 𝑚𝑎𝑥(𝑆𝑖, 0) , 0}   (2)  182 

where, 𝑟𝑠,𝑖 is the depth of saturation excess overland flow generated at cell 𝑖 (m); 183 

𝑆𝑢𝑧𝑖  is the soil water storage in the unsaturated zone, at cell 𝑖  (m); 𝑆𝑖 is the 184 

groundwater table depth at cell 𝑖 (m). 185 

The depth of subsurface storm flow generated at computational cell 𝑖 , 𝑟𝑠𝑓,𝑖 is 186 

given by: 187 

 𝑟𝑠𝑓,𝑖 = 𝑞𝑠𝑓0(1 − 𝑆𝑠𝑓,𝑖/𝑆𝑓𝑚𝑎𝑥)   (3)  188 

where, 𝑟𝑠𝑓,𝑖  is the depth of subsurface storm flow at cell 𝑖  (m); 𝑞𝑠𝑓0  is initial 189 
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subsurface storm flow (m); 𝑆𝑠𝑓,𝑖 is the water storage deficit in the subsurface storm 190 

flow zone at cell 𝑖 (m). 191 

The depth of groundwater discharge is calculated as: 192 

 𝑟𝑏 = 𝑒lnTe−−𝑆𝑔/𝑆𝑧𝑚   （4） 193 

where, 𝑟𝑏 is depth of groundwater discharge (m);𝑙𝑛𝑇𝑒 is the log of the areal average 194 

of 𝑇0 (m2/h); is the catchment average topographic index; 𝑆𝑔  is the catchment 195 

average groundwater table depth (m). For the complete set of equations for the Top-196 

SSF model, the reader is referred to the Supplementary Material and Li et al. (2024). 197 

3.2. Multi-machine learning ensemble method 198 

To improve flood prediction accuracy in ungauged mountainous catchments, we 199 

proposed a multi-machine learning ensemble method for regionalizing sensitive 200 

parameters of the Top-SSF model. This method leverages the complementary strengths 201 

of multi-machine learning methods to estimate model parameters based on catchment 202 

descriptors (Fig. 2). The characteristics, strengths, and limitations of each machine 203 

learning method are summarized in Table 2. The ensemble method employs a cross-204 

validation procedure to select the best-performing machine learning method for each 205 

sensitive parameter. These selections are then integrated into a unified regionalization 206 

scheme. By mitigating limitations inherent in single machine learning regionalization, 207 

such as model bias and overfitting, and by capturing complex hydrological processes 208 

in mountainous catchment, this ensemble method aims to achieve more accurate flood 209 

prediction in ungauged catchments. 210 

 211 

 212 

 213 

 214 
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Table 2. Seven machine learning model characteristics, advantages and disadvantages. 215 

Machine 

learning 
Characteristic Advantage Disadvantages 

DT 

A single decision tree hierarchically partitions the 

data space using a tree structure, with internal nodes 

representing features, branches representing 

decision rules, and leaf nodes representing class 

labels. 

High interpretability; 

Minimal data 

preprocessing. 

Unstable; 

Tends to overfit. 

ERT 

Construct multiple decision trees with randomly 

selected feature values and randomly divided nodes 

(Geurts et al., 2006). 

Low overfitting risk; 

Computational 

efficiency; Resilient 

to noise. 

Possibility of 

increased bias; 

Limited 

interpretability. 

GBM 

Construct multiple decision trees. Multiple weak 

learners are trained iteratively and the loss function 

is optimised using gradient descent, progressively 

combined into a robust model through the learning 

rate (Friedman, 2002). 

High accuracy for 

structured data; 

Robust to outliers; 

Minimal data 

preprocessing. 

Limited 

interpretability; 

Complex 

adjustments. 

KNN 

It is a non-parametric, instance-based supervised 

learning algorithm. It operates by finding the K 

nearest data points in the training data to a given 

data point and making predictions based on these 

(Wani et al., 2017).  

Simple and easy to 

implement. 

Learning process is 

quick. 

Sensitivity to 

noisy and scale 

of data. 

Accuracy can be 

heavily impacted 

by the choice of 

K. 

RF 

A bagging algorithm proposed by Breiman (2001) 

that uses ensemble learning. Involves training 

numerous decision trees and aggregating 

predictions . 

Simple and easy to 

implement; 

Low computational 

cost. 

Prone to 

overfitting in 

noisy regression 

tasks. 

SVM 

Identifies hyperplanes in high-dimensional spaces 

to segregate data. The optimal hyperplane 

maximizes the margin between it and the nearest 

data points, termed support vectors (Sain, 1996). 

Uses kernel functions 

to address nonlinear 

classification issues. 

Sensitive to noise 

 216 
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 217 

Fig.2. Multi-machine learning ensemble method for regionalization in ungauged mountainous 218 

catchments. The red line indicates the machine learning method that yielded the optimal 219 

parameter estimates. 220 

3.3. Parameter regionalization process 221 

The parameter regionalization process comprised four key steps: (1) Top-SSF 222 

model calibration and parameter sensitivity analysis; (2) selection of relevant catchment 223 

descriptors; (3) establishment of regionalization relationships between sensitive model 224 

parameters and catchment descriptors using multi-machine learning ensemble methods; 225 

and (4) evaluation of parameter regionalization performance. 226 

3.3.1. Top-SSF model calibration and parameter sensitivity analysis 227 

In this study, the Top-SSF model was employed to simulate hydrological processes. 228 

The model was driven by continuous hourly meteorological data, including rainfall, 229 

temperature, surface pressure, relative humidity, wind speed, and surface net solar 230 

radiation. For each catchment, model parameters were calibrated using two 231 

hydrologically independent and representative flood events. A third, distinct flood event 232 

was then used for model validation. The Nash-Sutcliffe Efficiency (NSE) served as the 233 

objective function during calibration, with parameter optimization achieved using the 234 

Shuffled Complex Evolution (SCE-UA) algorithm (Duan et al., 1994), known for its 235 

global convergence and robustness (Dakhlaoui et al., 2012; Qi et al., 2016). Model 236 
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performance was evaluated using the NSE, the relative error of flood peak flow (Qp), 237 

and the absolute error in flood peak occurrence time (Tp), following China's 238 

Specification for Hydrological Information Forecast (GB/T 22482-2008). These 239 

metrics quantify the model's ability to predict flood dynamics, peak flow, and timing. 240 

Following calibration, a sensitivity analysis was conducted to identify and exclude 241 

insensitive model parameters (Lenhart et al., 2002), which were then used for 242 

regionalization. This approach reduces the dimensionality of the regionalization 243 

problem and improves the efficiency of the process. 244 

The sensitivity index (𝑆𝑖) of each hydrological model parameter was determined 245 

using the method of Lenhart et al. (2002), which assesses the influence of ±10% 246 

changes in parameter values (Eq. 1). Table 3 outlines the sensitivity analysis results for 247 

the model parameters across the 80 mountainous catchments. The 𝑆𝑖  values are 248 

categorized as follows (Guo et al., 2022): negligible sensitivity ( |𝑆𝑖|  <  0.05 ), 249 

moderate sensitivity (0.05 <  |𝑆𝑖|  <  0.2), high sensitivity (0.2 <  |𝑆𝑖|  <  1.00), and 250 

extremely high sensitivity (|𝑆𝑖|  ≥  1.00 ). Based on the sensitivity analyses, seven 251 

sensitive model parameters were identified: 𝑆𝑧𝑚, 𝑙𝑛𝑇𝑒, 𝑆𝑓𝑚𝑎𝑥, 𝐶, 𝑞𝑠𝑓0, 𝑡 (Table 252 

3). 253 

𝑆𝑖 =
1

𝑁
∑

(𝑦2(𝑡)−𝑦1(𝑡))/𝑦0(𝑡)

2∆𝑥/𝑥0

𝑁
𝑡   (5) 254 

where 𝑦0(t)  is the flood value of the calibrated parameter 𝑥0  at time 𝑡 ; ∆𝑥  is the 255 

adjusted parameter difference，∆𝑥/𝑥0=10%；𝑦1(t) is the flood value of the calibrated 256 

parameter 𝑥0 − ∆𝑥  at time 𝑡 ;𝑦2(t)  is the flood value of the calibrated parameter 257 
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𝑥0 + ∆𝑥 at time 𝑡. 258 

Table 3. Top-SSF model main modules and default range of parameters. 259 

Modular Parameter Definition Unite 

Default 

range 

Sensitivity 

index 

Canopy 

interception 

𝑆𝑐 Canopy storage capacity m 0.00~0.01 <0.05 

𝑆𝑡 Trunk storage capacity m 0.00~0.01 <0.05 

𝑃𝑡 

Proportion of rain diverted into 

stemflow per cover 

% 0.00~1.00 <0.05 

Evapotranspiration 

𝑆𝑟0 Initial root zone storage deficit m 0.00~0.02 <0.05 

𝑆𝑟𝑚𝑎𝑥 Maximum root zone storage deficit m 0.00~2 <0.05 

Infiltration 

𝐾𝑠 Surface hydraulic conductivity m/h 0~0.01 <0.05 

𝐶𝐷 

Capillary drive  

(Morel-Seytoux and Khanji, 1974) 

m 0~5 <0.05 

Unsaturated zone 

𝑆𝑢𝑧0 Initial baseflow per unit area m 0.00~10-4 <0.05 

𝑆𝑧𝑚 

Soil maximum water storage 

capacity 

m 0.00~1.00 0.19 

𝑡𝑑 

Unsaturated zone time delay per unit 

storage deficit 

h/m 0~3 1.07 

𝑙𝑛𝑇𝑒 log of the areal average of T0 m2/h -2.00~1.00 3.4 

Subsurface 

storm flow zone 

𝑆𝑓𝑚𝑎𝑥 

Maximum subsurface storm flow 

zone deficit 

m 0.00~0.01 0.16 

𝐶 Transfer coefficient m-2/h 0.00~0.1 0.26 

𝑞𝑠𝑓0 

Initial subsurface storm flow per unit 

area 

m 0.00~0.02 0.18 

Routing 𝑡 Flow routing correction coefficient - 0.00~5.0 1.21 

Note, the bolded values in the sensitivity index indicate sensitive model parameters. 260 

3.3.2. Catchment descriptor selection 261 

To mitigate the effects of multicollinearity on the accuracy and reliability of the 262 

parameter regionalization methods, catchment descriptors were screened using the 263 
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variance inflation factor (VIF) and correlation coefficients. A VIF threshold of less than 264 

10 (VIF < 10) was used to indicate acceptably low multicollinearity (Salmeron et al., 265 

2018). Initial screening identified strong correlations between several descriptor pairs, 266 

notably L with Ks_CH, and Tem with Elev. Furthermore, the VIF values for Ks_CH 267 

and Slope were found to exceed 10. Consequently, Ks_CH and Slope were removed 268 

from the potential set of descriptors. Following their removal, a re-evaluation of the 269 

VIF for the remaining descriptors was conducted. Although a notable correlation exists 270 

between Tem and elevation (Elev), their VIF values in the reduced set were both below 271 

the threshold of 10. Given the importance of Tem for representing climate impacts and 272 

Elev as a key topographic driver, both were retained to preserve potentially valuable 273 

information. The final set of seven catchment descriptors selected for regionalization 274 

therefore comprised FC, Elev, Area, L, Tem, Pre, and BD. As illustrated in Fig. 3b, the 275 

correlations among these final descriptors and the sensitive model parameters are 276 

generally low (highest at 0.5), suggesting that the relationships are complex and 277 

nonlinear. 278 

 279 

 280 
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 281 

Fig.3. Analysis of catchment descriptor relationships: (a) Correlation coefficients and variance 282 

inflation factors (VIF) among all descriptors; (b) Correlation coefficients between 283 

sensitivity model parameters and descriptors with VIF values below 10. 284 

3.3.3. Parameter regionalization 285 

To simulate ungauged catchment conditions, each of the 80 catchments was 286 

iteratively treated as an ungauged catchment, with the remaining 79 catchments serving 287 

as donor catchments. A parameter regionalization method was then constructed using 288 

the catchment descriptors and sensitive model parameters of the donor catchments to 289 

predict the seven sensitive model parameters for the ungauged catchment based on its 290 

catchment descriptors. These predicted model parameters were then input into the Top-291 

SSF model to enable flood prediction in ungauged catchments. To ensure robust and 292 

generalizable results, K-fold cross-validation (K = 10) was implemented. This involved 293 

randomly partitioning the 79 donor catchments into K subsets, using one subset as a 294 

test set and the remaining K-1 subsets for method training in each iteration (Jung, 2018). 295 

This approach maximizes data utilization and minimizes bias associated with specific 296 

data partitioning. Hyperparameter tuning for each machine learning method was 297 

performed using RandomizedSearchCV (Bergstra and Bengio, 2012), with the 298 

objective of minimizing the difference between predicted and observed parameter 299 
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values. 300 

3.3.4. Evaluated metrics 301 

The performance of the parameter regionalization methods was evaluated by 302 

considering two key aspects. First, the accuracy of the methods in estimating sensitive 303 

model parameters was assessed using three metrics: root mean square error (RMSE), 304 

standard deviation (STD), and the coefficient of determination (R2). The R2 was used 305 

to quantify the agreement between estimated and calibrated parameter sets. Second, to 306 

evaluate the impact of parameter regionalization on flood prediction. The resulting 307 

flood predictions were then evaluated using the NSE, Qp, and Tp metrics. 308 

𝑁𝑆𝐸 = 1 −
∑ (𝑄𝑜𝑏𝑠(𝑗)−𝑄𝑠𝑖𝑚(𝑗))2𝑀

𝑗=1

∑ (𝑄𝑜𝑏𝑠(𝑗)−𝑄𝑜𝑏𝑠)2𝑀
𝑗=1

   (6) 309 

𝑄𝑝 = |
𝑄𝑜𝑏𝑠,𝑝−𝑄𝑠𝑖𝑚,𝑝

𝑄𝑜𝑏𝑠,𝑝
× 100%|   (7) 310 

𝑇𝑝 = |𝑇𝑜𝑏𝑠,𝑝 − 𝑇𝑠𝑖𝑚,𝑝 |   (8) 311 

where 𝑄𝑜𝑏𝑠(𝑗) is the observed flow rate (m3/s); 𝑄𝑠𝑖𝑚(𝑗) is the simulated flow rate 312 

(m3/s); obsQ is the mean value of the observed flow rate (m3/s); 𝑄𝑜𝑏𝑠,𝑝 is the observed 313 

flood peak flow (m3/s); 𝑄𝑠𝑖𝑚,𝑝 is the simulated flood peak flow (m3/s); 𝑇𝑜𝑏𝑠,𝑝 is the 314 

observed flood peak occurrence time (h); and 𝑇𝑠𝑖𝑚,𝑝  is the simulated flood peak 315 

occurrence time (h). 316 

 317 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑ (𝑋𝑖 − 𝑌𝑖)2𝑛

𝑖=1    (9) 318 

𝑆𝑇𝐷 = √
1

𝑁−1
∑ (𝑌𝑖 − Y)2𝑁

𝑖=1    (10) 319 

𝑅2 =
[∑ (𝑋𝑖−𝑋̅)(𝑌𝑖−𝑌̅)𝑛

𝑖=1 ]2

∑ (𝑋𝑖−𝑋̅)𝑛
𝑖=1

2
∑ (𝑌𝑖−𝑌̅)2𝑛

𝑖=1

   (11) 320 

where 𝑋𝑖  is the Top-SSF calibration model parameter value; 𝑌𝑖  is the model 321 
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parameter estimated value using the parameter regionalization method; 𝑋 and 𝑌 are 322 

the mean values of 𝑋𝑖 and 𝑌𝑖; 𝑁 is the sample size equal to 80. 323 

 324 

Fig.4. Flowchart illustrating the parameter calibration, validation, and regionalization workflow. 325 

Abbreviations: Top-SSF (Topography-Based Subsurface Storm Flow hydrological model), 326 

DT (Decision Tree), ERT (Extremely Randomized Trees), GBM (Gradient Boosting 327 

Machine), KNN (K-Nearest Neighbor), RF (Random Forest), SVM (Support Vector 328 

Machine), NSE (Nash-Sutcliffe efficiency), R2 (Coefficient of Determination), Qp (The 329 

relative error of flood peak flow), Tp (The absolute error in flood peak occurrence time), 330 

VIF (Variance inflation factor), RMSE (Root mean square error), STD (Standard 331 

deviation). 332 

4. Result 333 

4.1. Model performance 334 

The Top-SSF model demonstrated good flood simulation performance across the 335 

80 gauged catchments, as quantified by NSE, Qp, and Tp. During the calibration period, 336 

50% of the catchments achieved NSE values exceeding 0.78 (Fig. 5a), the median Qp 337 

value was below 10% (Fig. 5b), and the median Tp value was within 2 hours (Fig. 5c). 338 

The average NSE value was approximately 0.8, with a maximum of 0.96. The majority 339 
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of Qp values were around 8%, and the majority of Tp values were below 2 hours. 340 

During the validation period, the median NSE value was 0.76 (Fig. 5a), the median Qp 341 

value was below 10% (Fig. 5b), and the median Tp value was within 4 hours (Fig.5c). 342 

The hydrological response times for the 80 catchments were approximated as the time 343 

from precipitation peak to flood peak. The estimated range is from 1 to 26 hours. This 344 

diversity is indicative of the comprehensive nature of the study, which encompasses 345 

both rapid flash floods in smaller basins and more general floods in larger, mountainous 346 

catchments (mean area: 1,586 km²). For catchments with longer response times, a 347 

median error of 2-4 hours remains operationally valuable for providing sufficient flood 348 

warning lead time. It is noteworthy that the median Tp during the calibration period 349 

(within 2 hours) satisfied China's Specification for Hydrological Information Forecast 350 

(GB/T 22482-2008) stringent requirements for high-quality forecasts. 351 

Model performance also exhibited some dependence on catchment characteristics. 352 

For instance, NSE generally improved with increasing forest cover (Fig. 6a), potentially 353 

due to the model's explicit representation of forest canopy interception and subsurface 354 

storm flow generation mechanisms. The relationship between NSE, Qp, Tp and 355 

elevation was more complex, suggesting a nonlinear influence of elevation on model 356 

performance (Fig. 6 a-c). The demonstrated robust performance of the Top-SSF model 357 

provides a strong foundation for its application in subsequent parameter regionalization 358 

analyses. 359 
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 360 
Fig. 5. Boxplots of (a) NSE, (b) Qp, and (c) Tp during the calibration and validation periods 361 

for 80 gauged catchments. The box represents the interquartile range, with the middle line 362 

indicating the median (50th percentile). The whiskers represent the minimum and 363 

maximum values. "□" represents the mean value. Dark grey indicates the range of flood 364 

prediction criteria (i.e., NSE> 0.75, Qp< 20%, and Tp < 2 hours). 365 

 366 

Fig.6. Influence of environmental factors on Top-SSF model performance in flood simulation. 367 

The graphs illustrate the relationship between model evaluation metrics and forest cover 368 

(left) and elevation (right). 369 

4.2. Results of parameter regionalization  370 

4.2.1. Comparison of sensitive model parameter estimates  371 

The six single machine learning regionalization methods exhibited varying 372 

performance in estimating sensitive model parameters (Fig. 7), likely due to differences 373 

in catchment descriptor characteristics and the underlying principles of each method. 374 

Their hyperparameter results are presented in Tables S1–S6 of the supplementary 375 

material. The GBM demonstrated the highest accuracy in estimating 𝑆𝑧𝑚, 𝑡𝑑, and 𝐶 376 

(R2 = 0.90, 0.86, and 0.87, respectively,), with its estimates also exhibiting a STD that 377 

closely matched the distribution of the calibrated parameter values. KNN provided the 378 

most accurate estimates for 𝑙𝑛𝑇𝑒 , 𝑞𝑠𝑓0 , and 𝑡  (R2 = 0.87, 0.89, and 0.90, 379 

respectively), also with STD closely resembling the calibrated parameter distributions. 380 
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ERT performed best in estimating 𝑆𝑓𝑚𝑎𝑥  (R2 = 0.87), but its performance was 381 

generally poorer for other parameters. DT, SVM, and RF methods generally showed 382 

lower performance across all sensitive model parameters. These differences in 383 

performance highlight the potential benefits of multi-machine learning ensemble 384 

methods for improving flood prediction in ungauged mountainous catchments. 385 

 386 

Fig.7. Performance of parameter regionalization methods assessed using Taylor diagrams. The 387 

diagrams show the accuracy of sensitive model parameter estimates, with the coefficient 388 

of determination (R2) indicated by the radial axis, standard deviation (STD) by the 389 

horizontal and vertical axes, root mean square error (RMSE) by the grey-blue dotted lines, 390 

and the standard deviation of observations by the black dotted line. 391 
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4.2.2. Comparison of flood forecasting results  392 

The flood prediction performance of the Top-SSF model, integrated with different 393 

parameter regionalization methods, was compared across 80 mountainous catchments 394 

in southwestern China. The methods included single machine learning methods and a 395 

multi-machine learning ensemble method (GBM-KNN-ERT), where GBM estimated 396 

𝑆𝑧𝑚 , 𝑡𝑑 , and 𝐶 ; KNN estimated 𝑙𝑛𝑇𝑒 , 𝑞𝑠𝑓0 , and 𝑡 ; and ERT estimated 𝑆𝑓𝑚𝑎𝑥 . 397 

The performance of these parameter regionalization methods was then evaluated 398 

against the performance of the Top-SSF model using calibrated parameters. Among the 399 

single machine learning methods, GBM performed best, with 60 catchments achieving 400 

a positive NSE (NSE > 0, Fig. 8d). Critically, for high-accuracy predictions (NSE > 401 

0.9), GBM succeeded in 43 catchments (54%), also showing strong performance with 402 

Qp less than 5% and Tp less than 1 hour in most cases (Fig. 8a-c). The GBM-KNN-403 

ERT ensemble method yielded even better results. It increased the number of 404 

catchments with positive NSE to 75 (Fig. 8d). More impressively, the ensemble method 405 

achieved exceptional performance (NSE > 0.9) in 72 catchments (90%). This represents 406 

a 67.44% increase in the number of high-accuracy predictions compared to the best 407 

single method (GBM). Furthermore, the ensemble method Qp values were more 408 

concentrated around zero, and 90% of catchments maintained near-zero Tp values. 409 

These results strongly demonstrate the superior potential of multi-machine learning 410 

ensembles for improving flood prediction in ungauged catchments. 411 

To further illustrate these performance differences visually, Fig. 8 (e, f, and g) 412 

presents hydrographs from three randomly selected flood events. These events 413 
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represent cases where the calibrated Top-SSF model itself achieved high (NSE=0.91), 414 

medium (NSE=0.76), and low (NSE=0.55) performance, respectively. A key insight 415 

from these plots is that the Top-SSF simulation (solid black line) is the performance 416 

benchmark for the regionalization methods. Although the models aim to approximate 417 

measured floods, their performance is ultimately limited by the accuracy of the Top-418 

SSF model structure and its optimized parameters. 419 

The hydrographs show how the GBM-KNN-ERT ensemble achieves superior 420 

performance by leveraging the complementary strengths of its component methods. For 421 

instance, in the high-performance case (Fig. 8e), the GBM and KNN methods capture 422 

the overall shape well, but the ERT simulation provides a more precise estimation of 423 

the primary flood peak. The final ensemble successfully integrates this peak accuracy, 424 

resulting in the highest overall performance. Similarly, Fig. 8f shows that the ensemble 425 

moderates the slow initial rise characteristic of the KNN method, leading to a more 426 

realistic rising limb. The ensemble method ability to balance competing errors is most 427 

evident in the low-performance case (Fig. 8g). During the recession phase, the ensemble 428 

method averages the high bias of the ERT method with the low bias of the GBM and 429 

KNN methods, producing a hydrograph that more closely resembles the benchmark 430 

simulation than any single model could. This synergy demonstrates that the ensemble 431 

method superior performance is a direct result of its ability to integrate the specific, 432 

complementary strengths of each member model across different parts of the 433 

hydrological process.  434 
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 435 

Fig.8. Evaluation of flood prediction performance for different parameter regionalization 436 

methods. (a-c) show the distributions of Nash-Sutcliffe Efficiency (NSE), relative peak 437 

flow error (Qp), and peak time error (Tp) across all 80 catchments, with shaded regions 438 

indicating where flood prediction standards were met (NSE > 0.75, Qp < 20%, and Tp < 439 

2 hours). (d) shows the number of catchments with NSE > 0 and the black border indicates 440 

the number of catchments with NSE > 0.9. (e-g) present example hydrographs comparing 441 

the simulated flood from each regionalization method against measured flood flow and 442 

the calibrated Top-SSF model benchmark for catchments where the benchmark model 443 

performance was (e) high (NSE=0.91), (f) medium (NSE=0.76), and (g) low (NSE=0.55).444 
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5. Discussion 445 

5.1. Reliability of multi-machine learning ensemble in parameter regionalization 446 

In this study, the GBM-KNN-ERT method demonstrated superior regionalization 447 

performance, highlighting the potential of ensemble methods for improving 448 

hydrological predictions in ungauged mountainous catchments. The success of the 449 

ensemble is rooted in the distinct learning mechanisms and behaviors of its individual 450 

components, which were revealed during hyperparameter optimization. 451 

The GBM method exhibited distinct parameter-specific sensitivities to 452 

hyperparameters (Fig. 9a-c). For parameter 𝐶, the negative correlation between R2 and 453 

n_estimators (>300 trees) indicates overfitting risks when modeling complex rainfall-454 

runoff interactions in heterogeneous mountainous terrain (Fig. 9a). This aligns with 455 

previous findings emphasizing the need for complexity control in hydrological 456 

generalization (Schoups et al., 2008). Conversely, the improved R2 for parameter 𝑡𝑑 457 

with increased n_estimators highlights the capacity of ensemble learning to capture 458 

complex, nonlinear relationships between catchment descriptors and hydrological 459 

parameters (Hastie et al., 2009). The contrasting optimal max_depth of 10 layers for 460 

parameter 𝐶 , compared to shallower optimal depths (3-4 layers) for 𝑆𝑧𝑚  and 𝑡𝑑 , 461 

suggests that parameters governing more complex hydrological processes in 462 

mountainous catchments may require deeper decision trees to effectively capture the 463 

interactions between climate, topography, and soil properties (Wainwright and 464 

Mulligan, 2013). 465 

KNN performance exhibited pronounced sensitivity to neighbourhood size 466 
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(n_neighbors) and distance metric (p), highlighting the spatial heterogeneity of 467 

catchment descriptors. For parameters  𝑙𝑛𝑇𝑒  and 𝑞𝑠𝑓0 , optimal performance was 468 

observed at n_neighbors =30 (Fig. 9d), aligns with the hypothesis that meaningful 469 

hydrological similarities can emerge even in topographically complex mountainous 470 

regions when considered at broader spatial scales (Li et al., 2022). Conversely, 471 

parameter 𝑡  achieved peak accuracy at n_neighbors=5, suggesting that localized, 472 

short-term weather events and fine-scale topographic similarities in adjacent 473 

mountainous areas can significantly influence local runoff processes (Garambois et al., 474 

2015). The Manhattan distance metric (p=1) outperformed Euclidean distance across 475 

all parameters (Fig. 9e). This performance advantage is primarily attributed to the 476 

method's capacity to alleviate the "curse of dimensionality" (Bellman, 1961) inherent 477 

in high-dimensional datasets—a prevalent challenge when characterizing complex 478 

mountainous catchments with diverse descriptors. In such datasets, sparse data 479 

distributions and the presence of mixed variable types (e.g., topographic indices, land 480 

cover) can significantly degrade the discriminative power of Euclidean distance 481 

(Rockström et al., 2023). The robustness of the Manhattan distance arises from its axis-482 

aligned sensitivity, which provides a more effective means of handling feature scaling 483 

and integrating catchment descriptors compared to the radial symmetry of Euclidean 484 

distance. 485 

ERT performance was maximized at max_features = 0.1 (Fig. 9f). By restricting 486 

the random sampling of features during node splits (using only 10% of the features), 487 

both the diversity of the trees was enhanced and the effects of multicollinearity between 488 
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topographic and soil attributes were reduced. This finding aligns with the theory 489 

proposed by Geurts et al. (2006), which suggests that random feature selection can 490 

significantly improve model generalization, a particularly important consideration in 491 

ungauged mountainous catchments characterized by high levels of inter-correlation 492 

among predictor variables.  493 

These distinct sensitivities and learning mechanisms form the scientific basis for 494 

the superiority of the GBM-KNN-ERT method. As shown in Section 4.2, no single 495 

machine learning method is universally optimal for all hydrological model parameters. 496 

Instead, the ensemble method effectively allocates each parameter to the model best 497 

suited for its regionalization. Specifically, GBM, with its capacity for modeling 498 

complex interactions, proved optimal for integrated parameters like 𝑆𝑧𝑚 and 𝑡𝑑. In 499 

contrast, the instance-based KNN was superior for parameters like 𝑙𝑛𝑇𝑒, which are 500 

governed by physical similarity and spatial coherence. Finally, the highly randomized 501 

nature of ERT provided the necessary robustness to model the noisy relationship 502 

associated with the 𝑆𝑓𝑚𝑎𝑥 .This synergistic combination, where each model 503 

contributes its unique strength, results in a final regionalization framework that is more 504 

accurate and physically plausible than any individual method operating in isolation. 505 
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 506 
Fig.9. Sensitivity of parameter estimation performance to key hyperparameters in (a-c) GBM, 507 

(d-e) KNN method, and (f) ERT. (a) n_estimators (number of decision trees in GBM), (b) 508 

max_depth (maximum depth of decision trees in GBM), (c) learning rate (GBM), (d) 509 

n_neighbors (number of neighbors in KNN), (e) p-value of Minkowski distance (KNN; 510 

p=1: Manhattan distance, p=2: Euclidean distance), and (f) max_features (ERT). 511 

5.2. Combining multiple machine learning methods for parameter regionalization  512 

Machine learning methods exhibit distinct strengths in hydrological parameter 513 

estimation due to fundamental differences in data processing mechanisms, pattern 514 

recognition strategies, and prediction generation (Bishop and Nasrabadi, 2006). This 515 

suggests that multi-machine learning ensemble methods have the potential to 516 

synergistically integrate advantages while effectively compensating for individual 517 

limitations, leading to more robust and accurate parameter estimates. As demonstrated 518 

in Fig. 10, the GBM-KNN-ERT method achieved notable improvements over any 519 

single machine learning method, particularly for sensitive parameters 𝑙𝑛𝑇𝑒, 𝑆𝑓𝑚𝑎𝑥, 520 

𝑞𝑠𝑓0  and 𝑡 , with R2 increases ranging from 0.02 to 0.03 compared to the best-521 

performing GBM method (Fig.10e).  522 

Interestingly, a comparison of GBM4-KNN3 (where 𝑆𝑓𝑚𝑎𝑥  is estimated by 523 
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GBM) and GBM3-KNN4 (where 𝑆𝑓𝑚𝑎𝑥  is estimated by KNN) revealed critical 524 

insights into model parameter compatibility. Despite both achieving an identical R² of 525 

0.85 for the estimation of 𝑆𝑓𝑚𝑎𝑥, GBM4-KNN3 exhibited superior flood prediction 526 

performance, with 72 catchments achieving NSE > 0 compared to only 68 catchments 527 

for GBM3-KNN4. This suggests that GBM possesses an enhanced capability to resolve 528 

the complex coupling between soil moisture dynamics and topography, leading to more 529 

physically plausible representation of subsurface storm flow processes (Gupta et al., 530 

2023). The wider distribution of flood prediction performance observed for GBM3-531 

KNN4 (Fig. 10 a–c) further suggests that uncertainties introduced by KNN in the 532 

estimation of 𝑆𝑓𝑚𝑎𝑥 may propagate nonlinearly during flood simulations, potentially 533 

amplifying errors. This observation aligns with theoretical expectations that distance-534 

based methods may tend to oversmooth critical thresholds or sharp transitions in 535 

heterogeneous environments, leading to a less accurate representation of hydrological 536 

responses (Bellman, 1961).  537 

Furthermore, an important consideration in adopting ensemble methods is the 538 

trade-off between predictive accuracy and computational efficiency. To evaluate this 539 

trade-off, we compared the model training times for various parameter regionalization 540 

methods, with the results summarized in Table 4. The analysis shows that our proposed 541 

GBM-KNN-ERT ensemble, while providing the highest predictive accuracy, required 542 

a total training time of 102.8 s. This is moderately higher than the best-performing 543 

single model, GBM (57.6 s), and other simpler ensemble methods like GBM4-KNN3 544 

(36.1 s). The increased computational time for the GBM-KNN-ERT method is 545 
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primarily attributed to the inclusion of the ERT method for estimating the 𝑆𝑓𝑚𝑎𝑥 , 546 

which is inherently more computationally intensive than GBM or KNN. 547 

However, it is crucial to contextualize this computational cost for operational use. 548 

The process of training a regionalization method is an offline task, performed once to 549 

establish the stable relationships between catchment descriptors and model parameters. 550 

This one-time investment is not a constraint on real-time flood forecasting, as once the 551 

method is trained, parameter estimation for a new ungauged catchment is nearly 552 

instantaneous. To provide context for the reported computational times, all model 553 

training and simulations were performed on a workstation equipped with an Intel(R) 554 

Core (TM) i9-10900K CPU @ 3.70GHz, 32.0 GB of RAM, and an NVIDIA Quadro 555 

P1000 (4 GB) GPU, running on a 64-bit Windows operating system with Python 3.9. 556 

Given this context, the modest increase in one-time training cost is a justifiable 557 

investment for the significant improvements achieved in flood prediction accuracy, 558 

model robustness, and stability. Therefore, for applications in water resource 559 

management and flood risk assessment where high accuracy is paramount, the GBM-560 

KNN-ERT method strikes an optimal and practical balance between computational 561 

efficiency and predictive performance. 562 
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 563 

Fig.10. Assessment of combined machine learning methods for improved parameter 564 

regionalization in ungauged mountainous catchments. Performance is evaluated against 565 

the GBM method, showing (a) NSE, (b) Qp, (c) Tp, (d) Number of catchments with NSE > 566 

0, and (e) the difference in R2. 567 

 568 

 569 

 570 

 571 
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Table 4. Running time (s) for different parameter regionalization methods 572 

 GBM GBM4-KNN3 GBM3-KNN4 GBM-KNN-ERT KNN ERT 

𝑙𝑛𝑇𝑒 11.3 3.4 3.4 3.7 3.6 74.4 

𝑆𝑧𝑚 7.8 7.5 7.7 7.8 0.6 76.7 

𝑡𝑑 8.2 8.1 8.0 8.5 0.6 74.7 

𝑆𝑓𝑚𝑎𝑥 7.7 8.2 0.6 73.6 0.5 74.9 

𝐶 7.8 7.7 7.7 8.0 0.6 74.9 

𝑞𝑠𝑓0 7.4 0.6 0.6 0.6 0.6 76.3 

𝑡 7.4 0.6 0.6 0.6 0.5 75.3 

Sum 57.6 36.1 28.6 102.8 7.0 527.2 

5.3. The influence of donor catchment quantity on machine-learning parameter 573 

regionalization  574 

The number of donor catchments used in machine learning-based parameter 575 

regionalization methods is a critical factor influencing the accuracy and robustness of 576 

hydrological predictions in ungauged catchments (Gauch et al., 2021; Song et al., 2022; 577 

Zhang et al., 2022). In this study, we investigated the influence of donor catchment 578 

quantity (ranging from 20 to 80) on the flood prediction performance of the two best-579 

performing parameter regionalization methods (GBM4-KNN3 and GBM-KNN-ERT) 580 

across the 80 mountainous catchments (Fig 11). It is important to clarify that the 581 

following analysis is not a method for selecting donor catchments based on physical 582 

similarity—a task handled by the machine learning methods itself when it learns the 583 

relationships between catchment descriptors and model parameters. Instead, this 584 

experiment serves as a sensitivity analysis to understand how the regionalization 585 

performance is affected by the overall quantity and quality of the available training data. 586 

To systematically investigate the performance influence of donor catchment 587 

quantity on parameter regionalization, two distinct sampling strategies were employed 588 

across the 80 mountainous catchments. In Mode 1 (selection of donor catchments based 589 
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on decreasing NSE), which was designed to test the impact of data quality, a non-590 

monotonic relationship was observed. For both methods, regionalization performance 591 

peaked with 20-40 donor catchments and then declined, particularly for the GBM4-592 

KNN3 method (Fig. 11a-c). This performance degradation is not due to increasing 593 

catchment dissimilarity, but rather to the introduction of lower-quality training data. As 594 

the donor pool expands beyond the best-performing catchments, it begins to include 595 

catchments where the Top-SSF model calibration itself was less successful (i.e., lower 596 

NSE values). These 'low-quality' samples may introduce noise and less reliable 597 

parameter-descriptor relationships, which can mislead the training process (Gauch et 598 

al., 2021; Zhang et al., 2022). Notably, the GBM-KNN-ERT method demonstrated 599 

greater resilience to this degradation. Its performance, while also peaking early, did not 600 

degrade as sharply and instead tended to stabilize after the inclusion of approximately 601 

70 catchments. This suggests that the more complex ensemble structure has a superior 602 

ability to suppress noise and generalize from a dataset containing a mix of high- and 603 

low-quality examples, highlighting its enhanced robustness. In contrast, Mode 2 604 

(random selection of donor catchments) demonstrated a consistent improvement in 605 

regionalization performance for both NSE and Tp as the number of donor catchments 606 

increased (Fig. 11d-f). However, while the average performance improves with data 607 

quantity, it is important to acknowledge that this trend relies on the random samples 608 

being generally representative; a poorly chosen random set could still reduce 609 

generalizability. Notably, under both modes, the GBM-KNN-ERT method consistently 610 

exhibited significantly greater performance stability compared to the alternative 611 
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ensemble, GBM4-KNN3. This enhanced robustness likely arises from its more 612 

effective suppression of data heterogeneity and noise interference, indicating that more 613 

complex ensemble methods possess a greater capacity to balance the benefits of 614 

increased data quantity with the potential drawbacks of reduced data quality. 615 

 616 

Fig. 11. Performance comparison of two donor catchment selection methods for parameter 617 

regionalization as a function of donor catchment quantity. Mode1 (a-c) selects donor 618 

catchments in order of decreasing NSE, while Mode 2 (d-f) selects them randomly. Flood 619 

prediction accuracy is assessed using NSE, Qp, and Tp. Error bars represent the full range 620 

(minimum to maximum) of the performance metrics. 621 

5.4. The impact of climate change on parameter regionalization methods 622 

The hydrological cycle within catchments is fundamentally governed by complex 623 

interactions between climate and environmental factors. The Intergovernmental Panel 624 

on Climate Change (IPCC) has consistently documented a continuous and accelerating 625 

transition in global climatic patterns, characterized by increased variability and extreme 626 
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events (Pachauri et al., 2014). Consequently, future flood predictions derived from 627 

parameter regionalization methods are expected to exhibit increased uncertainty and 628 

variability, highlighting the substantial influence of climate change on the reliability 629 

and precision of flood predictions in ungauged mountainous catchments (Yang et al., 630 

2019). Therefore, a sensitivity analysis was designed to evaluate the robustness of the 631 

trained regionalization models when confronted with climatic conditions outside their 632 

original training range.  633 

To quantitatively assess the impact of climate change, an experiment was devised 634 

where this impact was primarily reflected through changes in two key catchment 635 

descriptors: Tem and Pre. For the historical period, these descriptors represent the multi-636 

year averages over 1901–2021, while for the future period, they represent the projected 637 

multi-year averages over 2022–2100 under the SSP5-8.5 scenario. The regionalization 638 

methods (GBM4-KNN3 and GBM-KNN-ERT), which were trained exclusively using 639 

historical data, were then applied under these future conditions. Crucially, the method 640 

structures and hyperparameters remained fixed, and no retraining was performed; only 641 

the historical Tem and Pre values were replaced with their future projections. This 642 

approach allows the response of the established historical relationships to new, out-of-643 

sample climatic inputs to be tested. The simulated peak discharges for this analysis were 644 

derived from the same three flood events used in the calibration and validation of the 645 

Top-SSF model. This experimental design is critical as it isolates the impact of the 646 

changed model parameters from the compounding effect of a different future rainfall 647 

event. Consequently, any observed change in the simulated flood peak is attributable 648 
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solely to the sensitivity of the regionalization method to the shift in climatic descriptors. 649 

Cumulative distribution functions (CDFs) were then employed to illustrate the 650 

discrepancies between the parameter regionalization simulations and the reference 651 

simulations (derived from calibrated model parameters) across the historical and 652 

projected future periods for the 80 catchments (Fig.12).  653 

A comparative analysis of Fig. 12a and 12b reveals a clear amplification of the 654 

absolute differences in predicted flood peaks (quantified as the error in runoff modulus) 655 

between the two parameter regionalization methods and the reference Top-SSF model 656 

simulations during the transition from the historical period to the projected future period. 657 

Specifically, the maximum error in runoff modulus for the GBM4-KNN3 method 658 

increased by 68.46 m3 s-1 km-2 from the historical period to the future period, while the 659 

increase for the GBM-KNN-ERT method was a smaller 56.65 m3 s-1 km-2. These results 660 

underscore that parameter regionalization methods are inherently sensitive to changing 661 

climatic forcing. However, they also provide compelling evidence that the GBM-KNN-662 

ERT method exhibits superior stability and resilience under climate change, 663 

demonstrating its potential for more reliable long-term flood risk assessment in 664 

ungauged mountainous regions. 665 

Exploring the effects of climate change on parameter regionalization methods 666 

provides valuable insights for advancing flood prediction research in prediction in 667 

ungauged basins. The enhanced stability demonstrated by the GBM-KNN-ERT 668 

ensemble offers a promising direction for developing robust regionalization methods 669 

capable of navigating the challenges of a non-stationary climate. 670 
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 671 

Fig.12. Comparison of flood peak runoff modulus between parameter regionalization and 672 

calibrated Top-SSF model results, showing cumulative distribution functions (CDFs) of 673 

absolute differences for 80 catchments during (a) historical and (b) future periods. 674 

5.5. Uncertainty and limitation  675 

The uncertainty in this study arises from several sources, including the 676 

hydrological model, the regionalization methods, and the data itself. A critical 677 

evaluation of these sources helps to contextualize our findings and assess the 678 

generalizability of the ensemble method. Uncertainty from the hydrological model is 679 

inherent in its structure and the calibrated parameters. Although the Top-SSF model 680 

performed well, its parameters are effective values subject to equifinality. This 681 

uncertainty in the "true" parameter values can be viewed as a form of calibration bias, 682 

which serves as the target data for our regionalization. To mitigate this, we employed 683 

the robust SCE-UA optimization algorithm and focused only on sensitive parameters. 684 

Uncertainty is also introduced by the regionalization methods themselves, as the 685 

training data derived from donor catchments are susceptible to errors that can impact 686 

model performance (Mosavi et al., 2018; Xu and Liang, 2021).  687 

A specific methodological choice was the exclusion of deep learning architectures, 688 

such as Multilayer Perceptrons or Long Short-Term Memory (LSTM) networks. This 689 
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decision was guided by several factors. First, parameter regionalization is a static 690 

regression problem, mapping time-invariant catchment descriptors to model parameters, 691 

which does not align with the sequential data structure for which LSTM is designed. 692 

Second, deep networks typically require large datasets to avoid overfitting; with a 693 

dataset of 80 catchments, traditional machine learning methods like GBM and ERT are 694 

often more robust and less prone to memorizing training data. Third, a key advantage 695 

of parameter regionalization is its potential for physical interpretability. Unlike DL 696 

models, whose internal decision-making processes are often obscured within abstract 697 

weight matrices, the ensemble methods employed here offer more accessible 698 

transparency. The tree-based models (GBM and ERT) allow for the direct assessment 699 

of feature importance, enabling the verification of physical consistency. Furthermore, 700 

the KNN component provides "instance-based" interpretability by explicitly identifying 701 

the specific donor catchments used for transfer. This preserves the traceable logic of 702 

hydrological similarity, clearly indicating the geographical or physical source of the 703 

transferred parameters, a level of insight that is crucial for building trust in water 704 

resource management. 705 

Furthermore, the primary contribution of this study is not the identification of a 706 

single superior algorithm, but the demonstration of a data-driven framework for 707 

constructing a locally optimal ensemble. The complementarity of the chosen models 708 

was not assumed but empirically validated through a competitive evaluation process. 709 

Each of the seven machine learning methods was independently trained and assessed 710 

for its ability to estimate each sensitive parameter. The final GBM-KNN-ERT ensemble 711 
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was constructed by selecting only the empirically best-performing model for each 712 

parameter based on objective metrics (R2, RMSE, STD). The very fact that different 713 

methods were selected for different hydrological parameters provides direct empirical 714 

evidence of their complementary strengths, thus validating the ensemble method. 715 

Furthermore, the specific GBM-KNN-ERT combination identified is necessarily 716 

data-dependent, raising questions about its transferability. However, this study primary 717 

contribution is not the specific model combination itself, but rather the demonstration 718 

of a data-driven method for constructing a locally optimal ensemble. This method is 719 

designed to be generalizable; applying the same competitive evaluation process to a 720 

new region would identify the best ensemble for that specific dataset. The key to 721 

overcoming these limitations and ensuring robust generalization lies in genuine model 722 

complementarity. The ensemble method's success is not an artifact of overfitting to 723 

calibration bias or data quirks. Instead, it stems from a physically plausible "division of 724 

labor", where different models are empirically shown to be better suited for 725 

regionalizing parameters governed by distinct physical processes. The ensemble 726 

method's superior stability in the out-of-sample climate change stress test further 727 

supports this conclusion, indicating that it has captured robust underlying relationships, 728 

not just noise. 729 

To manage methodological uncertainty, we employed K-fold cross-validation to 730 

ensure robust performance evaluation and RandomizedSearchCV for hyperparameter 731 

tuning to minimize overfitting (Bergstra and Bengio, 2012). A key methodological 732 

decision was to evaluate the regionalization methods against the outputs of the 733 
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calibrated Top-SSF model, rather than directly against observed flood events. This 734 

approach was chosen for two primary reasons. First, it isolates the performance of the 735 

parameter regionalization itself. The calibrated simulation represents the theoretical 736 

'best-case' performance for the given hydrological model structure; consequently, any 737 

deviation from this benchmark can be directly attributed to imperfections in the 738 

regionalization method, rather than being confounded by the inherent structural 739 

limitations of the Top-SSF model. Second, this strategy ensures that the machine 740 

learning models learn the underlying physical relationships intended by the 741 

hydrological model, not simply mimic data noise or measurement errors present in the 742 

observations. If trained against raw observations, the machine learning methods might 743 

derive 'spurious' parameter sets that compensate for both the hydrological model’s 744 

structural flaws and observational errors. Such parameters could appear effective but 745 

would lack physical meaning and generalizability. These measures, combined with the 746 

evidence for model complementarity, provide a strong basis for the scientific validity 747 

and potential for generalization of our proposed ensemble method. 748 

6. Conclusions  749 

This study introduces a novel multi-machine learning ensemble method (GBM-750 

KNN-ERT) to enhance model parameter transferability and improve flood prediction 751 

in ungauged mountainous catchments. The proposed GBM-KNN-ERT method 752 

demonstrated a substantial advancement in both flood prediction accuracy and model 753 

robustness, achieving exceptional performance with 90% of ungauged catchments 754 

exhibiting a NSE exceeding 0.9, a significant 67.44% improvement compared to the 755 
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best single machine learning method evaluated in this study. Importantly, the GBM-756 

KNN-ERT method exhibited remarkable stability under simulated climate change, 757 

thereby highlighting its potential for reliable application in non-stationary hydrological 758 

environments. Furthermore, the method demonstrated notable adaptability to varying 759 

donor-catchment configurations, where an optimal balance between predictive 760 

accuracy and computational efficiency with a relatively limited set of 20–40 high-761 

quality donor catchments (NSE >0.85). By integrating the diverse strengths of multiple 762 

machine learning with hydrological model, the proposed methodology significantly 763 

advances the field of flood prediction in ungauged catchments, offering a reliable tool 764 

for water resource management and flood disaster mitigation. 765 
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