

1 **Multi-Machine Learning Ensemble Regionalization of Hydrological
2 Parameters for Enhancing Flood Prediction in Ungauged
3 Mountainous Catchments**

5 Kai Li, Linmao Guo, Genxu Wang*, Jihui Gao*, Xiangyang Sun, Peng Huang,
6 Jinlong Li, Jiapei Ma, Xinyu Zhang

8 *State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resources
9 and Hydropower, Sichuan University, Chengdu, 610000, China*

10 *Corresponding author: Genxu Wang (wanggx@scu.edu.cn) and Jihui Gao (jgao@scu.edu.cn).

12 **Abstract:**

13 Machine learning-based parameter regionalization is an important method for
14 flood prediction in ungauged mountainous catchments. However, single machine
15 learning parameter regionalization often exhibits limitations in prediction accuracy and
16 robustness. Therefore, this study proposes a multi-machine learning ensemble
17 regionalization method that integrates Gradient Boosting Machine (GBM), K-Nearest
18 Neighbors (KNN), and Extremely Randomized Trees (ERT) methods (GBM-KNN-
19 ERT) to regionalize the sensitive parameters of the Topography-Based Subsurface
20 Storm Flow (Top-SSF) model. Validated across 80 mountainous catchments in
21 southwestern China, the GBM-KNN-ERT method demonstrates superior performance
22 with 90% of ungauged catchments achieving the Nash-Sutcliffe Efficiency (NSE)
23 above 0.9, representing a 67.44% improvement over the best single machine learning
24 parameter regionalization. Notably, the GBM-KNN-ERT method shows improved
25 robustness to climate change and changes in the number of donor catchments compared
26 to other regionalization methods. An optimal balance between accuracy and
27 computational efficiency was achieved using 20-40 high quality donor catchments

28 (NSE greater than 0.85). This study provides systematic evidence that multi-machine
29 learning ensemble can effectively address regionalization challenges in ungauged
30 mountainous regions, offering a reliable tool for water resource management and flood
31 disaster mitigation.

32 **Keywords:** Flood prediction; Regionalization; Ungauged mountainous catchments;
33 Top-SSF model;

34

35 **Highlights:**

36 1. Proposes a novel multi-machine learning ensemble regionalization method
37 2. The GBM-KNN-ERT method increases the percentage of catchments with high-
38 accuracy flood predictions (NSE >0.9) to 90%, which is a 67.44% improvement
39 over the best single machine learning method.
40 3. The GBM-KNN-ERT method exhibits greater stability under climate change.

41

42 **1. Introduction**

43 Floods in mountainous catchments, encompassing both flash floods and general
44 larger-scale flood events which can be derived from mountainous upland catchments,
45 pose a significant threat to human safety and property, particularly in regions lacking
46 sufficient observational data (Luo et al., 2015; Zhai et al., 2018). While hydrological
47 models like the Topography-Based Subsurface Storm Flow (Top-SSF) model (Li et al.,
48 2024) offer promising simulation capabilities, their application in ungauged catchments
49 is severely limited by the absence of calibration data (Choi et al., 2023; Liu et al., 2018).
50 Effective parameter regionalization methods are therefore essential for transferring
51 hydrological knowledge from gauged to ungauged regions, enabling reliable flood
52 prediction in ungauged mountainous catchment (Garambois et al., 2015; Ragettli et al.,
53 2017; Xu et al., 2018).

54 Parameter regionalization is a crucial method for flood prediction in ungauged
55 catchments (Arsenault et al., 2023; Guo et al., 2021; Kratzert et al., 2019; Zhang et al.,
56 2020). Compared to purely data-driven methods, parameter regionalization offers
57 enhanced physical interpretability (Nearing et al., 2024; Tang et al., 2023; Zhang et al.,
58 2024). Existing parameter regionalization methods can be broadly classified into three
59 categories: similarity-based, hydrological signatures-based, and regression-based
60 (Arsenault et al., 2019; Wu et al., 2023). Similarity-based methods rely on the
61 assumption that catchments with similar characteristics exhibit similar hydrological
62 responses, considering spatial proximity (Arsenault et al., 2019; Pugliese et al., 2018;
63 Yang et al., 2018) and physical similarity (similar climatic and land cover conditions

64 have similar hydrological characteristics) (Kanishka and Eldho, 2017; Papageorgaki
65 and Nalbantis, 2016). Hydrological signature-based methods use hydrological
66 signatures (quantitative metrics that describe statistical or dynamic properties of
67 streamflow) as an intermediate link, establishing relationships first between model
68 parameters and signatures, and then between signatures and catchment descriptors to
69 facilitate parameter transfer (McMillan, 2021; Zhang et al., 2018). Regression-based
70 methods, which directly link hydrological model parameters to catchment descriptors,
71 are widely used due to their simplicity and computational efficiency (Guo et al., 2021;
72 Kratzert et al., 2019; Song et al., 2022; Wu et al., 2023). However, the performance of
73 regression-based methods is frequently constrained by the inherent nonlinearity in the
74 relationships between model parameters and catchment descriptors, coupled with the
75 difficulty in adequately capturing spatial heterogeneity, especially within complex
76 mountainous terrain (Wu et al., 2023).

77 Recent advances in machine learning offer potential solutions by capturing
78 nonlinear patterns in high-dimensional data. Such as Decision Tree (DT), Extremely
79 Randomized Trees (ERT), Gradient Boosting Machine (GBM), K-Nearest Neighbor
80 (KNN), Random Forest (RF), and Support Vector Machines (SVM) have shown
81 promise in parameter regionalization (Golian et al., 2021; Song et al., 2022). However,
82 existing machine learning-based parameter regionalization studies predominantly focus
83 on runoff prediction at coarser temporal scales (daily or monthly) (Li et al., 2022; Wu
84 et al., 2023), leaving a significant gap in high-resolution (hourly or sub-hourly) flood

85 prediction in ungauged mountainous catchments. Moreover, these studies often rely on
86 single machine learning methods to estimate all hydrological model parameters (Golian
87 et al., 2021; Song et al., 2022; Wu et al., 2023). Given that different machine learning
88 methods operate on distinct principles (Jordan and Mitchell, 2015; Zounemat-Kermani
89 et al., 2021) and hydrological model parameters represent diverse hydrological
90 processes (Li et al., 2024), a single machine learning method may not adequately
91 capture the complexity of model parameter estimation (Golian et al., 2021; Wu et al.,
92 2023). Therefore, exploring the multi-machine learning ensemble methods is essential
93 to improve the accuracy of high-resolution flood prediction in ungauged mountainous
94 catchments.

95 Southwest China's mountainous regions are particularly vulnerable to frequent
96 floods, leading to ecosystem degradation through habitat disruption and biodiversity
97 loss (Gan et al., 2018). The abundance of ungauged catchments in this region poses a
98 significant challenge to reliable flood prediction. To address this critical issue, we
99 systematically evaluate the performance of a novel multi-machine learning ensemble
100 method for regionalizing Top-SSF model parameters across 80 representative
101 catchments (mean area: 1,586 km²) in Southwest China. By assessing ensemble method
102 robustness under climate change and with varying donor catchment configurations, this
103 study aims to significantly enhance flood prediction accuracy in ungauged mountainous
104 catchments, contributing to improved ecosystem resilience, enhanced human safety,
105 and more effective water resource management in the face of escalating climatic

106 pressures.

107 **2. Study area and datasets**

108 **2.1. Study area**

109 This study investigated 80 mountainous catchments in Southwestern China,
110 encompassing Sichuan, Yunnan, Guangxi, Guizhou, and Chongqing provinces (Fig. 1).

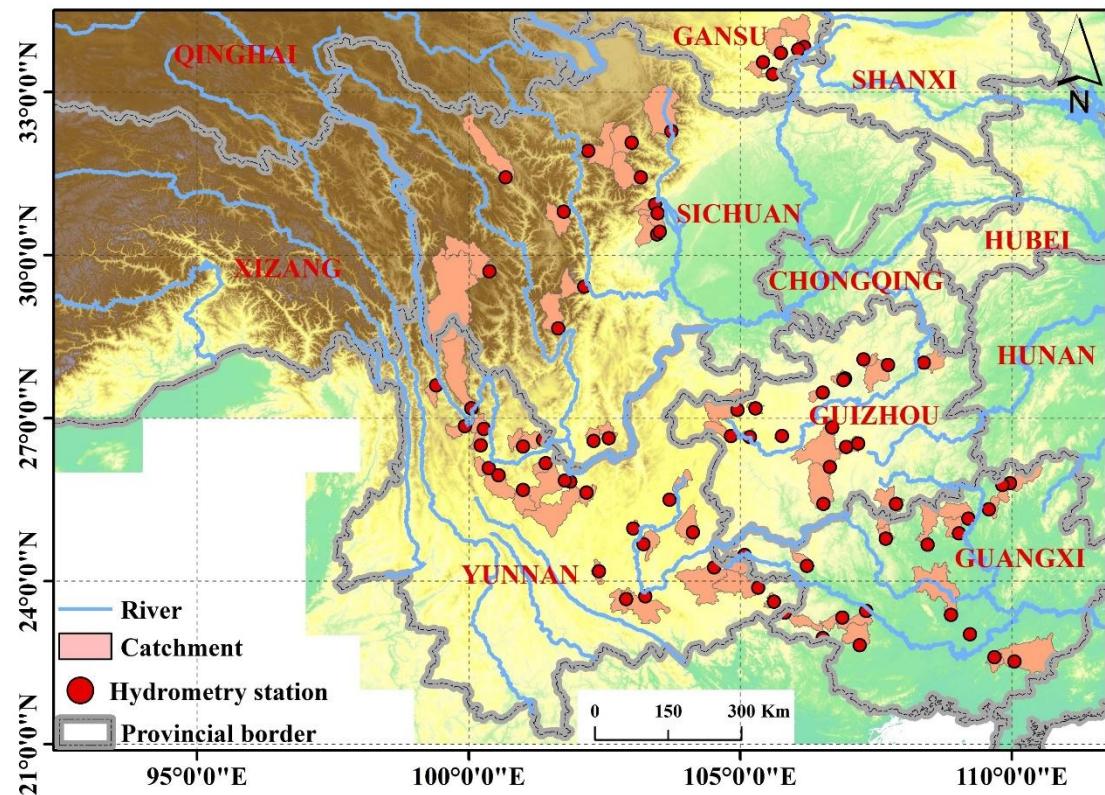
111 This region exhibits diverse climatic zones, including subtropical monsoon, plateau
112 mountain, and tropical monsoon climates. The selected catchments have an average
113 area of 1,586 km² (ranging from 109 to 6,564 km²), with elevations ranging from 63 to

114 6,284 meters. Mean annual temperature varies from 15 to 20°C, and annual
115 precipitation ranges from 1,200 to 1,800 mm (Li et al., 2016), with approximately 80%

116 of the annual precipitation occurring during summer and autumn, contributing to
117 frequent flooding events (Cheng et al., 2019). These catchments are situated within a

118 heavily forested region, the second largest in China (Hua et al., 2018), with forest cover
119 ranging from 3% to 92% (mean: 51%), influencing evapotranspiration and runoff

120 generation. Dominant soil types, according to the Genetic Soil Classification of China
121 (Shi et al., 2004), include purple soil (12.20%), yellow soil (11.39%), and red soil
122 (9.52%), each with distinct hydrological properties.



123
124 **Fig.1.** Geographical distribution of the 80 gauged catchments used, with locations of
125 hydrometry station (red points) and major rivers indicated.
126

126 **2.2. Datasets**

127 Hourly flow data (2015–2018) for 80 mountainous catchments in China were
128 sourced from the Hydrological Bureau of the Ministry of Water Resources, through
129 China's hydrologic yearbooks, encompassing a spectrum of events from flash floods
130 and general floods which can be derived from mountainous upland catchments. Hourly
131 rainfall data (2015–2018) were obtained from ground meteorological stations across
132 China (<http://en.weather.com.cn>), providing crucial input for hydrological modelling.
133 Additional meteorological variables, including temperature, wind speed, dewpoint
134 temperature, and surface net solar radiation, were obtained from the ERA5 hourly
135 dataset (1940–present) (Hersbach et al., 2023), ensuring comprehensive atmospheric
136 forcing. Relative humidity was estimated using dewpoint temperature. Historical

137 (1901–2021) and projected future (SSP585, 2022–2100) temperature and precipitation
138 data for China, averaged from the EC-Earth3, GFDL-ESM4, and MRI-ESM2-0 models
139 at 1 km resolution, were obtained from "A Big Earth Data Platform for Three Poles" to
140 assess the impact of climate change (Ding and Peng, 2020) (<http://poles.tpdc.ac.cn>).

141 Topographic data, including a 30-m resolution Digital Elevation Model (DEM), used
142 for river network and topographic index derivation, were obtained from EARTHDATA
143 and used for river network delineation and topographic index derivation
144 (<https://search.earthdata.nasa.gov/search>). Forest cover data (30-m resolution) were
145 sourced from the Global Forest Cover and Forest Change Map
146 (<https://www.noda.ac.cn/>), providing information on vegetation characteristics. Bulk
147 density (BD) data were derived from the Soil Database of China for Land Surface
148 Modelling (Dai et al., 2013). Soil hydraulic parameters, specifically saturated hydraulic
149 conductivity (Ks_CH) for Clapp and Hornberger functions and the pore-connectivity
150 parameter (L) for van Genuchten and Mualem functions, were acquired from the China
151 Dataset of Soil Hydraulic Parameters Using Pedotransfer Functions for Land Surface
152 Modeling (Shangguan et al., 2013).

153

154

155

156

157

Table 1. Model forcing data and catchment descriptors information.

Data type	Name	Unit	Function
Hydro-meteorology	Rainfall	mm	Input for hydrological model
	Flood	m ³ /s	Used for model calibration (hourly resolution)
	Temperature	K	
	Surface pressure	Pa	
	Dewpoint temperature	K	
	wind speed	m/s	Input for hydrological model
	Surface net solar radiation	J/m ²	
	Relative humidity	%	
	1 km monthly precipitation (1901-2021)	mm	
	1 km monthly temperature (1901-2021)	°C	
Soil characteristics	1 km monthly temperature (2022-2100, SSP5-8.5, EC-Earth3, GFDL-ESM4, MRI-ESM2-0)	°C	Multi-year surface average as catchment descriptors
	1 km monthly precipitation (2022-2100, SSP5-8.5, EC-Earth3, GFDL-ESM4, MRI-ESM2-0)	mm	
	Soil bulk density (BD)	g/cm ³	
	Pore-connectivity parameter (L) for the van Genuchten and Mualem functions	-	
Topography	Saturated hydraulic conductivity (Ks_CH) of the Clapp and Hornberger Functions	cm d ⁻¹	Surface average as catchment descriptors
	Forest cover (FC)	%	
	DEM	m	
	Topographic index	-	
	Slope	mm ⁻¹	
	Catchment area	km ²	

3. Methodology

3.1. Hydrological model

Top-SSF is a semi-distributed hydrological model based on the well-established

TOPMODEL framework, which delineates sub-basins based on the topographic index.

It retains the key advantages of TOPMODEL, such as its parsimonious structure,

physical interpretability, and ease of parameter transfer (Beven et al., 2021; Gao et al.,

165 2018), consists of 15 parameters representing six key hydrological components: canopy
166 interception, infiltration, evapotranspiration, unsaturated zone moisture transport,
167 subsurface storm flow, and flow routing (Li et al., 2024). In the Top-SSF model, flood
168 can be comprised of four components: infiltration-excess overland flow, saturation-
169 excess overland flow, subsurface storm flow, and groundwater discharge.

170 Infiltration-excess overland flow occurs when the rainfall intensity exceeds the
171 infiltration capacity. In this study, infiltration is simulated using the Green-Ampt model.
172 When surface ponding occurs, the infiltration rate is determined by solving the Green-
173 Ampt equation iteratively, for which the Newton-Raphson method is employed. The
174 infiltration rate (f_{in}) is given by:

$$175 \quad f_{in} = -\frac{Ks(CD+F_{satrt})}{Szm(1-e^{(F_{satrt}/Szm)})} \quad (1)$$

176 where, f_{in} is the infiltration rate (m/h); Ks is surface hydraulic conductivity (m/h); CD
177 is capillary drive (m); F_{satrt} is the initial cumulative infiltration (m); Szm is the
178 maximum water storage capacity in the unsaturated zone (m).

179 Saturation excess overland flow occurs at computational cell i when the
180 groundwater table depth, S_i is less than or equal to zero (i.e., $S_i \leq 0$, indicating the
181 water table has reached the surface). It is calculated as:

$$182 \quad r_{s,i} = \max\{Suz_i - \max(S_i, 0), 0\} \quad (2)$$

183 where, $r_{s,i}$ is the depth of saturation excess overland flow generated at cell i (m);
184 Suz_i is the soil water storage in the unsaturated zone, at cell i (m); S_i is the
185 groundwater table depth at cell i (m).

186 The depth of subsurface storm flow generated at computational cell i , $r_{sf,i}$ is
187 given by:

$$188 \quad r_{sf,i} = q_{sf0}(1 - S_{sf,i}/S_{fmax}) \quad (3)$$

189 where, $r_{sf,i}$ is the depth of subsurface storm flow at cell i (m); q_{sf0} is initial

190 subsurface storm flow (m); $S_{sf,i}$ is the water storage deficit in the subsurface storm
191 flow zone at cell i (m).

192 The depth of groundwater discharge is calculated as:

$$193 \quad r_b = e^{\ln Te - \lambda - \bar{S}_g / Szm} \quad (4)$$

194 where, r_b is depth of groundwater discharge (m); $\ln Te$ is the log of the areal average
195 of $T0$ (m^2/h); λ is the catchment average topographic index; \bar{S}_g is the catchment
196 average groundwater table depth (m). For the complete set of equations for the Top-
197 SSF model, the reader is referred to the Supplementary Material and Li et al. (2024).

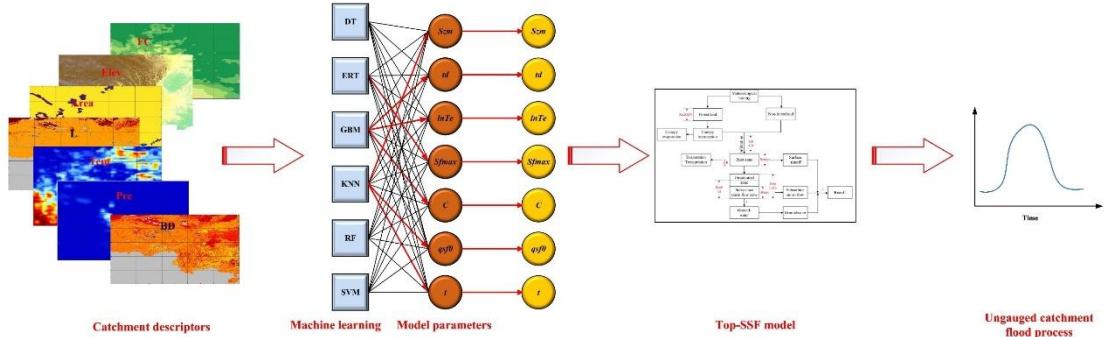
198 **3.2. Multi-machine learning ensemble method**

199 To improve flood prediction accuracy in ungauged mountainous catchments, we
200 proposed a multi-machine learning ensemble method for regionalizing sensitive
201 parameters of the Top-SSF model. This method leverages the complementary strengths
202 of multi-machine learning methods to estimate model parameters based on catchment
203 descriptors (Fig. 2). The characteristics, strengths, and limitations of each machine
204 learning method are summarized in Table 2. The ensemble method employs a cross-
205 validation procedure to select the best-performing machine learning method for each
206 sensitive parameter. These selections are then integrated into a unified regionalization
207 scheme. By mitigating limitations inherent in single machine learning regionalization,
208 such as model bias and overfitting, and by capturing complex hydrological processes
209 in mountainous catchment, this ensemble method aims to achieve more accurate flood
210 prediction in ungauged catchments.

211
212
213
214

Table 2. Seven machine learning model characteristics, advantages and disadvantages.

Machine learning	Characteristic	Advantage	Disadvantages
DT	A single decision tree hierarchically partitions the data space using a tree structure, with internal nodes representing features, branches representing decision rules, and leaf nodes representing class labels.	High interpretability; Minimal data preprocessing.	Unstable; Tends to overfit.
ERT	Construct multiple decision trees with randomly selected feature values and randomly divided nodes (Geurts et al., 2006).	Low overfitting risk; Computational efficiency; Resilient to noise.	Possibility of increased bias; Limited interpretability.
GBM	Construct multiple decision trees. Multiple weak learners are trained iteratively and the loss function is optimised using gradient descent, progressively combined into a robust model through the learning rate (Friedman, 2002).	High accuracy for structured data; Robust to outliers; Minimal data preprocessing.	Limited interpretability; Complex adjustments.
KNN	It is a non-parametric, instance-based supervised learning algorithm. It operates by finding the K nearest data points in the training data to a given data point and making predictions based on these (Wani et al., 2017).	Simple and easy to implement. Learning process is quick.	Sensitivity to noisy and scale of data. Accuracy can be heavily impacted by the choice of K.
RF	A bagging algorithm proposed by Breiman (2001) that uses ensemble learning. Involves training numerous decision trees and aggregating predictions.	Simple and easy to implement; Low computational cost.	Prone to overfitting in noisy regression tasks.
SVM	Identifies hyperplanes in high-dimensional spaces to segregate data. The optimal hyperplane maximizes the margin between it and the nearest data points, termed support vectors (Sain, 1996).	Uses kernel functions to address nonlinear classification issues.	Sensitive to noise



217

218 **Fig.2.** Multi-machine learning ensemble method for regionalization in ungauged mountainous
219 catchments. The red line indicates the machine learning method that yielded the optimal
220 parameter estimates.

221 **3.3. Parameter regionalization process**

222 The parameter regionalization process comprised four key steps: (1) Top-SSF
223 model calibration and parameter sensitivity analysis; (2) selection of relevant catchment
224 descriptors; (3) establishment of regionalization relationships between sensitive model
225 parameters and catchment descriptors using multi-machine learning ensemble methods;
226 and (4) evaluation of parameter regionalization performance.

227 **3.3.1. Top-SSF model calibration and parameter sensitivity analysis**

228 In this study, the Top-SSF model was employed to simulate hydrological processes.
229 The model was driven by continuous hourly meteorological data, including rainfall,
230 temperature, surface pressure, relative humidity, wind speed, and surface net solar
231 radiation. For each catchment, model parameters were calibrated using two
232 hydrologically independent and representative flood events. A third, distinct flood event
233 was then used for model validation. The Nash-Sutcliffe Efficiency (NSE) served as the
234 objective function during calibration, with parameter optimization achieved using the
235 Shuffled Complex Evolution (SCE-UA) algorithm (Duan et al., 1994), known for its
236 global convergence and robustness (Dakhlaoui et al., 2012; Qi et al., 2016). Model

237 performance was evaluated using the NSE, the relative error of flood peak flow (Qp),
238 and the absolute error in flood peak occurrence time (Tp), following China's
239 Specification for Hydrological Information Forecast (GB/T 22482-2008). These
240 metrics quantify the model's ability to predict flood dynamics, peak flow, and timing.
241 Following calibration, a sensitivity analysis was conducted to identify and exclude
242 insensitive model parameters (Lenhart et al., 2002), which were then used for
243 regionalization. This approach reduces the dimensionality of the regionalization
244 problem and improves the efficiency of the process.

245 The sensitivity index (Si) of each hydrological model parameter was determined
246 using the method of Lenhart et al. (2002), which assesses the influence of $\pm 10\%$
247 changes in parameter values (Eq. 1). Table 3 outlines the sensitivity analysis results for
248 the model parameters across the 80 mountainous catchments. The Si values are
249 categorized as follows (Guo et al., 2022): negligible sensitivity ($|Si| < 0.05$),
250 moderate sensitivity ($0.05 < |Si| < 0.2$), high sensitivity ($0.2 < |Si| < 1.00$), and
251 extremely high sensitivity ($|Si| \geq 1.00$). Based on the sensitivity analyses, seven
252 sensitive model parameters were identified: Szm , $lnTe$, $Sfmax$, C , $qsf0$, t (Table
253 3).

$$254 \quad Si = \frac{1}{N} \sum_t^N \frac{(y_2(t) - y_1(t))/y_0(t)}{2\Delta x/x_0} \quad (5)$$

255 where $y_0(t)$ is the flood value of the calibrated parameter x_0 at time t ; Δx is the
256 adjusted parameter difference, $\Delta x/x_0=10\%$; $y_1(t)$ is the flood value of the calibrated
257 parameter $x_0 - \Delta x$ at time t ; $y_2(t)$ is the flood value of the calibrated parameter

258 $x_0 + \Delta x$ at time t .

259 **Table 3.** Top-SSF model main modules and default range of parameters.

Modular	Parameter	Definition	Unit	Default range	Sensitivity index
Canopy interception	Sc	Canopy storage capacity	m	0.00~0.01	<0.05
	St	Trunk storage capacity	m	0.00~0.01	<0.05
	Pt	Proportion of rain diverted into stemflow per cover	%	0.00~1.00	<0.05
Evapotranspiration	$Sr0$	Initial root zone storage deficit	m	0.00~0.02	<0.05
	$Srmax$	Maximum root zone storage deficit	m	0.00~2	<0.05
Infiltration	Ks	Surface hydraulic conductivity	m/h	0~0.01	<0.05
	CD	Capillary drive (Morel-Seytoux and Khanji, 1974)	m	0~5	<0.05
	$Suz0$	Initial baseflow per unit area	m	0.00~ 10^{-4}	<0.05
Unsaturated zone	Szm	Soil maximum water storage capacity	m	0.00~1.00	0.19
	td	Unsaturated zone time delay per unit storage deficit	h/m	0~3	1.07
	$lnTe$	log of the areal average of $T0$	m^2/h	-2.00~1.00	3.4
Subsurface storm flow zone	$Sfmax$	Maximum subsurface storm flow zone deficit	m	0.00~0.01	0.16
	C	Transfer coefficient	m^{-2}/h	0.00~0.1	0.26
	$qsf0$	Initial subsurface storm flow per unit area	m	0.00~0.02	0.18
Routing	t	Flow routing correction coefficient	-	0.00~5.0	1.21

260 **Note, the bolded values in the sensitivity index indicate sensitive model parameters.**

261 **3.3.2. Catchment descriptor selection**

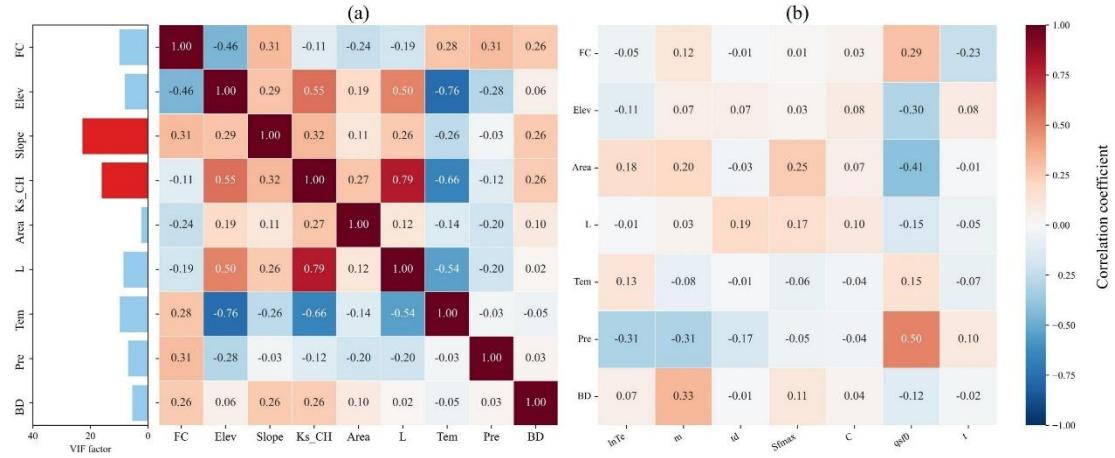
262 To mitigate the effects of multicollinearity on the accuracy and reliability of the

263 parameter regionalization methods, catchment descriptors were screened using the

264 variance inflation factor (VIF) and correlation coefficients. A VIF threshold of less than
265 10 ($VIF < 10$) was used to indicate acceptably low multicollinearity (Salmeron et al.,
266 2018). Initial screening identified strong correlations between several descriptor pairs,
267 notably L with Ks_CH, and Tem with Elev. Furthermore, the VIF values for Ks_CH
268 and Slope were found to exceed 10. Consequently, Ks_CH and Slope were removed
269 from the potential set of descriptors. Following their removal, a re-evaluation of the
270 VIF for the remaining descriptors was conducted. Although a notable correlation exists
271 between Tem and elevation (Elev), their VIF values in the reduced set were both below
272 the threshold of 10. Given the importance of Tem for representing climate impacts and
273 Elev as a key topographic driver, both were retained to preserve potentially valuable
274 information. The final set of seven catchment descriptors selected for regionalization
275 therefore comprised FC, Elev, Area, L, Tem, Pre, and BD. As illustrated in Fig. 3b, the
276 correlations among these final descriptors and the sensitive model parameters are
277 generally low (highest at 0.5), suggesting that the relationships are complex and
278 nonlinear.

279

280



281

282 **Fig.3.** Analysis of catchment descriptor relationships: (a) Correlation coefficients and variance
 283 inflation factors (VIF) among all descriptors; (b) Correlation coefficients between
 284 sensitivity model parameters and descriptors with VIF values below 10.

285 **3.3.3. Parameter regionalization**

286 To simulate ungauged catchment conditions, each of the 80 catchments was
 287 iteratively treated as an ungauged catchment, with the remaining 79 catchments serving
 288 as donor catchments. A parameter regionalization method was then constructed using
 289 the catchment descriptors and sensitive model parameters of the donor catchments to
 290 predict the seven sensitive model parameters for the ungauged catchment based on its
 291 catchment descriptors. These predicted model parameters were then input into the Top-
 292 SSF model to enable flood prediction in ungauged catchments. To ensure robust and
 293 generalizable results, K-fold cross-validation ($K = 10$) was implemented. This involved
 294 randomly partitioning the 79 donor catchments into K subsets, using one subset as a
 295 test set and the remaining $K-1$ subsets for method training in each iteration (Jung, 2018).

296 This approach maximizes data utilization and minimizes bias associated with specific
 297 data partitioning. Hyperparameter tuning for each machine learning method was
 298 performed using RandomizedSearchCV (Bergstra and Bengio, 2012), with the
 299 objective of minimizing the difference between predicted and observed parameter

300 values.

301 **3.3.4. Evaluated metrics**

302 The performance of the parameter regionalization methods was evaluated by
303 considering two key aspects. First, the accuracy of the methods in estimating sensitive
304 model parameters was assessed using three metrics: root mean square error (RMSE),
305 standard deviation (STD), and the coefficient of determination (R^2). The R^2 was used
306 to quantify the agreement between estimated and calibrated parameter sets. Second, to
307 evaluate the impact of parameter regionalization on flood prediction. The resulting
308 flood predictions were then evaluated using the NSE, Qp, and Tp metrics.

309
$$NSE = 1 - \frac{\sum_{j=1}^M (Q_{obs}(j) - Q_{sim}(j))^2}{\sum_{j=1}^M (Q_{obs}(j) - \bar{Q}_{obs})^2} \quad (6)$$

310
$$Q_p = \left| \frac{Q_{obs,p} - Q_{sim,p}}{Q_{obs,p}} \times 100\% \right| \quad (7)$$

311
$$T_p = |T_{obs,p} - T_{sim,p}| \quad (8)$$

312 where $Q_{obs}(j)$ is the observed flow rate (m^3/s); $Q_{sim}(j)$ is the simulated flow rate
313 (m^3/s); \bar{Q}_{obs} is the mean value of the observed flow rate (m^3/s); $Q_{obs,p}$ is the observed
314 flood peak flow (m^3/s); $Q_{sim,p}$ is the simulated flood peak flow (m^3/s); $T_{obs,p}$ is the
315 observed flood peak occurrence time (h); and $T_{sim,p}$ is the simulated flood peak
316 occurrence time (h).

317

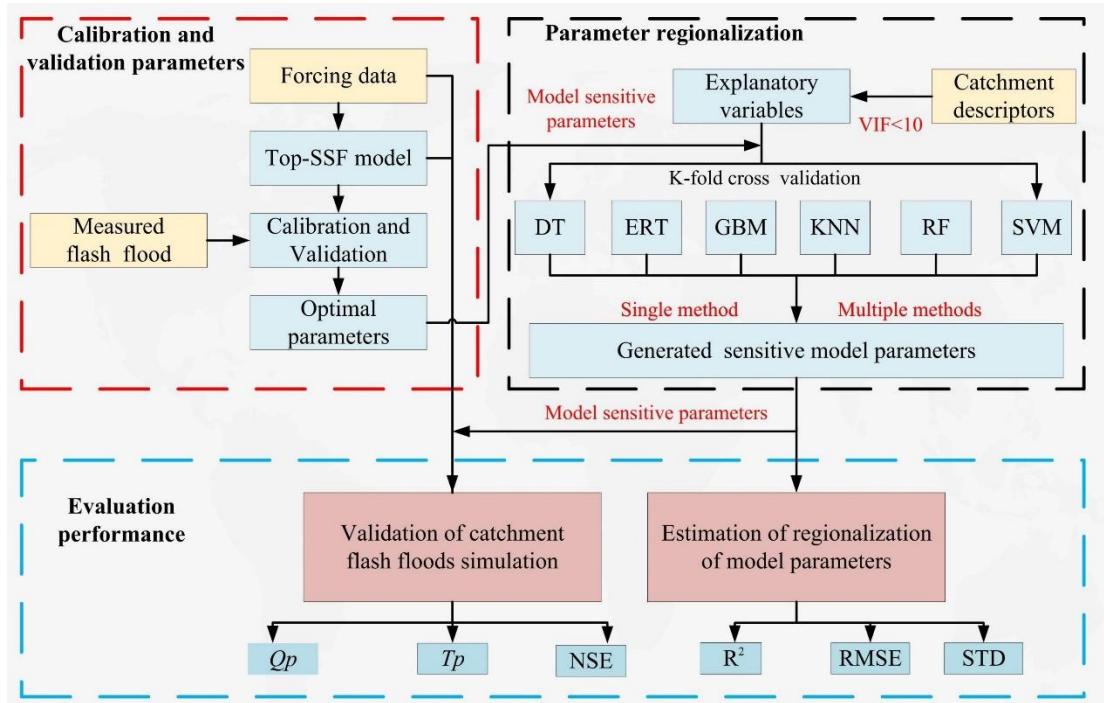
318
$$RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^n (X_i - Y_i)^2} \quad (9)$$

319
$$STD = \sqrt{\frac{1}{N-1} \sum_{i=1}^N (Y_i - \bar{Y})^2} \quad (10)$$

320
$$R^2 = \frac{[\sum_{i=1}^n (X_i - \bar{X})(Y_i - \bar{Y})]^2}{\sum_{i=1}^n (X_i - \bar{X})^2 \sum_{i=1}^n (Y_i - \bar{Y})^2} \quad (11)$$

321 where X_i is the Top-SSF calibration model parameter value; Y_i is the model

322 parameter estimated value using the parameter regionalization method; \bar{X} and \bar{Y} are
 323 the mean values of X_i and Y_i ; N is the sample size equal to 80.



324
 325 **Fig.4.** Flowchart illustrating the parameter calibration, validation, and regionalization workflow.
 326 Abbreviations: Top-SSF (Topography-Based Subsurface Storm Flow hydrological model),
 327 DT (Decision Tree), ERT (Extremely Randomized Trees), GBM (Gradient Boosting
 328 Machine), KNN (K-Nearest Neighbor), RF (Random Forest), SVM (Support Vector
 329 Machine), NSE (Nash-Sutcliffe efficiency), R^2 (Coefficient of Determination), Qp (The
 330 relative error of flood peak flow), Tp (The absolute error in flood peak occurrence time),
 331 VIF (Variance inflation factor), RMSE (Root mean square error), STD (Standard
 332 deviation).

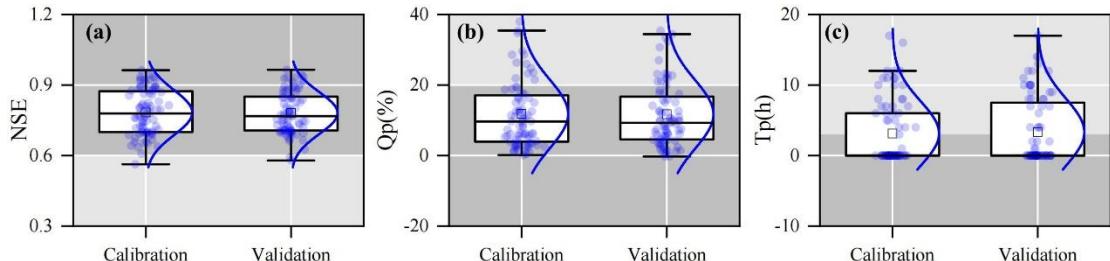
333 4. Result

334 4.1. Model performance

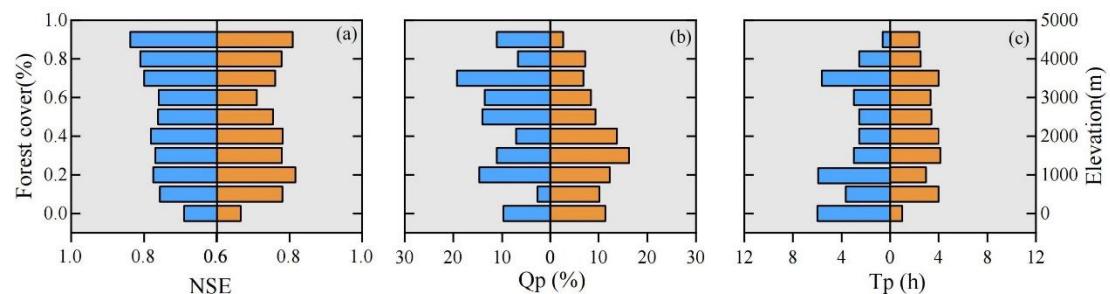
335 The Top-SSF model demonstrated good flood simulation performance across the
 336 80 gauged catchments, as quantified by NSE, Qp, and Tp. During the calibration period,
 337 50% of the catchments achieved NSE values exceeding 0.78 (Fig. 5a), the median Qp
 338 value was below 10% (Fig. 5b), and the median Tp value was within 2 hours (Fig. 5c).
 339 The average NSE value was approximately 0.8, with a maximum of 0.96. The majority

340 of Q_p values were around 8%, and the majority of T_p values were below 2 hours.
341 During the validation period, the median NSE value was 0.76 (Fig. 5a), the median Q_p
342 value was below 10% (Fig. 5b), and the median T_p value was within 4 hours (Fig. 5c).
343 The hydrological response times for the 80 catchments were approximated as the time
344 from precipitation peak to flood peak. The estimated range is from 1 to 26 hours. This
345 diversity is indicative of the comprehensive nature of the study, which encompasses
346 both rapid flash floods in smaller basins and more general floods in larger, mountainous
347 catchments (mean area: 1,586 km²). For catchments with longer response times, a
348 median error of 2-4 hours remains operationally valuable for providing sufficient flood
349 warning lead time. It is noteworthy that the median T_p during the calibration period
350 (within 2 hours) satisfied China's Specification for Hydrological Information Forecast
351 (GB/T 22482-2008) stringent requirements for high-quality forecasts.

352 Model performance also exhibited some dependence on catchment characteristics.
353 For instance, NSE generally improved with increasing forest cover (Fig. 6a), potentially
354 due to the model's explicit representation of forest canopy interception and subsurface
355 storm flow generation mechanisms. The relationship between NSE, Q_p , T_p and
356 elevation was more complex, suggesting a nonlinear influence of elevation on model
357 performance (Fig. 6 a-c). The demonstrated robust performance of the Top-SSF model
358 provides a strong foundation for its application in subsequent parameter regionalization
359 analyses.



360
361 **Fig. 5.** Boxplots of (a) NSE, (b) Qp, and (c) Tp during the calibration and validation periods
362 for 80 gauged catchments. The box represents the interquartile range, with the middle line
363 indicating the median (50th percentile). The whiskers represent the minimum and
364 maximum values. "□" represents the mean value. Dark grey indicates the range of flood
365 prediction criteria (i.e., NSE> 0.75, Qp< 20%, and Tp < 2 hours).



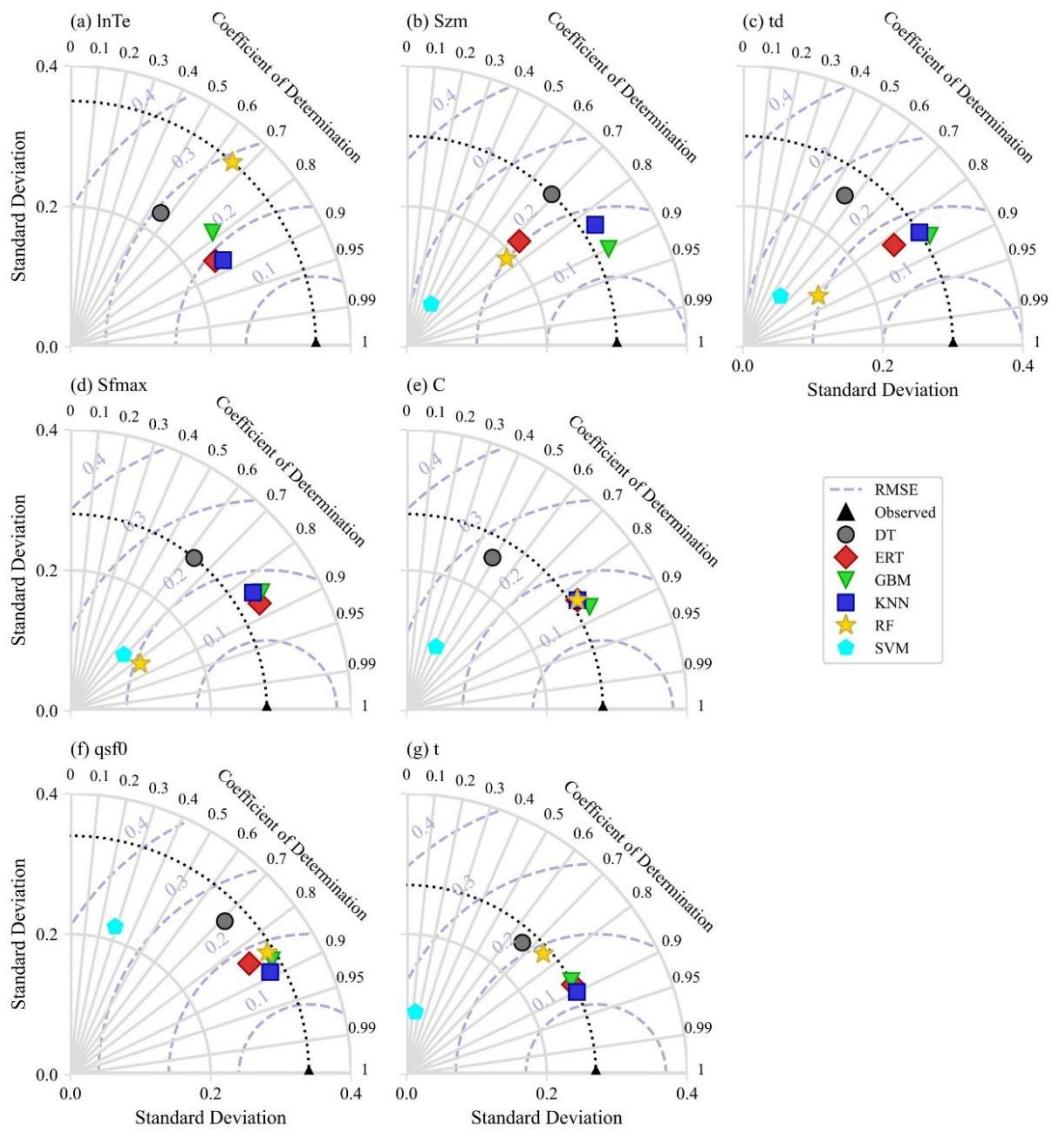
366
367 **Fig.6.** Influence of environmental factors on Top-SSF model performance in flood simulation.
368 The graphs illustrate the relationship between model evaluation metrics and forest cover
369 (left) and elevation (right).

370 **4.2. Results of parameter regionalization**

371 **4.2.1. Comparison of sensitive model parameter estimates**

372 The six single machine learning regionalization methods exhibited varying
373 performance in estimating sensitive model parameters (Fig. 7), likely due to differences
374 in catchment descriptor characteristics and the underlying principles of each method.
375 Their hyperparameter results are presented in Tables S1–S6 of the supplementary
376 material. The GBM demonstrated the highest accuracy in estimating Szm , td , and C
377 ($R^2 = 0.90$, 0.86, and 0.87, respectively,), with its estimates also exhibiting a STD that
378 closely matched the distribution of the calibrated parameter values. KNN provided the
379 most accurate estimates for $lnTe$, $qsf0$, and t ($R^2 = 0.87$, 0.89, and 0.90,
380 respectively), also with STD closely resembling the calibrated parameter distributions.

381 ERT performed best in estimating $Sfmax$ ($R^2 = 0.87$), but its performance was
 382 generally poorer for other parameters. DT, SVM, and RF methods generally showed
 383 lower performance across all sensitive model parameters. These differences in
 384 performance highlight the potential benefits of multi-machine learning ensemble
 385 methods for improving flood prediction in ungauged mountainous catchments.



386
 387 **Fig.7.** Performance of parameter regionalization methods assessed using Taylor diagrams. The
 388 diagrams show the accuracy of sensitive model parameter estimates, with the coefficient
 389 of determination (R^2) indicated by the radial axis, standard deviation (STD) by the
 390 horizontal and vertical axes, root mean square error (RMSE) by the grey-blue dotted lines,
 391 and the standard deviation of observations by the black dotted line.

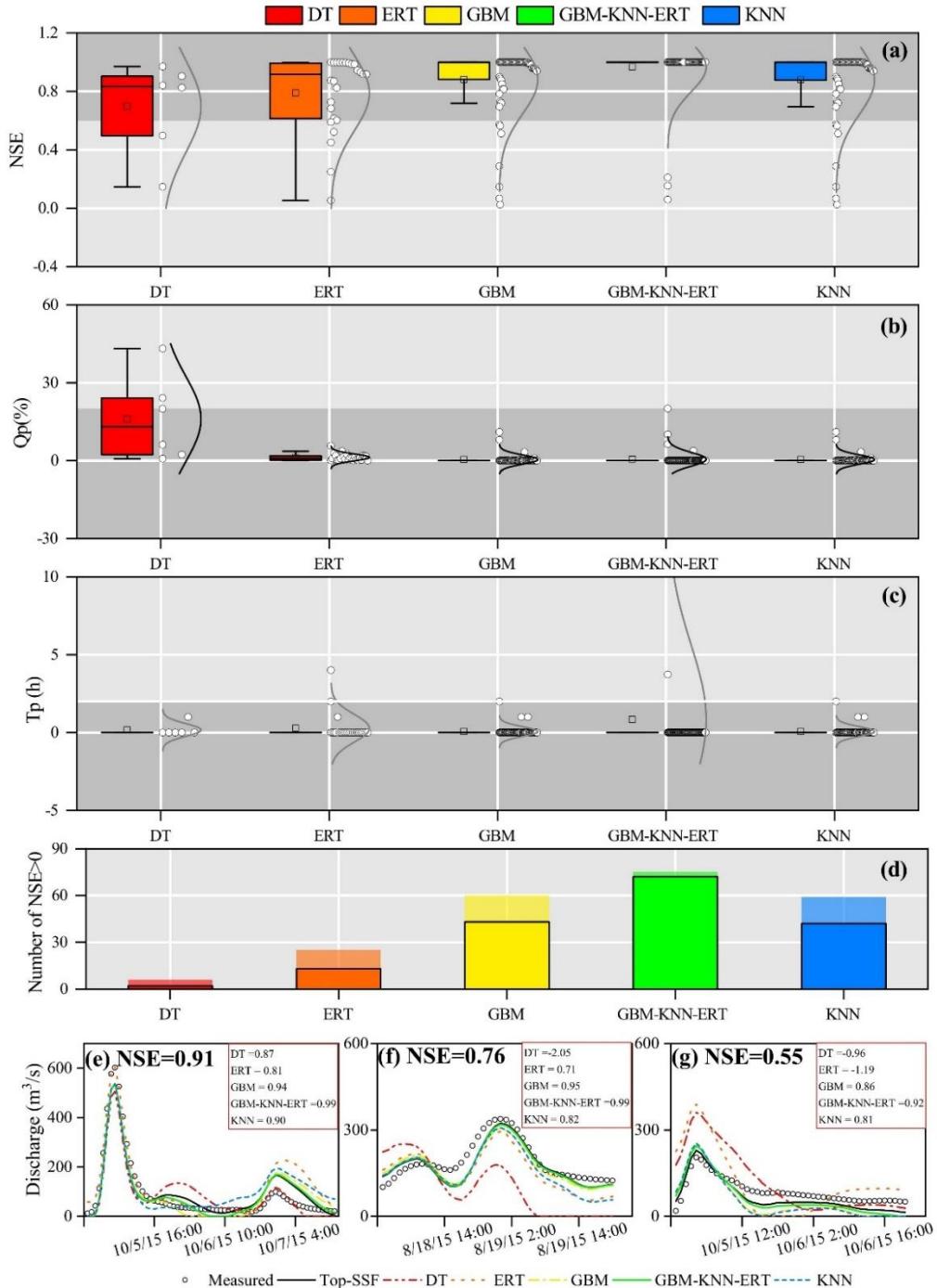
392 **4.2.2. Comparison of flood forecasting results**

393 The flood prediction performance of the Top-SSF model, integrated with different
394 parameter regionalization methods, was compared across 80 mountainous catchments
395 in southwestern China. The methods included single machine learning methods and a
396 multi-machine learning ensemble method (GBM-KNN-ERT), where GBM estimated
397 Szm , td , and C ; KNN estimated $lnTe$, $qsf0$, and t ; and ERT estimated $Sfmax$.
398 The performance of these parameter regionalization methods was then evaluated
399 against the performance of the Top-SSF model using calibrated parameters. Among the
400 single machine learning methods, GBM performed best, with 60 catchments achieving
401 a positive NSE (NSE > 0, Fig. 8d). Critically, for high-accuracy predictions (NSE >
402 0.9), GBM succeeded in 43 catchments (54%), also showing strong performance with
403 Qp less than 5% and Tp less than 1 hour in most cases (Fig. 8a-c). The GBM-KNN-
404 ERT ensemble method yielded even better results. It increased the number of
405 catchments with positive NSE to 75 (Fig. 8d). More impressively, the ensemble method
406 achieved exceptional performance (NSE > 0.9) in 72 catchments (90%). This represents
407 a 67.44% increase in the number of high-accuracy predictions compared to the best
408 single method (GBM). Furthermore, the ensemble method Qp values were more
409 concentrated around zero, and 90% of catchments maintained near-zero Tp values.
410 These results strongly demonstrate the superior potential of multi-machine learning
411 ensembles for improving flood prediction in ungauged catchments.

412 To further illustrate these performance differences visually, Fig. 8 (e, f, and g)
413 presents hydrographs from three randomly selected flood events. These events

414 represent cases where the calibrated Top-SSF model itself achieved high (NSE=0.91),
415 medium (NSE=0.76), and low (NSE=0.55) performance, respectively. A key insight
416 from these plots is that the Top-SSF simulation (solid black line) is the performance
417 benchmark for the regionalization methods. Although the models aim to approximate
418 measured floods, their performance is ultimately limited by the accuracy of the Top-
419 SSF model structure and its optimized parameters.

420 The hydrographs show how the GBM-KNN-ERT ensemble achieves superior
421 performance by leveraging the complementary strengths of its component methods. For
422 instance, in the high-performance case (Fig. 8e), the GBM and KNN methods capture
423 the overall shape well, but the ERT simulation provides a more precise estimation of
424 the primary flood peak. The final ensemble successfully integrates this peak accuracy,
425 resulting in the highest overall performance. Similarly, Fig. 8f shows that the ensemble
426 moderates the slow initial rise characteristic of the KNN method, leading to a more
427 realistic rising limb. The ensemble method ability to balance competing errors is most
428 evident in the low-performance case (Fig. 8g). During the recession phase, the ensemble
429 method averages the high bias of the ERT method with the low bias of the GBM and
430 KNN methods, producing a hydrograph that more closely resembles the benchmark
431 simulation than any single model could. This synergy demonstrates that the ensemble
432 method superior performance is a direct result of its ability to integrate the specific,
433 complementary strengths of each member model across different parts of the
434 hydrological process.



435

436 **Fig.8.** Evaluation of flood prediction performance for different parameter regionalization
 437 methods. (a-c) show the distributions of Nash-Sutcliffe Efficiency (NSE), relative peak
 438 flow error (Qp), and peak time error (Tp) across all 80 catchments, with shaded regions
 439 indicating where flood prediction standards were met (NSE > 0.75, Qp < 20%, and Tp <
 440 2 hours). (d) shows the number of catchments with NSE > 0 and the black border indicates
 441 the number of catchments with NSE > 0.9. (e-g) present example hydrographs comparing
 442 the simulated flood from each regionalization method against measured flood flow and
 443 the calibrated Top-SSF model benchmark for catchments where the benchmark model
 444 performance was (e) high (NSE=0.91), (f) medium (NSE=0.76), and (g) low (NSE=0.55).

445 **5. Discussion**

446 **5.1. Reliability of multi-machine learning ensemble in parameter regionalization**

447 In this study, the GBM-KNN-ERT method demonstrated superior regionalization
448 performance, highlighting the potential of ensemble methods for improving
449 hydrological predictions in ungauged mountainous catchments. The success of the
450 ensemble is rooted in the distinct learning mechanisms and behaviors of its individual
451 components, which were revealed during hyperparameter optimization.

452 The GBM method exhibited distinct parameter-specific sensitivities to
453 hyperparameters (Fig. 9a-c). For parameter C , the negative correlation between R^2 and
454 $n_{\text{estimators}}$ (>300 trees) indicates overfitting risks when modeling complex rainfall-
455 runoff interactions in heterogeneous mountainous terrain (Fig. 9a). This aligns with
456 previous findings emphasizing the need for complexity control in hydrological
457 generalization (Schoups et al., 2008). Conversely, the improved R^2 for parameter td
458 with increased $n_{\text{estimators}}$ highlights the capacity of ensemble learning to capture
459 complex, nonlinear relationships between catchment descriptors and hydrological
460 parameters (Hastie et al., 2009). The contrasting optimal max_depth of 10 layers for
461 parameter C , compared to shallower optimal depths (3-4 layers) for Szm and td ,
462 suggests that parameters governing more complex hydrological processes in
463 mountainous catchments may require deeper decision trees to effectively capture the
464 interactions between climate, topography, and soil properties (Wainwright and
465 Mulligan, 2013).

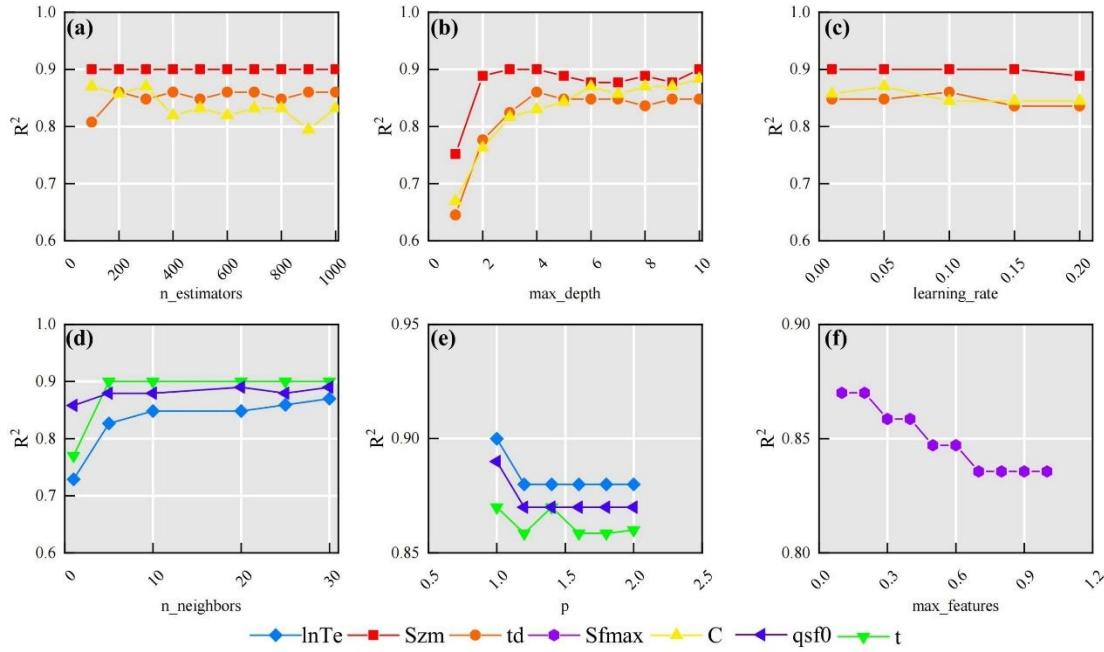
466 KNN performance exhibited pronounced sensitivity to neighbourhood size

467 (n_neighbors) and distance metric (p), highlighting the spatial heterogeneity of
468 catchment descriptors. For parameters $lnTe$ and $qsf0$, optimal performance was
469 observed at n_neighbors =30 (Fig. 9d), aligns with the hypothesis that meaningful
470 hydrological similarities can emerge even in topographically complex mountainous
471 regions when considered at broader spatial scales (Li et al., 2022). Conversely,
472 parameter t achieved peak accuracy at n_neighbors=5, suggesting that localized,
473 short-term weather events and fine-scale topographic similarities in adjacent
474 mountainous areas can significantly influence local runoff processes (Garambois et al.,
475 2015). The Manhattan distance metric (p=1) outperformed Euclidean distance across
476 all parameters (Fig. 9e). This performance advantage is primarily attributed to the
477 method's capacity to alleviate the "curse of dimensionality" (Bellman, 1961) inherent
478 in high-dimensional datasets—a prevalent challenge when characterizing complex
479 mountainous catchments with diverse descriptors. In such datasets, sparse data
480 distributions and the presence of mixed variable types (e.g., topographic indices, land
481 cover) can significantly degrade the discriminative power of Euclidean distance
482 (Rockström et al., 2023). The robustness of the Manhattan distance arises from its axis-
483 aligned sensitivity, which provides a more effective means of handling feature scaling
484 and integrating catchment descriptors compared to the radial symmetry of Euclidean
485 distance.

486 ERT performance was maximized at max_features = 0.1 (Fig. 9f). By restricting
487 the random sampling of features during node splits (using only 10% of the features),
488 both the diversity of the trees was enhanced and the effects of multicollinearity between

489 topographic and soil attributes were reduced. This finding aligns with the theory
490 proposed by Geurts et al. (2006), which suggests that random feature selection can
491 significantly improve model generalization, a particularly important consideration in
492 ungauged mountainous catchments characterized by high levels of inter-correlation
493 among predictor variables.

494 These distinct sensitivities and learning mechanisms form the scientific basis for
495 the superiority of the GBM-KNN-ERT method. As shown in Section 4.2, no single
496 machine learning method is universally optimal for all hydrological model parameters.
497 Instead, the ensemble method effectively allocates each parameter to the model best
498 suited for its regionalization. Specifically, GBM, with its capacity for modeling
499 complex interactions, proved optimal for integrated parameters like Szm and td . In
500 contrast, the instance-based KNN was superior for parameters like $lnTe$, which are
501 governed by physical similarity and spatial coherence. Finally, the highly randomized
502 nature of ERT provided the necessary robustness to model the noisy relationship
503 associated with the $Sfmax$. This synergistic combination, where each model
504 contributes its unique strength, results in a final regionalization framework that is more
505 accurate and physically plausible than any individual method operating in isolation.



506
507 **Fig.9.** Sensitivity of parameter estimation performance to key hyperparameters in (a-c) GBM,
508 (d-e) KNN method, and (f) ERT. (a) n_estimators (number of decision trees in GBM), (b)
509 max_depth (maximum depth of decision trees in GBM), (c) learning rate (GBM), (d)
510 n_neighbors (number of neighbors in KNN), (e) p-value of Minkowski distance (KNN;
511 p=1: Manhattan distance, p=2: Euclidean distance), and (f) max_features (ERT).

512 **5.2. Combining multiple machine learning methods for parameter regionalization**

513 Machine learning methods exhibit distinct strengths in hydrological parameter
514 estimation due to fundamental differences in data processing mechanisms, pattern
515 recognition strategies, and prediction generation (Bishop and Nasrabadi, 2006). This
516 suggests that multi-machine learning ensemble methods have the potential to
517 synergistically integrate advantages while effectively compensating for individual
518 limitations, leading to more robust and accurate parameter estimates. As demonstrated
519 in Fig. 10, the GBM-KNN-ERT method achieved notable improvements over any
520 single machine learning method, particularly for sensitive parameters *lnTe*, *Sfmax*,
521 *qsf0* and *t*, with R^2 increases ranging from 0.02 to 0.03 compared to the best-
522 performing GBM method (Fig.10e).

523 Interestingly, a comparison of GBM4-KNN3 (where *Sfmax* is estimated by

524 GBM) and GBM3-KNN4 (where $Sfmax$ is estimated by KNN) revealed critical
525 insights into model parameter compatibility. Despite both achieving an identical R^2 of
526 0.85 for the estimation of $Sfmax$, GBM4-KNN3 exhibited superior flood prediction
527 performance, with 72 catchments achieving $NSE > 0$ compared to only 68 catchments
528 for GBM3-KNN4. This suggests that GBM possesses an enhanced capability to resolve
529 the complex coupling between soil moisture dynamics and topography, leading to more
530 physically plausible representation of subsurface storm flow processes (Gupta et al.,
531 2023). The wider distribution of flood prediction performance observed for GBM3-
532 KNN4 (Fig. 10 a–c) further suggests that uncertainties introduced by KNN in the
533 estimation of $Sfmax$ may propagate nonlinearly during flood simulations, potentially
534 amplifying errors. This observation aligns with theoretical expectations that distance-
535 based methods may tend to oversmooth critical thresholds or sharp transitions in
536 heterogeneous environments, leading to a less accurate representation of hydrological
537 responses (Bellman, 1961).

538 Furthermore, an important consideration in adopting ensemble methods is the
539 trade-off between predictive accuracy and computational efficiency. To evaluate this
540 trade-off, we compared the model training times for various parameter regionalization
541 methods, with the results summarized in Table 4. The analysis shows that our proposed
542 GBM-KNN-ERT ensemble, while providing the highest predictive accuracy, required
543 a total training time of 102.8 s. This is moderately higher than the best-performing
544 single model, GBM (57.6 s), and other simpler ensemble methods like GBM4-KNN3
545 (36.1 s). The increased computational time for the GBM-KNN-ERT method is

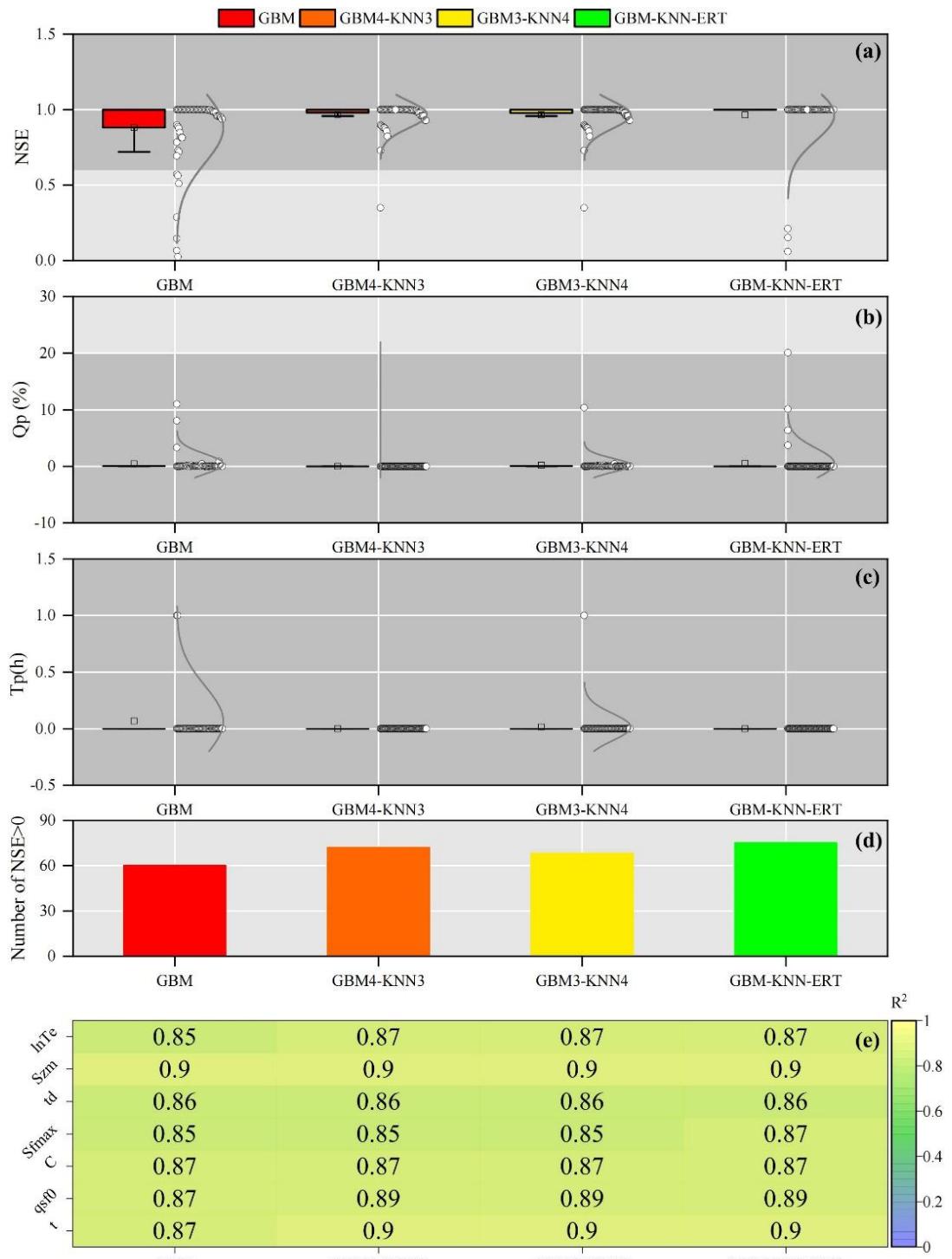
546 primarily attributed to the inclusion of the ERT method for estimating the S_{fmax} ,
547 which is inherently more computationally intensive than GBM or KNN.

548 However, it is crucial to contextualize this computational cost for operational use.

549 The process of training a regionalization method is an offline task, performed once to
550 establish the stable relationships between catchment descriptors and model parameters.

551 This one-time investment is not a constraint on real-time flood forecasting, as once the
552 method is trained, parameter estimation for a new ungauged catchment is nearly
553 instantaneous. To provide context for the reported computational times, all model
554 training and simulations were performed on a workstation equipped with an Intel(R)
555 Core (TM) i9-10900K CPU @ 3.70GHz, 32.0 GB of RAM, and an NVIDIA Quadro
556 P1000 (4 GB) GPU, running on a 64-bit Windows operating system with Python 3.9.

557 Given this context, the modest increase in one-time training cost is a justifiable
558 investment for the significant improvements achieved in flood prediction accuracy,
559 model robustness, and stability. Therefore, for applications in water resource
560 management and flood risk assessment where high accuracy is paramount, the GBM-
561 KNN-ERT method strikes an optimal and practical balance between computational
562 efficiency and predictive performance.



563

564 **Fig.10.** Assessment of combined machine learning methods for improved parameter
 565 regionalization in ungauged mountainous catchments. Performance is evaluated against
 566 the GBM method, showing (a) NSE, (b) Qp, (c) Tp, (d) Number of catchments with NSE >
 567 0, and (e) the difference in R^2 .

568

569

570

571

572 **Table 4.** Running time (s) for different parameter regionalization methods

	GBM	GBM4-KNN3	GBM3-KNN4	GBM-KNN-ERT	KNN	ERT
<i>lnTe</i>	11.3	3.4	3.4	3.7	3.6	74.4
<i>Szm</i>	7.8	7.5	7.7	7.8	0.6	76.7
<i>td</i>	8.2	8.1	8.0	8.5	0.6	74.7
<i>Sfmax</i>	7.7	8.2	0.6	73.6	0.5	74.9
<i>C</i>	7.8	7.7	7.7	8.0	0.6	74.9
<i>qsf0</i>	7.4	0.6	0.6	0.6	0.6	76.3
<i>t</i>	7.4	0.6	0.6	0.6	0.5	75.3
Sum	57.6	36.1	28.6	102.8	7.0	527.2

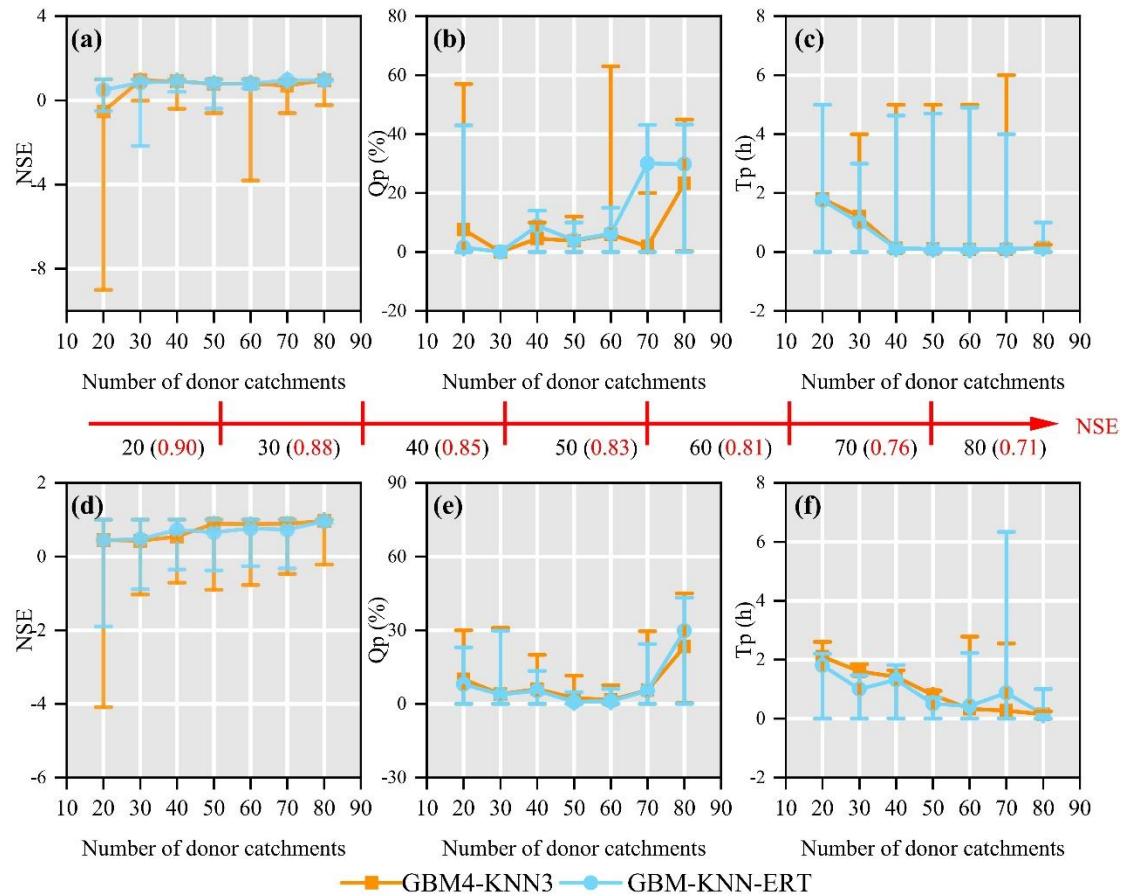
573 **5.3. The influence of donor catchment quantity on machine-learning parameter
574 regionalization**

575 The number of donor catchments used in machine learning-based parameter
576 regionalization methods is a critical factor influencing the accuracy and robustness of
577 hydrological predictions in ungauged catchments (Gauch et al., 2021; Song et al., 2022;
578 Zhang et al., 2022). In this study, we investigated the influence of donor catchment
579 quantity (ranging from 20 to 80) on the flood prediction performance of the two best-
580 performing parameter regionalization methods (GBM4-KNN3 and GBM-KNN-ERT)
581 across the 80 mountainous catchments (Fig 11). It is important to clarify that the
582 following analysis is not a method for selecting donor catchments based on physical
583 similarity—a task handled by the machine learning methods itself when it learns the
584 relationships between catchment descriptors and model parameters. Instead, this
585 experiment serves as a sensitivity analysis to understand how the regionalization
586 performance is affected by the overall quantity and quality of the available training data.

587 To systematically investigate the performance influence of donor catchment
588 quantity on parameter regionalization, two distinct sampling strategies were employed
589 across the 80 mountainous catchments. In Mode 1 (selection of donor catchments based

590 on decreasing NSE), which was designed to test the impact of data quality, a non-
591 monotonic relationship was observed. For both methods, regionalization performance
592 peaked with 20-40 donor catchments and then declined, particularly for the GBM4-
593 KNN3 method (Fig. 11a-c). This performance degradation is not due to increasing
594 catchment dissimilarity, but rather to the introduction of lower-quality training data. As
595 the donor pool expands beyond the best-performing catchments, it begins to include
596 catchments where the Top-SSF model calibration itself was less successful (i.e., lower
597 NSE values). These 'low-quality' samples may introduce noise and less reliable
598 parameter-descriptor relationships, which can mislead the training process (Gauch et
599 al., 2021; Zhang et al., 2022). Notably, the GBM-KNN-ERT method demonstrated
600 greater resilience to this degradation. Its performance, while also peaking early, did not
601 degrade as sharply and instead tended to stabilize after the inclusion of approximately
602 70 catchments. This suggests that the more complex ensemble structure has a superior
603 ability to suppress noise and generalize from a dataset containing a mix of high- and
604 low-quality examples, highlighting its enhanced robustness. In contrast, Mode 2
605 (random selection of donor catchments) demonstrated a consistent improvement in
606 regionalization performance for both NSE and Tp as the number of donor catchments
607 increased (Fig. 11d-f). However, while the average performance improves with data
608 quantity, it is important to acknowledge that this trend relies on the random samples
609 being generally representative; a poorly chosen random set could still reduce
610 generalizability. Notably, under both modes, the GBM-KNN-ERT method consistently
611 exhibited significantly greater performance stability compared to the alternative

612 ensemble, GBM4-KNN3. This enhanced robustness likely arises from its more
 613 effective suppression of data heterogeneity and noise interference, indicating that more
 614 complex ensemble methods possess a greater capacity to balance the benefits of
 615 increased data quantity with the potential drawbacks of reduced data quality.



616
 617 **Fig. 11.** Performance comparison of two donor catchment selection methods for parameter
 618 regionalization as a function of donor catchment quantity. Mode1 (a-c) selects donor
 619 catchments in order of decreasing NSE, while Mode 2 (d-f) selects them randomly. Flood
 620 prediction accuracy is assessed using NSE, Qp, and Tp. Error bars represent the full range
 621 (minimum to maximum) of the performance metrics.

622 **5.4. The impact of climate change on parameter regionalization methods**

623 The hydrological cycle within catchments is fundamentally governed by complex
 624 interactions between climate and environmental factors. The Intergovernmental Panel
 625 on Climate Change (IPCC) has consistently documented a continuous and accelerating
 626 transition in global climatic patterns, characterized by increased variability and extreme

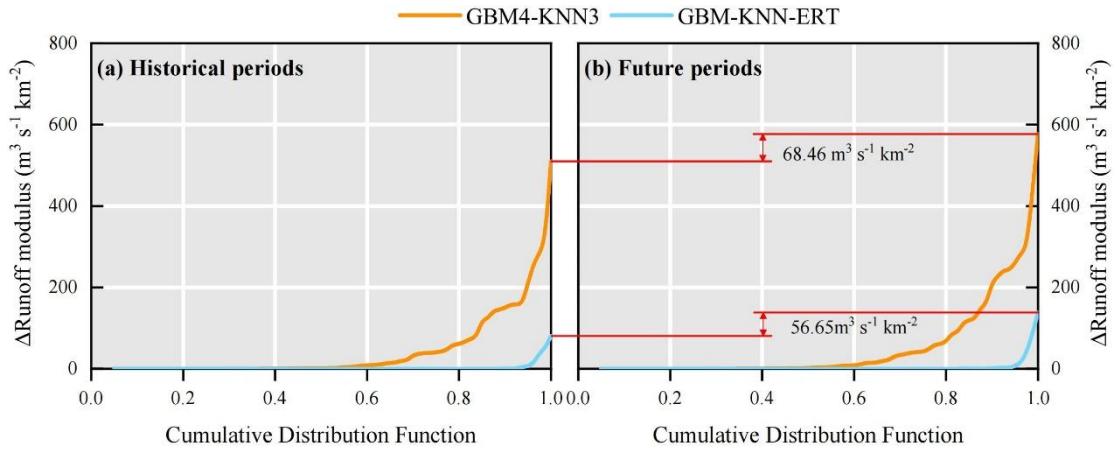
627 events (Pachauri et al., 2014). Consequently, future flood predictions derived from
628 parameter regionalization methods are expected to exhibit increased uncertainty and
629 variability, highlighting the substantial influence of climate change on the reliability
630 and precision of flood predictions in ungauged mountainous catchments (Yang et al.,
631 2019). Therefore, a sensitivity analysis was designed to evaluate the robustness of the
632 trained regionalization models when confronted with climatic conditions outside their
633 original training range.

634 To quantitatively assess the impact of climate change, an experiment was devised
635 where this impact was primarily reflected through changes in two key catchment
636 descriptors: Tem and Pre. For the historical period, these descriptors represent the multi-
637 year averages over 1901–2021, while for the future period, they represent the projected
638 multi-year averages over 2022–2100 under the SSP5-8.5 scenario. The regionalization
639 methods (GBM4-KNN3 and GBM-KNN-ERT), which were trained exclusively using
640 historical data, were then applied under these future conditions. Crucially, the method
641 structures and hyperparameters remained fixed, and no retraining was performed; only
642 the historical Tem and Pre values were replaced with their future projections. This
643 approach allows the response of the established historical relationships to new, out-of-
644 sample climatic inputs to be tested. The simulated peak discharges for this analysis were
645 derived from the same three flood events used in the calibration and validation of the
646 Top-SSF model. This experimental design is critical as it isolates the impact of the
647 changed model parameters from the compounding effect of a different future rainfall
648 event. Consequently, any observed change in the simulated flood peak is attributable

649 solely to the sensitivity of the regionalization method to the shift in climatic descriptors.
650 Cumulative distribution functions (CDFs) were then employed to illustrate the
651 discrepancies between the parameter regionalization simulations and the reference
652 simulations (derived from calibrated model parameters) across the historical and
653 projected future periods for the 80 catchments (Fig.12).

654 A comparative analysis of Fig. 12a and 12b reveals a clear amplification of the
655 absolute differences in predicted flood peaks (quantified as the error in runoff modulus)
656 between the two parameter regionalization methods and the reference Top-SSF model
657 simulations during the transition from the historical period to the projected future period.
658 Specifically, the maximum error in runoff modulus for the GBM4-KNN3 method
659 increased by $68.46 \text{ m}^3 \text{ s}^{-1} \text{ km}^{-2}$ from the historical period to the future period, while the
660 increase for the GBM-KNN-ERT method was a smaller $56.65 \text{ m}^3 \text{ s}^{-1} \text{ km}^{-2}$. These results
661 underscore that parameter regionalization methods are inherently sensitive to changing
662 climatic forcing. However, they also provide compelling evidence that the GBM-KNN-
663 ERT method exhibits superior stability and resilience under climate change,
664 demonstrating its potential for more reliable long-term flood risk assessment in
665 ungauged mountainous regions.

666 Exploring the effects of climate change on parameter regionalization methods
667 provides valuable insights for advancing flood prediction research in prediction in
668 ungauged basins. The enhanced stability demonstrated by the GBM-KNN-ERT
669 ensemble offers a promising direction for developing robust regionalization methods
670 capable of navigating the challenges of a non-stationary climate.



671
672 **Fig.12.** Comparison of flood peak runoff modulus between parameter regionalization and
673 calibrated Top-SSF model results, showing cumulative distribution functions (CDFs) of
674 absolute differences for 80 catchments during (a) historical and (b) future periods.

675 5.5. Uncertainty and limitation

676 The uncertainty in this study arises from several sources, including the
677 hydrological model, the regionalization methods, and the data itself. A critical
678 evaluation of these sources helps to contextualize our findings and assess the
679 generalizability of the ensemble method. Uncertainty from the hydrological model is
680 inherent in its structure and the calibrated parameters. Although the Top-SSF model
681 performed well, its parameters are effective values subject to equifinality. This
682 uncertainty in the "true" parameter values can be viewed as a form of calibration bias,
683 which serves as the target data for our regionalization. To mitigate this, we employed
684 the robust SCE-UA optimization algorithm and focused only on sensitive parameters.
685 Uncertainty is also introduced by the regionalization methods themselves, as the
686 training data derived from donor catchments are susceptible to errors that can impact
687 model performance (Mosavi et al., 2018; Xu and Liang, 2021).

688 A specific methodological choice was the exclusion of deep learning architectures,
689 such as Multilayer Perceptrons or Long Short-Term Memory (LSTM) networks. This

690 decision was guided by several factors. First, parameter regionalization is a static
691 regression problem, mapping time-invariant catchment descriptors to model parameters,
692 which does not align with the sequential data structure for which LSTM is designed.
693 Second, deep networks typically require large datasets to avoid overfitting; with a
694 dataset of 80 catchments, traditional machine learning methods like GBM and ERT are
695 often more robust and less prone to memorizing training data. Third, a key advantage
696 of parameter regionalization is its potential for physical interpretability. Unlike DL
697 models, whose internal decision-making processes are often obscured within abstract
698 weight matrices, the ensemble methods employed here offer more accessible
699 transparency. The tree-based models (GBM and ERT) allow for the direct assessment
700 of feature importance, enabling the verification of physical consistency. Furthermore,
701 the KNN component provides "instance-based" interpretability by explicitly identifying
702 the specific donor catchments used for transfer. This preserves the traceable logic of
703 hydrological similarity, clearly indicating the geographical or physical source of the
704 transferred parameters, a level of insight that is crucial for building trust in water
705 resource management.

706 Furthermore, the primary contribution of this study is not the identification of a
707 single superior algorithm, but the demonstration of a data-driven framework for
708 constructing a locally optimal ensemble. The complementarity of the chosen models
709 was not assumed but empirically validated through a competitive evaluation process.
710 Each of the seven machine learning methods was independently trained and assessed
711 for its ability to estimate each sensitive parameter. The final GBM-KNN-ERT ensemble

712 was constructed by selecting only the empirically best-performing model for each
713 parameter based on objective metrics (R^2 , RMSE, STD). The very fact that different
714 methods were selected for different hydrological parameters provides direct empirical
715 evidence of their complementary strengths, thus validating the ensemble method.

716 Furthermore, the specific GBM-KNN-ERT combination identified is necessarily
717 data-dependent, raising questions about its transferability. However, this study primary
718 contribution is not the specific model combination itself, but rather the demonstration
719 of a data-driven method for constructing a locally optimal ensemble. This method is
720 designed to be generalizable; applying the same competitive evaluation process to a
721 new region would identify the best ensemble for that specific dataset. The key to
722 overcoming these limitations and ensuring robust generalization lies in genuine model
723 complementarity. The ensemble method's success is not an artifact of overfitting to
724 calibration bias or data quirks. Instead, it stems from a physically plausible "division of
725 labor", where different models are empirically shown to be better suited for
726 regionalizing parameters governed by distinct physical processes. The ensemble
727 method's superior stability in the out-of-sample climate change stress test further
728 supports this conclusion, indicating that it has captured robust underlying relationships,
729 not just noise.

730 To manage methodological uncertainty, we employed K-fold cross-validation to
731 ensure robust performance evaluation and RandomizedSearchCV for hyperparameter
732 tuning to minimize overfitting (Bergstra and Bengio, 2012). A key methodological
733 decision was to evaluate the regionalization methods against the outputs of the

734 calibrated Top-SSF model, rather than directly against observed flood events. This
735 approach was chosen for two primary reasons. First, it isolates the performance of the
736 parameter regionalization itself. The calibrated simulation represents the theoretical
737 'best-case' performance for the given hydrological model structure; consequently, any
738 deviation from this benchmark can be directly attributed to imperfections in the
739 regionalization method, rather than being confounded by the inherent structural
740 limitations of the Top-SSF model. Second, this strategy ensures that the machine
741 learning models learn the underlying physical relationships intended by the
742 hydrological model, not simply mimic data noise or measurement errors present in the
743 observations. If trained against raw observations, the machine learning methods might
744 derive 'spurious' parameter sets that compensate for both the hydrological model's
745 structural flaws and observational errors. Such parameters could appear effective but
746 would lack physical meaning and generalizability. These measures, combined with the
747 evidence for model complementarity, provide a strong basis for the scientific validity
748 and potential for generalization of our proposed ensemble method.

749 **6. Conclusions**

750 This study introduces a novel multi-machine learning ensemble method (GBM-
751 KNN-ERT) to enhance model parameter transferability and improve flood prediction
752 in ungauged mountainous catchments. The proposed GBM-KNN-ERT method
753 demonstrated a substantial advancement in both flood prediction accuracy and model
754 robustness, achieving exceptional performance with 90% of ungauged catchments
755 exhibiting a NSE exceeding 0.9, a significant 67.44% improvement compared to the

756 best single machine learning method evaluated in this study. Importantly, the GBM-
757 KNN-ERT method exhibited remarkable stability under simulated climate change,
758 thereby highlighting its potential for reliable application in non-stationary hydrological
759 environments. Furthermore, the method demonstrated notable adaptability to varying
760 donor-catchment configurations, where an optimal balance between predictive
761 accuracy and computational efficiency with a relatively limited set of 20–40 high-
762 quality donor catchments ($\text{NSE} > 0.85$). By integrating the diverse strengths of multiple
763 machine learning with hydrological model, the proposed methodology significantly
764 advances the field of flood prediction in ungauged catchments, offering a reliable tool
765 for water resource management and flood disaster mitigation.

766 **Acknowledgements**

767 This research was supported by the Joint Funds of the National Natural Science
768 Foundation of China (**U2240226**), the National Natural Science Foundation of China
769 (**42271038**) and the National Key Research and Development Program of China
770 (**2022FY100205**).

771 **Competing interests**

772 The authors declare that they have no known competing financial interests or
773 personal relationships that could have appeared to influence the work reported in this
774 paper.

775 **Author contributions**

776 In this study, K L, G W, and J G were responsible for the conceptualization of the
777 research. Data curation was carried out by K L, L G, and X S, while formal analysis

778 was performed by K L, J G, and J M. The methodology was developed by K L, L G, P
779 H, and J L. Project administration was overseen by G W and J G. K L took the lead in
780 writing the original draft, and the writing, review, and editing process involved
781 contributions from K L, G W, J L, P H, J M, X Z, and J G.

782 **Code and data availability**

783 The code used in this study is available upon request from the authors. The
784 meteorological, soil characteristics, and topography datasets are publicly accessible
785 online, as detailed in Table 1. The hourly flood data for the 80 catchments were sourced
786 from China's Hydrological Yearbook. These data are not publicly available due to
787 governmental restrictions but can be accessed by contacting the corresponding author
788 for further information.

789 **References**

790 Arsenault, R., Breton-Dufour, M., Poulin, A., Dallaire, G., and Romero-Lopez, R.:
791 Streamflow prediction in ungauged basins: analysis of regionalization methods
792 in a hydrologically heterogeneous region of Mexico, *Hydrol. Sci. J.*, 64, 1297–
793 1311, <https://doi.org/10.1080/02626667.2019.1639716>, 2019.

794 Arsenault, R., Martel, J., and Mai, J.: Continuous streamflow prediction in ungauged
795 basins: Long Short-Term Memory Neural Networks clearly outperform
796 hydrological models, *Hydrol. Earth Syst. Sci.*, 27, 139–157,
797 <https://doi.org/10.5194/hess-27-139-2023>, 2023.

798 Bellman, R. E.: On the reduction of dimensionality for classes of dynamic programming
799 processes, RAND Corp., Santa Monica, Calif., Paper P-2243, 1961.

800 Bergstra, J. and Bengio, Y.: Random search for hyper-parameter optimization, *J. Mach.*
801 *Learn. Res.*, 13, 281–305, 2012.

802 Beven, K. J., Kirkby, M. J., Freer, J. E., and Lamb, R.: A history of TOPMODEL,
803 *Hydrol. Earth Syst. Sci.*, 25, 527–549, <https://doi.org/10.5194/hess-25-527-2021>, 2021.

805 Bishop, C. M. and Nasrabadi, N. M.: Pattern recognition and machine learning,
806 Springer-Verlag, New York, 2006.

807 Breiman, L.: Random forests, *Mach. Learn.*, 45, 5–32,
808 <https://doi.org/10.1023/A:1010933404324>, 2001.

809 Cheng, Q., Gao, L., Zuo, X., and Zhong, F.: Statistical analyses of spatial and temporal
810 variabilities in total, daytime, and nighttime precipitation indices and of extreme
811 dry/wet association with large-scale circulations of Southwest China, 1961–
812 2016, *Atmos. Res.*, 219, 166–182,
813 <https://doi.org/10.1016/j.atmosres.2018.12.033>, 2019.

814 Choi, J., Kim, U., and Kim, S.: Ecohydrologic model with satellite-based data for
815 predicting streamflow in ungauged basins, *Sci. Total Environ.*, 903, 166617,
816 <https://doi.org/10.1016/j.scitotenv.2023.166617>, 2023.

817 Dai, Y., Shangguan, W., Duan, Q., Liu, B., Fu, S., and Niu, G.: Development of a China
818 dataset of soil hydraulic parameters using pedotransfer functions for land
819 surface modeling, *J. Hydrometeorol.*, 14, 869–887,
820 <https://doi.org/10.1175/JHM-D-12-0149.1>, 2013.

821 Dakhlaoui, H., Bargaoui, Z., and Bárdossy, A.: Toward a more efficient calibration
822 schema for HBV rainfall–runoff model, *J. Hydrol.*, 444–445, 161–179,
823 <https://doi.org/10.1016/j.jhydrol.2012.04.015>, 2012.

824 Ding, Y. and Peng, S.: Spatiotemporal trends and attribution of drought across China
825 from 1901–2100, *Sustainability*, 12, 477, <https://doi.org/10.3390/su12020477>,
826 2020.

827 Duan, Q., Sorooshian, S., and Gupta, V. K.: Optimal use of the SCE-UA global
828 optimization method for calibrating watershed models, *J. Hydrol.*, 158, 265–
829 284, [https://doi.org/10.1016/0022-1694\(94\)90057-4](https://doi.org/10.1016/0022-1694(94)90057-4), 1994.

830 Friedman, J. H.: Stochastic gradient boosting, *Comput. Stat. Data Anal.*, 38, 367–378,
831 [https://doi.org/10.1016/S0167-9473\(01\)00065-2](https://doi.org/10.1016/S0167-9473(01)00065-2), 2002.

832 Gan, B., Liu, X., Yang, X., Wang, X., and Zhou, J.: The impact of human activities on
833 the occurrence of mountain flood hazards: lessons from the 17 August 2015
834 flash flood/debris flow event in Xuyong County, south-western China, *Geomat.
835 Nat. Hazards Risk*, 9, 816–840,
836 <https://doi.org/10.1080/19475705.2018.1480539>, 2018.

837 Gao, J., Kirkby, M., and Holden, J.: The effect of interactions between rainfall patterns
838 and land-cover change on flood peaks in upland peatlands, *J. Hydrol.*, 567, 546–
839 559, <https://doi.org/10.1016/j.jhydrol.2018.10.039>, 2018.

840 Garambois, P. A., Roux, H., Larnier, K., Labat, D., and Dartus, D.: Parameter
841 regionalization for a process-oriented distributed model dedicated to flash
842 floods, *J. Hydrol.*, 525, 383–399, <https://doi.org/10.1016/j.jhydrol.2015.03.052>,
843 2015.

844 Gauch, M., Mai, J., and Lin, J.: The proper care and feeding of CAMELS: How limited
845 training data affects streamflow prediction, *Environ. Modell. Softw.*, 135,
846 104926, <https://doi.org/10.1016/j.envsoft.2020.104926>, 2021.

847 Geurts, P., Ernst, D., and Wehenkel, L.: Extremely randomized trees, *Mach. Learn.*, 63,
848 3–42, <https://doi.org/10.1007/s10994-006-6226-1>, 2006.

849 Golian, S., Murphy, C., and Meresa, H.: Regionalization of hydrological models for
850 flow estimation in ungauged catchments in Ireland, *J. Hydrol. Reg. Stud.*, 36,
851 100859, <https://doi.org/10.1016/j.ejrh.2021.100859>, 2021.

852 Guo, L., Huang, K., Wang, G., and Lin, S.: Development and evaluation of temperature-
853 induced variable source area runoff generation model, *J. Hydrol.*, 610, 127894,
854 <https://doi.org/10.1016/j.jhydrol.2022.127894>, 2022.

855 Guo, Y., Zhang, Y., Zhang, L., and Wang, Z.: Regionalization of hydrological modeling
856 for predicting streamflow in ungauged catchments: A comprehensive review,
857 *WIREs Water*, 8, e1487, <https://doi.org/10.1002/wat2.1487>, 2021.

858 Gupta, A. K., Chakroborty, S., Ghosh, S. K., and Ganguly, S.: A machine learning model
859 for multi-class classification of quenched and partitioned steel microstructure
860 type by the k-nearest neighbor algorithm, *Comput. Mater. Sci.*, 228, 112321,
861 <https://doi.org/10.1016/j.commatsci.2023.112321>, 2023.

862 Hastie, T., Tibshirani, R., and Friedman, J.: *The elements of statistical learning*, 2nd
863 edn., Springer, New York, 2009.

864 Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J.,
865 Nicolas, J., Peubey, C., Radu, R., Rozum, I., Sheppers, D., Simmons, A., Soci,
866 C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1940
867 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS)
868 [dataset], <https://doi.org/10.24381/cds.adbb2d47>, 2023.

869 Hua, F., Wang, L., Fisher, B., Zheng, X., Wang, X., Douglas, W. Y., Tang, Y., Zhu, J.,
870 and Wilcove, D. S.: Tree plantations displacing native forests: The nature and
871 drivers of apparent forest recovery on former croplands in Southwestern China
872 from 2000 to 2015, *Biol. Conserv.*, 222, 113–124,
873 <https://doi.org/10.1016/j.biocon.2018.03.034>, 2018.

874 Jordan, M. I. and Mitchell, T. M.: Machine learning: Trends, perspectives, and prospects,
875 *Science*, 349, 255–260, <https://doi.org/10.1126/science.aaa8415>, 2015.

876 Jung, Y.: Multiple predicting K-fold cross-validation for model selection, *J.
877 Nonparametr. Stat.*, 30, 197–215,
878 <https://doi.org/10.1080/10485252.2017.1404598>, 2018.

879 Kanishka, G. and Eldho, T.: Watershed classification using Isomap technique and
880 hydrometeorological attributes, *J. Hydrol. Eng.*, 22, 04017040,
881 [https://doi.org/10.1061/\(ASCE\)HE.1943-5584.0001562](https://doi.org/10.1061/(ASCE)HE.1943-5584.0001562), 2017.

882 Kratzert, F., Klotz, D., Herrnegger, M., Sampson, A. K., Hochreiter, S., and Nearing, G.
883 S.: Toward improved predictions in ungauged basins: Exploiting the power of
884 machine learning, *Water Resour. Res.*, 55, 11344–11354,
885 <https://doi.org/10.1029/2019WR026065>, 2019.

886 Lenhart, T., Eckhardt, K., Fohrer, N., and Frede, H. G.: Comparison of two different
887 approaches of sensitivity analysis, *Phys. Chem. Earth*, 27, 645–654,
888 [https://doi.org/10.1016/S1474-7065\(02\)00049-9](https://doi.org/10.1016/S1474-7065(02)00049-9), 2002.

889 Li, K., Wang, G., Gao, J., Guo, L., Li, J., and Guan, M.: The rainfall threshold of forest
890 cover for regulating extreme floods in mountainous catchments, *Catena*, 236,
891 107707, <https://doi.org/10.1016/j.catena.2023.107707>, 2024.

892 Li, X., Khandelwal, A., Jia, X., Cutler, K., Ghosh, R., Renganathan, A., Xu, S., Tayal,
893 K., Nieber, J., Duffy, C., and Steinbach, M.: Regionalization in a global
894 hydrologic deep learning model: from physical descriptors to random vectors,

895 Water Resour. Res., 58, e2021WR031794,
896 <https://doi.org/10.1029/2021WR031794>, 2022.

897 Li, Z., Xu, X., Yu, B., Xu, C., Liu, M., and Wang, K.: Quantifying the impacts of climate
898 and human activities on water and sediment discharge in a karst region of
899 southwest China, J. Hydrol., 542, 836–849,
900 <https://doi.org/10.1016/j.jhydrol.2016.09.049>, 2016.

901 Liu, C., Guo, L., Ye, L., Zhang, S., Zhao, Y., and Song, T.: A review of advances in
902 China's flash flood early-warning system, Nat. Hazards, 92, 619–634,
903 <https://doi.org/10.1007/s11069-018-3173-7>, 2018.

904 Luo, P., He, B., Takara, K., Xiong, Y. E., Nover, D., Duan, W., and Fukushi, K.:
905 Historical assessment of Chinese and Japanese flood management policies and
906 implications for managing future floods, Environ. Sci. Policy, 48, 265–277,
907 <https://doi.org/10.1016/j.envsci.2014.12.015>, 2015.

908 McMillan, H. K.: A review of hydrologic signatures and their applications, WIREs
909 Water, 8, e1499, <https://doi.org/10.1002/wat2.1499>, 2021.

910 Morel-Seytoux, H. J. and Khanji, J.: Derivation of an equation of infiltration, Water
911 Resour. Res., 10, 795–800, <https://doi.org/10.1029/WR010i004p00795>, 1974.

912 Mosavi, A., Ozturk, P., and Chau, K. W.: Flood prediction using machine learning
913 models: Literature review, Water, 10, 1536, <https://doi.org/10.3390/w10111536>,
914 2018.

915 Nearing, G., Cohen, D., Dube, V., Gauch, M., Gilon, O., Harrigan, S., Hassidim, A.,
916 Klotz, D., Kratzert, F., Metzger, A., Nevo, S., Pappenberger, F., Prudhomme, C.,
917 Shalev, G., Shenzis, S., Tekalign, T. Y., Weitzner, D., and Matias, Y.: Global
918 prediction of extreme floods in ungauged watersheds, Nature, 627, 559–563,
919 <https://doi.org/10.1038/s41586-024-07145-1>, 2024.

920 Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., Church,
921 J. A., Clarke, L., Dahe, Q., Dasgupta, P., Dubash, N. K., Edenhofer, O., Elgizouli,
922 I., Field, C. B., Forster, P., Friedlingstein, P., Fuglestvedt, J., Gomez-Echeverri,
923 L., Hallegatte, S., Hegerl, G., Howden, M., Jiang, K., Jimenez Cisneroz, B.,
924 Kattsov, V., Lee, H., Mach, K. J., Marotzke, J., Mastrandrea, M. D., Meyer, L.,
925 Minx, J., Mulugetta, Y., O'Brien, K., Oppenheimer, M., Pereira, J. J., Pichs-
926 Madruga, R., Plattner, G. K., Pörtner, H. O., Power, S. B., Preston, B.,
927 Ravindranath, N. H., Reisinger, A., Riahi, K., Rusticucci, M., Scholes, R.,
928 Seyboth, K., Sokona, Y., Stavins, R., Stocker, T. F., Tschakert, P., van Vuuren,
929 D., and van Ypserle, J. P.: Climate Change 2014: Synthesis Report, Contribution
930 of Working Groups I, II and III to the Fifth Assessment Report of the
931 Intergovernmental Panel on Climate Change, edited by: Pachauri, R. and Meyer,
932 L., Geneva, Switzerland, IPCC, ISBN 978-92-9169-143-2, 2014.

933 Papageorgaki, I. and Nalbantis, I.: Classification of drainage basins based on readily
934 available information, Water Resour. Manage., 30, 5559–5574,
935 <https://doi.org/10.1007/s11269-016-1410-y>, 2016.

936 Pugliese, A., Persiano, S., Bagli, S., Mazzoli, P., Parajka, J., Arheimer, B., Capell, R.,
937 Montanari, A., and Blöschl, G.: A geostatistical data-assimilation technique for

938 enhancing macro-scale rainfall–runoff simulations, *Hydrol. Earth Syst. Sci.*, 22,
939 4633–4648, <https://doi.org/10.5194/hess-22-4633-2018>, 2018.

940 Qi, W., Zhang, C., Fu, G., and Zhou, H.: Quantifying dynamic sensitivity of
941 optimization algorithm parameters to improve hydrological model calibration,
942 *J. Hydrol.*, 533, 213–223, <https://doi.org/10.1016/j.jhydrol.2015.11.052>, 2016.

943 Ragettli, S., Zhou, J., Wang, H., Liu, C., and Guo, L.: Modeling flash floods in
944 ungauged mountain catchments of China: A decision tree learning approach for
945 parameter regionalization, *J. Hydrol.*, 555, 330–346,
946 <https://doi.org/10.1016/j.jhydrol.2017.10.031>, 2017.

947 Rockström, J., Gupta, J., Qin, D., Lade, S. J., Abrams, J. F., Andersen, L. S., Armstrong
948 McKay, D. I., Bai, X., Bala, G., Bunn, S. E., Ciobanu, D., DeClerck, F., Ebi, K.,
949 Gifford, L., Gordon, C., Hasan, S., Kanie, N., Lenton, T. M., Loriani, S.,
950 Liverman, D. M., Mohamed, A., Nakicenovic, N., Obura, D., Ospina, D.,
951 Prodani, K., Rammelt, C., Sakschewski, B., Scholtens, J., Stewart-Koster, B.,
952 Tharammal, T., van Vuuren, D., Verburg, P. H., Winkelmann, R., Zimm, C.,
953 Bennett, E. M., Bringezu, S., Broadgate, W., Green, P. A., Huang, L., Jacobson,
954 L., Ndehedehe, C., Pedde, S., Rocha, J., Scheffer, M., Schulte-Uebbing, L., de
955 Vries, W., Xiao, C., Xu, C., Xu, X., Zafra-Calvo, N., and Zhang, X.: Safe and
956 just Earth system boundaries, *Nature*, 619, 7968, 102–111,
957 <https://doi.org/10.1038/s41586-023-06083-8>, 2023.

958 Sain, S. R.: The Nature of Statistical Learning Theory (Book Review), *Technometrics*,
959 38, 409, <https://doi.org/10.1080/00401706.1996.10484565>, 1996.

960 Salmeron, R., García, C., and García, J.: Variance inflation factor and condition number
961 in multiple linear regression, *J. Stat. Comput. Simul.*, 88, 2365–2384,
962 <https://doi.org/10.1080/00949655.2018.1463376>, 2018.

963 Schoups, G., van de Giesen, N. C., and Savenije, H. H. G.: Model complexity control
964 for hydrologic prediction, *Water Resour. Res.*, 44, W00B03,
965 <https://doi.org/10.1029/2008WR006836>, 2008.

966 Shangguan, W., Dai, Y., Liu, B., Zhu, A., Duan, Q., Wu, L., Ji, D., Ye, A., Yuan, H.,
967 Zhang, Q., Chen, D., Chen, M., Chu, J., Dou, Y., Guo, J., Li, H., Li, J., Liang,
968 Liang, X., Liu, H., Liu, S., Miao, C., and Zhang, Y.: A China data set of soil
969 properties for land surface modeling, *J. Adv. Model. Earth Syst.*, 5, 212–224,
970 <https://doi.org/10.1002/jame.20026>, 2013.

971 Song, Z., Xia, J., Wang, G., She, D., Hu, C., and Hong, S.: Regionalization of
972 hydrological model parameters using gradient boosting machine, *Hydrol. Earth
973 Syst. Sci.*, 26, 505–524, <https://doi.org/10.5194/hess-26-505-2022>, 2022.

974 Tang, S., Sun, F., Liu, W., Wang, H., Feng, Y., and Li, Z.: Optimal Postprocessing
975 Strategies With LSTM for Global Streamflow Prediction in Ungauged Basins,
976 *Water Resour. Res.*, 59, e2022WR034352,
977 <https://doi.org/10.1029/2022WR034352>, 2023.

978 Wainwright, J. and Mulligan, M.: Environmental modelling: finding simplicity in
979 complexity, 2nd edn., John Wiley & Sons, 2013.

980 Wani, O., Beckers, J. V. L., Weerts, A. H., and Solomatine, D. P.: Residual uncertainty
981 estimation using instance-based learning with applications to hydrologic

982 forecasting, *Hydrol. Earth Syst. Sci.*, 21, 4021–4036,
983 <https://doi.org/10.5194/hess-21-4021-2017>, 2017.

984 Wu, H., Zhang, J., Bao, Z., Wang, G., Wang, W., Yang, Y., and Wang, J.: Runoff
985 Modeling in Ungauged Catchments Using Machine Learning Algorithm-Based
986 Model Parameters Regionalization Methodology, *Engineering*, 28, 93–104,
987 <https://doi.org/10.1016/j.eng.2021.12.014>, 2023.

988 Xu, Q., Chen, J., Peart, M. R., Ng, C.-N., Hau, B. C. H., and Law, W. W. Y.: Exploration
989 of severities of rainfall and runoff extremes in ungauged catchments: A case
990 study of Lai Chi Wo in Hong Kong, China, *Sci. Total Environ.*, 634, 640–649,
991 <https://doi.org/10.1016/j.scitotenv.2018.04.024>, 2018.

992 Xu, T. and Liang, F.: Machine learning for hydrologic sciences: An introductory
993 overview, *WIREs Water*, 8, e1533, <https://doi.org/10.1002/wat2.1533>, 2021.

994 Yang, X., Magnusson, J., Rizzi, J., and Xu, C.-Y.: Runoff prediction in ungauged
995 catchments in Norway: comparison of regionalization approaches, *Hydrol. Res.*,
996 49, 487–505, <https://doi.org/10.2166/nh.2017.071>, 2018.

997 Yang, X., Magnusson, J., and Xu, C. Y.: Transferability of regionalization methods
998 under changing climate, *J. Hydrol.*, 568, 67–81,
999 <https://doi.org/10.1016/j.jhydrol.2018.10.030>, 2019.

1000 Zhai, X., Guo, L., Liu, R., and Zhang, Y.: Rainfall threshold determination for flash
1001 flood warning in mountainous catchments with consideration of antecedent soil
1002 moisture and rainfall pattern, *Nat. Hazards*, 94, 605–625,
1003 <https://doi.org/10.1007/s11069-018-3404-y>, 2018.

1004 Zhang, B., Ouyang, C., Cui, P., et al.: Deep learning for cross-region streamflow and
1005 flood forecasting at a global scale, *The Innovation*, 5, 100617,
1006 <https://doi.org/10.1016/j.xinn.2024.100617>, 2024.

1007 Zhang, Y., Chiew, F. H., Li, M., and Post, D.: Predicting runoff signatures using
1008 regression and hydrological modeling approaches, *Water Resour. Res.*, 54,
1009 7859–7878, <https://doi.org/10.1029/2018WR023325>, 2018.

1010 Zhang, Y., Chiew, F. H., Liu, C., et al.: Can remotely sensed actual evapotranspiration
1011 facilitate hydrological prediction in ungauged regions without runoff calibration?
1012 *Water Resour. Res.*, 56, e2019WR026236,
1013 <https://doi.org/10.1029/2019WR026236>, 2020.

1014 Zhang, Y., Ragettli, S., Molnar, P., Fink, O., and Peleg, N.: Generalization of an
1015 Encoder-Decoder LSTM model for flood prediction in ungauged catchments, *J.*
1016 *Hydrol.*, 614, 128577, <https://doi.org/10.1016/j.jhydrol.2022.128577>, 2022.

1017 Zounemat-Kermani, M., Batelaan, O., Fadaee, M., and Hinkelmann, R.: Ensemble
1018 machine learning paradigms in hydrology: A review, *J. Hydrol.*, 598, 126266,
1019 <https://doi.org/10.1016/j.jhydrol.2021.126266>, 2021.