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Abstract:  12 

Machine learning-based parameter regionalization is an important method for 13 

flood prediction in ungauged mountainous catchments. However, single machine 14 

learning parameter regionalization often exhibits limitations in prediction accuracy and 15 

robustness. Therefore, this study proposes a multi-machine learning ensemble 16 

regionalization method that integrates Gradient Boosting Machine (GBM), K-Nearest 17 

Neighbors (KNN), and Extremely Randomized Trees (ERT) methods (GBM-KNN-18 

ERT) to regionalize the sensitive parameters of the Topography-Based Subsurface 19 

Storm Flow (Top-SSF) model. Validated across 80 mountainous catchments in 20 

southwestern China, the GBM-KNN-ERT method demonstrates superior performance 21 

with 90% of ungauged catchments achieving the Nash-Sutcliffe Efficiency (NSE) 22 

above 0.9, representing a 67.44% improvement over the best single machine learning 23 

parameter regionalization. Notably, the GBM-KNN-ERT method shows improved 24 

robustness to climate change and changes in the number of donor catchments compared 25 

to other regionalization methods. An optimal balance between accuracy and 26 

mailto:wanggx@scu.edu.cn


 

2 

computational efficiency was achieved using 20-40 high quality donor catchments 27 

(NSE greater than 0.85). This study provides systematic evidence that multi-machine 28 

learning ensemble can effectively address regionalization challenges in ungauged 29 

mountainous regions, offering a reliable tool for water resource management and flood 30 

disaster mitigation. 31 

Keywords: Flood forecasting; Regionalization; Ungauged mountainous catchments; 32 

Top-SSF model;  33 

 34 

Highlights: 35 

1. Proposes a novel multi-machine learning ensemble regionalization method 36 

2. The GBM-KNN-ERT method increases the percentage of catchments with high-37 

accuracy flood predictions (NSE >0.9) to 90%, which is a 67.44% improvement 38 

over the best single ML method. 39 

3. The GBM-KNN-ERT method exhibits greater stability under climate change. 40 

  41 
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1. Introduction 42 

Floods in mountainous catchments, encompassing both flash floods and general 43 

larger-scale flood events which can be derived from mountainous upland catchments, 44 

pose a significant threat to human safety and property, particularly in regions lacking 45 

sufficient observational data (Luo et al., 2015; Zhai et al., 2018). While hydrological 46 

models like the Topography-Based Subsurface Storm Flow (Top-SSF) model (Li et al., 47 

2024) offer promising simulation capabilities, their application in ungauged catchments 48 

is severely limited by the absence of calibration data (Choi et al., 2023; Liu et al., 2018). 49 

Effective parameter regionalization methods are therefore essential for transferring 50 

hydrological knowledge from gauged to ungauged regions, enabling reliable flood 51 

prediction in ungauged mountainous catchment (Garambois et al., 2015; Ragettli et al., 52 

2017; Xu et al., 2018). 53 

Parameter regionalization is a crucial method for flood prediction in ungauged 54 

catchments (Arsenault et al., 2022; Guo et al., 2021; Kratzert et al., 2019; Zhang et al., 55 

2020). Compared to purely data-driven methods, parameter regionalization offers 56 

enhanced physical interpretability (Nearing et al., 2024; Tang et al., 2023; Zhang et al., 57 

2024). Existing parameter regionalization methods can be broadly classified into three 58 

categories: similarity-based, hydrological signatures-based, and regression-based 59 

(Arsenault et al., 2019; Wu et al., 2022). Similarity-based methods rely on the 60 

assumption that catchments with similar characteristics exhibit similar hydrological 61 

responses, considering spatial proximity  (Arsenault et al., 2019; Pugliese et al., 2018; 62 

Yang et al., 2018) and physical similarity (similar climatic and land cover conditions 63 
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have similar hydrological characteristics) (Kanishka et al., 2017; Papageorgaki et al., 64 

2016). Hydrological signature-based methods use hydrological signatures (quantitative 65 

metrics that describe statistical or dynamic properties of streamflow) as an intermediate 66 

link, establishing relationships first between model parameters and signatures, and then 67 

between signatures and catchment descriptors to facilitate parameter transfer 68 

(McMillan, 2021; Zhang et al., 2018). Regression-based methods, which directly link 69 

hydrological model parameters to catchment descriptors, are widely used due to their 70 

simplicity and computational efficiency (Guo et al., 2021; Kratzert et al., 2019; Song et 71 

al., 2022; Wu et al., 2022). However, the performance of regression-based methods is 72 

frequently constrained by the inherent nonlinearity in the relationships between model 73 

parameters and catchment descriptors, coupled with the difficulty in adequately 74 

capturing spatial heterogeneity, especially within complex mountainous terrain (Wu et 75 

al., 2022). 76 

Recent advances in machine learning offer potential solutions by capturing 77 

nonlinear patterns in high-dimensional data. Such as Decision Tree (DT), Extremely 78 

Randomized Trees (ERT), Gradient Boosting Machine (GBM), K-Nearest Neighbor 79 

(KNN), Random Forest (RF), and Support Vector Machines (SVM) have shown 80 

promise in parameter regionalization (Golian et al., 2021; Song et al., 2022). However, 81 

existing machine learning-based parameter regionalization studies predominantly focus 82 

on runoff prediction at coarser temporal scales (daily or monthly) (Li et al., 2022; Wu 83 

et al., 2022), leaving a significant gap in high-resolution (hourly or sub-hourly) flood 84 

prediction in ungauged mountainous catchments. Moreover, these studies often rely on 85 
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single machine learning methods to estimate all hydrological model parameters  (Golian 86 

et al., 2021; Song et al., 2022; Wu et al., 2022). Given that different machine learning 87 

methods operate on distinct principles (Jordan et al., 2015; Zounemat-Kermani et al., 88 

2021) and hydrological model parameters represent diverse hydrological processes (Li 89 

et al., 2024), a single machine learning method may not adequately capture the 90 

complexity of model parameter estimation (Golian et al., 2021; Wu et al., 2022). 91 

Therefore, exploring the multi-machine learning ensemble methods is essential to 92 

improve the accuracy of high-resolution flood prediction in ungauged mountainous 93 

catchments. 94 

Southwest China's mountainous regions are particularly vulnerable to frequent 95 

floods, leading to ecosystem degradation through habitat disruption and biodiversity 96 

loss (Gan et al., 2018). The abundance of ungauged catchments in this region poses a 97 

significant challenge to reliable flood prediction. To address this critical issue, we 98 

systematically evaluate the performance of a novel multi-machine learning ensemble 99 

method for regionalizing Top-SSF model parameters across 80 representative 100 

catchments (mean area: 1,586 km²) in Southwest China. By assessing ensemble method 101 

robustness under climate change and with varying donor catchment configurations, this 102 

study aims to significantly enhance flood prediction accuracy in ungauged mountainous 103 

catchments, contributing to improved ecosystem resilience, enhanced human safety, 104 

and more effective water resource management in the face of escalating climatic 105 

pressures. 106 
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2. Study area and datasets 107 

2.1. Study area 108 

This study investigated 80 mountainous catchments in Southwestern China, 109 

encompassing Sichuan, Yunnan, Guangxi, Guizhou, and Chongqing provinces (Fig. 1). 110 

This region exhibits diverse climatic zones, including subtropical monsoon, plateau 111 

mountain, and tropical monsoon climates. The selected catchments have an average 112 

area of 1,586 km² (ranging from 109 to 6,564km2), with elevations ranging from 63 to 113 

6,284 meters. Mean annual temperature varies from 15 to 20°C, and annual 114 

precipitation ranges from 1,200 to 1,800 mm (Li et al., 2016), with approximately 80% 115 

of the annual precipitation occurring during summer and autumn, contributing to 116 

frequent flooding events (Cheng et al., 2019). These catchments are situated within a 117 

heavily forested region, the second largest in China  (Hua et al., 2018), with forest cover 118 

ranging from 3% to 92% (mean: 51%), influencing evapotranspiration and runoff 119 

generation. Dominant soil types, according to the Genetic Soil Classification of China 120 

(Shi et al., 2004), include purple soil (12.20%), yellow soil (11.39%), and red soil 121 

(9.52%), each with distinct hydrological properties. 122 
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  123 

Fig.1. Geographical distribution of the 80 gauged catchments used, with locations of 124 

hydrometry station (red points) and major rivers indicated. 125 

2.2. Datasets 126 

Hourly flow data (2015–2018) for 80 mountainous catchments in China were 127 

sourced from the Hydrological Bureau of the Ministry of Water Resources, through 128 

China's hydrologic yearbooks, encompassing a spectrum of events from flash floods 129 

and general floods which can be derived from mountainous upland catchments. Hourly 130 

rainfall data (2015–2018) were obtained from ground meteorological stations across 131 

China (http://en.weather.com.cn), providing crucial input for hydrological modelling. 132 

Additional meteorological variables, including temperature, wind speed, dewpoint 133 

temperature, and surface net solar radiation, were obtained from the ERA5 hourly 134 

dataset (1940–present) (Hersbach et al., 2023), ensuring comprehensive atmospheric 135 

forcing. Relative humidity was estimated using dewpoint temperature. Historical 136 
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(1901–2021) and projected future (SSP585, 2022–2100) temperature and precipitation 137 

data for China, averaged from the EC-Earth3, GFDL-ESM4, and MRI-ESM2-0 models 138 

at 1 km resolution, were obtained from "A Big Earth Data Platform for Three Poles" to 139 

assess the impact of climate change (Ding et al., 2020) (http://poles.tpdc.ac.cn). 140 

Topographic data, including a 30-m resolution Digital Elevation Model (DEM), used 141 

for river network and topographic index derivation, were obtained from EARTHDATA 142 

and used for river network delineation and topographic index derivation 143 

(https://search.earthdata.nasa.gov/search). Forest cover data (30-m resolution) were 144 

sourced from the Global Forest Cover and Forest Change Map 145 

(https://www.noda.ac.cn/), providing information on vegetation characteristics. Bulk 146 

density (BD) data were derived from the Soil Database of China for Land Surface 147 

Modelling (Dai et al., 2013). Soil hydraulic parameters, specifically saturated hydraulic 148 

conductivity (Ks_CH) for Clapp and Hornberger functions and the pore-connectivity 149 

parameter (L) for van Genuchten and Mualem functions, were acquired from the China 150 

Dataset of Soil Hydraulic Parameters Using Pedotransfer Functions for Land Surface 151 

Modeling (Shangguan et al., 2013). 152 

 153 

 154 

 155 

 156 

 157 

 158 
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Table 1. Model forcing data and catchment descriptors information. 159 

Data type Name Unit Function 

Hydro-

meteorology  

Rainfall mm 
 Input for hydrological 

model 

Flood m3/s 
Used for model calibration 

(hourly resolution) 

Temperature K 

Input for hydrological model  

Surface pressure Pa 

Dewpoint temperature K 

wind speed m/s 

Surface net solar radiation j/m2 

Relative humidity % 

1 km monthly precipitation (1901-2021) mm 

Multi-year surface average 

as catchment descriptors 

 1 km monthly temperature (1901-2021) ℃ 

1 km monthly temperature (2022-2100, SSP5-

8.5, EC-Earth3, GFDL-ESM4, MRI-ESM2-0) 
℃ 

1 km monthly precipitation (2022-2100, 

SSP5-8.5, EC-Earth3, GFDL-ESM4, MRI-

ESM2-0) 

mm 

Soil 

characteristics  

Soil bulk density (BD) g/cm3 

Surface average as 

catchment descriptors 

Pore-connectivity parameter (L) for the van 

Genuchten and Mualem functions 
- 

Saturated hydraulic conductivity (Ks_CH) of 

the Clapp and Hornberger Functions  

cm d-

1 

Topography  

Forest cover (FC) % 

DEM m 

Topographic index - 

Slope mm-1 

Catchment area km2 

3. Methodology 160 

3.1. Hydrological model 161 

Top-SSF is a semi-distributed hydrological model based on the well-established 162 

TOPMODEL framework, which delineates sub-basins based on the topographic index. 163 

It retains the key advantages of TOPMODEL, such as its parsimonious structure, 164 

physical interpretability, and ease of parameter transfer (Beven et al., 2021; Gao et al., 165 

2018), consists of 15 parameters representing six key hydrological components: canopy 166 

interception, infiltration, evapotranspiration, unsaturated zone moisture transport, 167 

subsurface storm flow, and flow routing (Li et al., 2024). In the Top-SSF model, flood 168 

can be comprised of four components: infiltration-excess overland flow, saturation-169 

excess overland flow, subsurface storm flow, and groundwater discharge.  170 
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Infiltration-excess overland flow occurs when the rainfall intensity exceeds the 171 

infiltration capacity. In this study, infiltration is simulated using the Green-Ampt model. 172 

When surface ponding occurs, the infiltration rate is determined by solving the Green-173 

Ampt equation iteratively, for which the Newton-Raphson method is employed. The 174 

infiltration rate (𝑓𝑖𝑛) is given by： 175 

𝑓𝑖𝑛 =  −
𝐾s(𝐶𝐷+𝐹𝑠𝑎𝑡𝑟𝑡)

𝑆𝑧𝑚(1−e(𝐹𝑠𝑎𝑡𝑟𝑡/Sz𝑚)) 
   (1) 176 

where,𝑓𝑖𝑛is the infiltration rate (m/h)；𝐾s is surface hydraulic conductivity (m/h)；177 

CD is capillary drive (m); 𝐹𝑠𝑎𝑡𝑟𝑡 is the initial cumulative infiltration (m); 𝑆𝑧𝑚 is the 178 

maximum water storage capacity in the unsaturated zone (m). 179 

Saturation excess overland flow occurs at computational cell 𝑖  when the 180 

groundwater table depth, 𝑆𝑖  is less than or equal to zero (i.e., 𝑆𝑖 ≤ 0, indicating the 181 

water table has reached the surface). It is calculated as: 182 

 𝑟𝑠,𝑖 = 𝑚𝑎𝑥{𝑆𝑢𝑧𝑖 − 𝑚𝑎𝑥(𝑆𝑖, 0) , 0}   (2)  183 

where, 𝑟𝑠,𝑖 is the depth of saturation excess overland flow generated at cell 𝑖 (m); 𝑆𝑢𝑧𝑖 184 

is the soil water storage in the unsaturated zone, at cell 𝑖 (m); 𝑆𝑖is the groundwater table 185 

depth at cell 𝑖 (m). 186 

The depth of subsurface storm flow generated at computational cell 𝑖  , 𝑟𝑠𝑓,𝑖  is 187 

given by: 188 

 𝑟𝑠𝑓,𝑖 = 𝑞𝑠𝑓0(1 − 𝑆𝑠𝑓,𝑖/𝑆𝑓𝑚𝑎𝑥)   (3)  189 

where, 𝑟𝑠𝑓,𝑖 is the depth of subsurface storm flow at cell 𝑖 (m); 𝑞𝑠𝑓0 is initial subsurface 190 

storm flow (m); 𝑆𝑠𝑓,𝑖 is the water storage deficit in the subsurface storm flow zone at 191 

cell 𝑖 (m). 192 

The depth of groundwater discharge is calculated as: 193 

 𝑟𝑏 = 𝑒lnTe−−𝑆𝑔/𝑆𝑧𝑚   （4） 194 

where, 𝑟𝑏 is depth of groundwater discharge (m);𝑙𝑛𝑇𝑒 is the log of the areal average of 195 

𝑇0 (m2/h); is the catchment average topographic index; 𝑆𝑔  is the catchment average 196 

groundwater table depth (m). For the complete set of equations for the Top-SSF model, 197 
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the reader is referred to the Supplementary Material and (Li et al., 2024). 198 

 199 

3.2. Multi-machine learning ensemble method 200 

To improve flood prediction accuracy in ungauged mountainous catchments, we 201 

proposed a multi-machine learning ensemble method for regionalizing sensitive 202 

parameters of the Top-SSF model. This method leverages the complementary strengths 203 

of multi-machine learning methods to estimate model parameters based on catchment 204 

descriptors (Fig. 2). The characteristics, strengths, and limitations of each machine 205 

learning method are summarized in Table 2. The ensemble method employs a cross-206 

validation procedure to select the best-performing machine learning method for each 207 

sensitive parameter. These selections are then integrated into a unified regionalization 208 

scheme. By mitigating limitations inherent in single machine learning regionalization, 209 

such as model bias and overfitting, and by capturing complex hydrological processes 210 

in mountainous catchment, this ensemble method aims to achieve more accurate flood 211 

prediction in ungauged catchments. 212 

  213 
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Table 2. Seven machine learning model characteristics, advantages and disadvantages. 214 

Machine 

learning 
Characteristic Advantage Disadvantages 

DT 

A single decision tree hierarchically partitions the 

data space using a tree structure, with internal nodes 

representing features, branches representing 

decision rules, and leaf nodes representing class 

labels. 

High interpretability; 

Minimal data 

preprocessing. 

Unstable; 

Tends to overfit. 

ERT 

Construct multiple decision trees with randomly 

selected feature values and randomly divided nodes 

(Geurts et al., 2006). 

Low overfitting risk; 

Computational 

efficiency; Resilient 

to noise. 

Possibility of 

increased bias; 

Limited 

interpretability. 

GBM 

Construct multiple decision trees. Multiple weak 

learners are trained iteratively and the loss function 

is optimised using gradient descent, progressively 

combined into a robust model through the learning 

rate (Friedman, 2002). 

High accuracy for 

structured data; 

Robust to outliers; 

Minimal data 

preprocessing. 

Limited 

interpretability; 

Complex 

adjustments. 

KNN 

It is a non-parametric, instance-based supervised 

learning algorithm. It operates by finding the K 

nearest data points in the training data to a given 

data point and making predictions based on these 

(Wani et al., 2017).  

Simple and easy to 

implement. 

Learning process is 

quick. 

Sensitivity to 

noisy and scale 

of data. 
Accuracy can be 

heavily impacted 

by the choice of 

K. 

RF 

A bagging algorithm proposed by Breiman (2001) 

that uses ensemble learning. Involves training 

numerous decision trees and aggregating 

predictions . 

Simple and easy to 

implement; 

Low computational 

cost. 

Prone to 

overfitting in 

noisy regression 

tasks. 

SVM 

Identifies hyperplanes in high-dimensional spaces 

to segregate data. The optimal hyperplane 

maximizes the margin between it and the nearest 

data points, termed support vectors (Sain, 1996). 

Uses kernel functions 

to address nonlinear 

classification issues. 

Sensitive to noise 

 215 

Fig.2. Multi-machine learning ensemble method for regionalization in ungauged mountainous 216 

catchments. The red line indicates the machine learning method that yielded the optimal 217 

parameter estimates. 218 

3.3. Parameter regionalization process 219 

The parameter regionalization process comprised four key steps: (1) Top-SSF 220 

model calibration and parameter sensitivity analysis; (2) selection of relevant catchment 221 

descriptors; (3) establishment of regionalization relationships between sensitive model 222 

parameters and catchment descriptors using multi-machine learning ensemble methods; 223 



 

13 

and (4) evaluation of parameter regionalization performance. 224 

3.3.1. Top-SSF model calibration and parameter sensitivity analysis 225 

In this study, the Top-SSF model was employed to simulate hydrological processes. 226 

The model was driven by continuous hourly meteorological data, including rainfall, 227 

temperature, surface pressure, relative humidity, wind speed, and surface net solar 228 

radiation. For each catchment, model parameters were calibrated using two 229 

hydrologically independent and representative flood events.  A third, distinct flood 230 

event was then used for model validation. The Nash-Sutcliffe Efficiency (NSE) served 231 

as the objective function during calibration, with parameter optimization achieved 232 

using the Shuffled Complex Evolution (SCE-UA) algorithm (Duan et al., 1994), known 233 

for its global convergence and robustness (Dakhlaoui et al., 2012; Qi et al., 2016). 234 

Model performance was evaluated using the NSE, the relative error of flood peak flow 235 

(Qp), and the absolute error in flood peak occurrence time (Tp), following China's 236 

Specification for Hydrological Information Forecast (GB/T 22482-2008). These 237 

metrics quantify the model's ability to predict flood dynamics, peak flow, and timing. 238 

Following calibration, a sensitivity analysis was conducted to identify and exclude 239 

insensitive model parameters (Lenhart et al., 2002), which were then used for 240 

regionalization. This approach reduces the dimensionality of the regionalization 241 

problem and improves the efficiency of the process. 242 

The sensitivity index (𝑆𝑖) of each hydrological model parameter was determined 243 

using the method of Lenhart et al. (2002), which assesses the influence of ±10% 244 

changes in parameter values (Eq. 1). Table 3 outlines the sensitivity analysis results for 245 
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the model parameters across the 80 mountainous catchments. The 𝑆𝑖  values are 246 

categorized as follows (Guo et al., 2022): negligible sensitivity ( |𝑆𝑖|  <  0.05 ), 247 

moderate sensitivity (0.05 <  |𝑆𝑖|  <  0.2), high sensitivity (0.2 <  |𝑆𝑖|  <  1.00), and 248 

extremely high sensitivity (|𝑆𝑖|  ≥  1.00 ). Based on the sensitivity analyses, seven 249 

sensitive model parameters were identified: 𝑆𝑧𝑚, 𝑙𝑛𝑇𝑒, 𝑆𝑓𝑚𝑎𝑥, 𝐶, 𝑞𝑠𝑓0, 𝑡 (Table 3). 250 

𝑆𝑖 =
1

𝑁
∑

(𝑦2(𝑡)−𝑦1(𝑡))/𝑦0(𝑡)

2∆𝑥/𝑥0

𝑁
𝑡  (5) 251 

where 𝑦0(t)  is the flood value of the calibrated parameter  𝑥0  at time 𝑡 ; ∆𝑥  is the 252 

adjusted parameter difference，∆𝑥/𝑥0=10%；𝑦1(t) is the flood value of the calibrated 253 

parameter 𝑥0 − ∆𝑥 at time 𝑡;𝑦2(t) is the flood value of the calibrated parameter 𝑥0 +254 

∆𝑥 at time 𝑡. 255 

Table 3. Top-SSF model main modules and default range of parameters. 256 

Modular Parameter Definition Unite 
Default 

range 

Sensitivity 

index 

Canopy 

interception 

𝑆𝑐 Canopy storage capacity m 0.00~0.01 <0.05 

𝑆𝑡 Trunk storage capacity m 0.00~0.01 <0.05 

𝑃𝑡 
Proportion of rain diverted into 

stemflow per cover 
% 0.00~1.00 <0.05 

Evapotranspiration 
𝑆𝑟0 Initial root zone storage deficit m 0.00~0.02 <0.05 

𝑆𝑟𝑚𝑎𝑥 Maximum root zone storage deficit m 0.00~2 <0.05 

Infiltration 

𝐾𝑠 Surface hydraulic conductivity m/h 0~0.01 <0.05 

𝐶𝐷 
Capillary drive  

(Morel-Seytoux et al., 1974) 
m 0~5 <0.05 

Unsaturated zone 

𝑆𝑢𝑧0 Initial baseflow per unit area m 0.00~10-4 <0.05 

𝑆𝑧𝑚 
Soil maximum water storage 

capacity 
m 0.00~1.00 0.19 

𝑡𝑑 
Unsaturated zone time delay per unit 

storage deficit 
h/m 0~3 1.07 

𝑙𝑛𝑇𝑒 log of the areal average of T0 m2/h -2.00~1.00 3.4 

Subsurface 

storm flow zone 

𝑆𝑓𝑚𝑎𝑥 
Maximum subsurface storm flow 

zone deficit 
m 0.00~0.01 0.16 

𝐶 Transfer coefficient m-2/h 0.00~0.1 0.26 

𝑞𝑠𝑓0 
Initial subsurface storm flow per unit 

area 
m 0.00~0.02 0.18 

Routing 𝑡 Flow routing correction coefficient - 0.00~5.0 1.21 

Note, the bolded values in the sensitivity index indicate sensitive model parameters. 257 
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3.3.2. Catchment descriptor selection 258 

To mitigate the effects of multicollinearity on the accuracy and reliability of the 259 

parameter regionalization methods, catchment descriptors were screened using the 260 

variance inflation factor (VIF) and correlation coefficients. A VIF threshold of less than 261 

10 (VIF < 10) was used to indicate acceptably low multicollinearity (Salmeron et al., 262 

2018). Initial screening identified strong correlations between several descriptor pairs, 263 

notably L with Ks_CH, and Tem with Elev. Furthermore, the VIF values for Ks_CH 264 

and Slope were found to exceed 10. Consequently, Ks_CH and Slope were removed 265 

from the potential set of descriptors. Following their removal, a re-evaluation of the 266 

VIF for the remaining descriptors was conducted. Although a notable correlation exists 267 

between Tem and elevation (Elev), their VIF values in the reduced set were both below 268 

the threshold of 10. Given the importance of Tem for representing climate impacts and 269 

Elev as a key topographic driver, both were retained to preserve potentially valuable 270 

information. The final set of seven catchment descriptors selected for regionalization 271 

therefore comprised FC, Elev, Area, L, Tem, Pre, and BD. As illustrated in Fig. 3b, the 272 

correlations among these final descriptors and the sensitive model parameters are 273 

generally low (highest at 0.5), suggesting that the relationships are complex and 274 

nonlinear. 275 
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 276 
Fig.3. Analysis of catchment descriptor relationships: (a) Correlation coefficients and variance 277 

inflation factors (VIF) among all descriptors; (b) Correlation coefficients between 278 

sensitivity model parameters and descriptors with VIF values below 10. 279 

3.3.3. Parameter regionalization 280 

To simulate ungauged catchment conditions, each of the 80 catchments was 281 

iteratively treated as an ungauged catchment, with the remaining 79 catchments serving 282 

as donor catchments. A parameter regionalization method was then constructed using 283 

the catchment descriptors and sensitive model parameters of the donor catchments to 284 

predict the seven sensitive model parameters for the ungauged catchment based on its 285 

catchment descriptors. These predicted model parameters were then input into the Top-286 

SSF model to enable flood prediction in ungauged catchments. To ensure robust and 287 

generalizable results, K-fold cross-validation (K = 10) was implemented. This involved 288 

randomly partitioning the 79 donor catchments into K subsets, using one subset as a 289 

test set and the remaining K-1 subsets for method training in each iteration (Jung, 2018). 290 

This approach maximizes data utilization and minimizes bias associated with specific 291 

data partitioning. Hyperparameter tuning for each machine learning method was 292 

performed using RandomizedSearchCV (Bergstra et al., 2012), with the objective of 293 

minimizing the difference between predicted and observed parameter values. 294 



 

17 

3.3.4. Evaluated metrics 295 

The performance of the parameter regionalization methods was evaluated by 296 

considering two key aspects. First, the accuracy of the methods in estimating sensitive 297 

model parameters was assessed using three metrics: root mean square error (RMSE), 298 

standard deviation (STD), and the coefficient of determination (R2). The R2 was used 299 

to quantify the agreement between estimated and calibrated parameter sets. Second, to 300 

evaluate the impact of parameter regionalization on flood prediction. The resulting 301 

flood predictions were then evaluated using the NSE, Qp, and Tp metrics. 302 

𝑁𝑆𝐸 = 1 −
∑ (𝑄𝑜𝑏𝑠(𝑗)−𝑄𝑠𝑖𝑚(𝑗))2𝑀

𝑗=1

∑ (𝑄𝑜𝑏𝑠(𝑗)−𝑄𝑜𝑏𝑠)2𝑀
𝑗=1

   (6) 303 

𝑄𝑝 = |
𝑄𝑜𝑏𝑠,𝑝−𝑄𝑠𝑖𝑚,𝑝

𝑄𝑜𝑏𝑠,𝑝
× 100%|   (7) 304 

𝑇𝑝 = |𝑇𝑜𝑏𝑠,𝑝 − 𝑇𝑠𝑖𝑚,𝑝 |   (8) 305 

where 𝑄𝑜𝑏𝑠(𝑗)  is the observed flow rate (m3/s); 𝑄𝑠𝑖𝑚(𝑗)  is the simulated flow rate 306 

(m3/s); obs
Q is the mean value of the observed flow rate (m3/s); 𝑄𝑜𝑏𝑠,𝑝 is the observed 307 

flood peak flow (m3/s); 𝑄𝑠𝑖𝑚,𝑝  is the simulated flood peak flow (m3/s); 𝑇𝑜𝑏𝑠,𝑝  is the 308 

observed flood peak occurrence time (h); and 𝑇𝑠𝑖𝑚,𝑝  is the simulated flood peak 309 

occurrence time (h). 310 

 311 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑ (𝑋𝑖 − 𝑌𝑖)2𝑛

𝑖=1    (9) 312 

𝑆𝑇𝐷 = √
1

𝑁−1
∑ (𝑌𝑖 − Y)2𝑁

𝑖=1    (10) 313 

𝑅2 =
[∑ (𝑋𝑖−𝑋̅)(𝑌𝑖−𝑌̅)𝑛

𝑖=1 ]2

∑ (𝑋𝑖−𝑋̅)𝑛
𝑖=1

2
∑ (𝑌𝑖−𝑌̅)2𝑛

𝑖=1

   (11) 314 

where 𝑋𝑖 is the Top-SSF calibration model parameter value; 𝑌𝑖 is the model parameter 315 

estimated value using the parameter regionalization method; 𝑋  and 𝑌  are the mean 316 

values of 𝑋𝑖 and 𝑌𝑖; 𝑁 is the sample size equal to 80. 317 
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 318 

Fig.4. Flowchart illustrating the parameter calibration, validation, and regionalization workflow. 319 

Abbreviations: Top-SSF (Topography-Based Subsurface Storm Flow hydrological model), 320 

DT (Decision Tree), ERT (Extremely Randomized Trees), GBM (Gradient Boosting 321 

Machine), KNN (K-Nearest Neighbor), RF (Random Forest), SVM (Support Vector 322 

Machine), NSE (Nash-Sutcliffe efficiency), R2 (Coefficient of Determination), Qp (The 323 

relative error of flood peak flow), Tp (The absolute error in flood peak occurrence time), 324 

VIF (Variance inflation factor), RMSE (Root mean square error), STD (Standard 325 

deviation). 326 

4. Result 327 

4.1. Model performance 328 

The Top-SSF model demonstrated good flood simulation performance across the 329 

80 gauged catchments, as quantified by NSE, Qp, and Tp. During the calibration period, 330 

50% of the catchments achieved NSE values exceeding 0.78 (Fig. 5a), the median Qp 331 

value was below 10% (Fig. 5b), and the median Tp value was within 2 hours (Fig. 5c). 332 

The average NSE value was approximately 0.8, with a maximum of 0.96. The majority 333 

of Qp values were around 8%, and the majority of Tp values were below 2 hours. 334 

During the validation period, the median NSE value was 0.76 (Fig. 5a), the median Qp 335 
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value was below 10% (Fig. 5b), and the median Tp value was within 4 hours (Fig.5c). 336 

The hydrological response times for the 80 catchments were approximated as the time 337 

from precipitation peak to flood peak. The estimated range is from 1 to 26 hours. This 338 

diversity is indicative of the comprehensive nature of the study, which encompasses 339 

both rapid flash floods in smaller basins and more general floods in larger, mountainous 340 

catchments (mean area: 1,586 km²). For catchments with longer response times, a 341 

median error of 2-4 hours remains operationally valuable for providing sufficient flood 342 

warning lead time. It is noteworthy that the median Tp during the calibration period 343 

(within 2 hours) satisfied China's Specification for Hydrological Information Forecast 344 

(GB/T 22482-2008) stringent requirements for high-quality forecasts. 345 

Model performance also exhibited some dependence on catchment characteristics. 346 

For instance, NSE generally improved with increasing forest cover (Fig. 6a), potentially 347 

due to the model's explicit representation of forest canopy interception and subsurface 348 

storm flow generation mechanisms. The relationship between NSE, Qp, Tp and 349 

elevation was more complex, suggesting a nonlinear influence of elevation on model 350 

performance (Fig. 6 a-c). The demonstrated robust performance of the Top-SSF model 351 

provides a strong foundation for its application in subsequent parameter regionalization 352 

analyses. 353 

 354 

Fig. 5. Boxplots of (a) NSE, (b) Qp, and (c) Tp during the calibration and validation periods 355 
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for 80 gauged catchments. The box represents the interquartile range, with the middle line 356 

indicating the median (50th percentile). The whiskers represent the minimum and 357 

maximum values. "□" represents the mean value. Dark grey indicates the range of flood 358 

prediction criteria (i.e., NSE> 0.75, Qp< 20%, and Tp < 2 hours). 359 

 360 

Fig.6. Influence of environmental factors on Top-SSF model performance in flood simulation. The 361 

graphs illustrate the relationship between model evaluation metrics and forest cover (left) and 362 

elevation (right)." 363 

 364 

4.2. Results of parameter regionalization  365 

4.2.1. Comparison of sensitive model parameter estimates  366 

The six single machine learning regionalization methods exhibited varying 367 

performance in estimating sensitive model parameters (Fig. 7), likely due to differences 368 

in catchment descriptor characteristics and the underlying principles of each method. 369 

Their hyperparameter results are presented in Tables S1–S6 of the supplementary 370 

material. The GBM demonstrated the highest accuracy in estimating 𝑆𝑧𝑚, 𝑡𝑑, and 𝐶 371 

(R2 = 0.90, 0.86, and 0.87, respectively,), with its estimates also exhibiting a STD that 372 

closely matched the distribution of the calibrated parameter values. KNN provided the 373 

most accurate estimates for 𝑙𝑛𝑇𝑒, 𝑞𝑠𝑓0, and 𝑡 (R2 = 0.87, 0.89, and 0.90, respectively), 374 

also with STD closely resembling the calibrated parameter distributions. ERT 375 

performed best in estimating 𝑆𝑓𝑚𝑎𝑥 (R2 = 0.87), but its performance was generally 376 

poorer for other parameters. DT, SVM, and RF methods generally showed lower 377 

performance across all sensitive model parameters. These differences in performance 378 

highlight the potential benefits of multi-machine learning ensemble methods for 379 
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improving flood prediction in ungauged mountainous catchments. 380 

 381 

Fig.7. Performance of parameter regionalization methods assessed using Taylor diagrams. The 382 

diagrams show the accuracy of sensitive model parameter estimates, with the coefficient 383 

of determination (R2) indicated by the radial axis, standard deviation (STD) by the 384 

horizontal and vertical axes, root mean square error (RMSE) by the grey-blue dotted lines, 385 

and the standard deviation of observations by the black dotted line." 386 

4.2.2. Comparison of flood forecasting results  387 

The flood prediction performance of the Top-SSF model, integrated with different 388 

parameter regionalization methods, was compared across 80 mountainous catchments 389 

in southwestern China. The methods included single machine learning methods and a 390 
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multi-machine learning ensemble method (GBM-KNN-ERT), where GBM estimated 391 

𝑆𝑧𝑚, 𝑡𝑑, and 𝐶; KNN estimated 𝑙𝑛𝑇𝑒, 𝑞𝑠𝑓0, and 𝑡; and ERT estimated 𝑆𝑓𝑚𝑎𝑥. The 392 

performance of these parameter regionalization methods was then evaluated against the 393 

performance of the Top-SSF model using calibrated parameters. Among the single 394 

machine learning methods, GBM performed best, with 60 catchments achieving a 395 

positive NSE (NSE > 0, Fig. 8d). Critically, for high-accuracy predictions (NSE > 0.9), 396 

GBM succeeded in 43 catchments (54%), also showing strong performance with Qp 397 

less than 5% and Tp less than 1 hour in most cases (Fig. 8a-c). The GBM-KNN-ERT 398 

ensemble method yielded even better results. It increased the number of catchments 399 

with positive NSE to 75 (Fig. 8d). More impressively, the ensemble method achieved 400 

exceptional performance (NSE > 0.9) in 72 catchments (90%). This represents a 67.44% 401 

increase in the number of high-accuracy predictions compared to the best single method 402 

(GBM). Furthermore, the ensemble method Qp values were more concentrated around 403 

zero, and 90% of catchments maintained near-zero Tp values. These results strongly 404 

demonstrate the superior potential of multi-machine learning ensembles for improving 405 

flood prediction in ungauged catchments. 406 

To further illustrate these performance differences visually, Fig. 8 (e, f, and g) 407 

presents hydrographs from three randomly selected flood events. These events 408 

represent cases where the calibrated Top-SSF model itself achieved high (NSE=0.91), 409 

medium (NSE=0.76), and low (NSE=0.55) performance, respectively. A key insight 410 

from these plots is that the Top-SSF simulation (solid black line) is the performance 411 

benchmark for the regionalization methods. Although the models aim to approximate 412 
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measured floods, their performance is ultimately limited by the accuracy of the Top-413 

SSF model structure and its optimized parameters. 414 

The hydrographs show how the GBM-KNN-ERT ensemble achieves superior 415 

performance by leveraging the complementary strengths of its component methods. For 416 

instance, in the high-performance case (Fig. 8e), the GBM and KNN methods capture 417 

the overall shape well, but the ERT simulation provides a more precise estimation of 418 

the primary flood peak. The final ensemble successfully integrates this peak accuracy, 419 

resulting in the highest overall performance. Similarly, Fig. 8f shows that the ensemble 420 

moderates the slow initial rise characteristic of the KNN method, leading to a more 421 

realistic rising limb. The ensemble method ability to balance competing errors is most 422 

evident in the low-performance case (Fig. 8g). During the recession phase, the ensemble 423 

method averages the high bias of the ERT method with the low bias of the GBM and 424 

KNN methods, producing a hydrograph that more closely resembles the benchmark 425 

simulation than any single model could. This synergy demonstrates that the ensemble 426 

method superior performance is a direct result of its ability to integrate the specific, 427 

complementary strengths of each member model across different parts of the 428 

hydrological process.  429 
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 430 
Fig.8. Evaluation of flood prediction performance for different parameter regionalization 431 

methods. (a-c) show the distributions of Nash-Sutcliffe Efficiency (NSE), relative peak 432 

flow error (Qp), and peak time error (Tp) across all 80 catchments, with shaded regions 433 

indicating where flood prediction standards were met (NSE > 0.75, Qp < 20%, and Tp < 434 

2 hours). (d) shows the number of catchments with NSE > 0 and the black border indicates 435 

the number of catchments with NSE > 0.9. (e-g) present example hydrographs comparing 436 

the simulated flood from each regionalization method against measured flood flow and 437 

the calibrated Top-SSF model benchmark for catchments where the benchmark model 438 

performance was (e) high (NSE=0.91), (f) medium (NSE=0.76), and (g) low (NSE=0.55).439 
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5. Discussion 440 

5.1. Reliability of multi-machine learning ensemble in parameter regionalization 441 

In this study, the GBM-KNN-ERT method demonstrated superior regionalization 442 

performance, highlighting the potential of ensemble methods for improving 443 

hydrological predictions in ungauged mountainous catchments. The success of the 444 

ensemble is rooted in the distinct learning mechanisms and behaviors of its individual 445 

components, which were revealed during hyperparameter optimization. 446 

The GBM method exhibited distinct parameter-specific sensitivities to 447 

hyperparameters (Fig. 9a-c). For parameter 𝐶, the negative correlation between R2 and 448 

n_estimators (>300 trees) indicates overfitting risks when modeling complex rainfall-449 

runoff interactions in heterogeneous mountainous terrain (Fig. 9a). This aligns with 450 

previous findings emphasizing the need for complexity control in hydrological 451 

generalization (Schoups et al., 2008). Conversely, the improved R2 for parameter td 452 

with increased n_estimators highlights the capacity of ensemble learning to capture 453 

complex, nonlinear relationships between catchment descriptors and hydrological 454 

parameters (Hastie et al., 2009). The contrasting optimal max_depth of 5 layers for 455 

parameter 𝐶, compared to shallower optimal depths (3 layers) for 𝑆𝑧𝑚 and 𝑡𝑑, suggests 456 

that parameters governing more complex hydrological processes in mountainous 457 

catchments may require deeper decision trees to effectively capture the interactions 458 

between climate, topography, and soil properties (Wainwright et al., 2013). 459 

KNN performance exhibited pronounced sensitivity to neighbourhood size 460 

(n_neighbors) and distance metric (p), highlighting the spatial heterogeneity of 461 
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catchment descriptors. For parameters  𝑙𝑛𝑇𝑒  and 𝑞𝑠𝑓0 , optimal performance was 462 

observed at n_neighbors =30 (Fig. 9d), aligns with the hypothesis that meaningful 463 

hydrological similarities can emerge even in topographically complex mountainous 464 

regions when considered at broader spatial scales (Li et al., 2022). Conversely, 465 

parameter 𝑡 achieved peak accuracy at n_neighbors=5, suggesting that localized, short-466 

term weather events and fine-scale topographic similarities in adjacent mountainous 467 

areas can significantly influence local runoff processes (Garambois et al., 2015).The 468 

Manhattan distance metric (p=1) outperformed Euclidean distance across all 469 

parameters (Fig. 9e). This superiority stems from its ability to mitigate the "curse of 470 

dimensionality" (Bellman, 1961) in high-dimensional datasets, a common 471 

characteristic of mountainous catchments. In such datasets, sparse data distributions 472 

and the presence of mixed variable types (e.g., topographic indices, land cover) can 473 

significantly degrade the discriminative power of Euclidean distance (Rockström et al., 474 

2023). The robustness of the Manhattan distance arises from its axis-aligned sensitivity, 475 

which provides a more effective means of handling feature scaling and integrating 476 

catchment descriptors compared to the radial symmetry of Euclidean distance. 477 

ERT performance was maximized at max_features = 0.15 (Fig. 9f). By restricting 478 

the random sampling of features during node splits (using only 15% of the features), 479 

both the diversity of the trees was enhanced and the effects of multicollinearity between 480 

topographic and soil attributes were reduced. This finding aligns with the theory 481 

proposed by Geurts et al. (2006), which suggests that random feature selection can 482 

significantly improve model generalization, a particularly important consideration in 483 
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ungauged mountainous catchments characterized by high levels of inter-correlation 484 

among predictor variables.  485 

These distinct sensitivities and learning mechanisms form the scientific basis for 486 

the superiority of the GBM-KNN-ERT method. As shown in Section 4.2, no single 487 

machine learning method is universally optimal for all hydrological model parameters. 488 

Instead, the ensemble method effectively allocates each parameter to the model best 489 

suited for its regionalization. Specifically, GBM, with its capacity for modeling 490 

complex interactions, proved optimal for integrated parameters like 𝑆𝑧𝑚  and 𝑡𝑑 . In 491 

contrast, the instance-based KNN was superior for parameters like 𝑙𝑛𝑇𝑒 , which are 492 

governed by physical similarity and spatial coherence. Finally, the highly randomized 493 

nature of ERT provided the necessary robustness to model the noisy relationship 494 

associated with the 𝑆𝑓𝑚𝑎𝑥 . This synergistic combination, where each model 495 

contributes its unique strength, results in a final regionalization framework that is more 496 

accurate and physically plausible than any individual method operating in isolation. 497 

 498 
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Fig.9. Sensitivity of parameter estimation performance to key hyperparameters in (a-c) GBM, 499 

(d-e) KNN method, and (f) ERT. (a) n_estimators (number of decision trees in GBM), (b) 500 

max_depth (maximum depth of decision trees in GBM), (c) learning rate (GBM), (d) 501 

n_neighbors (number of neighbors in KNN), (e) p-value of Minkowski distance (KNN; 502 

p=1: Manhattan distance, p=2: Euclidean distance), and (f) max_features (ERT). 503 

 504 

5.2. Combining multiple machine learning methods for parameter regionalization  505 

Machine learning methods exhibit distinct strengths in hydrological parameter 506 

estimation due to fundamental differences in data processing mechanisms, pattern 507 

recognition strategies, and prediction generation (Bishop et al., 2006). This suggests 508 

that multi-machine learning ensemble methods have the potential to synergistically 509 

integrate advantages while effectively compensating for individual limitations, leading 510 

to more robust and accurate parameter estimates. As demonstrated in Fig. 10, the GBM-511 

KNN-ERT method achieved notable improvements over any single machine learning 512 

method, particularly for sensitive parameters 𝑙𝑛𝑇𝑒 , 𝑆𝑓𝑚𝑎𝑥 , 𝑞𝑠𝑓0  and 𝑡 , with R2 513 

increases ranging from 0.02 to 0.03 compared to the best-performing GBM method 514 

(Fig.10e).  515 

Interestingly, a comparison of GBM4-KNN3 (where 𝑆𝑓𝑚𝑎𝑥 is estimated by GBM) 516 

and GBM3-KNN4 (where 𝑆𝑓𝑚𝑎𝑥 is estimated by KNN) revealed critical insights into 517 

model parameter compatibility. Despite both achieving an identical R² of 0.85 for the 518 

estimation of 𝑆𝑓𝑚𝑎𝑥, GBM4-KNN3 exhibited superior flood prediction performance, 519 

with 72 catchments achieving NSE > 0 compared to only 68 catchments for GBM3-520 

KNN4. This suggests that GBM possesses an enhanced capability to resolve the 521 

complex coupling between soil moisture dynamics and topography, leading to more 522 

physically plausible  representation of subsurface storm flow processes (Gupta et al., 523 
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2023). The wider distribution of flood prediction performance observed for GBM3-524 

KNN4 (Fig. 10 a–c) further suggests that uncertainties introduced by KNN in the 525 

estimation of 𝑆𝑓𝑚𝑎𝑥 may propagate nonlinearly during flood simulations, potentially 526 

amplifying errors. This observation aligns with theoretical expectations that distance-527 

based methods may tend to oversmooth critical thresholds or sharp transitions in 528 

heterogeneous environments, leading to a less accurate representation of hydrological 529 

responses (Bellman, 1961).  530 

Furthermore, an important consideration in adopting ensemble methods is the 531 

trade-off between predictive accuracy and computational efficiency. To evaluate this 532 

trade-off, we compared the model training times for various parameter regionalization 533 

methods, with the results summarized in Table 4. The analysis shows that our proposed 534 

GBM-KNN-ERT ensemble, while providing the highest predictive accuracy, required 535 

a total training time of 102.8 s. This is moderately higher than the best-performing 536 

single model, GBM (57.6 s), and other simpler ensemble methods like GBM4-KNN3 537 

(36.1 s). The increased computational time for the GBM-KNN-ERT method is 538 

primarily attributed to the inclusion of the ERT method for estimating the 𝑆𝑓𝑚𝑎𝑥 , 539 

which is inherently more computationally intensive than GBM or KNN. 540 

However, it is crucial to contextualize this computational cost for operational use. 541 

The process of training a regionalization method is an offline task, performed once to 542 

establish the stable relationships between catchment descriptors and model parameters. 543 

This one-time investment is not a constraint on real-time flood forecasting, as once the 544 

method is trained, parameter estimation for a new ungauged catchment is nearly 545 
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instantaneous. Given this context, the modest increase in one-time training cost is a 546 

justifiable investment for the significant improvements achieved in flood prediction 547 

accuracy, model robustness, and stability. Therefore, for applications in water resource 548 

management and flood risk assessment where high accuracy is paramount, the GBM-549 

KNN-ERT method strikes an optimal and practical balance between computational 550 

efficiency and predictive performance. 551 
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 552 
Fig.10. Assessment of combined machine learning methods for improved parameter 553 

regionalization in ungauged mountainous catchments. Performance is evaluated against 554 

the GBM method, showing (a) NSE, (b) Qp, (c) Tp, (d) Number of catchments with NSE > 555 

0, and (e) the difference in R2. 556 

 557 

 558 

 559 

 560 
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Table 4. Running time (s) for different parameter regionalization methods 561 

 GBM GBM4-KNN3 GBM3-KNN4 GBM-KNN-ERT KNN ERT 

𝑙𝑛𝑇𝑒 11.3 3.4 3.4 3.7 3.6 74.4 

𝑆𝑧𝑚 7.8 7.5 7.7 7.8 0.6 76.7 

𝑡𝑑 8.2 8.1 8.0 8.5 0.6 74.7 

𝑆𝑓𝑚𝑎𝑥 7.7 8.2 0.6 73.6 0.5 74.9 

𝐶 7.8 7.7 7.7 8.0 0.6 74.9 

𝑞𝑠𝑓0 7.4 0.6 0.6 0.6 0.6 76.3 

𝑡 7.4 0.6 0.6 0.6 0.5 75.3 

Sum 57.6 36.1 28.6 102.8 7.0 527.2 

 562 

5.3. The influence of donor catchment quantity on machine-learning parameter 563 

regionalization  564 

 The number of donor catchments used in machine learning-based parameter 565 

regionalization methods is a critical factor influencing the accuracy and robustness of 566 

hydrological predictions in ungauged catchments (Gauch et al., 2021; Song et al., 2022; 567 

Zhang et al., 2022). In this study, we investigated the influence of donor catchment 568 

quantity (ranging from 20 to 80) on the flood prediction performance of the two best-569 

performing parameter regionalization methods (GBM4-KNN3 and GBM-KNN-ERT) 570 

across the 80 mountainous catchments (Fig 11). It is important to clarify that the 571 

following analysis is not a method for selecting donor catchments based on physical 572 

similarity—a task handled by the machine learning methods itself when it learns the 573 

relationships between catchment descriptors and model parameters. Instead, this 574 

experiment serves as a sensitivity analysis to understand how the regionalization 575 

performance is affected by the overall quantity and quality of the available training data. 576 

To systematically investigate the performance influence of donor catchment 577 

quantity on parameter regionalization, two distinct sampling strategies were employed 578 

across the 80 mountainous catchments. In Mode 1 (selection of donor catchments based 579 

on decreasing NSE), which was designed to test the impact of data quality, a non-580 
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monotonic relationship was observed. For both methods, regionalization performance 581 

peaked with 20-40 donor catchments and then declined, particularly for the GBM4-582 

KNN3 method (Fig. 11a-c). This performance degradation is not due to increasing 583 

catchment dissimilarity, but rather to the introduction of lower-quality training data. As 584 

the donor pool expands beyond the best-performing catchments, it begins to include 585 

catchments where the Top-SSF model calibration itself was less successful (i.e., lower 586 

NSE values). These 'low-quality' samples may introduce noise and less reliable 587 

parameter-descriptor relationships, which can mislead the training process (Gauch et 588 

al., 2021; Zhang et al., 2022). Notably, the GBM-KNN-ERT method demonstrated 589 

greater resilience to this degradation. Its performance, while also peaking early, did not 590 

degrade as sharply and instead tended to stabilize after the inclusion of approximately 591 

70 catchments. This suggests that the more complex ensemble structure has a superior 592 

ability to suppress noise and generalize from a dataset containing a mix of high- and 593 

low-quality examples, highlighting its enhanced robustness. In contrast, Mode 2 594 

(random selection of donor catchments) demonstrated a consistent improvement in 595 

regionalization performance for both NSE and Tp as the number of donor catchments 596 

increased (Fig. 11d-f). However, while the average performance improves with data 597 

quantity, it is important to acknowledge that this trend relies on the random samples 598 

being generally representative; a poorly chosen random set could still reduce 599 

generalizability. Notably, under both modes, the GBM-KNN-ERT method consistently 600 

exhibited significantly greater performance stability compared to the alternative 601 

ensemble, GBM4-KNN3. This enhanced robustness likely arises from its more 602 
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effective suppression of data heterogeneity and noise interference, indicating that more 603 

complex ensemble methods possess a greater capacity to balance the benefits of 604 

increased data quantity with the potential drawbacks of reduced data quality. 605 

 606 

Fig. 11. Performance comparison of two donor catchment selection methods for parameter 607 

regionalization as a function of donor catchment quantity. Mode1 (a-c) selects donor 608 

catchments in order of decreasing NSE, while Mode 2 (d-f) selects them randomly. Flood 609 

prediction accuracy is assessed using NSE, Qp, and Tp. Error bars represent the full range 610 

(minimum to maximum) of the performance metrics. 611 

5.4. The impact of climate change on parameter regionalization methods 612 

The hydrological cycle within catchments is fundamentally governed by complex 613 

interactions between climate and environmental factors. The Intergovernmental Panel 614 

on Climate Change (IPCC) has consistently documented a continuous and accelerating 615 

transition in global climatic patterns, characterized by increased variability and extreme 616 

events (Pachauri et al., 2014). Consequently, future flood predictions derived from 617 
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parameter regionalization methods are expected to exhibit increased uncertainty and 618 

variability, highlighting the substantial influence of climate change on the reliability 619 

and precision of flood predictions in ungauged mountainous catchments  (Yang et al., 620 

2019). Therefore, a sensitivity analysis was designed to evaluate the robustness of the 621 

trained regionalization models when confronted with climatic conditions outside their 622 

original training range.  623 

To quantitatively assess the impact of climate change, an experiment was devised 624 

where this impact was primarily reflected through changes in two key catchment 625 

descriptors: Tem and Pre. For the historical period, these descriptors represent the multi-626 

year averages over 1901–2021, while for the future period, they represent the projected 627 

multi-year averages over 2022–2100 under the SSP5-8.5 scenario. The regionalization 628 

methods (GBM4-KNN3 and GBM-KNN-ERT), which were trained exclusively using 629 

historical data, were then applied under these future conditions. Crucially, the method 630 

structures and hyperparameters remained fixed, and no retraining was performed; only 631 

the historical Tem and Pre values were replaced with their future projections. This 632 

approach allows the response of the established historical relationships to new, out-of-633 

sample climatic inputs to be tested. The simulated peak discharges for this analysis were 634 

derived from the same three flood events used in the calibration and validation of the 635 

Top-SSF model. This experimental design is critical as it isolates the impact of the 636 

changed model parameters from the compounding effect of a different future rainfall 637 

event. Consequently, any observed change in the simulated flood peak is attributable 638 

solely to the sensitivity of the regionalization method to the shift in climatic descriptors. 639 
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Cumulative distribution functions (CDFs) were then employed to illustrate the 640 

discrepancies between the parameter regionalization simulations and the reference 641 

simulations (derived from calibrated model parameters) across the historical and 642 

projected future periods for the 80 catchments (Fig.12).  643 

A comparative analysis of Fig. 12a and 12b reveals a clear amplification of the 644 

absolute differences in predicted flood peaks (quantified as the error in runoff modulus) 645 

between the two parameter regionalization methods and the reference Top-SSF model 646 

simulations during the transition from the historical period to the projected future period. 647 

Specifically, the maximum error in runoff modulus for the GBM4-KNN3 method 648 

increased by 68.46 m3 s-1 km-2 from the historical period to the future period, while the 649 

increase for the GBM-KNN-ERT method was a smaller 56.65 m3 s-1 km-2.  These results 650 

underscore that parameter regionalization methods are inherently sensitive to changing 651 

climatic forcing. However, they also provide compelling evidence that the GBM-KNN-652 

ERT method exhibits superior stability and resilience under climate change, 653 

demonstrating its potential for more reliable long-term flood risk assessment in 654 

ungauged mountainous regions. 655 

Exploring the effects of climate change on parameter regionalization methods 656 

provides valuable insights for advancing flood prediction research in prediction in 657 

ungauged basins. The enhanced stability demonstrated by the GBM-KNN-ERT 658 

ensemble offers a promising direction for developing robust regionalization methods 659 

capable of navigating the challenges of a non-stationary climate. 660 
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 661 

Fig.12. Comparison of flood peak runoff modulus between parameter regionalization and 662 

calibrated Top-SSF model results, showing cumulative distribution functions (CDFs) of 663 

absolute differences for 80 catchments during (a) historical and (b) future periods. 664 

5.5. Uncertainty and limitation  665 

The uncertainty in this study arises from several sources, including the 666 

hydrological model, the regionalization methods, and the data itself. A critical 667 

evaluation of these sources helps to contextualize our findings and assess the 668 

generalizability of the ensemble method. Uncertainty from the hydrological model is 669 

inherent in its structure and the calibrated parameters. Although the Top-SSF model 670 

performed well, its parameters are effective values subject to equifinality. This 671 

uncertainty in the "true" parameter values can be viewed as a form of calibration bias, 672 

which serves as the target data for our regionalization. To mitigate this, we employed 673 

the robust SCE-UA optimization algorithm and focused only on sensitive parameters. 674 

Uncertainty is also introduced by the regionalization methods themselves, as the 675 

training data derived from donor catchments are susceptible to errors that can impact 676 

model performance (Mosavi et al., 2018; Xu et al., 2021).  677 

A specific methodological choice was the exclusion of deep learning architectures, 678 

such as Multilayer Perceptrons or Long Short-Term Memory (LSTM) networks. This 679 
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decision was guided by several factors. First,  parameter regionalization is a static 680 

regression problem, mapping time-invariant catchment descriptors to model parameters, 681 

which does not align with the sequential data structure for which LSTM is designed. 682 

Second, deep networks typically require large datasets to avoid overfitting; with a 683 

dataset of 80 catchments, traditional ML methods like GBM and ERT are often more 684 

robust and less prone to memorizing training data. Third, a key advantage of parameter 685 

regionalization over purely data-driven forecasting is its potential for physical 686 

interpretability. The tree-based models employed offer a degree of transparency, 687 

whereas DL models often function as "black boxes", a characteristic contrary to our 688 

goal of developing an interpretable tool for water resource management. 689 

Furthermore, the primary contribution of this study is not the identification of a 690 

single superior algorithm, but the demonstration of a data-driven framework for 691 

constructing a locally optimal ensemble. The complementarity of the chosen models 692 

was not assumed but empirically validated through a competitive evaluation process. 693 

Each of the seven ML methods was independently trained and assessed for its ability to 694 

estimate each sensitive parameter. The final GBM-KNN-ERT ensemble was 695 

constructed by selecting only the empirically best-performing model for each parameter 696 

based on objective metrics (R2, RMSE, STD). The very fact that different methods were 697 

selected for different hydrological parameters provides direct empirical evidence of 698 

their complementary strengths, thus validating the ensemble method. 699 

Furthermore, the specific GBM-KNN-ERT combination identified is necessarily 700 

data-dependent, raising questions about its transferability. However, this study primary 701 
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contribution is not the specific model combination itself, but rather the demonstration 702 

of a data-driven method for constructing a locally optimal ensemble. This method is 703 

designed to be generalizable; applying the same competitive evaluation process to a 704 

new region would identify the best ensemble for that specific dataset. The key to 705 

overcoming these limitations and ensuring robust generalization lies in genuine model 706 

complementarity. The ensemble method's success is not an artifact of overfitting to 707 

calibration bias or data quirks. Instead, it stems from a physically plausible "division of 708 

labor," where different models are empirically shown to be better suited for 709 

regionalizing parameters governed by distinct physical processes. The ensemble 710 

method's superior stability in the out-of-sample climate change stress test further 711 

supports this conclusion, indicating that it has captured robust underlying relationships, 712 

not just noise. 713 

To manage methodological uncertainty, we employed K-fold cross-validation to 714 

ensure robust performance evaluation and RandomizedSearchCV for hyperparameter 715 

tuning to minimize overfitting (Bergstra and Bengio, 2012). A key methodological 716 

decision was to evaluate the regionalization methods against the outputs of the 717 

calibrated Top-SSF model, rather than directly against observed flood events. This 718 

approach was chosen for two primary reasons. First, it isolates the performance of the 719 

parameter regionalization itself. The calibrated simulation represents the theoretical 720 

'best-case' performance for the given hydrological model structure; consequently, any 721 

deviation from this benchmark can be directly attributed to imperfections in the 722 

regionalization method, rather than being confounded by the inherent structural 723 
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limitations of the Top-SSF model. Second, this strategy ensures that the machine 724 

learning models learn the underlying physical relationships intended by the 725 

hydrological model, not simply mimic data noise or measurement errors present in the 726 

observations. If trained against raw observations, the ML methods might derive 727 

'spurious' parameter sets that compensate for both the hydrological model’s structural 728 

flaws and observational errors. Such parameters could appear effective but would lack 729 

physical meaning and generalizability. These measures, combined with the evidence 730 

for model complementarity, provide a strong basis for the scientific validity and 731 

potential for generalization of our proposed ensemble method. 732 

6. Conclusions  733 

This study introduces a novel multi-machine learning ensemble method (GBM-734 

KNN-ERT) to enhance model parameter transferability and improve flood prediction 735 

in ungauged mountainous catchments. The proposed GBM-KNN-ERT method 736 

demonstrated a substantial advancement in both flood prediction accuracy and model 737 

robustness, achieving exceptional performance with 90% of ungauged catchments 738 

exhibiting a NSE exceeding 0.9, a significant 67.44% improvement compared to the 739 

best single machine learning method evaluated in this study. Importantly, the GBM-740 

KNN-ERT method exhibited remarkable stability under simulated climate change, 741 

thereby highlighting its potential for reliable application in non-stationary hydrological 742 

environments. Furthermore, the method demonstrated notable adaptability to varying 743 

donor-catchment configurations, where an optimal balance between predictive 744 

accuracy and computational efficiency with a relatively limited set of 20–40 high-745 
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quality donor catchments (NSE >0.85). By integrating the diverse strengths of multiple 746 

machine learning with hydrological model, the proposed methodology significantly 747 

advances the field of flood prediction in ungauged catchments, offering a reliable tool 748 

for water resource management and flood disaster mitigation. 749 
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