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Overall evaluation 1 

The manuscript addresses an important problem: improving flood prediction in 2 

ungauged mountainous catchments through machine learning (ML) regionalization of 3 

hydrological parameters. The work has merit, particularly in its effort to combine 4 

multiple ML models into an ensemble and test the approach under a climate change 5 

scenario. That said, several aspects require clarification and expansion before the 6 

manuscript can be recommended for publication. In particular, the rationale for model 7 

choice, the justification for ensemble performance, interpretability of results, and 8 

methodological transparency needs to be strengthened. The manuscript would benefit 9 

from stronger connections between the ML methodology and hydrological processes. 10 

Response: Many thanks for your comments, which have significantly improved 11 

the manuscript. In response, we have substantially revised the paper to strengthen 12 

the rationale for our model selection and provide a clear scientific justification for 13 

the ensemble's superior performance. We now explain that its success stems from 14 

the complementary strengths of individual models, which are better suited to 15 

regionalizing parameters governed by distinct hydrological processes. 16 

Methodological transparency and reproducibility have been enhanced by 17 

providing detailed hyperparameters, clarifying the climate change stability 18 

analysis, adding a discussion on computational efficiency, and including new 19 

hydrograph visualizations. These revisions create a much stronger and more 20 

interpretable link between our machine learning framework and the underlying 21 

physical hydrology, addressing the core concerns raised. 22 

  23 

Specific comments 24 

1. The selected ML methods represent different learning paradigms (tree-based, 25 

instance-based, etc.). However, more complex techniques such as multilayer perceptron 26 

or deep learning networks were not included. The authors should justify why these were 27 

excluded and explain how they ensure a fair complementary across models that learn 28 

from very different principles. 29 

Response: Our selection of machine learning methods was deliberate, aimed at 30 

constructing a robust, interpretable, and computationally efficient regionalization 31 

framework. We carefully considered the role of deep learning models and designed 32 

our methodology to ensure the chosen algorithms are genuinely complementary 33 

and empirically validated. 34 

(1) Justification for Excluding Deep Learning (DL) Models 35 

Our decision to exclude deep learning architectures was based on several key 36 

factors, beginning with the fundamental nature of the research problem. A 37 

primary consideration is the distinction between our static regression task and the 38 

sequential nature of DL models like Long Short-Term Memory (LSTM). LSTMs 39 

are expertly designed for time-series data where temporal dependencies are 40 

critical. Our regionalization task, however, involves mapping a set of time-41 

invariant catchment descriptors (e.g., area, slope) to time-invariant model 42 

parameters. Since there is no sequential relationship among these input features, 43 

applying an LSTM would represent a methodological mismatch, as its core 44 
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strength would be irrelevant. 45 

While a more suitable deep learning architecture like a Multilayer Perceptron 46 

(MLP) could be applied, such models are known to require large datasets to avoid 47 

overfitting. With 80 catchments, our dataset is of a modest size for training deep 48 

networks, posing a significant risk that an MLP would memorize the training data 49 

rather than generalize to new, ungauged catchments. In contrast, ML methods like 50 

GBM and ERT are well-established for their robust performance on structured, 51 

tabular datasets of this scale. 52 

Beyond these technical considerations, our decision was also guided by the 53 

practical goals of our study. A key advantage of parameter regionalization over 54 

purely data-driven forecasting is its enhanced physical interpretability. The tree-55 

based models we employed offer a degree of transparency, allowing for insights 56 

into the relationships between catchment descriptors and hydrological parameters. 57 

DL models, however, often function as "black boxes" making it challenging to 58 

decipher the physical reasoning behind their predictions. As our aim was to 59 

develop a transparent and reliable tool for water resource management, 60 

maintaining this link to physical processes was a priority. Furthermore, the 61 

computational cost of training and tuning DL models would have been 62 

substantially higher, making our rigorous evaluation framework less feasible. On 63 

the other hand, a novelty of our paper lies not in identifying the single most 64 

powerful algorithm, but in demonstrating that an ensemble of diverse ML method 65 

s can outperform any single ML method by leveraging complementary strengths. 66 

 67 

(2) Ensuring Objective Complementarity Across Selected Models 68 

To ensure this complementarity was achieved objectively, our methodology 69 

was grounded in a systematic, data-driven process. Rather than pre-supposing 70 

which model would be best for a given hydrological parameter, we firstly 71 

conducted a comprehensive competition. Each of the seven ML methods was 72 

independently trained and rigorously evaluated for its ability to estimate each of 73 

the seven sensitive hydrological parameters, using K-fold cross-validation for 74 

robust performance assessment. The final GBM-KNN-ERT ensemble was 75 

constructed by selecting only the empirically best-performing model for each 76 

specific parameter, based on the objective metrics (R2, RMSE, STD). This 77 

approach ensures that our final ensemble is not based on arbitrary choices but on 78 

practical performance. The empirical outcome that different models were selected 79 

for different hydrological parameters provides direct and powerful evidence of 80 

their complementarity, validating our ensemble approach. 81 

This detailed justification has been integrated into Section 5.5, "Uncertainty 82 

and limitation". 83 

 84 

2. The highlight statement that “The GBM-KNN-ERT method demonstrates superior 85 

performance compared to other methods” is vague. Please clarify which performance 86 

metrics are referred to, and quantify the magnitude of improvement. 87 

Response: It has been revised to be more specific and quantitative. The updated 88 
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highlight in the manuscript is as follows: ‘The GBM-KNN-ERT method achieves 89 

high-accuracy flood predictions (NSE > 0.9) in 90% of catchments, a 67.44% 90 

improvement over the best-performing single ML method’. 91 

 92 

3. The manuscript does not clearly explain how the trade-off between predictive 93 

accuracy and computational efficiency was considered. Given that ensemble methods 94 

can be computationally demanding, the authors should discuss the optimal balance and 95 

whether the proposed approach is practical for operational use. 96 

Response: We agree that a discussion on the trade-off between predictive accuracy 97 

and computational efficiency is essential, and we have added a new section to the 98 

manuscript to address this issue (Section 5.2). Our analysis of this trade-off is 99 

based on the running time of the ML methods (see the new Table 3 of the 100 

manuscript). This table shows that the GBM-KNN-ERT method, while being the 101 

most accurate, is indeed more computationally intensive than some of the single 102 

ML methods (such as KNN). 103 

However, it is important to consider the computational cost in the context of 104 

its operational use. Training a ML method is an offline, one-time task performed 105 

to establish the relationships between catchment descriptors and model 106 

parameters before an application. It is not in the real-time forecasting workflow. 107 

Once the ensemble method is trained, estimating parameters for a new ungauged 108 

catchment is nearly instantaneous. 109 

In this context, the computational overhead is minimal. A total training time 110 

of approximately 103s is highly practical, and importantly, the memory footprint 111 

of these ML method s is also low, enabling the entire workflow to be executed on 112 

standard computing hardware without requiring specialized resources. This low 113 

resource requirement ensures the method does not pose a significant barrier to 114 

implementation. The substantial gains in predictive accuracy, method robustness, 115 

and stability under climate change demonstrated throughout our paper far 116 

outweigh the modest, one-time increase in computational cost. Therefore, we 117 

conclude that the GBM-KNN-ERT method strikes an optimal and practical 118 

balance for applications where high accuracy is paramount, such as in water 119 

resource management and flood risk assessment. We have added this explanation 120 

to the end of Section 5.2 of the revised manuscript. 121 

Table 3. Running time (s) for different parameter regionalization methods 122 

 GBM GBM4-KNN3 GBM3-KNN4 GBM-KNN-ERT KNN ERT 

𝑙𝑛𝑇𝑒 11.3 3.4 3.4 3.7 3.6 74.4 

𝑆𝑧𝑚 7.8 7.5 7.7 7.8 0.6 76.7 

𝑡𝑑 8.2 8.1 8.0 8.5 0.6 74.7 

𝑆𝑓𝑚𝑎𝑥 7.7 8.2 0.6 73.6 0.5 74.9 

𝐶 7.8 7.7 7.7 8.0 0.6 74.9 

𝑞𝑠𝑓0 7.4 0.6 0.6 0.6 0.6 76.3 

𝑡 7.4 0.6 0.6 0.6 0.5 75.3 

Sum 57.6 36.1 28.6 102.8 7.0 527.2 



 

4 

 123 

4. The manuscript claims that the GBM-KNN-ERT method exhibits stability under 124 

climate change. However, the explanation of how climate change is incorporated is 125 

insufficient. While SSP585 projections (2022–2100) are mentioned, the methods used 126 

to integrate these into the ML framework and evaluate stability should be described in 127 

greater detail. 128 

Response: Yes, the methods were not described clearly enough. The primary goal 129 

of this analysis was not to forecast future floods, but to perform a sensitivity 130 

analysis on our trained regionalization methods (GBM-KNN-ERT and GBM4-131 

KNN3) to evaluate their robustness when confronted with climatic conditions 132 

outside their original training range.  133 

To address your concern, we have substantially revised Section 5.4 of the 134 

manuscript to provide a more detailed, step-by-step description of the methods. 135 

The key steps of this experimental design are as follows: 136 

Step 1, the regionalization methods were trained exclusively using historical 137 

data. The climatic inputs for this training-mean annual temperature (Tem) and 138 

precipitation (Pre)- were based on the multi-year averages for the 1901-2021 139 

period.  140 

Step 2, a new input dataset was involved to represent future climatic 141 

conditions. For each catchment, we updated only the Tem and Pre descriptors with 142 

their projected multi-year averages for the 2022-2100 period under the SSP5-8.5 143 

scenario. All other non-climatic descriptors remained unchanged.  144 

Step 3, the already-trained regionalization methods were then used to predict 145 

a new set of Top-SSF parameters based on these future-conditioned inputs. 146 

Crucially, the regionalization method structures and hyperparameters remained 147 

fixed, and no retraining was performed. This approach isolates the response of the 148 

established historical relationships to new, out-of-sample climatic inputs.  149 

Step 4, to evaluate the effect of these new parameters, they were input into 150 

the Top-SSF model to re-simulate the exact same historical flood events used 151 

during the original model calibration and validation. This design is critical as it 152 

isolates the impact of the changed model parameters from the compounding effect 153 

of a different future rainfall event. Consequently, any observed change in the 154 

simulated flood peak is attributable solely to the sensitivity of the regionalization 155 

method to the shift in climatic descriptors. 156 

Step 5, regionalization method stability was quantified by comparing the 157 

absolute differences in simulated peak discharges between the reference 158 

simulations (using calibrated parameters) and the simulations using future-159 

conditioned parameters, as illustrated by the cumulative distribution functions in 160 

Fig.12. A more stable regionalization method is one that exhibits a smaller increase 161 

in these differences when shifting from historical to future climate inputs.  162 

This detailed process, which is now added in the revised manuscript (Section 163 

5.4), allows us to robustly isolate and quantify the stability of our parameter 164 

regionalization methods against projected long-term shifts in climate. 165 

 166 
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5. In the introduction, floods in mountainous catchments are mentioned, but it is 167 

unclear whether the focus is on general floods or flash floods (typically defined as 168 

occurring within 6 hours of rainfall). Given the rapid response of mountainous 169 

catchments, the authors should explicitly state which type of events are considered. 170 

Response: Yes, this is not clear. The Introduction and Section 2.2 (Datasets) have 171 

been revised to explicitly define the scope of the flood events.  172 

In the Introduction: Floods in mountainous catchments, encompassing both 173 

flash floods and general larger-scale flood events which can be derived from 174 

mountainous upland catchments, pose a significant threat to human safety and 175 

property, particularly in regions lacking sufficient observational data.  176 

In Section 2.2 (Datasets): Hourly flow data (2015-2018) for 80 mountainous 177 

catchments in China were sourced from the Hydrological Bureau of the Ministry 178 

of Water Resources, through China's hydrologic yearbooks, encompassing a 179 

spectrum of events from flash floods and general floods which can be derived from 180 

mountainous upland catchments.  181 

 182 

6. The terms purple soil, yellow soil, and red soil are used without explanation. 183 

Please clarify whether this classification is standard in Chinese soil taxonomy, and 184 

provide references or definitions. 185 

Response: This is a valid point. The terms "purple soil," "yellow soil," and "red 186 

soil" are based on the Genetic Soil Classification of China, which is a widely 187 

recognized and standard soil taxonomy system within China. To address your 188 

comment and enhance the scientific rigor of our manuscript, we have revised the 189 

sentence in Section 2.1 (Study area) to explicitly name the classification system and 190 

include an appropriate citation.  191 

In Section 2.1 (Study area):Dominant soil types, according to the Genetic Soil 192 

Classification of China (Shi et al., 2004), include purple soil (12.20%), yellow soil 193 

(11.39%), and red soil (9.52%), each with distinct hydrological properties. 194 

References: 195 

Shi, X.Z. et al., 2004. Soil Database of 1:1,000,000 Digital Soil Survey and 196 

Reference System of the Chinese Genetic Soil Classification System. Soil 197 

Survey Horizons, 45(4): 129-136. 198 

 199 

7. In Fig. 1, the catchments and provincial borders are both shown in grey, making 200 

them difficult to distinguish. Please revise the figure with clearer colour contrasts. 201 

Response: the figure has been revised. 202 
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 203 

Fig.1. Geographical distribution of the 80 gauged catchments used, with locations of 204 

hydrometry station (red points) and major rivers indicated. 205 

 206 

8. In Fig. 2, placeholders such as MLx, and P are not clearly defined. These should 207 

be explicitly labelled with their meanings (e.g., precipitation, slope, land cover index) 208 

rather than generic placeholders. 209 

Response: Figure 2 has been revised.  210 

 211 

Fig.2. Multi-machine learning ensemble method for regionalization in ungauged 212 

mountainous catchments. The red line indicates the machine learning method that 213 

yielded the optimal parameter estimates. 214 

 215 

9. Qp and Tp, introduced around line 271, should be defined at first mention for clarity. 216 

Response: We have revised the relevant sentence in Section 3.3.1 to include these 217 

definitions. Qp - the relative error of flood peak flow; Tp- the absolute error in 218 

flood peak occurrence time. 219 
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10. The manuscript reports Tp values of 2–4 hours during calibration/validation for the 220 

benchmarking model, but does not discuss whether these response times are realistic 221 

for flash flood conditions in mountainous catchments. Please provide context on 222 

catchment response times and evaluate whether a Tp of 4 hours is sufficient. 223 

Response: We have analyzed the hydrological response times (approximated as the 224 

time from precipitation peak to flood peak) for the flood events across all 80 225 

catchments. The results show that these response times range widely, from 226 

approximately 1 to 26 hours. 227 

This wide range directly reflects the diversity of our study area which, as 228 

clarified in the manuscript, includes not only small basins generating rapid flash 229 

floods, but also large mountainous catchments (mean area: 1,586 km2) with much 230 

longer concentration times. 231 

In this study, a median Tp error of 2-4 hours is strong and operationally 232 

effective. For large catchments with longer response times in this study (e.g., 15-233 

20 hours), 4 hours error still provides a substantial and actionable lead time for 234 

flood warnings. Even for catchments with moderately fast response times (e.g., 6-235 

8 hours), a 2-hour median error during calibration allows for a timely and 236 

actionable warning. 237 

Furthermore, it is noteworthy that the median Tp during the calibration 238 

period (within 2 hours) satisfied the stringent requirements for high-quality 239 

forecasts set by China's Specification for Hydrological Information Forecast 240 

(GB/T 22482-2008), providing an objective benchmark for its accuracy. This 241 

detailed discussion has been added to Section 4.1 (Model Performance) of the 242 

revised manuscript. 243 

 244 

11. Terminology: “calibration/validation” terminology is more common in physically 245 

based models, while ML studies usually refer to “training/testing.” This should be 246 

acknowledged for clarity. 247 

Response: The manuscript has been revised to ensure that the terminology is used 248 

consistently and appropriately for each modeling context. The terms "calibration 249 

and validation" are now used exclusively when referring to the parameter 250 

optimization and performance assessment of the process-based Top-SSF 251 

hydrological model. Conversely, the terms "training and testing" are used when 252 

describing the development and evaluation of the machine learning-based 253 

parameter regionalization methods. 254 

 255 

12. The manuscript states that donor catchments were selected either by mode 1 or 256 

mode 2. However, it would be more scientifically justifiable to select donor catchments 257 

based on similarity in physical and climatic characteristics (e.g., area, slope, 258 

precipitation regime, land cover). 259 

Response: We agree that selecting donor catchments based on physical and 260 

climatic similarity is a cornerstone of many regionalization methods. Parameter 261 

regionalization method, however, addresses this concept implicitly through the 262 

learning process of the ML method itself. 263 
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The ML method, by its very design, implicitly performs a sophisticated form 264 

of similarity-based regionalization. The ML method core task is to learn the 265 

complex, non-linear relationships between the very catchment descriptors 266 

mentioned above (i.e., catchment area, slope, precipitation, etc.) and the 267 

hydrological model parameters. In essence, when the trained ML method makes a 268 

prediction for an ungauged catchment, it is drawing on the "knowledge" it gained 269 

from all 79 donor catchments, automatically weighting the influence of catchments 270 

that are more "similar" in the high-dimensional feature space. It is a data-driven 271 

method for determining similarity, rather than one based on a predefined distance 272 

metric.  273 

It is important to clarify that the experiment presented in Section 5.3 and Fig. 274 

11 was not intended to propose a method for selecting donor catchments for a 275 

specific target catchment. Instead, its purpose was to conduct a crucial sensitivity 276 

analysis to answer two practical questions (i.e., the impacts of data quality and 277 

quantity) about building regionalization methods: 278 

Mode 1 (selection by decreasing NSE): This was designed to investigate the 279 

impact of data quality. It simulates a real-world scenario where one might start 280 

with a few high-quality, well-calibrated gauged catchments and then gradually 281 

add more catchments that are less reliably calibrated. Our finding that 282 

performance can degrade after adding too many low-quality donors is a critical 283 

insight for practitioners. 284 

Mode 2 (random selection): This was designed to investigate the impact of 285 

data quantity. It helps us understand the general relationship between the size of 286 

the training dataset and regionalization method performance, a key question in 287 

machine learning applications. 288 

In summary, the task of finding "similar" catchments is handled internally 289 

and automatically by the ML method itself. The beginning of Section 5.3 has been 290 

revised to explicitly state the purpose of this sensitivity analysis.  291 

 292 

13. The manuscript notes that multi-model ensembles improve performance, but does 293 

not explain why. Please discuss what learning principles of the individual ML models 294 

(e.g., robustness of tree-based splits, flexibility of KNN, etc.) contribute to 295 

improvements in parameter estimation, and why the ensemble captures strengths across 296 

models. 297 

Response: Yes, it is essential that explaining the scientific rationale behind the 298 

ensemble method (GBM-KNN-ERT). The superior performance of the ensemble 299 

method stems from the principle that the combination of different machine 300 

learning methods is suitable to regionalize parameters governed by different 301 

physical processes, due to their distinct learning mechanisms. The ensemble 302 

method identified the optimal ML method for each task after undergoing rigorous 303 

evaluation. An explanation has been added to Section 5.1.  304 

Specifically, Gradient Boosting Machine (GBM) was selected for parameters 305 

representing complex, integrated catchment-scale processes like 𝑺𝒛𝒎 and 𝒕𝒅, as 306 

its sequential, error-correcting nature is ideal for modeling the interplay between 307 
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multiple catchment descriptors. In contrast, K-Nearest Neighbors (KNN) was 308 

optimal for parameters governed by physical similarity and spatial coherence, 309 

such as 𝒍𝒏𝑻𝒆, where its instance-based learning directly leverages the assumption 310 

that catchments with similar features have similar properties. Extremely 311 

Randomized Trees (ERT) was chosen for the 𝑺𝒇𝒎𝒂𝒙 parameter, where its high 312 

degree of randomization provides robustness against overfitting to noisy data. The 313 

ensemble method success is therefore a direct result of synergistically combining 314 

the GBM ability to model complexity, the KNN strength in capturing similarity, 315 

and the ERT robustness, leading to a final model that is more accurate and 316 

physically plausible than any single method. 317 

 318 

14. The sentence “75 of the catchments had NSE > 0,” might br incomplete. Please 319 

revise to show the correct threshold (e.g., NSE > 0.0). 320 

Response: We have revised the manuscript to provide greater clarity and context 321 

regarding the performance metrics, ensuring the thresholds are explicit and the 322 

comparisons are precise. 323 

The revised text in Section 4.2.2 now reads: 324 

Among the single machine learning methods, GBM performed best, with 60 325 

catchments achieving a positive NSE (NSE > 0, Fig. 8d). Critically, for high-326 

accuracy predictions (NSE > 0.9), GBM succeeded in 43 catchments (54%), also 327 

showing strong performance with Qp less than 5% and Tp less than 1 hour in most 328 

cases (Fig. 8a-c). 329 

The GBM-KNN-ERT ensemble method yielded even better results. It 330 

increased the number of catchments with positive NSE to 75 (Fig. 8d). More 331 

impressively, the ensemble method achieved exceptional performance (NSE > 0.9) 332 

in 72 catchments (90%). This represents a 67.44% increase in the number of high-333 

accuracy predictions compared to the best single method (GBM). 334 
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 335 

Fig.8. Evaluation of flood prediction performance for different parameter regionalization 336 

methods. (a-c) show the distributions of Nash-Sutcliffe Efficiency (NSE), relative peak 337 

flow error (Qp), and peak time error (Tp) across all 80 catchments, with shaded regions 338 

indicating where flood prediction standards were met (NSE > 0.75, Qp < 20%, and Tp < 339 

2 hours). (d) shows the number of catchments with NSE > 0 and the black border indicates 340 

the number of catchments with NSE > 0.9. (e-g) present example hydrographs comparing 341 

the simulated flood from each regionalization method against measured flood flow and the 342 

calibrated Top-SSF model benchmark for catchments where the benchmark model 343 
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performance was (e) high (NSE=0.91), (f) medium (NSE=0.76), and (g) low (NSE=0.55). 344 

 345 

15. The manuscript should provide optimal parameters used in each ML model (e.g., 346 

number of trees, learning rates, neighbours in KNN) either in the main text or as 347 

supplementary material. This is necessary for reproducibility. 348 

Response: To ensure reproducibility, we have added the optimal hyperparameters 349 

for the DT, ERT, GBM, KNN, RF, and SVM methods. This information is now 350 

available in Tables S1-S6 in the Supplementary Material. 351 

Table.S1 DT Hyperparameter Results 352 

 max_depth min_samples_split min_samples_leaf 

𝑙𝑛𝑇𝑒 53 9 3 

𝑆𝑧𝑚 922 4 2 

𝑡𝑑 631 4 2 

𝑆𝑓𝑚𝑎𝑥 253 6 2 

𝐶 253 2 1 

𝑞𝑠𝑓0 156 2 1 

𝑡 483 6 2 

Table.S2 ERT Hyperparameter Results 353 

 n_estimators min_samples_split min_samples_leaf max_features max_depth 

𝑙𝑛𝑇𝑒 500 2 1 0.9 15 

𝑆𝑧𝑚 200 5 1 0.5 10 

𝑡𝑑 500 2 1 0.9 15 

𝑆𝑓𝑚𝑎𝑥 500 2 1 0.2 15 

𝐶 500 2 1 0.9 15 

𝑞𝑠𝑓0 400 2 1 0.1 15 

𝑡 500 2 1 0.9 25 

Table.S3 GBM Hyperparameter Results 354 

 subsample n_estimators min_samples_split min_samples_leaf max_depth learning_rate 

𝑙𝑛𝑇𝑒 1.0 800 2 1 9 0.1 

𝑆𝑧𝑚 1.0 200 2 1 3 0.1 

𝑡𝑑 1.0 100 2 1 4 0.1 

𝑆𝑓𝑚𝑎𝑥 0.8 800 2 1 9 0.1 

𝐶 0.6 300 2 1 10 0.05 

𝑞𝑠𝑓0 0.8 800 2 1 9 0.1 

𝑡 0.8 800 2 1 9 0.1 

Table.S4 KNN Hyperparameter Results 355 

 p n_neighbors 

𝑙𝑛𝑇𝑒 1 20 

𝑆𝑧𝑚 3 6 

𝑡𝑑 1 4 

𝑆𝑓𝑚𝑎𝑥 1 7 

𝐶 1 4 

𝑞𝑠𝑓0 1 30 

𝑡 1 5 
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 356 

Table.S5 RF Hyperparameter Results 357 

 n_estimators max_depth min_samples_split min_samples_leaf 

𝑙𝑛𝑇𝑒 1000 10 5 1 

𝑆𝑧𝑚 100 30 4 2 

𝑡𝑑 100 30 5 2 

𝑆𝑓𝑚𝑎𝑥 200 80 2 1 

𝐶 1000 90 10 2 

𝑞𝑠𝑓0 700 10 2 1 

𝑡 500 60 2 1 

Table.S6 SVM Hyperparameter Results 358 

 tol shrinking kernel gamma C 

𝑙𝑛𝑇𝑒 0.0001  True  rbf 10 50 

𝑆𝑧𝑚 0.0001  True  rbf  scale 0.1 

𝑡𝑑 0.0001  True  linear 10 1 

𝑆𝑓𝑚𝑎𝑥 0.0001  True  rbf  scale 0.1 

𝐶 0.001  True  poly 0.1 10 

𝑞𝑠𝑓0 0.0001  True  rbf  scale 0.1 

𝑡 0.0001  True  rbf  scale 0.1 

 359 

 360 

16. While the manuscript presents aggregated performance metrics (NSE, Qp, Tp), it 361 

would be very valuable to also show hydrograph examples comparing observed vs. 362 

simulated discharge for both a high-performing and a low-performing catchment. Such 363 

visualizations would illustrate how the multi-model ensemble improves (or fails to 364 

improve) peak flow timing and magnitude compared to single ML models. 365 

Response: We have added three hydrographs from randomly selected events to 366 

Fig. 8 (e, f, and g) to visually illustrate the performance differences. To ensure these 367 

examples are unbiased and cover the full spectrum of performance, we selected 368 

them using a stratified random sampling approach. Specifically, we first 369 

categorized all 80 catchments based on the benchmark performance of the 370 

calibrated Top-SSF model into three strata: high-performance (NSE > 0.85), 371 

medium-performance (0.7 < NSE < 0.85), and low-performance (NSE < 0.7). We 372 

then randomly selected one representative flood event from each stratum for 373 

visualization.  374 

These plots represent cases where the Top-SSF model itself achieved high, 375 

medium, and low performance, respectively, with the simulation (solid black line) 376 

serving as the performance benchmark. Figures 8e-g clearly show the better 377 

performances of the GBM-KNN-ERT method (solid green line) than the single 378 

methods. For instance, in Fig.8e, the ensemble method integrates the superior peak 379 

flow estimation from ERT with the better overall hydrograph shape from GBM 380 

and KNN. In Fig.8g, it effectively averages the overestimation from ERT with the 381 

underestimation from other ML methods during the recession phase, producing a 382 

result closer to the benchmark than any single ML method. These details, now in 383 
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the revised manuscript (Section 4.2.2), demonstrate that the success of the 384 

ensemble method stems from its ability to integrate the specific, complementary 385 

strengths of its components across different parts of flood process. 386 

 387 

Fig.8. Evaluation of flood prediction performance for different parameter regionalization 388 

methods. (a-c) show the distributions of Nash-Sutcliffe Efficiency (NSE), relative peak 389 

flow error (Qp), and peak time error (Tp) across all 80 catchments, with shaded regions 390 

indicating where flood prediction standards were met (NSE > 0.75, Qp < 20%, and Tp < 391 

2 hours). (d) shows the number of catchments with NSE > 0 and the black border indicates 392 
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the number of catchments with NSE > 0.9. (e-g) present example hydrographs comparing 393 

the simulated flood from each regionalization method against measured flood flow and the 394 

calibrated Top-SSF model benchmark for catchments where the benchmark model 395 

performance was (e) high (NSE=0.91), (f) medium (NSE=0.76), and (g) low (NSE=0.55). 396 

 397 

17. While the ensemble approach clearly improves technical performance, the paper 398 

should strengthen its scientific justification by explaining whether the gains are due to 399 

model complementarity, data-dependence, or calibration bias. Without this, it remains 400 

unclear whether the ensemble would generalize to other regions or datasets. 401 

Response: While all three factors you mentioned may play roles, the evidence 402 

strongly suggests that ML method complementarity is the primary driver of the 403 

performance gains. 404 

As detailed in our new discussion (Section 5.1, in the response to Comment # 405 

13), superior performance is not accidental, but stems from our data-driven 406 

selection process. This process has empirically demonstrated that different ML 407 

methods are optimal for different hydrological parameters. KNN excels at 408 

regionalizing fundamental soil properties like 𝒍𝒏𝑻𝒆  that exhibit strong spatial 409 

coherence, while GBM is better at capturing the complex, integrated relationships 410 

governing parameters like 𝑺𝒛𝒎 . The GBM-KNN-ERT method achieves high-411 

accuracy flood predictions (NSE > 0.9) in 90% of catchments, a 67.44% 412 

improvement over the best-performing single ML method. 413 

This alignment between ML methods learning principles and the physical 414 

processes represented by the parameters is strong evidence of true method 415 

complementarity. The specific combination of methods chosen (GBM-KNN-ERT) 416 

is, of course, partly dependent on the dataset of 80 mountainous catchments, but 417 

this data-dependence does not undermine the generalizability of the approach. On 418 

the contrary, the core scientific contribution of our paper is the demonstration of 419 

a robust, data-driven framework for identifying the optimal ensemble for a given 420 

region. Our methodology is designed to be transferable: by applying the 421 

competitive evaluation process to a new dataset, one could construct a new, locally 422 

optimized ensemble. The principle of using an ensemble of specialists remains 423 

generalizable. 424 

"Calibration bias" could refer to the uncertainty or potential errors in the 425 

"true" parameter values derived from the Top-SSF model calibration. While this 426 

uncertainty is an inherent part of any hydrological modeling study, it is unlikely 427 

to be the primary reason for the ensemble's success. If the gains were merely an 428 

artifact of fitting to noise in the calibrated parameters, we would expect a single, 429 

highly flexible ML method (like GBM) to eventually overfit and outperform a 430 

more constrained ensemble. Instead, we see a structured and physically plausible 431 

division of labor. The simpler, more robust KNN method wins for certain 432 

parameters, suggesting it is capturing a true, simple signal rather than complex 433 

noise. Furthermore, the ensemble's enhanced stability under climate change (a 434 

stress test using out-of-sample conditions) provides strong evidence that it is 435 

capturing robust physical relationships, not just fitting to calibration artifacts. 436 
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In conclusion, the performance gains are most scientifically justified as a 437 

result of true ML method complementarity, where different algorithms are better 438 

suited to regionalize parameters governed by different physical processes. This 439 

provides a strong basis for believing that the ensemble approach, if not the exact 440 

GBM-KNN-ERT combination, would generalize effectively to other regions and 441 

datasets. We have added a discussion to Section 5.5 in the manuscript to strengthen 442 

this point. 443 

 444 

 445 


