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Abstract. The global annual mean atmospheric CO2 growth rate in 2023 was one of the highest since records
began in 1958, comparable to values recorded during previous major El Niño events. We do not fully under-
stand this anomalous growth rate, although a recent study highlighted the role of boreal North American forest
fires. We use a Bayesian inverse method to interpret global-scale atmospheric CO2 data from NASA’s Orbiting
Carbon Observatory (OCO-2). The resulting a posteriori CO2 flux estimates reveal that from 2022 to 2023, the
biggest changes in CO2 fluxes of net biosphere exchange (NBE) – for which positive values denote a flux to the
atmosphere – were over the land tropics. We find that the largest NBE increase is over eastern Brazil, with small
increases over southern Africa and Southeast Asia. We also find significant increases over southeastern Aus-
tralia, Alaska, and western Russia. A large NBE increase over boreal North America, due to fires, is driven by
our a priori inventory, informed by independent data. The largest NBE reductions are over western Europe, the
USA, and central Canada. Our NBE estimates are consistent with gross primary production estimates inferred
from satellite observations of solar-induced fluorescence and from satellite observations of vegetation greenness.
We find that warmer temperatures in 2023 explain most of the NBE change over eastern Brazil, with hydrolog-
ical changes more important elsewhere across the tropics. Our results suggest that the ongoing environmental
degradation of the Amazon is now playing a substantial role in increasing the global atmospheric CO2 growth
rate.
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1 Introduction

The annual mean growth rate of atmospheric carbon diox-
ide (CO2) is widely used as a zeroth-order metric to deter-
mine the health of our planet. Even from the first few years’
worth of data collected at Mauna Loa in the late 1950s, it5

was plain to see that a) land vegetation imposed a large
seasonal cycle on atmospheric CO2 via photosynthesis and
respiration and b) the combustion of fossil fuels led to a
planetary-scale impact on the atmosphere (Keeling, 1960;
Keeling et al., 1976). Changes in the annual accumulation10

of atmospheric CO2 (growth rate), the magnitude and phase
of the seasonal cycle, and how they vary geographically pro-
vide important clues about economic activity and the health
of the land biosphere (Keeling et al., 1996; Graven et al.,
2013; Barlow et al., 2015). These changes are inextricably15

linked, e.g. an elevated uptake by the land biosphere will in-
fluence the annual growth rate as well as the seasonal cycle
(e.g. Ainsworth and Rogers, 2007). On a global scale, using
mass balance arguments, we know that only about 44 % of
fossil fuel emissions of CO2 remain in the atmosphere (the20

airborne fraction) (Bennett et al., 2024), with the land bio-
sphere and oceans absorbing the other 56 %, approximately
equally but with substantial year-to-year changes (Friedling-
stein et al., 2023). The quasi-stability of the airborne fraction
suggests that the land biosphere and oceans absorb a progres-25

sively larger absolute amount of CO2 from the atmosphere.
We have an incomplete understanding of where this carbon is
being absorbed and the stability of the resulting accumulated
terrestrial carbon reservoirs against future changes in climate
(e.g. Armstrong McKay et al., 2022). Consequently, years in30

which there are anomalously large annual mean CO2 growth
rates prompt concern from the scientific community. This
concern grows when state-of-the-art process-based land bio-
sphere models cannot forecast or explain these anomalies
(Kondo et al., 2020).35

Figure 1 shows the annual mean CO2 growth rates re-
ported by the National Oceanic and Atmospheric Adminis-
tration (NOAA) on a global scale, determined by combining
data collected at sites across the globe and from Mauna Loa
in Hawaii (19.5° N, 155.6° W), USA, a site typically assumed40

to be representative of changes in the Northern Hemisphere
carbon cycle (Buermann et al., 2007). The global picture
shows that 2023 (Fig. 1a) had one of the largest CO2 growth
rates on record, typically associated with the El Niño phase
of ENSO, e.g. 1986, 1997/1998, and 2015/2016. What is also45

evident is a progressive increase in the annual growth rates
from the 1950s (Fig. 1c). Even anomalous values recorded
in the last quarter of the 20th century are close to the me-
dian value from the 21st century (Fig. 1c). The corresponding
data collected at Mauna Loa show a slightly different picture50

for the annual CO2 growth rate (Fig. 1b). At this site, the
growth rate in 2023 was the largest on record, exceeding the
past peak growth during the 1997/1998 El Niño – attributed
to the extensive burning of peat over Southeast Asia (Page

et al., 2002) – and the 2015/2016 El Niño (Liu et al., 2017). 55

At Mauna Loa, progressive changes in the growth rates are
slightly more exaggerated than global mean values (Fig. 1b
and d), suggesting a larger role for tropical latitudes.

Data-driven top–down flux inversions allow us to attribute
these observed changes in the atmospheric CO2 growth rate 60

to regional changes in surface carbon fluxes. Estimating re-
gional carbon fluxes from atmospheric data requires an at-
mospheric transport model that describes the physical rela-
tionship between surface CO2 fluxes and the resulting atmo-
spheric distribution of CO2, a priori estimates of the distri- 65

bution and magnitude of fluxes, and a Bayesian inference
method that fits this model to the data, accounting for model
and data uncertainties (Tans et al., 1990; Baker et al., 2006;
Gurney et al., 2002, 2004). Using an atmospheric transport
model introduces additional errors (Schuh et al., 2019; Oda 70

et al., 2023), but it remains an essential tool for interpreting
the atmospheric data. Satellite observations of atmospheric
CO2 have challenged our current understanding of the car-
bon cycle (Liu et al., 2017; Chatterjee et al., 2017; Patra
et al., 2017; Palmer et al., 2019; Wang et al., 2020; Basso 75

et al., 2023; Hugelius et al., 2024; O’Sullivan et al., 2024; Liu
et al., 2024). These observations have primarily achieved this
by collecting data over geographical regions that are not well
covered by ground-based networks, particularly over the land
tropics. These datasets are typically available with a time lag 80

of only a few months, enabling us to explain the reasons be-
hind anomalous annual CO2 growth rates within a year of
them happening.

To interpret recent annual changes in the CO2 growth rate,
we use the global 3-D GEOS-Chem atmospheric transport 85

model and an ensemble Kalman filter to adjust our a priori
distribution of CO2 flux estimates to fit in situ and satellite
observations of atmospheric CO2. These methods and data
are described in the next section. We report our results in
Sect. 3 and conclude our study in Sect. 4. 90

2 Data and methods

Here, we describe the modelling framework we use to in-
fer the a posteriori spatial distributions of CO2 fluxes, 2014–
2023, from atmospheric data and a priori inventory flux esti-
mates, and we use the auxiliary atmospheric and land surface 95

to evaluate the resulting a posteriori flux estimates.

2.1 Inversion framework

We use the GEOS-Chem global 3-D atmospheric chemistry
transport model version 13.4 to provide the relationship be-
tween the surface fluxes and changes in atmospheric CO2. 100

For the experiments we report, we run the model at a hor-
izontal resolution of 2° (latitude)× 2.5° (longitude), driven
by Modern-Era Retrospective Analysis for Research and Ap-
plications version 2 (MERRA2) meteorological reanalyses
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Figure 1. Atmospheric growth rates of CO2 (blue) and their annual change (black). (a) Global mean values. (b) Values determined from the
Mauna Loa, Hawaii CO2 mole fraction data. Data collected by the NOAA and available at https://gml.noaa.gov/ccgg/trends/gl_gr.html (last
access: 16 June 2024). (c) Multi-decadal changes in the probability density of global mean annual mean growth rates and (d) as panel (c) but
using data from Mauna Loa. Blue and black dashed horizontal lines denote the 1σ and 2σ values for the annual atmospheric CO2 growth
and its annual change, respectively.

from the Global Modeling and Assimilation Office (GMAO)
based at the NASA Goddard Space Flight Center (GSFC).

We use a priori CO2 flux inventories, which include year-
specific monthly biomass burning emissions (GFEDv4.1;
Randerson et al., 2017), and year-specific monthly anthro-5

pogenic emissions (OmDIAC; Oda et al., 2018; Oda and
Maksyutov, 2021). The anthropogenic emission estimates
were extended to 2023 under the assumption that these emis-

sions from the Southern Hemisphere remained stable be-
tween 2022 and 2023 but increased by 1.4 % over the North- 10

ern Hemisphere based on data reported in the 2024 Sta-
tistical Review of World Energy by the Energy Institute.
We use year-specific terrestrial biosphere fluxes with a tem-
poral resolution of 3 h (the Carnegie–Ames–Stanford Ap-
proach (CASA); Olsen and Randerson, 2004) up to the end 15

of 2018 and repeat values for 2018 in subsequent years. We

https://gml.noaa.gov/ccgg/trends/gl_gr.html
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use monthly climatological ocean fluxes (Takahashi et al.,
2009), which we scale uniformly to a global annual uptake
of 2.5 PgCyr−1, 2014–2024, inclusively, following Nassar
et al. (2010).

We use an established EnKF framework to estimate sur-5

face CO2 fluxes, 2014–2023, inclusively, from atmospheric
CO2 data collected by OCO-2 and the NOAA in situ ground-
based observation network, 2014–2023, inclusively. For
brevity, we provide a summary of the approach and refer the
reader to other papers for further details (Feng et al., 2009,10

2017; Palmer et al., 2019).
Adopting a widely used approach, we assume that the

fossil fuel emissions are well known and estimate monthly
a posteriori natural CO2 fluxes, including fire emissions and
terrestrial and ocean biospheric CO2 fluxes, which are ap-15

proximated by Feng et al. (2017):

fa(x, t)= f0(x, t)+
∑

i
ciBFi(x, t), (1)

where fa(x, t) and f0(x, t) describe the a posteriori and a pri-
ori CO2 flux estimates at location x and time t , respectively.
The pulse-like basis functions TS1BFi(x, t) represent the sum20

of natural fluxes used to represent their overall spatial pattern
over each predefined subregion. The coefficients ci form the
state vector to be estimated by optimally fitting the model to
the data.

We define our land subregions by further dividing each of25

the 11 TransCom-3 land regions (Gurney et al., 2002) into
30 nearly equal subregions, with the exception of temperate
Eurasia, which has been divided into 56 subregions due to
its large landmass. We divide the 11 TransCom-3 ocean re-
gions into 132 subregions. Our state vector includes monthly30

scaling factors for 488 regional pulse-like basis functions
that describe natural CO2 fluxes, including 356 land regions
and 132 oceanic regions (Fig. A1). We determine these coef-
ficients by optimally fitting the corresponding atmospheric
model concentrations with in situ and OCO-2 data (Feng35

et al., 2017):

ca = cf+K[y−H (cf)], (2)

where ca and cf denote the a posteriori and a priori state vec-
tors, respectively; y denotes satellite and in situ CO2 obser-
vations; and H describes the observation operator that re-40

lates surface fluxes (i.e. the coefficients) to the observations.
Here we sample the 3-D GEOS-Chem model CO2 fields at
the time and location of each observation. For comparison
with OCO-2 XCO2 retrievals, we further convolve the result-
ing model profiles with scene-dependent OCO-2 averaging45

kernels. In our EnKF framework, we introduce a flux pertur-
bation (coefficients) ensemble 1C to represent the a priori
error covariance and calculate the Kalman gain matrix K in
Eq. (2) by using

K=1C1YT
[1Y1YT

+R−1
]
−1, (3)50

where R is the observation error covariance, and 1Y=
H (1C) represents the projection of the flux perturbation en-
semble to observation space, which is based on the same
GEOS-Chem model run at the same horizontal resolution of
2° (latitude)× 2.5° (longitude) as our a priori simulations. 55

We use a 5-month moving lag window to reduce the compu-
tational costs for projecting the flux perturbation ensemble
into the observation space long after their emissions (in this
case, longer than 4 months), beyond which time it is difficult
to distinguish between the emitted signal from variations in 60

the ambient background atmosphere (Feng et al., 2017). To
calculate sequentially the a posteriori estimate and the asso-
ciated uncertainty via Eqs. (2) and (3), we use an efficient
numerical LU solver (Feng et al., 2017).

For simplicity, we assume a fixed uncertainty of 40 % for 65

coefficients corresponding to a priori CO2 fluxes over each
subregion. We assume that a priori errors are correlated with
a spatial correlation length of 500 km over land and 800 km
over oceans, with a temporal correlation of 1 month. Our
experiments show that our results, such as the estimated 70

changes in a posteriori CO2 fluxes between 2022 and 2023
and between 2022 and 2024 are largely insensitive to dif-
ferent assumptions about a priori uncertainties (± 10 %) and
correlation length scales (± 100 km).

2.2 In situ and OCO-2 atmospheric CO2 data 75

We use version v11r of OCO-2 retrievals of column-averaged
dry air mole fraction (XCO2) from NASA’s Jet Propulsion
Laboratory (JPL) Atmospheric CO2 Observation from Space
(ACOS) team (Taylor et al., 2023). We only assimilate the
nadir and glint observations over land, considering possible 80

bias between the land and ocean XCO2 data. The consequent
poor observational coverage over the ocean could result in
the disaggregation of the land and ocean CO2 fluxes being
more sensitive to the a priori ocean flux inventory. Through
sensitivity studies, we find that our land CO2 flux anomalies 85

are not significantly sensitive to the a priori ocean flux in-
ventory (not shown) or to the absence of OCO-2 glint data
(Fig. A2). To reduce the computational costs and error corre-
lations, we thinned the OCO-2 observations to ensure a min-
imal time interval of 10 s. 90

We also assimilate in situ measurements of CO2 mole frac-
tion data from a subset of 113 sites (Fig. A1) included in
the NOAA GLOBALVIEWplus data product (Schuldt et al.,
2024), incorporating data from the Integrated Carbon Obser-
vation System (ICOS RI et al., 2024). 95

2.3 GOSIF gross primary productivity (GPP)

We use a global GPP product that is based on OCO-2 solar-
induced fluorescence (GOSIF) and linear relationships be-
tween solar-induced fluorescence (SIF) and GPP (Li and
Xiao, 2019). We chose this data product, available globally at 100

a spatial resolution of 0.05° and a temporal resolution of 8 d,
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Figure 2. Annual mean a posteriori CO2 flux estimates inferred from OCO-2 data for the globe, the southern extratropics, the tropics, and
the northern extratropics. The thin black vertical lines denote the 1σ values about the annual mean values. The red lines in panels (b)–(d)
denote the percentage contribution to the global net fluxes.

because it is close to the median of observation-derived GPP
estimates (Li and Xiao, 2019) and is available over our study
period. The mean annual global total for CO2 (2000–2023)
is 135.5± 8.8 PgC yr−1, with a significant upward trend over
the Northern Hemisphere. Comparisons show that this GPP5

data product is highly correlated (R2
= 0.74) with GPP mea-

surements collected at 91 eddy covariance flux sites across
the globe. Here, we use the monthly mean dataset and re-
grid it to a regular 1° grid to compare it with other variables,
including our a posteriori CO2 flux estimates.10

2.4 Gravity Recovery and Climate Experiment (GRACE)
data

The GRACE space mission was jointly developed by NASA
and DLR (German Space Agency) and launched into space
in 2002. It measures temporal variations of the Earth’s grav-15

ity field by tracking, using a K-band ranging system, the
inter-satellite range and range rate between two co-planar
low-altitude satellites (Tapley et al., 2004). The GRACE Sci-
ence Data System uses these measurements, along with an-
cillary data, to estimate monthly (or sub-monthly) time series20

of the global Earth’s gravity fields (Bettadpur, 2012; Flecht-
ner, 2007). Here, we use the NASA GRCTellus GRACE land
product (RL06.2) for monthly total water storage (liquid wa-
ter equivalent depth) at 1°× 1° global grids from January
2014 to March 2024 (http://grace.jpl.nasa.gov/, last access:25

12 November 2024). We have used these data in our previ-
ous studies (e.g. Feng et al., 2022, 2023).

2.5 NASA meteorological reanalyses

We use surface temperature (TS), specific humidity (SH), and
soil moisture in the top 0–10 cm (ground wetness, WET)30

datasets from MERRA2, developed by the GMAO at the
NASA GSFC, to study environmental changes from 2010 to

2023. We calculate the vapour pressure deficit (VPD) from
the 10 m MERRA2 temperature and specific humidity fol-
lowing Fang et al. (2022). We have used these reanalyses data 35

previously to study a posteriori CO2 fluxes (Palmer et al.,
2019) and methane emissions (Feng et al., 2022, 2023).

In Appendix B, to examine the robustness of the results re-
ported from our control run (described above), we report the
results from three sensitivity inversions that use different me- 40

teorological reanalyses, a priori inventories, and additional
ocean sun-glint data collected by OCO-2. These sensitivity
calculations provide confidence that the result we report in
this study is robust.

3 Results 45

Figure 2 shows a posteriori net fluxes of CO2 on a global
scale and across southern, tropical, and northern latitudes to
provide some broad geographical context. These values are
broadly consistent with annual values for the atmospheric
CO2 growth rates – an important zeroth-order assessment of 50

our a posteriori net fluxes. Our value for 2023, inferred from
OCO-2 data, is 3.0 ppmyr−1, about 0.2 ppmyr−1 higher than
the value inferred from NOAA CO2 mole fraction data. We
acknowledge that CO2 growth rate estimates inferred from
NOAA data can depart from the true value based on whole- 55

atmosphere CO2 changes (Pandey et al., 2024). Building on
our ongoing model evaluation, e.g. Deng et al. (2024) and
Friedlingstein et al. (2025), we find that the a posteriori CO2
concentrations for 2023 are generally within 0.5 ppm of data
collected by spectrometers from the Total Carbon Column 60

Observing Network (TCCON) (Wunch et al., 2011), with a
standard deviation smaller than 1.2 ppm.

As expected, the largest contribution of the global net flux
originates from the Northern Hemisphere (Fig. 2d), where
there is a superposition of boreal and mid-latitude ecosys- 65

http://grace.jpl.nasa.gov/
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Figure 3. Differences in a posteriori CO2 flux estimates inferred from OCO-2 data (a, b), gross primary production (GPP) estimated from
OCO-2 SIF data (c, d), and enhanced vegetation indices (EVIs) inferred from Moderate Resolution Imaging Spectroradiometer (MODIS)
data (e, f) for 2022–2023 (left panels, a, c, and e) and 2014–2015 (right panels, b, d, and f). Rectangles shown in panel (a) describe the
geographical regions we focus on for our multivariate fits.

tems that contribute to the global uptake of CO2, strong
anthropogenic sources such as large cities, and other emis-
sion hotspots. At these latitudes, the year-to-year variations
are comparatively small, limited to � 1 PgC. In the last 2
years since the 2021 peak, there has been a small decrease in5

net emissions to pre-pandemic values (3.38–3.96 PgCyr−1,
2014–2020). During our study, these changes have typi-
cally represented 62 %–92 % of the global budget, with the
smallest values typically occurring during the El Niño years
when the tropics play a larger role. The tropics show large10

year-to-year changes over our study period (Fig. 2c), with
a large peak in emissions that we have not observed since
the 2015/2016 El Niño. We find the large increase in net
CO2 fluxes predominately originates from the tropics, rep-
resenting 21 % in 2022 and 38 % in 2023. Our calculations15

suggest that this anomalous increase in tropical CO2 flux in
2023 is explained mainly by an increased CO2 flux over the
eastern Amazon (Fig. A3). The net uptake in the Southern
Hemisphere (Fig. 2b) also shows a similar but small year-to-
year change with the highest uptake in the last years, conse-20

quently compensating for emissions elsewhere on the globe.
The 16 % decrease in net uptake in 2023 reduced the influ-
ence of this region on the global net flux, reinforcing the role
of the tropics on the global scale.

Figure 3 shows the annual spatial distributions of the an-25

nual change in the net biosphere exchange (NBE) – the net

CO2 flux minus the a priori fossil fuel emissions removed –
from 2022 to 2023 and as a comparison from 2014 to 2015
when there was the comparably largest change in the growth
rate associated with the 2015/2016 El Niño. This widely 30

used subtraction approach to determine NBE implicitly as-
sumes perfect knowledge of the fossil fuel combustion of
CO2, but we acknowledge that making that assumption has
implications for NBE estimates, although this is minimal
over the tropics where anthropogenic emissions are compar- 35

atively small (Oda et al., 2023). A positive annual change
in NBE represents a larger net amount of CO2 to the atmo-
sphere. We find that the largest positive increases in NBE
are found across the tropics, with peak values over eastern
Brazil, southern Africa, eastern and southern China, main- 40

land and maritime Southeast Asia, and southeastern Aus-
tralia. The emission hotspot over western Canada is from
wildfires (Byrne et al., 2024), but our a posteriori feature is
almost exclusively from the a priori inventory, determined
by independent satellite data, because large aerosol optical 45

depths occur over and downwind of these extensive fires,
which makes OCO-2 data unreliable. Byrne et al. (2024) in-
ferred carbon emissions from these fires using satellite ob-
servations of carbon monoxide. We also find large positive
increases in NBE over Alaska and Russia. Regions with 50

an elevated uptake in 2023 are limited to the USA, cen-
tral Canada, and mainland Europe, with weaker uptake over
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Figure 4. Differences in surface temperature (Temp; a and b), precipitation (Prec; c and d), soil moisture (SM; e and f), vapour pressure
deficit (VPD; g and h), derived from soil moisture (based on MERRA2 reanalyses data products from the NASA GSFC GMAO); and the
liquid water equivalent (LWE; i and j) from the GRACE satellites for 2023 minus 2022 (left panels, a, c, e, g and i) and 2015 minus 2014
(right panels, b, d, f, h and j).

Siberia, Türkiye, and some parts of East Africa. In compari-
son, the tropics in 2015 show regions with positive and nega-
tive changes in NBE over tropical South America and a large
increase over East and Central Africa (Palmer et al., 2019),
with some of the largest increases over mainland and mar-5

itime Southeast Asia, as we also found in 2023. Elevated up-
take was mainly confined to boreal latitudes. These changes
in a posteriori fluxes are broadly consistent with indepen-
dent estimates of GPP changes inferred from the OCO-2 SIF
data product and from vegetation greenness, providing us10

with some confidence that our estimated fluxes are physically
plausible. The annual mean budgets for individual geograph-
ical regions, where we see the largest changes in NBE (rect-
angles in Fig. 3a), show that the eastern Amazon is almost
exclusively responsible for the large increase in pan-tropical15

CO2 flux in 2023, with a smaller contribution from Southeast
Asia.

Figure 4 shows the geographical distribution of changes in
parameters that describe large-scale CO2 flux changes – tem-

perature and water availability. Geographical locations where 20

we report the largest increases in NBE (and largest reductions
in GPP) in 2023 – e.g. Brazil, southern Africa, and south-
eastern Australia – are coincident with locations where we
saw some of the largest increases in temperature and VPD
and the largest reductions in LWE. Where we reported the 25

largest decreases in NBE (and the largest increases in GPP),
e.g. parts of the contiguous USA and central Canada, we
saw cooler temperatures and lower VPDs and small increases
in LWE. We find a similar level of consistency between the
data products and meteorological reanalyses in 2015. Recent 30

work using an ensemble of dynamic global vegetation mod-
els highlighted the detrimental impact of warming on tropical
ecosystems (Sitch et al., 2024), consistent with our results.

Figure 5 describes these relationships more quantitatively
by using linear and quadratic multivariate fits of MERRA2 35

rainfall, temperature, and soil moisture anomalies to our
a posteriori NBE anomalies, 2014–2023, inclusively, over
the geographical regions highlighted in Fig. 3a. For the lin-
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Figure 5. Regional linear (black) and quadratic (blue) multivariate fits of NBE anomalies (red) inferred from OCO-2 data using independent
estimates of rainfall, surface temperature, and soil moisture from MERRA reanalyses data products from the NASA GSFC GMAO. Regional
definitions, defined in panel (a) of Fig. 3, include the eastern Amazon, tropical East Africa, southern Africa, tropical Asia, and Southeast
Asia. Inset numbers shown in each panel indicate the Pearson correlation coefficient for each fit and the p value that corresponds to both fits.

ear fits (f1), we assume that the a posteriori NBE anoma-
lies are a linear function of the MERRA2 rainfall (R), sur-
face temperature (TS), and soil moisture (SM) anomalies:
1NBE=10+αR1R+αT1TS+αSM1SM, where 1 de-
notes an anomaly, αx denotes the regression coefficient for a5

particular variable x, and 10 denotes the fitting residual. We
scale these anomalies by their respective standard deviations
and smooth them by applying a 4-month moving window
to reduce the noises and to (partially) account for the time
lag between flux and environmental drivers. We use a least-10

squares method to estimate the four regression coefficients,
which we report in Table A1, with results from our sensi-
tivity tests shown in Table B2. We also consider a quadratic
regression model (f 2) to explain the NBE anomalies, includ-
ing linear and quadratic terms for the same three quantities15

used in the linear model but without cross terms; we found
that this only marginally outperforms the linear model. Both
models are statistically significant, with p values< 0.001, so
for simplicity of interpretation we use the linear fit. In sensi-
tivity calculations, we find that changes in VPD or LWE do 20

not improve the fits to the NBE anomalies. The models cap-
ture most of the NBE changes, with the notable exception of
mid-2022 when our NBE fluxes show a sharp increase that
is not explained by temperature or water. Based on the nor-
malized linear-fitting coefficients, we find for these fits that 25

changes in temperature explain most of the NBE changes we
observe over the eastern Amazon (Table A1 and Fig. B3), but
soil moisture changes are more important over northern trop-
ical Africa, southern Africa, and tropical Asia (Table A1 and
Fig. B3). Rainfall changes are more important over Southeast 30
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Asia. Independent GOSIF GPP estimates determined from
satellite SIF observations (Li and Xiao, 2019) show a signif-
icant decrease from 2022 to 2023 over tropical regions, par-
ticularly over the eastern Amazon, southern Africa, tropical
Asia, and Southeast Asia (Fig. A4), consistent with the in-5

crease we report for our a posteriori NBE estimates (Fig. 5).
More generally, we find that changes in GOSIF GPP are bet-
ter than other individual predictors at describing our a poste-
riori CO2 flux anomalies over tropical Asia, Southeast Asia,
and southern Africa. Table A2 shows the permutation im-10

portance of individual predictors in our multivariate linear
models.

4 Concluding remarks

We reported regional changes in the net biospheric exchange
(NBE) of CO2 inferred from OCO-2 retrievals of XCO2 from15

2022 and 2023 to examine the origin of the large atmospheric
growth rate reported for that period. Positive values of NBE
denote net CO2 fluxes to the atmosphere. We find that most
of the increase in atmospheric CO2 in 2023 is due to in-
creased NBE over the land tropics, supported by a modest re-20

duction in uptake in the southern extratropics, in agreement
with a recent study (Gui et al., 2024). Further examination
of our results revealed increased NBE over eastern Brazil,
southern Africa, eastern and southern China, mainland and
maritime Southeast Asia, and southeastern Australia. Exten-25

sive wildfires over western Canada during the boreal sum-
mer months also substantially contributed to the atmospheric
CO2 growth rate in 2023 (Byrne et al., 2024), but in terms
of atmospheric CO2, this information is exclusively from the
a priori inventory that is determined by independent satel-30

lite data. We also find increased uptake (lower NBE values)
over the USA, central Canada, and mainland Europe, with
weaker uptake over Siberia, Türkiye, and some parts of east-
ern Africa. These large-scale patterns of NBE are consistent
with data-driven estimates of gross primary production and35

vegetation greenness and with changes in surface tempera-
ture, rainfall, and surface water (Figs. 4 and B3). We find that
warmer temperatures in 2023 explain most of the change in
NBE over eastern Brazil, with changes in hydrological quan-
tities – rainfall or soil moisture – more important elsewhere40

across the tropics. Additional knowledge is needed to help
reconcile CO2 flux estimates from models based on land bio-
sphere processes with those inferred from inversions (Kondo
et al., 2020). Our quantitative exploration of the relationships
between our a posteriori NBE anomalies and changes in en-45

vironmental parameters (Fig. 5) helps to interpret observed
changes in atmospheric CO2 but can also help to evaluate
and improve process-based land biosphere models.

Our main analysis has focused on 2023, but it is important
to put this one year into a broader historical context, at least50

in the past decade when we have seen a marked increase in
atmospheric growth rates of atmospheric CO2 (Fig. 1). Some

of this increase can be explained by changes in fossil fuel
combustion and other forms of human activity, but the largest
spikes in atmospheric CO2 growth rates coincide with years 55

when there is a strong El Niño event (Fig. 1), primarily asso-
ciated with large-scale perturbations in the hydrological cy-
cle that impact tropical ecosystems. In strong El Niño years,
such as 2015/2016, widespread droughts reported across the
tropics (Jiménez-Muñoz et al., 2016) resulted in a notable in- 60

crease in fires (Liu et al., 2017) and can in some ecosystems
lead to a widespread loss of tree density and a change in the
floristic composition (Prestes et al., 2024).

In 2023, the multivariate El Niño Southern Oscillation In-
dex, indicative of El Niño and La Niña strength, was ap- 65

proximately half the value of recent El Niño events, such
as 2015/2016. There are distinct differences in the spa-
tial patterns of rainfall, atmospheric aridity (given by the
vapour pressure deficit), and soil moisture over the tropics
(Fig. 4). However, the loss of carbon sequestration in 2023 70

and 2015/2016 was comparable. Our findings highlight the
complex response of the tropical biosphere to environmental
change, reflecting differences in the sensitivity and vulnera-
bility of plants to localized droughts and increasing surface
temperature (Table A1). Further quantifying these different 75

sensitivities using independent in situ ecological observa-
tions will significantly improve our ability to model impor-
tant biospheric processes in terms of atmospheric–biosphere
carbon exchange (e.g. Liu et al., 2024).

We have extended our analysis to 2024, which is re- 80

ported in Appendix C. We find that the reduced carbon up-
take continues into 2024. Uptake by the Amazon basin in
2024 remains weaker than in 2022. There is also weak-
ened uptake over southern tropical Africa (south of 20° S)
and over tropical Asia. There is a small increase in up- 85

take over temperate North America in 2024 compared to
2023. The resulting global net emission estimate for 2024 is
6.84± 0.80 PgC, corresponding to a global CO2 growth rate
of 3.28± 0.30 ppmyr−1.

Our interpretation of the OCO-2 column data suggests that 90

the reduced uptake of CO2 from tropical ecosystems played
a key role in determining the anomalously large atmospheric
CO2 growth rates in 2023 and in 2024 (Appendix C). Our
work is largely consistent with a recent independent study
(Gui et al., 2024) that used the same OCO-2 data but in- 95

terpreted them with an independent atmospheric transport
model, driven by different fossil fuel inventories and by AI-
based dynamic global vegetation models. They also used a
different inverse method approach. However, our results and
those reported by Gui et al. (2024) are inconsistent with an- 100

other independent study (Ke et al., 2024), based on a set
of land biosphere models and an inversion experiment from
the Copernicus Atmosphere Monitoring Service (CAMS).
They significantly differ in the spatial patterns of carbon re-
lease and uptake. Resolving these discrepancies is beyond 105

the scope of this work, but ultimately they do need to be re-
solved if we are to use these models to predict how global
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ecosystems will respond to a warming climate and an ac-
celerated hydrological cycle and the subsequent impacts on
the carbon cycle (Armstrong McKay et al., 2022). If our
main result is accurate – a moderate El Niño event, in the
context of exceptional drought attributed to climate change5

(Clarke et al., 2024), has led to a significant reduction in
carbon uptake by the tropical land biosphere – we might be
observing the beginning of a decline in the ability of trop-
ical ecosystems to absorb carbon. The long-term nature of
this situation is unclear without further data, although the10

preliminary estimate of the 2024 atmospheric CO2 growth
rate of 3.75± 0.08 ppmyr−1 TS2 is unprecedented since these
records began in the late 1950s (https://gml.noaa.gov/ccgg/
trends/gl_gr.html; last access: 15 April 2025). A coordinated
measurement campaign is urgently needed to document how15

tropical ecosystems are changing, whether these changes
compromise the future ability to absorb and store carbon,
and whether prolonged drought will substantially delay any
ecosystem recovery.

Regularly reporting regional CO2 fluxes with minimal de-20

lay, and interpreting them using auxiliary data, e.g. related
to fire (such as the extensive North American boreal forest
fires in 2023) and hydrology, are enabled by massive-scale
international investment in satellite instruments that com-
plement the detailed information provided by ground-based25

measurement networks. Collectively, these efforts provide
vast volumes of information about the state of the planet at
a time when we are observing unprecedented environmental
changes. These data and the analysis tools needed to infer
CO2 fluxes collectively represent an invaluable scientific re-30

source that must be used to deliver frequent actionable infor-
mation for policymakers. The agreement and divergence be-
tween our results and those from other independent studies
underscore the efficacy and the shortcomings of the prevail-
ing frameworks.35

Appendix A

Figure A1. (a) The distribution of 488 subregions – including 356
land regions and 132 oceanic regions – for which we report monthly
a posteriori CO2 flux estimates inferred from OCO-2 data. (b) The
geographical locations of the ground-based measurements of the
CO2 mole fraction.

https://gml.noaa.gov/ccgg/trends/gl_gr.html
https://gml.noaa.gov/ccgg/trends/gl_gr.html
https://gml.noaa.gov/ccgg/trends/gl_gr.html
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Figure A2. As Fig. 5 but for NBE anomalies inferred using OCO-2 land nadir, land glint, and ocean glint data, and in situ data (LNLGOGIS).
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Figure A3. As Fig. 2 but for a posteriori CO2 flux estimates across the tropics. Regions are as defined by the rectangles shown in Fig. 3a.
Percentage values higher than 100 % are a consequence of some regional fluxes being negative.
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Figure A4. As Fig. 5 but fitting to GOSIF GPP anomalies.
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Table A1. Normalized linear-fitting coefficients for the independent variables of the MERRA2 rain, surface temperature, and soil moisture
used to fit the NBE anomalies (Fig. 5) for the regions defined in Fig. 3a, 2014–2023, inclusively. The largest coefficient for each region is
highlighted in bold.

E. Amazon NAf SAf Tr. Asia SE. Asia

Rain −0.05 −0.21 0.18 0.11 −0.42
Surface temperature 0.40 0.09 0.17 0.06 −0.03
Soil moisture −0.29 −0.51 −0.44 −0.84 −0.11

Table A2. Permutation importance of MERRA2 rain, surface temperature, soil moisture, VPD, and GOSIF GPP to fit the NBE anomalies
(Fig. 5), 2014–2023, inclusively, for the regions defined in Fig. 3a. The largest contributor for each region is highlighted in bold.

Region Rain Temp Soil moisture VPD GOSIF GPP

E. Amazon < 0.01 0.34 0.31 0.01 0.02
NAf < 0.01 0.06 0.51 0.24 0.03
SAf < 0.01 0.06 0.13 0.05 0.66
Tr. Asia < 0.01 0.01 0.32 0.01 0.44
SE. Asia < 0.01 0.02 0.07 0.15 0.62
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Appendix B

Sensitivity experiments

To test the robustness of our results, we report the results
from other calculations in which we alter one aspect of the
inversion. The experiments are described in Table B1. Text5

in bold denotes the change from our control run (CTRL).
The GEOSFP inversion is driven by GMAO Goddard

Earth Observing System Forward Processing (GEOS-FP)
meteorological analyses, based on a convection scheme that
is different from the one used in the MERRA2 reanalysis,10

which we use in our control experiment (CNTRL). For the
inversion using OCO-2 land nadir, land glint, and ocean glint
data, and in situ data (LNLGOGIS) inversion, we use addi-
tional OCO-2 XCO2 sun-glint retrievals collected over the
oceans. The SIB3-JENA inversion includes alternative a pri-15

ori estimates for sea–air CO2 fluxes based on CO2 observa-
tions (Rödenbeck et al., 2022) and for biosphere–atmosphere
fluxes from the SiB3 model simulation (Baker et al., 2009).

Figure B1 compares the monthly a posteriori net CO2 flux
estimates, 2014–2024, from our control and the three sensi-20

tivity experiments over four TransCom-3 regions, represen-
tative of three different latitude ranges: tropical South Amer-
ica, tropical Asia, temperate Eurasia, and southern Africa.
The a posteriori estimates are very similar but we find sig-
nificant regional differences for some months. For example,25

GEOSFP results in smaller emissions from temperate Eura-
sia during the winter months (Fig. B1c), and including OCO-
2 oceanic glint data results in larger seasonal cycles over
tropical South America (Fig. B2d). As a result, the two in-
versions that use ocean data (LNLGOGIS and SIB3-Jena)30

show net annual emissions from tropical South America that
are 0.1–0.22 PgCyr−1 lower than the control run.

Table B1. Configurations of our control run and three sensitivity experiments. Text in bold denotes the change from our control run (CTRL).

Experiment Wind fields Observation Prior flux

CTRL MERRA2 Surface CO2 data
(113 sites of the Obspack data collection)
OCO-2 XCO2 data over land

Monthly ODIAC fossil fuel emissions
Monthly Takahashi ocean flux climatology (scaled)
3-hourly CASA biospheric flux
Monthly fire emission (GFED v4.0)

GEOSFP GEOSFP Surface CO2 data
(113 sites of the Obspack data collection)
OCO-2 XCO2 data over land

Monthly ODIAC fossil fuel emissions
Monthly Takahashi ocean flux climatology (scaled)
3-hourly CASA biospheric flux
Monthly fire emission (GFED v4.0)

LNLGOGIS MERRA2 Surface CO2 data
(113 sites of the Obspack data collection)
OCO-2 XCO2 data over land
OCO-2 XCO2 data over ocean

Monthly ODIAC fossil fuel emissions
Monthly Takahashi ocean flux climatology (scaled)
3-hourly CASA biospheric flux
Monthly fire emission (GFED v4.0)

SIB3-JENA MERRA2 Surface CO2 data
(113 sites of the Obspack data collection)
OCO-2 Land data
OCO-2 XCO2 data over ocean

Monthly ODIAC fossil fuel emissions
Monthly Jena ocean flux climatology
3-hourly SiB3 biospheric flux
Monthly fire emissions (GFED v4.0)

Figure B2 shows that the corresponding year-to-year
changes in the natural flux changes between 2022 and 2023,
associated with our main conclusion, are remarkably similar 35

over almost every TranCom-3 land region. The ocean esti-
mates appear to depend on using the ocean glint measure-
ments. The two inversions that assimilate only OCO-2 land
data (CNTRL and GEOSFP) absorbed 0.4–0.45 PgCyr−1

less carbon between 2022 and 2023, while the two inversions 40

that also use the sun-glint measurements (LNLGOGIS and
SIB3-JENA) and use a different ocean a priori show little
change in the ocean net flux between the two years.

Figure B3 compares the correlations between regional
CO2 NBE flux anomalies and anomalies in environment vari- 45

ables between 2014 and 2023. The NBE flux anomalies for
tropical South America for our control and the three sensitiv-
ity calculations (Table B1) show strong correlations (> 0.5
and a p value < 0.1) with temperature and soil moisture
change. The NBE flux anomalies are also strongly corre- 50

lated with changes in the enhanced vegetation index (EVI)
from the NASA MODIS and GOSIF GPP anomalies. NBE
flux anomalies for tropical Asia have similarly strong corre-
lations with MODIS EVI, GOSIF GPP, and soil moisture but
comparatively lower correlations with surface temperature 55

anomalies. Australian NBE flux anomalies show a strong
correlation with EVI, GPP, VPD, and precipitation anoma-
lies, but temperature anomalies are much less important.
Generally, we find that all four inversions show consistent
results, with differences in correlation coefficient typically 60

within 0.1. A numerical summary of these results is reported
in Table B2. Clearly, our focus has been on sub-continental
scales, and we acknowledge that this will mask heterogenous
responses on smaller scales. These smaller scales are better
examined with in situ data. 65
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Figure B1. Monthly regional flux estimates by four inversion experiments (CNTRL, GEOSFP, LNLGOGIS, and SIB3-JENA) over four
TransCom-3 regions: (a) Tr.SAm (tropical South America), (b) Tr.As (tropical Asia), (c) TEr (temperate Eurasia), and (e) Saf (southern
Africa). The uncertainties for a priori and a posteriori estimates from the inversions are denoted by vertical lines and shaded envelopes,
respectively.

Figure B2. Changes in a posteriori net biosphere exchange flux estimates (2023 minus 2022) over the TransCom-3 regions, estimated by
four experiments (Table B1). Vertical lines denote a posteriori uncertainties.

Table B2. As Table A1 but with values reported as a range from the control and the three sensitivity inversions.

E. Amazon
(range)

NAf
(range)

SAf
(range)

Tr. Asia
(range)

SE. Asia
(range)

Rain −0.05
(−0.06, −0.01)

−0.21
(−0.32, −0.17)

0.18
(−0.03, 0.18)

0.11
(−0.01, 0.30)

−0.42
(−0.42, −0.36)

Surface temperature 0.40
(0.38, 0.48)

0.09
(0.01, 0.24)

0.17
(0.17, 0.32)

0.06
(−0.06, 0.06)

−0.03
(−0.03, 0.25)

Soil moisture −0.29
(−0.46, −0.29)

−0.51
(−0.56, −0.23)

−0.44
(−0.47, −0.40)

−0.84
(−0.86, −0.78)

−0.11
(−0.11, 0.27)
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Figure B3. Pearson correlation coefficients r between regional a posteriori estimates of net biosphere CO2 exchange anomalies and anoma-
lies of environmental variables, including (a) MODIS EVI, (b) GOSIF GPP, (c) MERRA2 soil moisture, (d) MERRA2 surface temperature,
(e) MERRA2 VPD, and (f) MERRA2 precipitation. Correlations with a p value> 0.1 (less significant) are denoted by the black hatching
line.
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Appendix C

A posteriori net biosphere CO2 flux estimates for 2024

We extend our control inversion experiment to the end of
2024. Figure C1 shows the difference of a posteriori NBE
CO2 flux estimates between 2024 and our baseline year of5

2022 alongside the difference between 2023 and 2022. Fig-
ure C2 shows the same data but broken down into TransCom-
3 regions. We find that tropical land absorbed less carbon
in 2024 than during 2022, primarily over South America,
Africa, and (to a lesser extent) Southeast Asia.10

Our calculations correspond to a net global annual
CO2 emission of 6.84± 0.80 PgCyr−1, equivalent to a
global CO2 growth rate of 3.28± 0.30 ppm for 2024. During
2023 and 2025, we estimate from the OCO-2 data that atmo-
spheric levels of CO2 increased by 6.36 (3.09+ 3.28) ppm15

compared to 6.48 (2.76++3.72) ppm, inferred from the
NOAA surface network.

Figure C1. Changes in annual mean a posteriori NBE flux esti-
mates from our control inversion between (a) 2022 and 2023 and
between (b) 2022 and 2024.
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Figure C2. Changes in annual mean a posteriori NBE flux estimates from our control inversion between 2022 and 2023 and between 2022
and 2024 for the TransCom-3 regions. Vertical lines denote a posteriori uncertainties.
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