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Abstract. The global annual mean atmospheric CO2 growth rate in 2023 was one of the highest since records began in 1958,
comparable to values recorded during previous major El Nifio events. We do not fully understand this anomalous growth rate,
although a recent study highlighted a role for boreal North American forest fires. We use a Bayesian inverse method to interpret
global-scale atmospheric CO2 data from the US National Aeronautics and Space Administration (NASA) Orbiting Carbon
Observatory (OCO-2). The resulting a posteriori CO: flux estimates reveal that from 2022 to 2023 the biggest changes in CO:
fluxes of net biosphere exchange (NBE) — for which positive values denote a flux to the atmosphere — were over the land
tropics. We find that the largest NBE increase is over eastern Brazil, with small increases over southern Africa and Southeast
Asia. We also find significant increases over southeast Australia, Alaska, and western Russia. A large NBE increase over
boreal North America, due to fires, is driven by our a priori inventory, informed by independent data. The largest NBE
reductions are over western Europe, USA, and central Canada. Our NBE estimates are consistent with gross primary production
estimates inferred from satellite observations of solar induced fluorescence and with satellite observations of vegetation
greenness. We find that warmer temperatures in 2023 explain most of the NBE change over eastern Brazil, with hydrological
changes more important elsewhere across the tropics. Our results suggest that ongoing environmental degradation of the

Amazon is now playing a substantial role in increasing the global atmospheric CO2 growth rate.
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1 Introduction

The annual mean growth rate of atmospheric carbon dioxide (COz) is widely used as a zeroth order metric to determine the
health of our planet. Even from the first few years” worth of data collected at Mauna Loa in the late 1950s it was plain to see
that a) land vegetation imposed a large seasonal cycle on atmospheric CO:2 via photosynthesis and respiration, and b)
combustion of fossil fuels led to a planetary scale impact on the atmosphere (Keeling, 1960; Keeling et al., 1976). Changes in
the annual accumulation of atmospheric COz (growth rate), the magnitude and phase of the seasonal cycle, and how they vary
geographically, provide important clues about economic activity and the health of the land biosphere (Keeling et al., 1996;
Graven et al., 2013; Barlow et al., 2015). These changes are inextricably linked, e.g., elevated uptake by the land biosphere
will influence the annual growth rate as well as the seasonal cycle (e.g., Ainsworth and Rogers, 2007). On a global scale, using
mass balance arguments, we know that only about 44% of fossil fuel emissions of COz remain in the atmosphere (the airborne
fraction) (Bennett et al., 2024) with the land biosphere and oceans absorbing the other 56%, approximately equally but with
substantial year to year changes (Friedlingstein et al., 2023). The quasi-stability of the airborne fraction suggests that the land
biosphere and the oceans absorb a progressively larger absolute amount of CO: from the atmosphere. We have an incomplete
understanding of where this carbon is being absorbed and the stability of the resulting accumulated terrestrial carbon reservoirs
against future changes in climate, e.g. Armstrong McKay et al., (2022). Consequently, years in which there are anomalously
large annual mean CO: growth rates prompt concern from the scientific community. This concern grows when state-of-the-art

process-based land biosphere models cannot forecast or explain these anomalies (Kondo et al., 2020).

Figure 1 shows the annual mean CO: growth rates reported by NOAA on a global scale, determined by combining data
collected at sites across the globe, and from Mauna Loa in Hawaii (19.5°N, 155.6°W), USA, a site typically assumed to be
representative of changes in the northern hemisphere carbon cycle (Buermann et al., 2007). The global picture shows that 2023
(Figure 1a) had one of the largest CO2 growth rates on record, typically associated with the El Nifio phase of ENSO, e.g., 1986,
1997/1998, and 2015/2016. What is also evident is a progressive increase in the annual growth rates from the 1950s (Figure
1c). Even anomalous values recorded in the last quarter of the 20" century are close to the median value from the 21* century
(Figure 1c). The corresponding data collected at Mauna Loa shows a slightly different picture for the annual CO2 growth rate
(Figure 1b). At this site, the growth rate in 2023 was the largest on record, exceeding the past peak growth during 1997/1998
El Nifio, attributed to extensive burning of peat over Southeast Asia (Page et al., 2002), and the 2015/2016 EI Nifio (Liu et al.,
2017). At Mauna Loa, progressive changes in the growth rates are slightly more exaggerated than global mean values (Figure

1b,d), suggesting a larger role for tropical latitudes.

Data-driven top-down flux inversions allow us to attribute these observed changes in the atmospheric CO2 growth rate to
regional changes in surface carbon fluxes. Estimating regional carbon fluxes from atmospheric data requires an atmospheric

transport model that describes the physical relationship between surface COz fluxes and the resulting atmospheric distribution



70

75

80

&5

90

95

of COz, a priori estimates of the distribution and magnitude of fluxes, and a Bayesian inference method that fits this model to
the data accounting for model and data uncertainties (Tans et al., 1990; Baker et al., 2006; Gurney et al., 2002, 2004). Using
an atmospheric transport model introduces additional errors (Schuh et al., 2019; Oda et al., 2023) but it remains an essential
tool for interpreting the atmospheric data. Satellite observations of atmospheric COz have challenged current understanding of
the carbon cycle (Liu et al., 2017; Chatterjee et al., 2017; Patra et al., 2017; Palmer et al., 2019; Wang et al., 2020; Basso et
al., 2023; Hugelius et al., 2024; O’Sullivan et al., 2024; Liu et al., 2024). They have primarily achieved this by collecting data
over geographical regions that are not well covered by ground-based networks, particularly over the land tropics. These datasets
are typically available with a time lag of only a few months, enabling us to explain the reasons behind anomalous annual CO2

growth rates within a year of them happening.

To interpret recent annual changes in the CO2 growth rate, we use the global 3-D GEOS-Chem atmospheric transport model
and an ensemble Kalman filter to adjust our a priori distribution of CO2 flux estimates to fit in sifu and satellite observations
of atmospheric COa. These methods and data are described in the next section. We report our results in Sect 3 and conclude

our study in section 4.

2 Data and Methods

Here, we describe the modelling framework we use to infer a posteriori spatial distributions of CO: fluxes, 2014—2023, from
atmospheric data and a priori inventories flux estimates, and the auxiliary atmospheric and land surface we use to evaluate the

resulting a posteriori flux estimates.

2.1 Inversion Framework

We use the GEOS-Chem global 3-D atmospheric chemistry transport model of version 13.4 to provide the relationship between
the surface fluxes and changes in atmospheric COz. For the experiments we report, we run the model at a horizontal resolution
of 2° (latitude) x 2.5° (longitude), driven by Modern-Era Retrospective Analysis for Research and Applications, version 2
(MERRAZ2) meteorological reanalyses from the Global Modeling and Assimilation Office (GMAO) based at NASA Goddard
Space Flight Center (GSFC).

We use a priori COz flux inventories, which include year-specific monthly biomass burning emission (GFEDv4.1; Randerson
et al., 2017), and year-specific monthly anthropogenic emissions (ODIAC; Oda et al., 2018; Oda and Maksyutov, 2021). The
anthropogenic emission estimates were extended to 2023 under the assumption that these emissions from the southern
hemisphere remain stable between 2022 and 2023 but increased by 1.4% over the northern hemisphere based on data reported
in the 2024 Statistical Review of World Energy by the Energy Institute. We use year-specific terrestrial biosphere fluxes with
a temporal resolution of three hours (CASA; Olsen and Randerson, 2004) up to the end of 2018, and repeat values for 2018 in
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subsequent years. We use monthly climatological ocean fluxes (Takahashi et al., 2009) , which we scale uniformly to a global

annual uptake of 2.5 PgC yr'!, 2014-2024, inclusively, following Nassar et al. (2010).

We use an established EnKF framework to estimate surface CO: fluxes, 2014—2023, inclusively, from atmospheric COz data
collected by OCO-2 and the US National Oceanic and Atmospheric Administration (NOAA) in situ ground-based observation
network, 2014—2023, inclusively. For brevity, we provide a summary of the approach and refer the reader to other papers for

further details (Feng et al., 2009, 2017; Palmer et al., 2019).

Adopting a widely used approach, we assume that the fossil fuel emissions are well known and estimate monthly a posteriori
natural CO: fluxes, including fire emissions, terrestrial and ocean biospheric CO2 fluxes, which are approximated by (Feng et
al., 2017):

fa,t) = fo(x,t) + X ¢; BF;, (x,t), (M
where f,(x,t) and f; (x,t) describes the a posteriori and a priori CO:z flux estimate at location x and time ¢, respectively.
The pulse-like basis functions BF; (x, t) represent the sum of natural fluxes used to represent their overall spatial pattern over

each pre-defined sub-region. The coefficients ¢; form the state vector to be estimated by optimally fitting the model to the

data.

We define our land sub-regions by further dividing each of the 11 TransCom-3 land regions (Gurney et al., 2002) into 30
nearly equal sub-regions, with the exception for temperate Eurasia that has been divided into 56 sub-regions, due to its large
landmass. We divide the 11 TransCom-3 ocean regions into 132 sub-regions. Our state vector includes monthly scaling factors
for 488 regional pulse-like basis functions that describe natural CO: fluxes, including 356 land regions and 132 oceanic regions
(Figure Al). We determine these coefficients by optimally fitting the corresponding atmospheric model concentrations with
in situ and OCO-2 data (Feng et al., 2017):

¢, = ¢, + K[y — H(cp)], )
where ¢, and ¢ denote the a posteriori and a priori state vectors, respectively, y denotes satellite and in situ CO2
observations, and H describes the observation operator that relates surface fluxes (i.e., the coefficients) to the observations.
Here we sample the 3-D GEOS-Chem model CO: fields at the time and location of each observation. For comparison with
0OCO-2 XCO2 retrievals, we further convolve the resulting model profiles with scene-dependent OCO-2 averaging kernels. In
our EnKF framework, we introduce a flux perturbation (coefficients) ensemble AC to represent the a priori error covariance,
and calculate the Kalman gain matrix K in Eq. (2) by using

K = ACAYT[AYAYT + R71]7%, 3)
where R is the observation error covariance, and AY = H (AC) represents the projection of the flux perturbation ensemble to

observation space, which is based on the same GEOS-Chem model run at the same horizontal resolution of 2° (latitude) x 2.5°
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(longitude) as our a priori simulations. We use a four-month moving lag window to reduce the computational costs for
projecting the flux perturbation ensemble into observation space long after their emissions (in this case longer than four
months), beyond which time it is difficult to distinguish between the emitted signal from variations in the ambient background
atmosphere (Feng et al., 2016). To calculate sequentially the a posteriori estimate and the associate uncertainty via Eqs (2)

and (3) we use an efficient numerical LU solver (Feng et al., 2017).

For simplicity we assume a fixed uncertainty of 40% for coefficients corresponding to a priori CO2 fluxes over each sub-
region. We assume that a priori errors are correlated with a spatial correlation length of 500 km over land, and 800 km over
oceans, and with a temporal correlation of one month. Our experiments show that our results, such as the estimated changes
in a posteriori CO> fluxes between 2022 and 2023 and between 2022 and 2024, are largely insensitive to differences

assumptions about a priori uncertainties (£10%) and correlation length scales (£100 km).

2.2 In situ and OCO-2 atmospheric CO2 data

We use version v11r of OCO-2 retrievals of column average dry air mole fraction (XCO2) from the NASA’s Jet Propulsion
Laboratory (JPL) Atmospheric CO2 Observation from Space (ACOS) team (Taylor et al., 2023). We only assimilate the nadir
and glint observations over land, considering possible bias between the land and ocean XCO2 data. The consequent poor
observational coverage over the ocean could result in the disaggregation of the land and ocean CO2 fluxes being more sensitive
to the a priori ocean flux inventory. Through sensitivity studies we find that our land COz flux anomalies are not significantly
sensitive to the to the a priori ocean flux inventory (not shown) or to the absence of OCO-2 glint data (Figure A2). To reduce

the computational costs and error correlations, we thinned the OCO-2 observations to ensure a minimal time interval of 10 s.

We also assimilate in situ measurements of CO2 mole fraction data from a subset of 113 sites (Figure Al) included in the
NOAA GLOBALVIEWPlus 8.0 data product (Schuldt et al., 2022), incorporating data from the Integrated Carbon Observation
System (ICOS RI et al., 2024).

2.3 GOSIF Gross Primary Productivity (GPP)

We use a global GPP product that is based on OCO-2 solar induced fluorescence (GOSIF) and linear relationships between
solar induced fluorescence (SIF) and GPP (Li and Xiao, 2019). We chose this data product, available globally at a spatial
resolution of 0.05° and a temporal resolution of eight days, because it is close to the median of observation-derived GPP
estimates (Li and Xiao, 2019) and is available over our study period. The mean annual global total for CO2 (2000-2023) is
135.5 + 8.8 Pg C yr !, with a significant upward trend over the northern hemisphere. Comparisons show that this GPP data

product is highly correlated (R*=0.74) with GPP measurements collected at 91 eddy covariance flux sites across the globe.



165

170

175

180

185

190

Here, we use the monthly mean dataset and re-grid it to a regular one-degree grid to compare it with other variables including

our a posteriori COz flux estimates.

2.4 Gravity Recovery And Climate Experiment (GRACE) data

The GRACE space mission was jointly developed by NASA and DLR (German Space Agency) and launched into space in
2002. It measures temporal variations of the Earth’s gravity field by tracking, using a K-band ranging system, the inter-satellite
range and range rate between two coplanar, low altitude satellites (Tapley et al., 2004). The GRACE Science Data System
uses these measurements, along with ancillary data, to estimate monthly (or sub-monthly) time series of global Earth’s gravity
fields (Bettadpur, 2007; Flechtner, 2007). Here, we use the NASA GRCTellus GRACE land product (RL06.2) for monthly
total water storage (liquid water equivalent depth) at 1°x1° global grids from January 2014 through March 2024
(http://grace.jpl.nasa.gov/). We have used these data in our previous studies, e.g., Feng et al., (2022, 2023).

2.5 NASA meteorological reanalyses

We use surface temperature (Ts), specific humidity (SH), soil moisture in the top 0—10 cm (ground wetness, WET) datasets
from MERRA2 developed by the GMAO at NASA GSFC to study environmental changes from 2010 to 2023. We calculate
the vapour pressure deficit (VPD) from the 10-m MERRA2 temperature, and specific humidity following Fang et al. (2022).
We have used these reanalyses data previously to study a posteriori COz fluxes (Palmer et al., 2019) and methane emissions

(Feng et al., 2022, 2023).

In Appendix B, to examine the robustness of the results reported from our control run, described above, we report results from
three sensitivity inversion that use different meteorological reanalyses, a priori inventories, and additional ocean sun-glint data

collected by OCO-2. These sensitivity calculations provide confidence that the result we report in this study is robust.

3 Results

Figure 2 shows a posteriori net fluxes of CO2 on a global scale, and across southern, tropical, and northern latitudes to provide
some broad geographical context. These values are broadly consistent with annual values for the atmospheric CO2 growth
rates — an important zeroth order assessment of our a posteriori net fluxes. Our value for 2023 inferred from OCO-2 data is
3.0 ppm yr'!, about 0.2 ppm yr 'higher than the value inferred from NOAA COz mole fraction data. We acknowledge that CO2
growth rate estimates inferred from NOAA data can depart from the true value based on whole-atmosphere COz changes
(Pandey et al., 2024). Building on ongoing our model evaluation, e.g., Deng et al., (2024) and Friedlingstein et al., (2024), we
find that the a posteriori CO2 concentrations for 2023 are generally within 0.5 ppm of data collected by spectrometers from

the Total Carbon Column Observing Network (TCCON) (Wunch et al., 2011), with a standard deviation smaller than1.2 ppm.
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As expected, the largest contribution of the global net flux originates from the northern hemisphere (Figure 2d), where there
is a superposition of boreal and midlatitude ecosystems that contribute to the global uptake of CO:z and large cities and other
emission hotspots. At these latitudes, the year-to-year variations are comparatively small, limited to << 1PgC, and in the last
two years since the 2021 peak there has been a small decrease in net emissions to pre-pandemic values (3.38—3.96 PgC yr,
2014—2020). Over our study, these changes have typically represented 62—92% of the global budget, with the smallest values
typically during El Nifio years when the tropics plays a larger role. The tropics show large year-to-year changes over our study
period (Figure 2c) with a large peak in emissions that we have not observed since the 2015/2016 El Nifio. We find the large
increase in net COz fluxes predominately originates from the tropics, representing 21% in 2022 and 38% in 2023. Our
calculations suggest that this anomalous increase in tropical COz flux in 2023 is explained mainly by an increased COz flux
over East Amazon (Figure A3). The net uptake in the southern hemisphere (Figure 2b) also shows a similar but small year-
to-year change with the highest uptake in the last years, consequently compensating for emissions elsewhere on the globe. The
16% decrease in net uptake in 2023 reduced the influence of this region on the global net flux, reinforcing the role of the

tropics on the global scale.

Figure 3 shows annual spatial distributions of the annual change in the net biosphere exchange (NBE) — the net COz flux minus
the a priori fossil fuel emissions removed — from 2022 to 2023 and as a comparison from 2014 to 2015 when there was a
comparably largest change in the growth rate associated with the 2015/2016 El Nifio. This widely used subtraction approach
to determine NBE implicitly assumes perfect knowledge of fossil fuel combustion of CO2, but we acknowledge that making
that assumption has implications for NBE estimates, although this is minimal over the tropics where anthropogenic emissions
are comparatively small (Oda et al., 2023). A positive annual change in NBE represents a larger net amount of COz to the
atmosphere. We find that the largest positive increases in NBE are found across the tropics, with peak values over eastern
Brazil, southern Africa, eastern and southern China, mainland and maritime Southeast Asia, and Southeast Australia. The
emission hotspot over western Canada is from wildfires (Byrne et al., 2024) but our a posteriori feature is almost exclusively
from the a priori inventory, determined by independent satellite data, because large aerosol optical depths over and downwind
of these extensive fires where OCO-2 data are unreliable; Byrne et al. (2024) inferred carbon emissions from these fires using
satellite observations of carbon monoxide. We also find large positive increases in NBE over Alaska and Russia. Regions
with elevated uptake in 2023 are limited to the US and central Canada, mainland Europe, with weaker uptake over Siberia,
Turkey, and some parts of East Africa. In comparison, the tropics in 2015 shows regions with positive and negative changes
in NBE over tropical South America, a large increase over East and Central Africa (Palmer et al., 2019), with some of the
largest increases over mainland and maritime Southeast Asia, as we also found in 2023. Elevated uptake was mainly confined
to boreal latitudes. These changes in a posteriori fluxes are broadly consistent with independent estimates of GPP changes
inferred from the OCO-2 SIF data product and from vegetation greenness, providing us with some confidence that our

estimated fluxes are physically plausible. The annual mean budgets for individual geographical regions where we see the
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largest changes in NBE (rectangles in Figure 3a), show that East Amazon is almost exclusively responsible for the large

increase in pan-tropical COz flux in 2023, with a smaller contribution from Southeast Asia.

Figure 4 shows the geographical distribution of changes in parameters that describe large-scale COz flux changes — temperature
and water availability. Geographical locations where we report the largest increases in NBE (and largest reductions in GPP)
in 2023, e.g., Brazil, southern Africa, southeast Australia, are coincident with locations where we saw some of the largest
increases in temperature, VPD, and the largest reductions in LWE. Where we reported the largest decreases in NBE (and
largest increases in GPP), e.g. parts of the contiguous US and central Canada, we saw cooler temperatures and lower VPDs,
and small increases in LWE. We find a similar level of consistency between the data products and meteorological reanalyses
in 2015. Recent work using an ensemble of dynamic global vegetation models highlighted the detrimental impact of warming

on tropical ecosystems (Sitch et al., 2024), consistent with our results.

Figure 5 describes these relationships more quantitatively by using linear and quadratic multivariate fits of MERRAZ2 rainfall,
temperature, and soil moisture anomalies to our a posteriori NBE anomalies, 2014—2023, inclusively, over the geographical
regions highlighted in Figure 3a. For the linear fits (f1), we assume that the a posteriori NBE anomalies are a linear function
of MERRAZ2 rainfall (R), surface temperature (Ts), and soil moisture (SM) anomalies: ANBE = Ao + orAR + atATs + asmASM,
where A denotes an anomaly, ox denotes the regression coefficient for a particular variable x, Ao denotes the fitting residual.
We scale these anomalies by their respective standard deviations and smooth them by applying a four-month moving window
to reduce the noises and (partially) account for the time lag between flux and environmental drivers. We use a least-square
method to estimate the four regression coefficients, which we report in Table A1, with results from our sensitivity tests shown
in Table B2. We also consider a quadratic regression model (f2) to explain NBE anomalies, including linear and quadratic
terms for the same three quantities used in the linear model but without cross terms, and found this only marginally outperforms
the linear model. Both models are statistically significant, with p values < 0.001, so for simplicity of interpretation we use the
linear fits. In sensitivity calculations, we find that changes in VPD or LWE do not improve the fits to NBE anomalies. The
models capture most of the NBE changes, with the notable exception of mid 2022 when our NBE fluxes shows a sharp increase
that is not explained by temperature or water. Based on the normalized linear fitting coefficients, we find for these fits that
changes in temperature explain most of the NBE changes we observe over East Amazon (Table Al and Figure B3), but soil
moisture changes are more important over Northern tropical Africa, southern Africa, and tropical Asia (Table Al and Figure
B3). Rainfall changes are more important over Southeast Asia. Independent GOSIF GPP estimates determined from satellite
SIF observations (Li and Xiao, 2019) show a significant decrease from 2022 to 2023 over tropical regions, particularly over
eastern Amazonia, southern Africa, tropical Asia and Southeast Asia (Figure A4), consistent with the increase we report for
our a posteriori NBE estimates (Figure 5). More generally, we find that changes in GOSIF GPP are better than other individual
predictors at describing our a posteriori COz flux anomalies over Tropical Asia, Southeast Asia, and southern Africa. Table

A2 shows the permutation importance of individual predictors in our multivariate linear models.
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4 Concluding Remarks

We reported regional changes in the net biospheric exchange (NBE) of COz inferred from OCO-2 retrievals of XCO2 from
2022 and 2023 to examine the origin of the large atmospheric growth rate reported for that period. Positive values of NBE
denote net COz fluxes to the atmosphere. We find that most of the increase in atmospheric COz in 2023 is due to increased
NBE over the land tropics, supported by a modest reduction in uptake in southern extratropics, in agreement with a recent
study (Gui et al., 2024). Further examination of our results revealed increased NBE over eastern Brazil, southern Africa,
eastern and southern China, mainland and maritime Southeast Asia, and Southeast Australia. Extensive wildfires over western
Canada during boreal summer months also substantially contributed to the atmospheric CO2 growth rate in 2023 (Byrne et al.,
2024), but in terms of atmospheric CO: this information is exclusively from the a priori inventory that is determined by
independent satellite data. We also find increased uptake (lower NBE values) over the US and central Canada, mainland
Europe, with weaker uptake over Siberia, Turkey, and some parts of East Africa. These large-scale patterns of NBE are
consistent with data-driven estimates of gross primary production and vegetation greenness, and with changes in surface
temperature, rainfall, and surface water (Figures 4 and B3). We find that warmer temperatures in 2023 explain most of the
change in NBE over eastern Brazil, with changes in hydrological quantities — rainfall or soil moisture — more important
elsewhere across the tropics. Additional knowledge is needed to help reconcile CO: flux estimates from land biosphere process-
based models and those inferred from inversions (Kondo et al., 2020). Our quantitative exploration of the relationships between
our a posteriori NBE anomalies and changes in environmental parameters (Figure 5) helps to interpret observed changes in

atmospheric CO: but can also help to evaluate and improve process-based land biosphere models.

Our main analysis has focused on 2023, but it is important to put this one year into a broader historical context, at least in the
past decade when we have seen a marked increase in atmospheric growth rates of atmospheric COz (Figure 1). Some of this
increase can be explained by changes in fossil fuel combustion and other forms of human activity, but the largest spikes in
atmospheric CO2 growth rates coincide with years when there is a strong El Nifio event (Figure 1), primarily associated with
large-scale perturbations to the hydrological cycle that impact tropical ecosystems. In strong El Nifio years, such as 2015/2016,
widespread droughts reported across the tropics (Jiménez-Muiioz et al., 2016) resulted in a notable increase in fires (Liu et al.,
2017) and can in some ecosystems lead to a widespread loss of tree density and a change of the floristic composition (Prestes

et al., 2024).

In 2023, the multivariate El Nifio Southern Oscillation index, indicative of El Nifio and La Nifa strength, was approximately
half the value of recent El Nifio events, such as 2015/2016. There are distinct differences in the spatial patterns of rainfall,
atmospheric aridity (given by vapour pressure deficit), and soil moisture over the tropics (Figure 4). But the loss of carbon
sequestration in 2023 and 2015/2016 was comparable. Our findings highlight the complex response of the tropical biosphere

to environmental change, reflecting differences in the sensitivity and vulnerability of plants to localized droughts and
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increasing surface temperature (Table Al). Further quantifying these different sensitivities using independent in situ ecological
observations will significantly improve our ability to model important biospheric processes in terms of atmospheric-biosphere

carbon exchange, e.g., Liu et al. (2024).

We have extended our analysis to 2024, which is reported in Appendix C. We find that the reduced carbon uptake continues
into 2024. Uptake by the Amazon basin in 2024 remains weaker than in 2022. There is also weakened uptake over southern
tropical Africa (south of 20°S) and over tropical Asia. There is a small increase in uptake over temperate North America in
2024 compared to 2023. The resulting global net emission estimate for 2024 is 6.84+0.80 PgC, corresponding to a global CO:
growth rate of 3.28+0.30 ppm yr.

Our interpretation of the OCO-2 column data suggests that the reduced uptake of CO: from tropical ecosystems played a key
role in determining the anomalously large atmospheric CO2 growth rates in 2023 and in 2024 (Appendix C). Our work is
largely consistent with a recent independent study (Gui et al., 2024) that used the same OCO-2 data, but interpreted them with
an independent atmospheric transport model, driven by different fossil fuel inventories and by Al-based dynamic global
vegetation models. They also used a different inverse method approach. However, our results and those reported by Gui et al.,
(2024) are inconsistent with another independent study (Ke et al., 2024), based on a set of land biosphere models and an
inversion experiment from the Copernicus Atmosphere Monitoring Service (CAMS). They significantly differ in the spatial
patterns of carbon release and uptake. Resolving these discrepancies is beyond the scope of this work, but ultimately they do
need to be resolved if we are to use these models to predict how global ecosystems will respond to a warming climate and an
accelerated hydrological cycle, and the subsequent impacts on the carbon cycle (Armstrong McKay et al., 2022). If our main
result is accurate — a moderate El Nifio event, in the context of exceptional drought attributed to climate change (Clarke et al.,
2024), has led to a significant reduction in carbon uptake by the tropical land biosphere — we might be observing the beginning
of a decline in the ability of tropical ecosystems to absorb carbon. The long-term nature of this situation is unclear without
further data, although the preliminary estimate of the 2024 atmospheric CO:2 growth rate of 3.75+0.08 ppm yr! is
unprecedented since these records began in the late 1950s (https:/gml.noaa.gov/ccgg/trends/gl_gr.html; last access: 15" April
2025). A coordinated measurement campaign is urgently needed to document how tropical ecosystems are changing, whether
these changes compromise the future ability to absorb and store carbon, and whether prolonged drought will substantially

delay any ecosystem recovery.

Regularly reporting regional CO: fluxes with minimal delay, and interpreting them using auxiliary data, e.g., related to fire
(such as the extensive North American boreal forest fires in 2023) and hydrology, are enabled by massive-scale international
investment in satellite instruments that complement the detailed information provided by ground-based measurement networks.
Collectively, these efforts provide vast volumes of information about the state of the planet at a time when we are observing

unprecedented environmental changes. These data and the analysis tools needed to infer CO2 fluxes collectively represent an

10
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invaluable scientific resource that must be used to deliver frequent actionable information for policy makers. The agreement
and divergence between our results and those from other independent studies underscore the efficacy and the shortcomings of

the prevailing frameworks.
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Figure 1. Atmospheric growth rates of COz (blue) and their annual change (black). a Global mean values. b Values determined
from Mauna Loa, Hawaii CO: mole fraction data. Data collected by NOAA and available at

https://gml.noaa.gov/ccgg/trends/gl_gr.html. ¢ Multi-decadal changes in the probability density of global mean annual mean

growth rates and d as panel ¢ but using data from Mauna Loa. Blue and black horizontal dashed lines denote the 1-c and 2-c

values for the annual atmospheric CO2 growth and its annual change, respectively.
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Figure 2. Annual mean a posteriori COz flux estimates inferred from OCO-2 data for the globe, the southern extratropics, the
tropics, and the northern extratropics. The thin black vertical lines denote the 1-sigma values about the annual mean values.

The red lines in panels b-d denote the percentage contribution to the global net fluxes.
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Figure 3. Differences in a posteriori COz flux estimates inferred from OCO-2 data (top), gross primary production (GPP)
estimated from OCO-2 SIF data (middle), and elevated vegetation indices (EVI) inferred from MODIS data (bottom) for 2022-
2023 (left panels) and 2014-2015 (right panels). Rectangles shown in panel a describe the geographical regions we focus on

for our multivariate fits.
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Figure 4. Differences in surface temperature (Temp; top row), precipitation (Prec; second row), soil moisture (SM; third row),

vapour pressure deficit (VPD; fourth row), derived from soil moisture, based on MERRA?2 reanalyses data products from

NASA GSFC GMAO, and liquid water equivalent (LWE; bottom row) from the GRACE satellites for 2023 minus 2022 (left
panels) and 2015 minus 2014 (right panels).
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Figure 5. Regional linear (black) and quadratic (blue) multivariate fits of NBE anomalies (red) inferred from OCO-2 data
using independent estimates of rainfall, surface temperature, and soil moisture from MERRA reanalyses data products from
NASA GSFC GMAO. Regional definitions, defined in panel a of Figure 3, include East Amazon, tropical East Africa, southern
Africa, tropical Asian, and Southeast Asia. Numbers shown inset of each panel include the Pearson correlation coefficient for

each fit, and the p-value that corresponds to both fits.
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Figure Al. a The distribution of 488 sub-regions — including 356 land regions and 132 oceanic regions — for which we report
monthly a posteriori CO2 flux estimates inferred from OCO-2 data. b The geographical locations of the ground-based

630 measurements of CO2 mole fraction.
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Figure A2. As Figure 5, but for NBE anomalies inferred using OCO-2 land nadir, land glint, and ocean glint data, and in situ
data (LNLGOGIS).
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635 Figure A3. As Figure 2 but for a posteriori COz flux estimates across the tropics. Regions are as defined by the rectangles

shown in Figure 3a. Percentage values higher than 100% are a consequence of some regional fluxes being negative.
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Figure A4. As Figure 5 but fitting to GOSIF GPP anomalies.
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645

E. Amazon NAf SAf Tr.Asia SE.Asia
Rain -0.05 -0.21 0.18 0.11 -0.42
Surface 0.40 0.09 0.17 0.06 -0.03
temperature
Soil moisture -0.29 -0.51 -0.44 -0.84 -0.11

Table Al. Normalized linear fitting coefficients for the independent variables of the MERRAZ2 rain, surface temperature, and

soil moisture used to fit the NBE anomalies (Figure 5) for the regions defined in Figure 3a, 2014—2023, inclusively. The

largest coefficient for each region is highlighted.
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Region Rain Temp Soil Moisture VPD GOSIF GPP
E.Amazon <0.01 0.34 0.31 0.01 0.02
NAf <0.01 0.06 0.51 0.24 0.03
SAf <0.01 0.06 0.13 0.05 0.66
Tr. Asia <0.01 0.01 0.32 0.01 0.44
SE.Asia <0.01 0.02 0.07 0.15 0.62

Table A2. Permutation importance of MERRA?2 rain, surface temperature, and soil moisture, VPD, and GOSIF GPP to fit the
NBE anomalies (Figure 5), 2014—2023, inclusively, for the regions defined in Figure 3a. The largest contributor for each
650 region is highlighted.
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Appendix B

Sensitivity experiments

To test the robustness of our results, we report the results from other calculations in which we alter one aspect of the inversion.

655 The experiments are described in Table B1. Text in bold denotes the change from our control run (CTRL).

Experiment | Wind fields Observation Prior flux
CTRL MERRA2 Surface CO2 data Monthly ODIAC Fossil Fuel Emissions
(113 sites of the Obspack data | Monthly Takahashi Ocean flux climatology (scaled)
collection) 3-hourly CASA Biospheric flux
0OCO-2 XCO2 data over land. | Monthly fire emission (GFED v4.0)
GEOSFP GEOSFP Surface CO2 data Monthly ODIAC Fossil Fuel Emissions
(113 sites of the Obspack data | Monthly Takahashi Ocean flux climatology (scaled)
collection) 3-hourly CASA Biospheric flux
0OCO-2 XCO2 data over land. | Monthly fire emission (GFED v4.0)
LNLGOGIS MERRA2 Surface CO2 data Monthly ODIAC Fossil Fuel Emissions
(113 sites of the Obspack data | Monthly Takahashi Ocean flux climatology (scaled)
collection) 3-hourly CASA Biospheric flux
OCO-2 XCO2 data over land. | Monthly fire emission (GFED v4.0)
0CO-2 XCO2 data over
occan
SIB3-JENA MERRA2 Surface CO2 data Monthly ODIAC Fossil Fuel Emissions
(113 sites of the Obspack data | Monthly Jena Ocean flux climatology
Cooélg"tzloignd data 3-hourly SiB3 Biospheric flux
0CO-2 XCO? data over Monthly fire emission (GFED v4.0)
occan

Table B1. Configurations of our control run and three sensitivity experiments. Underlined text denotes the change from our

control run (CTRL)

660 The GEOSFP inversion is driven by GMAO Goddard Earth Observing System Forward Processing (GEOS-FP) meteorological
analyses, based on a convection scheme that is different from the one used in MERRAZ2 reanalysis, which we use in our control
experiment (CNTRL). For the inversion using OCO-2 land nadir, land glint, and ocean glint data, and in situ data (LNLGOGIS)
inversion, we use additional OCO-2 XCO2 sun-glint retrievals collected over the oceans. The SIB3-JENA inversion includes
alternative a priori estimates for sea—air COz fluxes based on CO: observations (Rddenbeck et al., 2022) and for biosphere-

665 atmosphere fluxes from the SiB3 model simulation (Baker et al., 2008).
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675

680

685

Figure B1 compares the monthly a posteriori net CO: flux estimates, 2014-2024, from our control and the three sensitivity
experiments over four TransCom-3 regions, representative of three different latitude ranges: tropical South America, tropical
Asia, temperate Eurasia, and South Africa. The a posteriori estimates are very similar, but we find significant regional
differences for some months. For example, GEOSFP results in smaller emissions from Temperate Eurasia during winter
months (Fig. Blc) and including OCO-2 oceanic glint data results in larger seasonal cycles over Tropical South America (Fig.
B2d). As a result, the two inversions that use the ocean data (LNLGOGIS and SIB3-Jena) show net annual emissions from

Tropical South America that are 0.1-0.22 PgC yr! lower than the control run.
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Figure B1. Monthly regional flux estimates by four inversion experiments (CNTRL, GEOSFP, LNLGOGIS and SIB3-JENA)
over four TransCom-3 regions: a) Tr. SAm (Tropical South America), b) Tr.As (Tropical Asia), ¢) TEr (temperate Eurasia),
and d) Saf (South Africa). The uncertainties for a priori and a posteriori estimates from the inversions are denoted by vertical

lines, and shaded envelopes, respectively.

Figure B2 shows that the corresponding year to year changes in the natural flux changes between 2022 and 2023, associated
with our main conclusion, are remarkably similar over almost every TranCom-3 land region. The ocean estimates appear to
depend on using the ocean glint measurements. The two inversions that assimilate only OCO-2 land data (CNTRL and

GEOSFP) absorbed 0.4-0.45 PgC yr! less carbon between 2022 and 2023 while the two inversions that also use the sun-glint
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measurements (LNLGOGIS and SIB3-JENA), and use a different ocean a priori show little change in the ocean net flux

between the two years.
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Figure B2. Changes in a posteriori net biosphere exchange flux estimates (2023 minus 2022) over TransCom-3 regions,

690 estimated by four experiments (Table B1). Vertical lines denote a posteriori uncertainties.

Figure B3 compares the correlations between regional CO2 NBE flux anomalies and anomalies in environment variables
between 2014 to 2023. The NBE flux anomalies for tropical South America for our control and the three sensitivity calculations
(Table B1) show strong correlations (> 0.5 and a p value < 0.1) with temperature and soil moisture change. The NBE flux
695 anomalies are also strongly correlated with changes in the enhanced vegetation index (EVI) from the NASA Moderate
Resolution Imaging Spectroradiometer (MODIS) and the GOSIF GPP anomalies. NBE flux anomalies for tropical Asia have
similarly strong correlations with MODIS EVI, GOSIF GPP, and soil moisture, but comparatively less correlated with surface
temperature anomalies. Australian NBE flux anomalies show a strong correlation with EVI, GPP, VPD, and precipitation
anomalies, but temperature anomalies are much less important. Generally, we find that all four inversions show consistent
700 results, with differences in correlation coefficient typically within 0.1. A numerical summary of these results is reported in
Table B2. Clearly, our focus has been on subcontinental scales, and we acknowledge this will mask heterogenous responses

on smaller scales. These smaller scales are better examined with in situ data.
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705 Figure B3. Pearson correlation coefficients, r, between regional a posteriori estimates of net biosphere CO2 exchange
anomalies and anomalies of environmental variables, including (a) MODIS EVI, (b) GOSIF GPP, (c) MERRAZ2 soil moisture,
(d) MERRA? surface temperature, (¢) MERRA2 VPD, and (f) MERRA2 precipitation. Correlations with p value > 0.1 (less
significant) are denoted by black hatching line.
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710

E. Amazon NAf SAf Tr.Asia SE.Asia
(range) (range) (range) (range) (range)
Rain -0.05 -0.21 0.18 0.11 -0.42
(-0.06, -0.01) (-0.32,-0.17) (-0.03, 0.18) (-0.01, 0.30) (-0.42, -0.36)
Surface 0.40 0.09 0.17 0.06 -0.03
temperature (0.38, 0.48) (0.01, 0.24) (0.17, 0.32) (-0.06, 0.06) (-0.03, 0.25)
Soil moisture -0.29 -0.51 -0.44 -0.84 -0.11
(-0.46, -0.29) (-0.56 -0.23) (-0.47, -0.40) (-0.86, -0.78) (-0.11,0.27)

Table B2. As Table Al but with values reported as a range from the control and the three sensitivity inversions.
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Appendix C
715
A posteriori net biosphere CO: flux estimates for 2024
We extend our control inversion experiment to the end of 2024. Figure C1 shows the difference of a posteriori NBE COz flux
estimates between 2024 and our baseline year 2022 alongside the difference between 2023 and 2022. Figure C2 shows the
720 same data but broken down into TransCom-3 regions. We find that tropical land absorbed less carbon in 2024 than during

2022, primarily over South America, Africa, and to a lesser extent Southeast Asia.

Our calculations correspond to a net global annual CO:z emission of 6.8440.80 PgC yr!, equivalent to global CO2 growth rate
of 3.28+0.30 ppm for 2024. During 2023 and 2025, we estimate from OCO-2 data that atmospheric levels of COz increased
725 by 6.36 (3.09+3.28) ppm compared to 6.48 (2.76+3.72) ppm inferred from the NOAA surface network.
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Figure C1. Changes in annual mean a posteriori NBE flux estimates from our control inversion between (a) 2022 and 2023
and between (b) 2022 and 2024.
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Figure C2. Changes in annual mean a posteriori NBE flux estimates from our control inversion between 2022 and 2023 and
between 2022 and 2024 for TransCom-3 regions. Vertical lines denote a posteriori uncertainties.
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