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Abstract. The global annual mean atmospheric CO2 growth rate in 2023 was one of the highest since records began in 1958, 

comparable to values recorded during previous major El Niño events. We do not fully understand this anomalous growth rate, 

although a recent study highlighted a role for boreal North American forest fires. We use a Bayesian inverse method to interpret 

global-scale atmospheric CO2 data from the US National Aeronautics and Space Administration (NASA) Orbiting Carbon 25 

Observatory (OCO-2). The resulting a posteriori CO2 flux estimates reveal that from 2022 to 2023 the biggest changes in CO2 

fluxes of net biosphere exchange (NBE) – for which positive values denote a flux to the atmosphere – were over the land 

tropics. We find that the largest NBE increase is over eastern Brazil, with small increases over southern Africa and Southeast 

Asia. We also find significant increases over southeast Australia, Alaska, and western Russia. A large NBE increase over 

boreal North America, due to fires, is driven by our a priori inventory, informed by independent data.  The largest NBE 30 

reductions are over western Europe, USA, and central Canada. Our NBE estimates are consistent with gross primary production 

estimates inferred from satellite observations of solar induced fluorescence and with satellite observations of vegetation 

greenness. We find that warmer temperatures in 2023 explain most of the NBE change over eastern Brazil, with hydrological 

changes more important elsewhere across the tropics. Our results suggest that ongoing environmental degradation of the 

Amazon is now playing a substantial role in increasing the global atmospheric CO2 growth rate.  35 
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1 Introduction 

The annual mean growth rate of atmospheric carbon dioxide (CO2) is widely used as a zeroth order metric to determine the 

health of our planet. Even from the first few years’ worth of data collected at Mauna Loa in the late 1950s it was plain to see 

that a) land vegetation imposed a large seasonal cycle on atmospheric CO2 via photosynthesis and respiration, and b) 40 

combustion of fossil fuels led to a planetary scale impact on the atmosphere (Keeling, 1960; Keeling et al., 1976). Changes in 

the annual accumulation of atmospheric CO2 (growth rate), the magnitude and phase of the seasonal cycle, and how they vary 

geographically, provide important clues about economic activity and the health of the land biosphere (Keeling et al., 1996; 

Graven et al., 2013; Barlow et al., 2015). These changes are inextricably linked, e.g., elevated uptake by the land biosphere 

will influence the annual growth rate as well as the seasonal cycle (e.g., Ainsworth and Rogers, 2007). On a global scale, using 45 

mass balance arguments, we know that only about 44% of fossil fuel emissions of CO2 remain in the atmosphere (the airborne 

fraction) (Bennett et al., 2024) with the land biosphere and oceans absorbing the other 56%, approximately equally but with 

substantial year to year changes (Friedlingstein et al., 2023). The quasi-stability of the airborne fraction suggests that the land 

biosphere and the oceans absorb a progressively larger absolute amount of CO2 from the atmosphere. We have an incomplete 

understanding of where this carbon is being absorbed and the stability of the resulting accumulated terrestrial carbon reservoirs 50 

against future changes in climate, e.g. Armstrong McKay et al., (2022).  Consequently, years in which there are anomalously 

large annual mean CO2 growth rates prompt concern from the scientific community. This concern grows when state-of-the-art 

process-based land biosphere models cannot forecast or explain these anomalies (Kondo et al., 2020).  

 

Figure 1 shows the annual mean CO2 growth rates reported by NOAA on a global scale, determined by combining data 55 

collected at sites across the globe, and from Mauna Loa in Hawaii (19.5oN, 155.6oW), USA, a site typically assumed to be 

representative of changes in the northern hemisphere carbon cycle (Buermann et al., 2007). The global picture shows that 2023 

(Figure 1a) had one of the largest CO2 growth rates on record, typically associated with the El Niño phase of ENSO, e.g., 1986, 

1997/1998, and 2015/2016. What is also evident is a progressive increase in the annual growth rates from the 1950s (Figure 

1c). Even anomalous values recorded in the last quarter of the 20th century are close to the median value from the 21st century 60 

(Figure 1c). The corresponding data collected at Mauna Loa shows a slightly different picture for the annual CO2 growth rate 

(Figure 1b). At this site, the growth rate in 2023 was the largest on record, exceeding the past peak growth during 1997/1998 

El Niño, attributed to extensive burning of peat over Southeast Asia (Page et al., 2002), and the 2015/2016 El Niño (Liu et al., 

2017). At Mauna Loa, progressive changes in the growth rates are slightly more exaggerated than global mean values (Figure 

1b,d), suggesting a larger role for tropical latitudes.  65 

 

Data-driven top-down flux inversions allow us to attribute these observed changes in the atmospheric CO2 growth rate to 

regional changes in surface carbon fluxes. Estimating regional carbon fluxes from atmospheric data requires an atmospheric 

transport model that describes the physical relationship between surface CO2 fluxes and the resulting atmospheric distribution 
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of CO2, a priori estimates of the distribution and magnitude of fluxes, and a Bayesian inference method that fits this model to 70 

the data accounting for model and data uncertainties (Tans et al., 1990; Baker et al., 2006; Gurney et al., 2002, 2004). Using 

an atmospheric transport model introduces additional errors (Schuh et al., 2019; Oda et al., 2023) but it remains an essential 

tool for interpreting the atmospheric data. Satellite observations of atmospheric CO2 have challenged current understanding of 

the carbon cycle (Liu et al., 2017; Chatterjee et al., 2017; Patra et al., 2017; Palmer et al., 2019; Wang et al., 2020; Basso et 

al., 2023; Hugelius et al., 2024; O’Sullivan et al., 2024; Liu et al., 2024). They have primarily achieved this by collecting data 75 

over geographical regions that are not well covered by ground-based networks, particularly over the land tropics. These datasets 

are typically available with a time lag of only a few months, enabling us to explain the reasons behind anomalous annual CO2 

growth rates within a year of them happening. 

 

To interpret recent annual changes in the CO2 growth rate, we use the global 3-D GEOS-Chem atmospheric transport model 80 

and an ensemble Kalman filter to adjust our a priori distribution of CO2 flux estimates to fit in situ and satellite observations 

of atmospheric CO2. These methods and data are described in the next section. We report our results in Sect 3 and conclude 

our study in section 4. 

2 Data and Methods 

Here, we describe the modelling framework we use to infer a posteriori spatial distributions of CO2 fluxes, 2014—2023, from 85 

atmospheric data and a priori inventories flux estimates, and the auxiliary atmospheric and land surface we use to evaluate the 

resulting a posteriori flux estimates. 

2.1 Inversion Framework 

We use the GEOS-Chem global 3-D atmospheric chemistry transport model of version 13.4 to provide the relationship between 

the surface fluxes and changes in atmospheric CO2. For the experiments we report, we run the model at a horizontal resolution 90 

of 2° (latitude) × 2.5° (longitude), driven by Modern-Era Retrospective Analysis for Research and Applications, version 2 

(MERRA2) meteorological reanalyses from the Global Modeling and Assimilation Office (GMAO) based at NASA Goddard 

Space Flight Center (GSFC).  

 

We use a priori CO2 flux inventories, which include year-specific monthly biomass burning emission (GFEDv4.1; Randerson 95 

et al., 2017), and year-specific monthly  anthropogenic emissions (ODIAC; Oda et al., 2018; Oda and Maksyutov, 2021). The 

anthropogenic emission estimates were extended to 2023 under the assumption that these emissions from the southern 

hemisphere remain stable between 2022 and 2023 but increased by 1.4% over the northern hemisphere based on data reported 

in the 2024 Statistical Review of World Energy by the Energy Institute. We use year-specific terrestrial biosphere fluxes with 

a temporal resolution of three hours (CASA; Olsen and Randerson, 2004) up to the end of 2018, and repeat values for 2018 in 100 
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subsequent years. We use monthly climatological ocean fluxes (Takahashi et al., 2009) , which we scale uniformly to a global 

annual uptake of 2.5 PgC yr-1, 2014-2024, inclusively, following Nassar et al. (2010). 105 

 

We use an established EnKF framework to estimate surface CO2 fluxes, 2014—2023, inclusively, from atmospheric CO2 data 

collected by OCO-2 and the US National Oceanic and Atmospheric Administration (NOAA) in situ ground-based observation 

network, 2014—2023, inclusively. For brevity, we provide a summary of the approach and refer the reader to other papers for 

further details (Feng et al., 2009, 2017; Palmer et al., 2019).  110 

 

Adopting a widely used approach, we assume that the fossil fuel emissions are well known and estimate monthly a posteriori 

natural CO2 fluxes, including fire emissions, terrestrial and ocean biospheric CO2 fluxes, which are approximated by (Feng et 

al., 2017): 

!!(#, %) = !"(#, %) + ∑ *# +,# (#, %)# ,                   (1) 115 

where !!(#, %)	and !$ (#, %)  describes the a posteriori and a priori CO2 flux estimate at location # and time t, respectively. 

The pulse-like basis functions +,# (#, %) represent the sum of natural fluxes used to represent their overall spatial pattern over 

each pre-defined sub-region. The coefficients *#  form the state vector to be estimated by optimally fitting the model to the 

data.  

 120 

We define our land sub-regions by further dividing each of the 11 TransCom-3 land regions (Gurney et al., 2002) into 30 

nearly equal sub-regions, with the exception for temperate Eurasia that has been divided into 56 sub-regions, due to its large 

landmass. We divide the 11 TransCom-3 ocean regions into 132 sub-regions. Our state vector includes monthly scaling factors 

for 488 regional pulse-like basis functions that describe natural CO2 fluxes, including 356 land regions and 132 oceanic regions 

(Figure A1). We determine these coefficients by optimally fitting the corresponding atmospheric model concentrations with 125 

in situ and OCO-2 data (Feng et al., 2017):   

.! = .% +/[1 − 34.%5],                             (2) 

where .!  and  .%  denote the a posteriori and a priori state vectors, respectively, 1  denotes satellite and in situ CO2 

observations, and H describes the observation operator that relates surface fluxes (i.e., the coefficients) to the observations. 

Here we sample the 3-D GEOS-Chem model CO2 fields at the time and location of each observation.  For comparison with 130 

OCO-2 XCO2 retrievals, we further convolve the resulting model profiles with scene-dependent OCO-2 averaging kernels. In 

our EnKF framework, we introduce a flux perturbation (coefficients) ensemble ∆8 to represent the a priori error covariance, 

and calculate the Kalman gain matrix K in Eq. (2) by using  

/ = ∆8∆9&[∆9∆9' + :()](),	                                                  (3) 

where R is the observation error covariance, and ∆9 = 3(∆8) represents the projection of the flux perturbation ensemble to 135 

observation space, which is based on the same GEOS-Chem model run at the same horizontal resolution of 2° (latitude) × 2.5° 
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(longitude) as our a priori simulations. We use a four-month moving lag window to reduce the computational costs for 

projecting the flux perturbation ensemble into observation space long after their emissions (in this case longer than four 

months), beyond which time it is difficult to distinguish between the emitted signal from variations in the ambient background 145 

atmosphere (Feng et al., 2016). To calculate sequentially the a posteriori estimate and the associate uncertainty via Eqs (2) 

and (3) we use an efficient numerical LU solver (Feng et al., 2017).  

 

For simplicity we assume a fixed uncertainty of 40% for coefficients corresponding to a priori CO2 fluxes over each sub-

region.  We assume that a priori errors are correlated with a spatial correlation length of 500 km over land, and 800 km over 150 

oceans, and with a temporal correlation of one month.  Our experiments show that our results, such as the estimated changes 

in a posteriori CO2 fluxes between 2022 and 2023 and between 2022 and 2024, are largely insensitive to differences 

assumptions about a priori uncertainties (±10%) and correlation length scales (±100 km).   

 

2.2 In situ and OCO-2 atmospheric CO2 data 155 

We use version v11r of OCO-2 retrievals of column average dry air mole fraction (XCO2) from the NASA’s Jet Propulsion 

Laboratory (JPL) Atmospheric CO2 Observation from Space (ACOS) team (Taylor et al., 2023). We only assimilate the nadir 

and glint observations over land, considering possible bias between the land and ocean XCO2 data. The consequent poor 

observational coverage over the ocean could result in the disaggregation of the land and ocean CO2 fluxes being more sensitive 

to the a priori ocean flux inventory. Through sensitivity studies we find that our land CO2 flux anomalies are not significantly 160 

sensitive to the to the a priori ocean flux inventory (not shown) or to the absence of OCO-2 glint data (Figure A2). To reduce 

the computational costs and error correlations, we thinned the OCO-2 observations to ensure a minimal time interval of 10 s.  

 

We also assimilate in situ measurements of CO2 mole fraction data from a subset of 113 sites (Figure A1) included in the 

NOAA GLOBALVIEWPlus 8.0 data product (Schuldt et al., 2022), incorporating data from the Integrated Carbon Observation 165 

System (ICOS RI et al., 2024).   

2.3 GOSIF Gross Primary Productivity (GPP) 

We use a global GPP product that is based on OCO-2 solar induced fluorescence (GOSIF) and linear relationships between 

solar induced fluorescence (SIF) and GPP (Li and Xiao, 2019). We chose this data product, available globally at a spatial 

resolution of 0.05° and a temporal resolution of eight days, because it is close to the median of observation-derived GPP 170 

estimates (Li and Xiao, 2019) and is available over our study period. The mean annual global total for CO2 (2000-2023) is 

135.5 ± 8.8 Pg C yr−1, with a significant upward trend over the northern hemisphere. Comparisons show that this GPP data 

product is highly correlated (R2=0.74) with GPP measurements collected at 91 eddy covariance flux sites across the globe. 
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Here, we use the monthly mean dataset and re-grid it to a regular one-degree grid to compare it with other variables including 180 

our a posteriori CO2 flux estimates. 

2.4 Gravity Recovery And Climate Experiment (GRACE) data  

The GRACE space mission was jointly developed by NASA and DLR (German Space Agency) and launched into space in 

2002. It measures temporal variations of the Earth’s gravity field by tracking, using a K-band ranging system, the inter-satellite 

range and range rate between two coplanar, low altitude satellites (Tapley et al., 2004). The GRACE Science Data System 185 

uses these measurements, along with ancillary data, to estimate monthly (or sub-monthly) time series of global Earth’s gravity 

fields (Bettadpur, 2007; Flechtner, 2007). Here, we use the NASA GRCTellus GRACE land product (RL06.2) for monthly 

total water storage (liquid water equivalent depth) at 1° × 1° global grids from January 2014 through March 2024 

(http://grace.jpl.nasa.gov/). We have used these data in our previous studies, e.g., Feng et al., (2022, 2023). 

2.5 NASA meteorological reanalyses 190 

We use surface temperature (TS), specific humidity (SH), soil moisture in the top 0—10 cm (ground wetness, WET) datasets 

from MERRA2 developed by the GMAO at NASA GSFC to study environmental changes from 2010 to 2023. We calculate 

the vapour pressure deficit (VPD) from the 10-m MERRA2 temperature, and specific humidity following Fang et al. (2022). 

We have used these reanalyses data previously to study a posteriori CO2 fluxes (Palmer et al., 2019) and methane emissions 

(Feng et al., 2022, 2023).  195 

 

In Appendix B, to examine the robustness of the results reported from our control run, described above, we report results from 

three sensitivity inversion that use different meteorological reanalyses, a priori inventories, and additional ocean sun-glint data 

collected by OCO-2. These sensitivity calculations provide confidence that the result we report in this study is robust.  

3 Results 200 

Figure 2 shows a posteriori net fluxes of CO2 on a global scale, and across southern, tropical, and northern latitudes to provide 

some broad geographical context. These values are broadly consistent with annual values for the atmospheric CO2 growth 

rates – an important zeroth order assessment of our a posteriori net fluxes. Our value for 2023 inferred from OCO-2 data is 

3.0 ppm yr-1, about 0.2 ppm yr-1higher than the value inferred from NOAA CO2 mole fraction data. We acknowledge that CO2 

growth rate estimates inferred from NOAA data can depart from the true value based on whole-atmosphere CO2 changes 205 

(Pandey et al., 2024). Building on ongoing our model evaluation, e.g., Deng et al., (2024) and Friedlingstein et al., (2024), we 

find that the a posteriori CO2 concentrations for 2023 are generally within 0.5 ppm of data collected by spectrometers from 

the Total Carbon Column Observing Network (TCCON) (Wunch et al., 2011), with a standard deviation smaller than1.2 ppm.  
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As expected, the largest contribution of the global net flux originates from the northern hemisphere (Figure 2d), where there 215 

is a superposition of boreal and midlatitude ecosystems that contribute to the global uptake of CO2 and large cities and other 

emission hotspots. At these latitudes, the year-to-year variations are comparatively small, limited to << 1PgC, and in the last 

two years since the 2021 peak there has been a small decrease in net emissions to pre-pandemic values (3.38—3.96 PgC yr-1, 

2014—2020). Over our study, these changes have typically represented 62—92% of the global budget, with the smallest values 

typically during El Niño years when the tropics plays a larger role. The tropics show large year-to-year changes over our study 220 

period (Figure 2c) with a large peak in emissions that we have not observed since the 2015/2016 El Niño. We find the large 

increase in net CO2 fluxes predominately originates from the tropics, representing 21% in 2022 and 38% in 2023. Our 

calculations suggest that this anomalous increase in tropical CO2 flux in 2023 is explained mainly by an increased CO2 flux 

over East Amazon (Figure A3).  The net uptake in the southern hemisphere (Figure 2b) also shows a similar but small year-

to-year change with the highest uptake in the last years, consequently compensating for emissions elsewhere on the globe. The 225 

16% decrease in net uptake in 2023 reduced the influence of this region on the global net flux, reinforcing the role of the 

tropics on the global scale.   

 

Figure 3 shows annual spatial distributions of the annual change in the net biosphere exchange (NBE) – the net CO2 flux minus 

the a priori fossil fuel emissions removed – from 2022 to 2023 and as a comparison from 2014 to 2015 when there was a 230 

comparably largest change in the growth rate associated with the 2015/2016 El Niño. This widely used subtraction approach 

to determine NBE implicitly assumes perfect knowledge of fossil fuel combustion of CO2, but we acknowledge that making 

that assumption has implications for NBE estimates, although this is minimal over the tropics where anthropogenic emissions 

are comparatively small (Oda et al., 2023). A positive annual change in NBE represents a larger net amount of CO2 to the 

atmosphere. We find that the largest positive increases in NBE are found across the tropics, with peak values over eastern 235 

Brazil, southern Africa, eastern and southern China, mainland and maritime Southeast Asia, and Southeast Australia. The 

emission hotspot over western Canada is from wildfires (Byrne et al., 2024) but our a posteriori feature is almost exclusively 

from the a priori inventory, determined by independent satellite data, because large aerosol optical depths over and downwind 

of these extensive fires where OCO-2 data are unreliable; Byrne et al. (2024) inferred carbon emissions from these fires using 

satellite observations of carbon monoxide.  We also find large positive increases in NBE over Alaska and Russia. Regions 240 

with elevated uptake in 2023 are limited to the US and central Canada, mainland Europe, with weaker uptake over Siberia, 

Turkey, and some parts of East Africa. In comparison, the tropics in 2015 shows regions with positive and negative changes 

in NBE over tropical South America, a large increase over East and Central Africa (Palmer et al., 2019), with some of the 

largest increases over mainland and maritime Southeast Asia, as we also found in 2023. Elevated uptake was mainly confined 

to boreal latitudes. These changes in a posteriori fluxes are broadly consistent with independent estimates of GPP changes 245 

inferred from the OCO-2 SIF data product and from vegetation greenness, providing us with some confidence that our 

estimated fluxes are physically plausible. The annual mean budgets for individual geographical regions where we see the 
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largest changes in NBE (rectangles in Figure 3a), show that East Amazon is almost exclusively responsible for the large 

increase in pan-tropical CO2 flux in 2023, with a smaller contribution from Southeast Asia.  

 

Figure 4 shows the geographical distribution of changes in parameters that describe large-scale CO2 flux changes – temperature 

and water availability. Geographical locations where we report the largest increases in NBE (and largest reductions in GPP) 255 

in 2023, e.g., Brazil, southern Africa, southeast Australia, are coincident with locations where we saw some of the largest 

increases in temperature, VPD, and the largest reductions in LWE. Where we reported the largest decreases in NBE (and 

largest increases in GPP), e.g. parts of the contiguous US and central Canada, we saw cooler temperatures and lower VPDs, 

and small increases in LWE. We find a similar level of consistency between the data products and meteorological reanalyses 

in 2015. Recent work using an ensemble of dynamic global vegetation models highlighted the detrimental impact of warming 260 

on tropical ecosystems (Sitch et al., 2024), consistent with our results.  

 

Figure 5 describes these relationships more quantitatively by using linear and quadratic multivariate fits of MERRA2 rainfall, 

temperature, and soil moisture anomalies to our a posteriori NBE anomalies, 2014—2023, inclusively, over the geographical 

regions highlighted in Figure 3a. For the linear fits (f1), we assume that the a posteriori NBE anomalies are a linear function 265 

of MERRA2 rainfall (R), surface temperature (TS), and soil moisture (SM) anomalies: DNBE = D0 + aRDR + aTDTS + aSMDSM, 

where D denotes an anomaly, ax denotes the regression coefficient for a particular variable x, D0 denotes the fitting residual. 

We scale these anomalies by their respective standard deviations and smooth them by applying a four-month moving window 

to reduce the noises and (partially) account for the time lag between flux and environmental drivers. We use a least-square 

method to estimate the four regression coefficients, which we report in Table A1, with results from our sensitivity tests shown 270 

in Table B2. We also consider a quadratic regression model (f2) to explain NBE anomalies, including linear and quadratic 

terms for the same three quantities used in the linear model but without cross terms, and found this only marginally outperforms 

the linear model.  Both models are statistically significant, with p values < 0.001, so for simplicity of interpretation we use the 

linear fits. In sensitivity calculations, we find that changes in VPD or LWE do not improve the fits to NBE anomalies. The 

models capture most of the NBE changes, with the notable exception of mid 2022 when our NBE fluxes shows a sharp increase 275 

that is not explained by temperature or water. Based on the normalized linear fitting coefficients, we find for these fits that 

changes in temperature explain most of the NBE changes we observe over East Amazon (Table A1 and Figure B3), but soil 

moisture changes are more important over Northern tropical Africa, southern Africa, and tropical Asia (Table A1 and Figure 

B3). Rainfall changes are more important over Southeast Asia. Independent GOSIF GPP estimates determined from satellite 

SIF observations (Li and Xiao, 2019) show a significant decrease from 2022 to 2023 over tropical regions, particularly over 280 

eastern Amazonia, southern Africa, tropical Asia and Southeast Asia (Figure A4), consistent with the increase we report for 

our a posteriori NBE estimates (Figure 5). More generally, we find that changes in GOSIF GPP are better than other individual 

predictors at describing our a posteriori CO2 flux anomalies over Tropical Asia, Southeast Asia, and southern Africa. Table 

A2 shows the permutation importance of individual predictors in our multivariate linear models.  
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4 Concluding Remarks 

We reported regional changes in the net biospheric exchange (NBE) of CO2 inferred from OCO-2 retrievals of XCO2 from 

2022 and 2023 to examine the origin of the large atmospheric growth rate reported for that period. Positive values of NBE 

denote net CO2 fluxes to the atmosphere.  We find that most of the increase in atmospheric CO2 in 2023 is due to increased 

NBE over the land tropics, supported by a modest reduction in uptake in southern extratropics, in agreement with a recent 295 

study (Gui et al., 2024).  Further examination of our results revealed increased NBE over eastern Brazil, southern Africa, 

eastern and southern China, mainland and maritime Southeast Asia, and Southeast Australia. Extensive wildfires over western 

Canada during boreal summer months also substantially contributed to the atmospheric CO2 growth rate in 2023 (Byrne et al., 

2024), but in terms of atmospheric CO2 this information is exclusively from the a priori inventory that is determined by 

independent satellite data. We also find increased uptake (lower NBE values) over the US and central Canada, mainland 300 

Europe, with weaker uptake over Siberia, Turkey, and some parts of East Africa. These large-scale patterns of NBE are 

consistent with data-driven estimates of gross primary production and vegetation greenness, and with changes in surface 

temperature, rainfall, and surface water (Figures 4 and B3). We find that warmer temperatures in 2023 explain most of the 

change in NBE over eastern Brazil, with changes in hydrological quantities – rainfall or soil moisture – more important 

elsewhere across the tropics. Additional knowledge is needed to help reconcile CO2 flux estimates from land biosphere process-305 

based models and those inferred from inversions (Kondo et al., 2020). Our quantitative exploration of the relationships between 

our a posteriori NBE anomalies and changes in environmental parameters (Figure 5) helps to interpret observed changes in 

atmospheric CO2 but can also help to evaluate and improve process-based land biosphere models.  

 

Our main analysis has focused on 2023, but it is important to put this one year into a broader historical context, at least in the 310 

past decade when we have seen a marked increase in atmospheric growth rates of atmospheric CO2 (Figure 1). Some of this 

increase can be explained by changes in fossil fuel combustion and other forms of human activity, but the largest spikes in 

atmospheric CO2 growth rates coincide with years when there is a strong El Niño event (Figure 1), primarily associated with 

large-scale perturbations to the hydrological cycle that impact tropical ecosystems. In strong El Niño years, such as 2015/2016, 

widespread droughts reported across the tropics (Jiménez-Muñoz et al., 2016) resulted in a notable increase in fires (Liu et al., 315 

2017) and can in some ecosystems lead to a widespread loss of tree density and a change of the floristic composition (Prestes 

et al., 2024).  

 

In 2023, the multivariate El Niño Southern Oscillation index, indicative of El Niño and La Niña strength, was approximately 

half the value of recent El Niño events, such as 2015/2016. There are distinct differences in the spatial patterns of rainfall, 320 

atmospheric aridity (given by vapour pressure deficit), and soil moisture over the tropics (Figure 4). But the loss of carbon 

sequestration in 2023 and 2015/2016 was comparable.  Our findings highlight the complex response of the tropical biosphere 

to environmental change, reflecting differences in the sensitivity and vulnerability of plants to localized droughts and 
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increasing surface temperature (Table A1).  Further quantifying these different sensitivities using independent in situ ecological 

observations will significantly improve our ability to model important biospheric processes in terms of atmospheric-biosphere 

carbon exchange, e.g., Liu et al. (2024). 330 

 

We have extended our analysis to 2024, which is reported in Appendix C. We find that the reduced carbon uptake continues 

into 2024. Uptake by the Amazon basin in 2024 remains weaker than in 2022. There is also weakened uptake over southern 

tropical Africa (south of 20oS) and over tropical Asia. There is a small increase in uptake over temperate North America in 

2024 compared to 2023. The resulting global net emission estimate for 2024 is 6.84±0.80 PgC, corresponding to a global CO2 335 

growth rate of 3.28±0.30 ppm yr-1.   

 

Our interpretation of the OCO-2 column data suggests that the reduced uptake of CO2 from tropical ecosystems played a key 

role in determining the anomalously large atmospheric CO2 growth rates in 2023 and in 2024 (Appendix C). Our work is 

largely consistent with a recent independent study (Gui et al., 2024) that used the same OCO-2 data, but interpreted them with 340 

an independent atmospheric transport model, driven by different fossil fuel inventories and by AI-based dynamic global 

vegetation models. They also used a different inverse method approach.  However, our results and those reported by Gui et al., 

(2024) are inconsistent with another independent study (Ke et al., 2024), based on a set of land biosphere models and an 

inversion experiment from the Copernicus Atmosphere Monitoring Service (CAMS). They significantly differ in the spatial 

patterns of carbon release and uptake. Resolving these discrepancies is beyond the scope of this work, but ultimately they do 345 

need to be resolved if we are to use these models to predict how global ecosystems will respond to a warming climate and an 

accelerated hydrological cycle, and the subsequent impacts on the carbon cycle (Armstrong McKay et al., 2022). If our main 

result is accurate – a moderate El Niño event, in the context of exceptional drought attributed to climate change (Clarke et al., 

2024),  has led to a significant reduction in carbon uptake by the tropical land biosphere – we might be observing the beginning 

of a decline in the ability of tropical ecosystems to absorb carbon. The long-term nature of this situation is unclear without 350 

further data, although the preliminary estimate of the 2024 atmospheric CO2 growth rate of 3.75±0.08 ppm yr-1 is 

unprecedented since these records began in the late 1950s (https://gml.noaa.gov/ccgg/trends/gl_gr.html; last access: 15th April 

2025). A coordinated measurement campaign is urgently needed to document how tropical ecosystems are changing, whether 

these changes compromise the future ability to absorb and store carbon, and whether prolonged drought will substantially 

delay any ecosystem recovery. 355 

 

Regularly reporting regional CO2 fluxes with minimal delay, and interpreting them using auxiliary data, e.g., related to fire 

(such as the extensive North American boreal forest fires in 2023) and hydrology, are enabled by massive-scale international 

investment in satellite instruments that complement the detailed information provided by ground-based measurement networks. 

Collectively, these efforts provide vast volumes of information about the state of the planet at a time when we are observing 360 

unprecedented environmental changes. These data and the analysis tools needed to infer CO2 fluxes collectively represent an 
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invaluable scientific resource that must be used to deliver frequent actionable information for policy makers. The agreement 

and divergence between our results and those from other independent studies underscore the efficacy and the shortcomings of 

the prevailing frameworks. 

 

Code Availability 370 

The community-led GEOS-Chem model of atmospheric chemistry and transport model is maintained centrally by Harvard 

University (https://geoschem.github.io/, last access: 5 May 2025), and is available on request. The ensemble Kalman filter 

code is publicly available as PyOSSE (https://www.nceo.ac.uk/data-facilities/datasets-tools/?dataset_type=tools, NCEO, last 

access: 5 May 2025).  

 375 

Data Availability 
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Information Services Centre (https://doi.org/10.5067/E4E140XDMPO2; last access 5 May 2025).  The GOSIF GPP is 

available for public from  https://data.globalecology.unh.edu/data/GOSIF-GPP_v2  (last access 5 May 2025).  The MODIS 

EVI of version v06.1 is available from https://lpdaac.usgs.gov/products/myd13a3v061/ (last access 5 May 2025).  380 
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Figures  635 

 

Figure 1. Atmospheric growth rates of CO2 (blue) and their annual change (black). a Global mean values. b Values determined 

from Mauna Loa, Hawaii CO2 mole fraction data. Data collected by NOAA and available at 

https://gml.noaa.gov/ccgg/trends/gl_gr.html. c Multi-decadal changes in the probability density of global mean annual mean 

growth rates and d as panel c but using data from Mauna Loa. Blue and black horizontal dashed lines denote the 1-s and 2-s 640 

values for the annual atmospheric CO2 growth and its annual change, respectively.  
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Figure 2. Annual mean a posteriori CO2 flux estimates inferred from OCO-2 data for the globe, the southern extratropics, the 

tropics, and the northern extratropics. The thin black vertical lines denote the 1-sigma values about the annual mean values. 645 

The red lines in panels b-d denote the percentage contribution to the global net fluxes.  
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Figure 3. Differences in a posteriori CO2 flux estimates inferred from OCO-2 data (top), gross primary production (GPP) 

estimated from OCO-2 SIF data (middle), and elevated vegetation indices (EVI) inferred from MODIS data (bottom) for 2022-650 

2023 (left panels) and 2014-2015 (right panels). Rectangles shown in panel a describe the geographical regions we focus on 

for our multivariate fits.   
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Figure 4. Differences in surface temperature (Temp; top row), precipitation (Prec; second row), soil moisture (SM; third row), 

vapour pressure deficit (VPD; fourth row), derived from soil moisture, based on MERRA2 reanalyses data products from 655 

NASA GSFC GMAO, and liquid water equivalent (LWE; bottom row) from the GRACE satellites for 2023 minus 2022 (left 

panels) and 2015 minus 2014 (right panels).  
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Figure 5. Regional linear (black) and quadratic (blue) multivariate fits of NBE anomalies (red) inferred from OCO-2 data 

using independent estimates of rainfall, surface temperature, and soil moisture from MERRA reanalyses data products from 660 

NASA GSFC GMAO. Regional definitions, defined in panel a of Figure 3, include East Amazon, tropical East Africa, southern 

Africa, tropical Asian, and Southeast Asia. Numbers shown inset of each panel include the Pearson correlation coefficient for 

each fit, and the p-value that corresponds to both fits.   



24 

 

Appendix A 

 665 

Figure A1. a The distribution of   488 sub-regions – including 356 land regions and 132 oceanic regions – for which we report 

monthly a posteriori CO2 flux estimates inferred from OCO-2 data. b The geographical locations of the ground-based 

measurements of CO2 mole fraction. 
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Figure A2. As Figure 5, but for NBE anomalies inferred using OCO-2 land nadir, land glint, and ocean glint data, and in situ 670 

data (LNLGOGIS).  
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Figure A3. As Figure 2 but for a posteriori CO2 flux estimates across the tropics. Regions are as defined by the rectangles 

shown in Figure 3a. Percentage values higher than 100% are a consequence of some regional fluxes being negative.  

  675 
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Figure A4. As Figure 5 but fitting to GOSIF GPP anomalies.   Deleted: :
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 E. Amazon NAf SAf Tr.Asia SE.Asia 
Rain -0.05 -0.21 0.18 0.11 -0.42 

Surface 
temperature 

0.40 0.09 0.17 0.06 -0.03 

Soil moisture -0.29 -0.51 -0.44 -0.84 -0.11 

 680 

Table A1. Normalized linear fitting coefficients for the independent variables of the MERRA2 rain, surface temperature, and 

soil moisture used to fit the NBE anomalies (Figure 5) for the regions defined in Figure 3a, 2014—2023, inclusively. The 

largest coefficient for each region is highlighted.  
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 685 

Region Rain Temp Soil Moisture VPD GOSIF GPP 
E.Amazon <0.01 0.34 0.31 0.01 0.02 

NAf <0.01 0.06 0.51 0.24 0.03 

SAf <0.01 0.06 0.13 0.05 0.66 

Tr. Asia <0.01 0.01 0.32 0.01 0.44 

SE.Asia <0.01 0.02 0.07 0.15 0.62 

 

Table A2. Permutation importance of MERRA2 rain, surface temperature, and soil moisture, VPD, and GOSIF GPP to fit the 

NBE anomalies (Figure 5), 2014—2023, inclusively, for the regions defined in Figure 3a. The largest contributor for each 

region is highlighted.  
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Appendix B 

Sensitivity experiments 695 

To test the robustness of our results, we report the results from other calculations in which we alter one aspect of the inversion.  

The experiments are described in Table B1. Text in bold denotes the change from our control run (CTRL). 

 

Experiment Wind fields  Observation Prior flux 
CTRL MERRA2 Surface CO2 data  

(113 sites of the Obspack data 

collection)  

OCO-2 XCO2 data over land.   

Monthly ODIAC Fossil Fuel Emissions 

Monthly Takahashi Ocean flux climatology (scaled) 

3-hourly CASA Biospheric flux 

Monthly fire emission (GFED v4.0) 

GEOSFP GEOSFP Surface CO2 data  

(113 sites of the Obspack data 

collection)  

OCO-2 XCO2 data over land.  

Monthly ODIAC Fossil Fuel Emissions 

Monthly Takahashi Ocean flux climatology (scaled) 

3-hourly CASA Biospheric flux 

Monthly fire emission (GFED v4.0) 

LNLGOGIS MERRA2 Surface CO2 data  

(113 sites of the Obspack data 

collection)     

OCO-2 XCO2 data over land.  

OCO-2 XCO2 data over 
ocean  

Monthly ODIAC Fossil Fuel Emissions 

Monthly Takahashi Ocean flux climatology (scaled) 

3-hourly CASA Biospheric flux 

Monthly fire emission (GFED v4.0) 

SIB3-JENA MERRA2 Surface CO2 data  

(113 sites of the Obspack data 

collection)  

OCO-2 Land data. 

OCO-2 XCO2 data over 
ocean 

Monthly ODIAC Fossil Fuel Emissions 

Monthly Jena Ocean flux climatology  
3-hourly SiB3 Biospheric flux 

Monthly fire emission (GFED v4.0) 

 

Table B1. Configurations of our control run and three sensitivity experiments. Underlined text denotes the change from our 

control run (CTRL) 700 

 

The GEOSFP inversion is driven by GMAO Goddard Earth Observing System Forward Processing (GEOS-FP) meteorological 

analyses, based on a convection scheme that is different from the one used in MERRA2 reanalysis, which we use in our control 

experiment (CNTRL). For the inversion using OCO-2 land nadir, land glint, and ocean glint data, and in situ data (LNLGOGIS) 

inversion, we use additional OCO-2 XCO2 sun-glint retrievals collected over the oceans. The SIB3-JENA inversion includes 705 

alternative a priori estimates for sea–air CO2 fluxes based on CO2 observations (Rödenbeck et al., 2022) and for biosphere-

atmosphere fluxes from the SiB3 model simulation (Baker et al., 2008). 
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Figure B1 compares the monthly a posteriori net CO2 flux estimates, 2014-2024, from our control and the three sensitivity 

experiments over four TransCom-3 regions, representative of three different latitude ranges: tropical South America, tropical 

Asia, temperate Eurasia, and South Africa. The a posteriori estimates are very similar, but we find significant regional 

differences for some months.  For example, GEOSFP results in smaller emissions from Temperate Eurasia during winter 715 

months (Fig. B1c) and including OCO-2 oceanic glint data results in larger seasonal cycles over Tropical South America (Fig. 

B2d).  As a result, the two inversions that use the ocean data (LNLGOGIS and SIB3-Jena) show net annual emissions from 

Tropical South America that are 0.1-0.22 PgC yr-1 lower than the control run.    

 

 720 

Figure B1.  Monthly regional flux estimates by four inversion experiments (CNTRL, GEOSFP, LNLGOGIS and SIB3-JENA) 

over four TransCom-3 regions: a) Tr. SAm (Tropical South America), b) Tr.As (Tropical Asia), c) TEr (temperate Eurasia), 

and d) Saf (South Africa).  The uncertainties for a priori and a posteriori estimates from the inversions are denoted by vertical 

lines, and shaded envelopes, respectively.   

 725 

Figure B2 shows that the corresponding year to year changes in the natural flux changes between 2022 and 2023, associated 

with our main conclusion, are remarkably similar over almost every TranCom-3 land region. The ocean estimates appear to 

depend on using the ocean glint measurements. The two inversions that assimilate only OCO-2 land data (CNTRL and 

GEOSFP) absorbed 0.4-0.45 PgC yr-1 less carbon between 2022 and 2023 while the two inversions that also use the sun-glint 
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measurements (LNLGOGIS and SIB3-JENA), and use a different ocean a priori show little change in the ocean net flux 

between the two years. 

 735 

Figure B2. Changes in a posteriori net biosphere exchange flux estimates (2023 minus 2022) over TransCom-3 regions, 

estimated by four experiments (Table B1). Vertical lines denote a posteriori uncertainties. 

 

Figure B3 compares the correlations between regional CO2 NBE flux anomalies and anomalies in environment variables 

between 2014 to 2023. The NBE flux anomalies for tropical South America for our control and the three sensitivity calculations 740 

(Table B1) show strong correlations (> 0.5 and a p value < 0.1) with temperature and soil moisture change.  The NBE flux 

anomalies are also strongly correlated with changes in the enhanced vegetation index (EVI) from the NASA Moderate 

Resolution Imaging Spectroradiometer (MODIS) and the GOSIF GPP anomalies. NBE flux anomalies for tropical Asia have 

similarly strong correlations with MODIS EVI, GOSIF GPP, and soil moisture, but comparatively less correlated with surface 

temperature anomalies. Australian NBE flux anomalies show a strong correlation with EVI, GPP, VPD, and precipitation 745 

anomalies, but temperature anomalies are much less important.  Generally, we find that all four inversions show consistent 

results, with differences in correlation coefficient typically within 0.1. A numerical summary of these results is reported in 

Table B2. Clearly, our focus has been on subcontinental scales, and we acknowledge this will mask heterogenous responses 

on smaller scales. These smaller scales are better examined with in situ data. 

 750 
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     755 

Figure B3. Pearson correlation coefficients, r, between regional a posteriori estimates of net biosphere CO2 exchange 

anomalies and anomalies of environmental variables, including (a) MODIS EVI, (b) GOSIF GPP, (c) MERRA2 soil moisture, 

(d) MERRA2 surface temperature, (e) MERRA2 VPD, and (f) MERRA2 precipitation. Correlations with p value > 0.1 (less 

significant) are denoted by black hatching line.  

  760 
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 E. Amazon 
(range) 

NAf 
(range) 

SAf 
(range) 

Tr.Asia 
(range) 

SE.Asia 
(range) 

Rain -0.05  

(-0.06, -0.01) 

-0.21 

(-0.32, -0.17) 

 

0.18 

(-0.03, 0.18) 

 

0.11 

(-0.01, 0.30) 

 

-0.42 

(-0.42, -0.36) 

 

Surface 
temperature 

0.40 

(0.38, 0.48) 

 

0.09 

(0.01, 0.24) 

 

0.17 

(0.17, 0.32) 

 

0.06 

(-0.06, 0.06) 

 

-0.03 

(-0.03, 0.25) 

 

Soil moisture -0.29 

(-0.46, -0.29) 

 

-0.51 

(-0.56 -0.23) 

-0.44 

(-0.47, -0.40) 

 

-0.84 

(-0.86, -0.78) 

 

-0.11 

(-0.11,0.27) 

 

 

Table B2. As Table A1 but with values reported as a range from the control and the three sensitivity inversions.  765 
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Appendix C 770 

 

A posteriori net biosphere CO2 flux estimates for 2024 
 

We extend our control inversion experiment to the end of 2024. Figure C1 shows the difference of a posteriori NBE CO2 flux 

estimates between 2024 and our baseline year 2022 alongside the difference between 2023 and 2022. Figure C2 shows the 775 

same data but broken down into TransCom-3 regions. We find that tropical land absorbed less carbon in 2024 than during 

2022, primarily over South America, Africa, and to a lesser extent Southeast Asia.  

 

Our calculations correspond to a net global annual CO2 emission of 6.84±0.80 PgC yr-1, equivalent to global CO2 growth rate 

of 3.28±0.30 ppm for 2024. During 2023 and 2025, we estimate from OCO-2 data that atmospheric levels of CO2 increased 780 

by 6.36 (3.09+3.28) ppm compared to 6.48 (2.76+3.72) ppm inferred from the NOAA surface network.   

 

 

Figure C1.  Changes in annual mean a posteriori NBE flux estimates from our control inversion between (a) 2022 and 2023 

and between (b) 2022 and 2024.  785 
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Figure C2. Changes in annual mean a posteriori NBE flux estimates from our control inversion between 2022 and 2023 and 795 

between 2022 and 2024 for TransCom-3 regions. Vertical lines denote a posteriori uncertainties. 

 

Deleted: :



Page 5: [1] Deleted   Paul Palmer   29/07/2025 14:20:00 
 

 


