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Abstract. The global annual mean atmospheric CO2 growth rate in 2023 was one of the highest since records began in 1958, 

comparable to values recorded during previous major El Niño events. We do not fully understand this anomalous growth 

rate, although a recent study highlighted a role for boreal North American forest fires. We use a Bayesian inverse method to 

interpret global-scale atmospheric CO2 data from the NASA Orbiting Carbon Observatory. The resulting a posteriori CO2 25 

flux estimates reveal that from 2022 to 2023 the biggest changes in CO2 fluxes of net biosphere exchange (NBE) – for which 

positive values denote a flux to the atmosphere – were over the land tropics. We find that the largest NBE increase is over 

eastern Brazil, with small increases over southern Africa and Southeast Asia. We also find significant increases over 

southeast Australia, Alaska, and western Russia. A large NBE increase over boreal North America, due to fires, is driven by 

our a priori inventory, informed by independent data.  The largest NBE reductions are over western Europe, USA, and 30 

central Canada. Our NBE estimates are consistent with gross primary production estimates inferred from satellite 

observations of solar induced fluorescence and with satellite observations of vegetation greenness. We find that warmer 

temperatures in 2023 explain most of the NBE change over eastern Brazil, with hydrological changes more important 

elsewhere across the tropics. Our results suggest that ongoing environmental degradation of the Amazon is now playing a 

substantial role in increasing the global atmospheric CO2 growth rate.  35 
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1 Introduction 

The annual mean growth rate of atmospheric carbon dioxide (CO2) is widely used as a zeroth order metric to determine the 

health of our planet. Even from the first few years’ worth of data collected at Mauna Loa in the late 1950s it was plain to see 

that a) land vegetation imposed a large seasonal cycle on atmospheric CO2 via photosynthesis and respiration, and b) 

combustion of fossil fuels led to a planetary scale impact on the atmosphere (Keeling, 1960; Keeling et al., 1976). Changes 40 

in the annual accumulation of atmospheric CO2 (growth rate), the magnitude and phase of the seasonal cycle, and how they 

vary geographically, provide important clues about economic activity and the health of the land biosphere (Keeling et al., 

1996; Graven et al., 2013; Barlow et al., 2015). These changes are inextricably linked, e.g., elevated uptake by the land 

biosphere will influence the annual growth rate as well as the seasonal cycle (e.g., Ainsworth and Rogers, 2007). On a global 

scale, using mass balance arguments, we know that only about 44% of fossil fuel emissions of CO2 remain in the atmosphere 45 

(the airborne fraction) (Bennett et al., 2024) with the land biosphere and oceans absorbing the other 56%, approximately 

equally but with substantial year to year changes (Friedlingstein et al., 2023). The quasi-stability of the airborne fraction 

suggests that the land biosphere and the oceans absorb a progressively larger absolute amount of CO2 from the atmosphere. 

We have an incomplete understanding of where this carbon is being absorbed and the stability of the resulting accumulated 

terrestrial carbon reservoirs against future changes in climate, e.g. Armstrong McKay et al., (2022).  Consequently, years in 50 

which there are anomalously large annual mean CO2 growth rates prompt concern from the scientific community. This 

concern grows when state-of-the-art process-based land biosphere models cannot forecast or explain these anomalies (Kondo 

et al., 2020).  

 

Figure 1 shows the annual mean CO2 growth rates reported by NOAA on a global scale, determined by combining data 55 

collected at sites across the globe, and from Mauna Loa in Hawaii (19.5oN, 155.6oW), USA, a site typically assumed to be 

representative of changes in the northern hemisphere carbon cycle (Buermann et al., 2007). The global picture shows that 

2023 (Figure 1a) had one of the largest CO2 growth rates on record, typically associated with the El Niño phase of ENSO, 

e.g., 1986, 1997/1998, and 2015/2016. What is also evident is a progressive increase in the annual growth rates from the 

1950s (Figure 1c). Even anomalous values recorded in the last quarter of the 20th century are close to the median value from 60 

the 21st century (Figure 1c). The corresponding data collected at Mauna Loa shows a slightly different picture for the annual 

CO2 growth rate (Figure 1b). At this site, the growth rate in 2023 was the largest on record, exceeding the past peak growth 

during 1997/1998 El Niño, attributed to extensive burning of peat over Southeast Asia (Page et al., 2002), and the 2015/2016 

El Niño (Liu et al., 2017). At Mauna Loa, progressive changes in the growth rates are slightly more exaggerated than global 

mean values (Figure 1b,d), suggesting a larger role for tropical latitudes.  65 

 

Data-driven top-down flux inversions allow us to attribute these observed changes in the atmospheric CO2 growth rate to 

regional changes in surface carbon fluxes. Estimating regional carbon fluxes from atmospheric data requires an atmospheric 
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transport model that describes the physical relationship between surface CO2 fluxes and the resulting atmospheric 

distribution of CO2, a priori estimates of the distribution and magnitude of fluxes, and a Bayesian inference method that fits 70 

this model to the data accounting for model and data uncertainties (Tans et al., 1990; Baker et al., 2006; Gurney et al., 2002, 

2004). Using an atmospheric transport model introduces additional errors (Schuh et al., 2019; Oda et al., 2023) but it remains 

an essential tool for interpreting the atmospheric data. Satellite observations of atmospheric CO2 have challenged current 

understanding of the carbon cycle (Liu et al., 2017; Chatterjee et al., 2017; Patra et al., 2017; Palmer et al., 2019; Wang et 

al., 2020; Basso et al., 2023; Hugelius et al., 2024; O’Sullivan et al., 2024; Liu et al., 2024). They have primarily achieved 75 

this by collecting data over geographical regions that are not well covered by ground-based networks, particularly over the 

land tropics. These datasets are typically available with a time lag of only a few months, enabling us to explain the reasons 

behind anomalous annual CO2 growth rates within a year of them happening. 

 

To interpret recent annual changes in the CO2 growth rate, we use the global 3-D GEOS-Chem atmospheric transport model 80 

and an ensemble Kalman filter to adjust our a priori distribution of CO2 flux estimates to fit in situ and satellite observations 

of atmospheric CO2. These methods and data are described in the next section. We report our results in section 3 and 

conclude our study in section 4. 

2 Data and Methods 

Here, we describe the modelling framework we use to infer a posteriori spatial distributions of CO2 fluxes from atmospheric 85 

data and a priori inventories flux estimates, the atmospheric data, and the auxiliary atmospheric and land surface we use to 

evaluate the a posteriori flux estimates. 

2.1 Inversion Framework 

We use the GEOS-Chem global 3-D chemistry transport model of version 13.4 to provide the relationship between the 

surface fluxes and changes in atmospheric CO2. For the experiments we report, we run the model at a horizontal resolution 90 

of 2° (latitude) × 2.5° (longitude), driven by MERRA2 meteorological reanalyses from the Global Modeling and 

Assimilation Office (GMA) based at NASA Goddard Space Flight Center (GSFC).  

 

We use a priori CO2 flux inventories, which include year-specific monthly biomass burning emission (GFEDv4.1; 

Randerson et al., 2017), and year-specific monthly  anthropogenic emissions (ODIAC; Oda et al., 2018; Oda and 95 

Maksyutov, 2021). The anthropogenic emission estimates were extended to 2023 under the assumption that these emissions 

from the southern hemisphere remain stable between 2022 and 2023 but increased by 1.4% over the northern hemisphere 

based on data reported in the 2024 Statistical Review of World Energy by the Energy Institute. We use year-specific 
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terrestrial biosphere fluxes with a temporal resolution of three hours (CASA; Olsen and Randerson, 2004) up to the end of 

2018, and repeat values for 2018 in subsequent years. We use monthly climatological ocean fluxes (Takahashi et al., 2009). 100 

 

We use an established EnKF framework (Feng et al., 2009, 2017; Palmer et al., 2019) to estimate surface CO2 fluxes from 

atmospheric CO2 data collected by a satellite and a global in situ ground-based observation network, 2014—2023, 

inclusively. We define our land sub-regions by further dividing each of the 11 TransCom-3 land regions (Gurney et al., 

2002) into 30 nearly equal sub-regions, with the exception for temperate Eurasia that has been divided into 56 sub-regions, 105 

due to its large landmass. We divide the 11 TransCom-3 ocean regions into 132 sub-regions. Our state vector includes 

monthly scaling factors for 488 regional pulse-like basis functions that describe natural CO2 fluxes, including 356 land 

regions and 132 oceanic regions (Figure A1). The inversion framework and the experiments we report here closely follow 

our previous work (Palmer et al., 2019; Feng et al., 2022; Oda et al., 2023; Feng et al., 2023), and we assimilate  in situ data 

and column averaged CO2 dry-air mole fraction (XCO2) retrievals from the NASA Orbiting Carbon Observatory (OCO-2), as 110 

described below.  

2.2 In situ and OCO-2 atmospheric CO2 data 

We use version v11r of OCO-2 retrievals of column average dry air mole fraction (XCO2) from the JPL-ACOS team (Taylor 

et al., 2023). We only assimilate the nadir and glint observations over land, considering possible bias between the land and 

ocean XCO2 data. The consequent poor observational coverage over the ocean could result in the disaggregation of the land 115 

and ocean CO2 fluxes being more sensitive to the a priori ocean flux inventory. Through sensitivity studies we find that our 

land CO2 flux anomalies are not significantly sensitive to the to the a priori ocean flux inventory (not shown) or to the 

absence of OCO-2 glint data (Figure A2). To reduce the computational costs and error correlations, we thinned the OCO-2 

observations to ensure a minimal time interval of 10 s.  

 120 

We also assimilate in situ measurements of CO2 mole fraction data from a subset of 113 sites (Figure A1) included in the 

NOAA GLOBALVIEWPlus 8.0 data product (Schuldt et al., 2022), incorporating data from the Integrated Carbon 

Observation System (ICOS RI et al., 2024).   

2.3 GOSIF Gross Primary Productivity 

We use a global gross primary production (GPP) product that is based on OCO-2 solar induced fluorescence (GOSIF) and 125 

linear relationships between SIF and GPP (Li and Xiao, 2019). We chose this data product, available globally a spatial 

resolution of 0.05° and a temporal resolution of eight days, because it is close to the median of observation-derived GPP 

estimates (Li and Xiao, 2019) and is available over our study period. The mean annual global total (2000-2023) is 135.5 ± 

8.8 Pg C yr−1, with a significant upward trend over the northern hemisphere. Comparisons show that this GPP data product is 

highly correlated (R2=0.74) with GPP measurements collected at 91 eddy covariance flux sites across the globe. Here, we 130 
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use the monthly mean dataset and re-grid it to a regular one-degree grid to compare it with other variables including our a 

posteriori CO2 flux estimates. 

2.4 Gravity Recovery And Climate Experiment data  

The GRACE space mission was jointly developed by NASA and DLR (German Space Agency) and launched into space in 

2002. It measures temporal variations of the Earth’s gravity field by tracking, using a K-band ranging system, the inter-135 

satellite range and range rate between two coplanar, low altitude satellites (Tapley et al., 2004). The GRACE Science Data 

System uses these measurements, along with ancillary data, to estimate monthly (or sub-monthly) time series of global 

Earth’s gravity fields (Bettadpur, 2007; Flechtner, 2007). Here, we use the NASA GRCTellus GRACE land product 

(RL06.2) for monthly total water storage (liquid water equivalent depth) at 1° × 1° global grids from January 2014 through 

March 2024 (http://grace.jpl.nasa.gov/). We have used these data in our previous studies, e.g., Feng et al., (2022, 2023). 140 

2.5 NASA Meteorological Reanalyses 

We use surface temperature (TS), specific humidity (SH), soil moisture in the top 0—10 cm (ground wetness, WET) datasets 

from MERRA2 developed by the GMAO at NASA GSFC to study environmental changes from 2010 to 2023. We calculate 

the vapour pressure deficit (VPD) from the 10-m MERRA2 temperature, and specific humidity following Fang et al., (2022). 

We have used these reanalyses data previously to study a posteriori CO2 fluxes (Palmer et al., 2019) and methane emissions 145 

(Feng et al., 2022, 2023).  

 

In Appendix B, to examine the robustness of the results reported from our control run, described above, we report results 

from three sensitivity inversion that use different meteorological reanalyses, a priori inventories, and additional ocean sun-

glint data collected by OCO-2. These sensitivity calculations provide confidence that the result we report in this study is 150 

robust.  

3 Results 

Figure 2 shows a posteriori net fluxes of CO2 on a global scale, and across southern, tropical, and northern latitudes to 

provide some broad geographical context. These values are broadly consistent with annual values for the atmospheric CO2 

growth rates – an important zeroth order assessment of our a posteriori net fluxes. Our value for 2023 inferred from OCO-2 155 

data is 3.0 ppm/yr, about 0.2 ppm/yr higher than the value inferred from NOAA CO2 mole fraction data. We acknowledge 

that CO2 growth rate estimates inferred from NOAA data can depart from the true value based on whole-atmosphere CO2 

changes (Pandey et al., 2024). Building on ongoing our model evaluation, e.g., Deng et al., (2024) and Friedlingstein et al., 

(2024), we find that the a posteriori CO2 concentrations for 2023 are generally within 0.5 ppm of data collected by 
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spectrometers from the Total Carbon Column Observing Network (Wunch et al., 2011), with a standard deviation smaller 160 

than1.2 ppm.  

 

As expected, the largest contribution of the global net flux originates from the northern hemisphere (Figure 2d), where there 

is a superposition of boreal and midlatitude ecosystems that contribute to the global uptake of CO2 and large cities and other 

emission hotspots. At these latitudes, the year-to-year variations are comparatively small, limited to << 1PgC, and in the last 165 

two years since the 2021 peak there has been a small decrease in net emissions to pre-pandemic values (3.38—3.96 PgC/yr, 

2014—2020). Over our study, these changes have typically represented 62—92% of the global budget, with the smallest 

values typically during El Niño years when the tropics plays a larger role. The tropics show large year-to-year changes over 

our study period (Figure 2c) with a large peak in emissions that we have not observed since the 2015/2016 El Niño. We find 

the large increase in net CO2 fluxes predominately originates from the tropics, representing 21% in 2022 and 38% in 2023. 170 

Our calculations suggest that this anomalous increase in tropical CO2 flux in 2023 is explained mainly by an increased CO2 

flux over East Amazon (Figure A3).  The net uptake in the southern hemisphere (Figure 2b) also shows a similar but small 

year-to-year change with the highest uptake in the last years, consequently compensating for emissions elsewhere on the 

globe. The 16% decrease in net uptake in 2023 reduced the influence of this region on the global net flux, reinforcing the 

role of the tropics on the global scale.   175 

 

Figure 3 shows annual spatial distributions of the annual change in the net biosphere exchange (NBE) – the net CO2 flux 

minus the a priori fossil fuel emissions removed – from 2022 to 2023 and as a comparison from 2014 to 2015 when there 

was a comparably largest change in the growth rate associated with the 2015/2015 El Niño. This widely used subtraction 

approach to determine NBE implicitly assumes perfect knowledge of fossil fuel combustion of CO2, but we acknowledge 180 

that making that assumption has implications for NBE estimates, although this is minimal over the tropics where 

anthropogenic emissions are comparatively small (Oda et al., 2023). A positive annual change in NBE represents a larger net 

amount of CO2 to the atmosphere. We find that the largest positive increases in NBE are found across the tropics, with peak 

values over eastern Brazil, southern Africa, eastern and southern China, mainland and maritime Southeast Asia, and 

Southeast Australia. The emission hotspot over western Canada is from wildfires (Byrne et al., 2024) but our a posteriori 185 

feature is almost exclusively from the a priori inventory, determined by independent satellite data, because large aerosol 

optical depths over and downwind of these extensive fires where OCO-2 data are unreliable; Byrne et al., (2024) inferred 

carbon emissions from these fires using satellite observations of carbon monoxide.  We also find large positive increases in 

NBE over Alaska and Russia. Regions with elevated uptake in 2023 are limited to the US and central Canada, mainland 

Europe, with weaker uptake over Siberia, Turkey, and some parts of East Africa. In comparison, the tropics in 2015 shows 190 

regions with positive and negative changes in NBE over tropical South America, a large increase over East and Central 

Africa (Palmer et al., 2019), with some of the largest increases over mainland and maritime Southeast Asia, as we also found 

in 2023. Elevated uptake was mainly confined to boreal latitudes. These changes in a posteriori fluxes are broadly consistent 
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with independent estimates of GPP changes inferred from the OCO-2 SIF data product and from vegetation greenness, 

providing us with some confidence that our estimated fluxes are physically plausible. The annual mean budgets for 

individual geographical regions where we see the largest changes in NBE (rectangles in Figure 3a), show that East Amazon 

is almost exclusively responsible for the large increase in pan-tropical CO2 flux in 2023, with a smaller contribution from 

Southeast Asia.  200 

 

Figure 4 shows the geographical distribution of changes in parameters that describe large-scale changes CO2 fluxes – 

temperature and water availability. Geographical locations where we report the largest increases in NBE (and largest 

reductions in GPP) in 2023, e.g., Brazil, southern Africa, southeast Australia, are coincident with locations where we saw 

some of the largest increases in temperature, VPD, and the largest reductions in LWE. And where we reported the largest 205 

decreases in NBE (and largest increases in GPP), e.g. parts of the contiguous US and central Canada, we saw cooler 

temperatures and lower VPDs, and small increases in LWE. We find a similar level of consistency between the data products 

and meteorological reanalyses in 2015. Recent work using an ensemble of dynamic global vegetation models highlighted the 

detrimental impact of warming on tropical ecosystems (Sitch et al., 2024), consistent with our results.  

 210 

Figure 5 describes these relationships more quantitatively by using linear and quadratic multivariate fits of MERRA2 

rainfall, temperature, and soil moisture anomalies to our a posteriori NBE anomalies over the geographical regions 

highlighted in Figure 3a. For the linear fits (f1), we assume that the a posteriori NBE anomalies are a linear function of 

MERRA2 rainfall (R), surface temperature (T), and soil moisture (SM) anomalies: DNBE = D0 + aRDR + aTDT + aSMDSM, 

where D denotes an anomaly, ax denotes the regression coefficient for a particular variable x, D0 denotes the fitting residual. 215 

We scale these anomalies by their respective standard deviations and smooth them by applying a four-month moving 

window to reduce the noises and (partially) account for the time lag between flux and environmental drivers. We use a least-

square method to estimate the four regression coefficients, which we report in Table A1, with results from our sensitivity 

tests shown in Table B2. We also consider a quadratic regression model (f2) to explain NBE anomalies, including linear and 

quadratic terms for the same three quantities used in the linear model but without cross terms, and found this only marginally 220 

outperforms the linear model.  Both models are statistically significant, with p values < 0.001, so for simplicity of 

interpretation we use the linear fits. In sensitivity calculations, we find that changes in VPD or LWE do not improve the fits 

to NBE anomalies. The models capture most of the NBE changes, with the notable exception of mid 2022 when our NBE 

fluxes shows a sharp increase that is not explained by temperature or water. Based on the normalized linear fitting 

coefficients, we find for these fits that changes in temperature explain most of the NBE changes we observe over East 225 

Amazon (Table A1), but soil moisture changes are more important over Northern tropical Africa, southern Africa, and 

tropical Asia. Rainfall changes are more important over Southeast Asia. Independent GOSIF GPP estimates determined from 

satellite SIF observations (Li and Xiao, 2019) show a significant decrease from 2022 to 2023 over tropical regions, 

particularly over eastern Amazonia, southern Africa, tropical Asia and Southeast Asia (Figure A4), consistent with the 
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increase we report for our a posteriori NBE estimates (Figure 5). More generally, we find that changes in GOSIF GPP are 

better than other individual predictors at describing our a posteriori CO2 flux anomalies over Tropical Asia, Southeast Asia, 235 

and southern Africa. Table A2 shows the permutation importance of individual predictors in our multivariate linear models, 

2014—2023, inclusively.  

4 Concluding Remarks 

We reported regional changes in the net biospheric exchange (NBE) of CO2 inferred from OCO-2 retrievals of XCO2 from 

2022 and 2023 to examine the origin of the large atmospheric growth rate reported for that period. Positive values of NBE 240 

denote net CO2 fluxes to the atmosphere.  We find that most of the increase in atmospheric CO2 in 2023 is due to increased 

NBE over the land tropics, supported by a modest reduction in uptake in southern extratropics, in agreement with a recent 

study (Gui et al., 2024).  Further examination revealed foci of increased NBE were over eastern Brazil, southern Africa, 

eastern and southern China, mainland and maritime Southeast Asia, and Southeast Australia. Extensive wildfires over 

western Canada during boreal summer months also substantially contributed to the atmospheric CO2 growth rate in 2023 245 

(Byrne et al., 2024), but in terms of atmospheric CO2 this information is exclusively from the a priori inventory that is 

determined by independent satellite data. We also find increased uptake (lower NBE values) over the US and central Canada, 

mainland Europe, with weaker uptake over Siberia, Turkey, and some parts of East Africa. These large-scale patterns of 

NBE are consistent with data-driven estimates of gross primary production and vegetation greenness, and with changes in 

surface temperature, rainfall, and surface water. We find that warmer temperatures in 2023 explain most of the change in 250 

NBE over eastern Brazil, with changes in hydrological quantities – rainfall or soil moisture – more important elsewhere 

across the tropics. Additional knowledge is needed to help reconcile CO2 flux estimates from land biosphere process-based 

models and those inferred from inversions (Kondo et al., 2020). Our quantitative exploration of the relationships between our 

a posteriori NBE anomalies and changes in environmental parameter helps to interpret observed changes in atmospheric 

CO2 but can also help to evaluate and improve process-based land biosphere models.  255 

 

Our main analysis has focused on 2023, but it is important to put this one year into a broader historical context, at least in the 

past decade when we have seen a marked increase in atmospheric growth rates of atmospheric CO2 (Figure 1). Some of this 

increase can be explained by changes in fossil fuel combustion and other forms of human activity, but the largest spikes in 

atmospheric CO2 growth rates coincide with years when there is a strong El Niño event (Figure 1), primarily associated with 260 

large-scale perturbations to the hydrological cycle that impact tropical ecosystems. In strong El Niño years, such as 

2015/2016, widespread droughts reported across the tropics (Jiménez-Muñoz et al., 2016) resulted in a notable increase in 

fires (Liu et al., 2017) and can in some ecosystems lead to a widespread loss of tree density and a change the floristic 

composition (Prestes et al., 2024).  

 265 
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In 2023, the multivariate El Niño Southern Oscillation index, indicative of El Niño and La Niña strength, in 2023 was 

approximately half the value of recent El Niño events, such as 2015/2016. There are distinct differences in the spatial 

patterns of rainfall, atmospheric aridity (given by vapour pressure deficit), and soil moisture over the tropics (Figure 4). But 270 

the loss of carbon sequestration in 2023 and 2015/2016 was comparable.  Our findings highlight the complex response of the 

tropical biosphere to environmental change, reflecting differences in the sensitivity and vulnerability of plants to localized 

droughts and increasing surface temperature (Table A1).  Further quantifying these different sensitivities using independent 

in situ ecological observations will significantly improve our ability to model important biospheric processes in terms of 

atmospheric-biosphere carbon exchange, e.g., Liu et al., (2024). 275 

 

We have extended our analysis to 2024, which is reported in Appendix C. We find that the reduced carbon uptake continues 

into 2024. Uptake by the Amazon basin in 2024 remains weaker than in 2022. There is also weakened uptake over southern 

tropical Africa (south of 20oS) and over tropical Asia. There is a small increase in uptake over temperate North America in 

2024 compared to 2023. The resulting global net emission estimate for 2024 is 6.84±0.80 PgC, corresponding to a global 280 

CO2 growth rate of 3.28±0.30 ppm/yr.   

 

Our interpretation of the OCO-2 column data suggests that the reduced uptake of CO2 from tropical ecosystems played a key 

role in determining the anomalously large atmospheric CO2 growth rates in 2023 and in 2024 (Appendix C). Our work is 

largely consistent with a recent independent study (Gui et al., 2024) that used the same OCO-2 data, but interpreted them 285 

with an independent atmospheric transport model, driven by different fossil fuel inventories and by AI-based dynamic global 

vegetation models. They also used a different inverse method approach.  However, our results and those reported by Gui et 

al., (2024) are inconsistent with another independent study (Ke et al., 2024), based on a set of land biosphere models and an 

inversion experiment from the Copernicus Atmosphere Monitoring Service (CAMS). They significantly differ in the spatial 

patterns of carbon release and uptake. Resolving these discrepancies is beyond the scope of this work, but ultimately they do 290 

need to be resolved if we are to use these models to predict how global ecosystems will respond to a warming climate and an 

accelerated hydrological cycle, and the subsequent impacts on the carbon cycle (Armstrong McKay et al., 2022). If our main 

result is accurate – a moderate El Niño event has led to a significant reduction in carbon uptake by the tropical land 

biosphere, which has experienced extensive drought – we might be observing the beginning of a decline in the ability of 

tropical ecosystems to absorb carbon. The long-term nature of this situation is unclear without further data, although the 295 

preliminary estimate of the 2024 atmospheric CO2 growth rate of 3.75±0.08 ppm/yr is unprecedented since these records 

began in the late 1950s (https://gml.noaa.gov/ccgg/trends/gl_gr.html; last access: 15th April 2025). A coordinated 

measurement campaign is urgently needed to document how tropical ecosystems are changing, whether these changes 

compromise the future ability to absorb and store carbon, and whether prolonged drought will substantially delay any 

ecosystem recovery. 300 
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Regularly reporting regional CO2 fluxes with minimal delay, and interpreting them using auxiliary data, e.g., related to fire 

(such as the extensive North American boreal forest fires in 2023) and hydrology, are enabled by massive-scale international 

investment in satellite instruments that complement the detailed information provided by ground-based measurement 305 

networks. Collectively, these efforts provide vast volumes of information about the state of the planet at a time when we are 

observing unprecedented environmental changes. These data and the analysis tools needed to infer CO2 fluxes collectively 

represent an invaluable scientific resource that must be used to deliver frequent actionable information for policy makers. 

The agreement and divergence between our results and those from other independent studies underscore the efficacy and the 

shortcomings of the prevailing frameworks. 310 

 

Code Availability 
The community-led GEOS-Chem model of atmospheric chemistry and transport model is maintained centrally by Harvard 

University (https://geoschem.github.io/, last access: 5 May 2025), and is available on request. The ensemble Kalman filter 

code is publicly available as PyOSSE (https://www.nceo.ac.uk/data-facilities/datasets-tools/?dataset_type=tools, NCEO, last 315 

access: 5 May 2025).  

 

Data Availability 
The L2 column carbon dioxide data from OCO-2 and OCO-3 are available from the Goddard Earth Sciences Data and 

Information Services Centre (https://doi.org/10.5067/E4E140XDMPO2; last access 5 May 2025).  The GOSIF GPP is 320 
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Figures  

 705 

Figure 1 Atmospheric growth rates of CO2 (blue) and their annual change (black). a Global mean values. b Values 

determined from Mauna Loa, Hawaii CO2 mole fraction data. Data collected by NOAA and available at 

https://gml.noaa.gov/ccgg/trends/gl_gr.html. c Multi-decadal changes in the probability density of global mean annual mean 

growth rates and d as panel c but using data from Mauna Loa. Blue and black horizontal dashed lines denote the 1-s and 2-s 

values for the annual atmospheric CO2 growth and its annual change, respectively.  710 
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Figure 2 Annual mean a posteriori CO2 flux estimates inferred from OCO-2 data for the globe, the southern extratropics, the 

tropics, and the northern extratropics. The thin black vertical lines denote the 1-sigma values about the annual mean values. 

The red lines in panels b-d denote the percentage contribution to the global net fluxes.  715 
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Figure 3 Differences in a posteriori CO2 flux estimates inferred from OCO-2 data (top), gross primary production (GPP) 

estimated from OCO-2 SIF data (middle), and elevated vegetation indices (EVI) inferred from MODIS data (bottom) for 

2022-2023 (left panels) and 2014-2015 (right panels). Rectangles shown in panel a describe the geographical regions we 720 

focus on for our multivariate fits.   
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Figure 4 Differences in surface temperature (Temp; top row), precipitation (Prec; second row), soil moisture (SM; third 

row), vapour pressure deficit (VPD; fourth row), derived from soil moisture, based on MERRA2 reanalyses data products 

from NASA GSFC GMAO, and liquid water equivalent (LWE; bottom row) from the GRACE satellites for 2023 minus 725 

2022 (left panels) and 2015 minus 2014 (right panels).  
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Figure 5 Regional linear (black) and quadratic (blue) multivariate fits of NBE anomalies (red) inferred from OCO-2 data 

using independent estimates of rainfall, surface temperature, and soil moisture from MERRA reanalyses data products from 

NASA GSFC GMAO. Regional definitions, defined in panel a of Figure 3, include East Amazon, tropical East Africa, 730 

southern Africa, tropical Asian, and Southeast Asia. Number shown inset of each panel include the Pearson correlation 

coefficient for each fit, and the p-value that corresponds to both fits.   
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Appendix A 

 

Figure A1 a The distribution of   488 sub-regions – including 356 land regions and 132 oceanic regions – for which we 735 

report monthly a posteriori CO2 flux estimates inferred from OCO-2 data. b The geographical locations of the ground-based 

measurements of CO2 mole fraction. 
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Figure A2 As Figure 5, but for NBE anomalies inferred using OCO-2 land nadir, land glint, and ocean glint data, and in situ 

data.  740 
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Figure A3 As Figure 2 but for a posteriori CO2 flux estimates across the tropics. Regions are as defined by the rectangles 

shown in Figure 3a. Percentage values higher than 100% are a consequence of some regional fluxes being negative.  
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 745 

Figure A4: As Figure 5 but fitting to GOSIF GPP anomalies.   
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 E. Amazon NAf SAf Tr.Asia SE.Asia 
Rain -0.05 -0.21 0.18 0.11 -0.42 

Surface 
temperature 

0.40 0.09 0.17 0.06 -0.03 

Soil moisture -0.29 -0.51 -0.44 -0.84 -0.11 

 

Table A1 Normalized linear fitting coefficients for the independent variables of the MERRA2 rain, surface temperature, and 

soil moisture used to fit the NBE anomalies (Figure 5) for the regions defined in Figure 3a, 2014—2023, inclusively. The 750 

largest coefficient for each region is highlighted.  
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Region Rain Temp Soil Moisture VPD GOSIF GPP 
E.Amazon <0.01 0.34 0.31 0.01 0.02 

NAf <0.01 0.06 0.51 0.24 0.03 

SAf <0.01 0.06 0.13 0.05 0.66 

Tr. Asia <0.01 0.01 0.32 0.01 0.44 

SE.Asia <0.01 0.02 0.07 0.15 0.62 

 

Table A2 Permutation importance for using variables of the MERRA2 rain, surface temperature, and soil moisture, VPD, 755 

and GOSIF GPP to fit the NBE anomalies (Figure 5) for the regions defined in Figure 3a, 2014—2023, inclusively. The 

largest contributor for each region is highlighted.  
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Appendix B 

Sensitivity experiments 760 

To test the robustness of our results, we report the results from other calculations in which we alter one aspect of the 

inversion.  The experiments are described in Table B1. Text in bold denotes the change from our control run (CTRL) 

 

Experiment Wind fields  Observation Prior flux 
CTRL MERRA2 Surface CO2 data  

(113 sites of the Obspack 

data collection)  

OCO-2 XCO2 data over 

land.   

Monthly ODIAC Fossil Fuel Emissions 

Monthly Takahashi Ocean flux climatology (scaled) 

3-hourly CASA Biospheric flux 

Monthly fire emission (GFED v4.0) 

GEOSFP GEOSFP Surface CO2 data  

(113 sites of the Obspack 

data collection)  

OCO-2 XCO2 data over 

land.  

Monthly ODIAC Fossil Fuel Emissions 

Monthly Takahashi Ocean flux climatology (scaled) 

3-hourly CASA Biospheric flux 

Monthly fire emission (GFED v4.0) 

LNLGOGIS MERRA2 Surface CO2 data  

(113 sites of the Obspack 

data collection)     

OCO-2 XCO2 data over 

land.  

OCO-2 XCO2 data over 
ocean  

Monthly ODIAC Fossil Fuel Emissions 

Monthly Takahashi Ocean flux climatology (scaled) 

3-hourly CASA Biospheric flux 

Monthly fire emission (GFED v4.0) 

SIB3-JENA MERRA2 Surface CO2 data  

(113 sites of the Obspack 

data collection)  

OCO-2 Land data. 

OCO-2 XCO2 data over 
ocean 

Monthly ODIAC Fossil Fuel Emissions 

Monthly Jena Ocean flux climatology  
3-hourly SiB3 Biospheric flux 
Monthly fire emission (GFED v4.0) 

 

Table B1 Configurations of our control run and three sensitivity experiments. Text in bold denotes the change from our 

control run (CTRL) 765 

 

The GEOSFP inversion is driven by GMAO GEOS-FP meteorological analyses, based on a convection scheme that is 

different from the one used in MERRA2 reanalysis, which we use in our control experiment (CNTRL). For the LNLGOGIS 

inversion, we use additional OCO-2 XCO2 sun-glint retrievals collected over the oceans. The SIB3-JENA inversion includes 

alternative a priori estimates for sea–air CO2 fluxes based on CO2 observations (Rödenbeck et al., 2022) and for biosphere-770 

atmosphere fluxes from the SiB3 model simulation (Baker et al., 2008). 

 

 

Formatted: Font: (Default) +Headings (Times New Roman)

Formatted: Font: (Default) +Headings (Times New Roman)

Formatted: Font: (Default) +Headings (Times New Roman)

Formatted: Font: Italic

Formatted: Subscript



29 

 

Figure B1 compares the monthly a posteriori net CO2 flux estimates, 2014-2024, from our control and the three sensitivity 

experiments over four TransCom-3 regions, representative of three different latitude ranges: tropical South America, tropical 775 

Asia, temperate Eurasia, and South Africa. The a posteriori estimates are very similar, but we find significant regional 

differences for some months.  For example, GEOSFP results in smaller emissions from Temperate Eurasia during winter 

months (Fig. B1c) and including OCO-2 oceanic glint data results in larger seasonal cycles over Tropical South America 

(Fig. B2d).  As a result, the two inversions that use the ocean data (LNLGOGIS and SIB3-Jena) show net annual emissions 

from Tropical South America that are 0.1-0.22 PgC/yr lower than the control run.    780 

 

 

Figure B1:  Monthly regional flux estimates by four inversion experiments (CNTRL, GEOSFP, LNLGOGIS and SIB3-

JENA) over four TransCom-3 regions: a) Tr. SAm (Tropical South America), b) Tr.As (Tropical Asia), c) TEr (temperate 

Eurasia), and d) Saf (South Africa).  The uncertainties for a priori and a posteriori estimates from the inversions are denoted 785 

by vertical lines, and shaded envelopes, respectively.   

 

Figure B2 shows that the corresponding year to year changes in the natural flux changes between 2022 and 2023, associated 

with our main conclusion, are remarkably similar over almost every TranCom-3 land region. The ocean estimates appear to 

depend on using the ocean glint measurements. The two inversions that assimilate only OCO-2 land data (CNTRL and 790 

GEOSFP) absorbed 0.4-0.45 PgC/yr less carbon between 2022 and 2023 while the two inversions that also use the sun-glint 
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measurements (LNLGOGIS and SIB3-JENA), and use a different ocean a priori show little change in the ocean net flux 

between the two years. 

 

Figure B2: Changes in a posteriori net biosphere exchange flux estimates (2023 minus 2022) over TransCom-3 regions, 795 

estimated by four experiments (Table B1). Vertical lines denote a posteriori uncertainties. 

 

Figure B3 compares the correlations between regional CO2 net biospheric exchange (NBE) flux anomalies and anomalies in 

environment variables between 2014 to 2023. The NBE flux anomalies for tropical South America for our control and the 

three sensitivity calculations (Table B1) show strong correlations (> 0.5 and a p value < 0.1) with temperature and soil 800 

moisture change.  The NBE flux anomalies are also strongly correlated with changes in MODIS EVI and GOSIF GPP 

anomalies. NBE flux anomalies for tropical Asia have similarly strong correlations with MODIS EVI, GOSIF GPP, and soil 

moisture, but comparatively less correlated with surface temperature anomalies. Australian NBE flux anomalies show a 

strong correlation with EVI, GPP, VPD, and precipitation anomalies, but temperature anomalies are much less important.  

Generally, we find that all four inversions show consistent results, with differences in correlation coefficient typically within 805 
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0.1. A numerical summary of these results is reported in Table B2. Clearly, our focus has been on subcontinental scales, and 

we acknowledge this will mask heterogenous responses on smaller scales. These smaller scales are better examined with in 

situ data. 

 

     810 

Figure B3: Pearson correlations, r, between regional a posteriori estimates of net biosphere CO2 exchange anomalies and 

anomalies of environmental variables, including (a) MODIS EVI, (b) GOSIF GPP, (c) MERRA2 soil moisture, (d) 

MERRA2 surface temperature, (e) MERRA2 VPD, and (f) MERRA2 precipitation. Correlations with p value > 0.1 (less 

significant) are denoted by black hatching line.  
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 E. Amazon 
(range) 

NAf 
(range) 

SAf 
(range) 

Tr.Asia 
(range) 

SE.Asia 
(range) 

Rain -0.05  

(-0.06, -0.01) 

( 

-0.21 

(-0.32, -0.17) 

 

0.18 

(-0.03, 0.18) 

 

0.11 

(-0.01, 0.30) 

 

-0.42 

(-0.42, -0.36) 

 

Surface 
temperature 

0.40 

(0.38, 0.48) 

 

0.09 

(0.01, 0.24) 

 

0.17 

(0.17, 0.32) 

 

0.06 

(-0.06, 0.06) 

 

-0.03 

(-0.03, 0.25) 

 

Soil moisture -0.29 

(-0.46, -0.29) 

 

-0.51 

(-0.56 -0.23) 

-0.44 

(-0.47, -0.40) 

 

-0.84 

(-0.86, -0.78) 

 

-0.11 

(-0.11,0.27) 

 

 815 

Table B2: As Table A1 but with values reported as a range from the control and the three sensitivity inversions.  
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Appendix C 
 

A posteriori net biosphere CO2 flux estimates for 2024 820 

 

We extended our control inversion experiment to the end of 2024, taking advantage to access to the necessary data during 

the review process. Figure C1 shows the difference of a posteriori NBE CO2 flux estimates between 2024 and our baseline 

year 2022 alongside the difference between 2023 and 2022. Figure C2 shows the same data but broken down into 

TransCom-3 regions. We find that tropical land absorbed less carbon in 2024 than during 2022, with loci over South 825 

America, Africa, and to a lesser extent Southeast Asia.  

 

Our calculations correspond to a net global annual CO2 emission of 6.84±0.80 PgC/yr, equivalent to global CO2 growth rate 

of 3.28±0.30 ppm for 2024. During 2023 and 2025, we estimate from OCO-2 data that atmospheric levels of CO2 increased 

by 6.36 (3.09+3.28) ppm compared to 6.48 (2.76+3.72) ppm inferred from the NOAA surface network.   830 

 

 

Figure C1:  Changes in annual mean a posteriori NBE flux estimates from our control inversion between (a) 2022 and 2023 

and between (b) 2022 and 2024.  

Formatted: Font: Bold, Italic

Formatted: Font: Bold

Formatted: Font: Bold, Subscript

Formatted: Font: Bold

Formatted: Font: Italic

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

Formatted: Font: Italic



34 

 

 835 

 

 

Figure C2: Changes in annual mean a posteriori NBE flux estimates from our control inversion between 2022 and 2023 and 

between 2022 and 2024 for TransCom-3 regions. Vertical lines denote a posteriori uncertainties. 

 840 Formatted: Justified, Line spacing:  1.5 lines
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