500-thousand-year-old basal ice at Skytrain Ice Rise, West Antarctica, estimated with the 36 Cl/ 10 Be ratio - supplementary information

Niklas Kappelt, Raimund Muscheler, Eric Wolff, Marcus Christl, Christof Vockenhuber

Figure S1 visualises the uncertainty of age estimates, which results from the measurement uncertainty of the δ^{18} O detrended 36 Cl/ 10 Be ratio (shown as vertical error bars) and the uncertainty of the present-day value, represented by the shaded area around the decay curve.

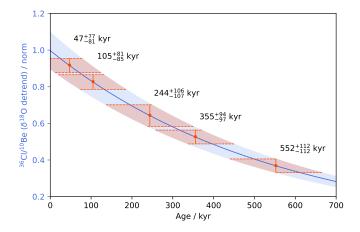


Figure S1: Age estimates for five deep samples of the Skytrain ice core based on the δ^{18} O detrended 36 Cl/ 10 Be ratio.

Figure S2 shows the $\delta^{18}{\rm O}$ detrended and decay corrected $^{36}{\rm Cl}$ concentration with a standard deviation of 17 % of the mean. The resulting age estimates for deeper samples lack the production rate correction provided by $^{10}{\rm Be}$ concentrations and have larger uncertainties than estimates with the $^{36}{\rm Cl}/^{10}{\rm Be}$ ratio, but suggest older ages for four out of five samples.

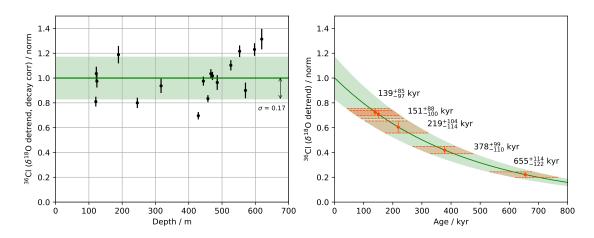


Figure S2: Age estimates for five deep samples of the Skytrain ice core based on the $\delta^{18}{\rm O}$ detrended $^{36}{\rm Cl}$ concentration.