Reviewer #2

#RC2.1:In this paper, the authors propose a geostatistical framework which relies on a
high-resolution regional climate model (RCM) to provide information on the precipitation
climatology as well as on the anisotropy of the departures of observations from that
climatology. The focus of the paper is on documenting, in particular through two case
studies, the added value of the RCM for estimating the anisotropy of the covariogram. A
statistical analysis of the performance of the method for 786 events is also presented.
The experiment is well designed, and allows the authors to assess separately the impact
of using an anisotropic covariogram and the impact of estimating the anisotropy using
the RCM. A comparison against a reference interpolation method (SPAZM) is also
proposed.

We thank the reviewer for this positive feedback.

#RC2.2: The introduction reads well but fails to mention a relevant paper by
Khedhaouiria et al. (2022) published in NPG which proposed a method based on an
ensemble of NWP models to estimate the anisotropy of innovations for optimal
interpolation of precipitation.

Thank you for pointing out this missing article. We add L38: “Numerical weather
prediction ensembles have also been explored (Khedhaouiria et al., 2022) to infer
background error covariances in data assimilation approaches”.

#RC2.3: For the section on domain and data, | suggest including a subsection on the
study period. The study period is mentioned in the section on COMEPHORE, but it
would be simpler to add a section dedicated to the study period after the section on
meteorological data, because the study period is constrained by the availability of
COMEPHORE and AROME. A subsection on observed data should also be added. The
rain gauge network is currently described in the study domain subsection.

We agree with the reviewer that more subsections are needed in the section on domain
and data. We propose to move L69-73 into a separate subsection named “Rain gauge
observations”. We also include a fourth subsection called “study period” with the
following text: “The study period ranges from 1982 to 2018, which corresponds to the
availability of AROME simulations. 786 precipitation events (nearly 20 events per year),
defined as the days with at least 50 mm recorded at a minimum of five rain gauges, are
selected”.

#RC2.4: In the sub-section describing the CP-RCM AROME, | would like the authors to
provide more details on the model configuration, more specifically w.r.t. to the ability of
the system to represent specific events and not only the climatology of precipitation over
the domain. This is important since AROME is used later to inform the interpolation
method on the anisotropy of the covariogram, but not on the amount of precipitation
associated with the event. Figure 4.6 and 4.8 show that there are significant
discrepancies between COMEPHORE and AROME precipitation fields. Is this
happening because CP-RCM AROME is not sufficiently constrained by ERA-Interim or is



it inherent to the predictibility of precipitation events in this region? Would we expect a
similar degree of agreement for a short-term forecast of precipitation based on AROME?
Is ERA-Interim only used as boundary conditions or is some form of spectral nudging
used to prevent RCM model drift? How far is the study domain from the ALADIN and
AROME boundaries? Given the model configuration, do we expect AROME to only be
able to provide information on the precipitation climatology but yet be able to provide
useful information on the anisotropy of the precipitation structures? Why would that be
the case?

We agree with the reviewer that more details are needed on AROME configuration. We
modify the AROME subsection:

“‘“AROME simulations (Caillaud et al., 2021) are produced with the convection-permitting
RCM AROME in its NWP configuration cycle 41t1, which uses 60 vertical levels from 10
m to 1 hPa, including 21 levels below 2000 m to better resolve the lower-tropospheric
dynamics over complex Alpine terrain. In this CP-RCM configuration, deep convection is
explicitly resolved, while only shallow convection remains parameterized. The AROME
domain over the Alpine region lies approximately 300—400 km from the lateral
boundaries, which are forced by hourly outputs from the CNRM-ALADIN RCM (Nabat et
al., 2020). ALADIN uses 91 vertical levels together with spectral nudging to ensure
consistency with the large-scale circulation imposed by the ERA-Interim reanalysis (Dee
et al., 2011). AROME simulations are available at the hourly timescale for the Alpine
region, as described in the Flagship Pilot Study of the Coordinated Regional Climate
Downscaling Experiment (CORDEX-FPS,Fantini et al. (2018)), at 2.5 km spatial
resolution, and cover the 1982—-2018 years. Hourly outputs are aggregated to a daily
timescale.

Previous studies (Ban et al., 2021; Caillaud et al., 2021; Monteiro et al., 2022) show that
AROME provides a more realistic representation of intense precipitation than its driving
model ALADIN, despite persistent biases. In a Lagrangian evaluation over the
Mediterranean region, which includes our study domain, Caillaud et al. (2021) report that
AROME simulations reproduce well the location, intensity, frequency, and interannual
variability of heavy precipitation events. Remaining biases are mostly due to the model,
rather than insufficient constraint from ERA-Interim. In the AROME model, very intense
daily amounts (> 200 mm day™) tend to be underestimated, the spatial extent of intense
convective cells is overestimated, and their propagation speed is slightly too high. These
biases could be reduced by further refining horizontal and vertical resolution and by
improving the parameterization of residual shallow and dry convection.

Unlike a short-term NWP forecast, AROME-climate simulations do not assimilate
observations such as radar reflectivity; therefore, they are not expected to reproduce
individual events exactly, but rather their typical spatial structures. Consequently, even if
absolute precipitation amounts may be biased, the spatial organization and anisotropy of
intense precipitation systems, key for informing the anisotropic covariogram, may be
sufficiently well captured by AROME to support our interpolation framework.”



#RC2.5: In the methods section, the authors choose to consider observed precipitation
of less than 0.5 mm as zeros for the purpose of normalizing the precipitation field. How
was this number chosen? Are results sensitive to this choice? The back-transformation
introduces a bias, which the authors do not take into account (see Van Hyfte et al., 2023,
Tellus A). Can the authors quantify the impact of ignoring this source of bias on their
analysis?

We thank the reviewer for this remark. 0.5 mm is a standard choice in censoring daily
precipitation (e.g Naveau et al. 2016). Results are not very sensitive to this choice.
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The above figure highlights the CRPS score with the arANISO model. A too high
threshold (1 mm) leads to bias for moderate precipitation (1-5 mm, 5-10 mm), and a too
low threshold (0.1 mm) degrades the estimation of 0-1 mm. 0.5 mm corresponds to a
good compromise.

We used a Quantile-Quantile mapping to transform and back-transform precipitation. We
did not use the traditional Box Cox-transformation, that is a non linear transformation
and therefore introduces a bias in the back-transformation step. The uncertainty of our
transformation/back-transformation step only lies in the estimation of the gamma
parameters. We discuss this idea in the subsection 5.3.

#RC2.6: The authors chose 786 precipitation events to evaluate the proposed method. It
would be interesting to know more about the type of events that were selected. Please
categorized them by weather regime and season. In particular, can you identify events
for which orographic intensification is expected and events for which snow was observed
at higher elevations? Do we expect the performance and ranking of the methods to vary
depending on the type of event ?



Thank you for this suggestion. The 786 precipitation events selected in this study are
predominantly associated with southerly atmospheric flow and central depression
patterns, for which strong orographic intensification is typically expected over the region.
During winter, some of these events also include snowfall at high elevations.

To assess whether the performance of the interpolation methods varies with event type,
we stratified the 786 events according to the eight weather regimes defined in
Garavaglia et al. For each regime, we computed the CRPS. Overall, the relative ranking
of the methods is consistent across weather regimes. The rgANISO model provides a
better covariance estimation than rglSO for regime 3 (oceanic flow). However, this
improvement is not observed for regimes 4 and 7, which correspond to the heaviest
precipitation events. Across all regimes, arANISO remains the best-performing model,
suggesting that the superiority of this method is robust to meteorological conditions.

We propose to add at L70:

“Most of the 786 precipitation events arise from southerly atmospheric flow and central
depression patterns, where strong orographic intensification is expected. Some winter
events also include snowfall at high elevations.”

We also include a figure of CRPS by weather regime in the Supplementary Material.
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#RC2.7: In the results section, the authors should present and discuss the covariograms
that are obtained for each of the two case studies. The 2D covariograms derived from
AROME are presented in Figure 4.8, but that does not tell us how well it fits the
experimental covariogram. Furthermore, no information is provided on the fitted
covariograms for the other three experiments (rgIlSO, rgANISO and arlSO). This is
important, in particular to show that the choice of an exponential covariogram is
appropriate based on the data. Did the authors check that the exponential variogram
provided a good fit for the 786 events considered in this study?

We thank the reviewer for this comment. We replace Figure 8 by the below figure.



(a) Empirical Isotropic Anisotropic

100 -100 0 100

45.5°N 1004
P (mm)
0-4
4-10
10-21
21-29 1004
29-36
36-47

45.0°N

sebiney urey

Gamma

44.5°N 20

15
1.0
05
0.0

dy (km)

47-52
52-58 1004
58-66
66-76
76-81
81-95

44.0°N

43.5°N

o
ANOYY

43.0°N -1004

-100 0 100 -100 0
dx (km)

Empirical Isotropic Anisotropic

‘ Gamma

45.5°N 1004

P (mm)
0-1
1-6
6-13
13-19 1004
19-23
23-29
29-34
34-42 1004
42-59
59-80
80-91

45.0°N

safiney urey

44 5°N

dy (km)

44.0°N

43.5°N

)
3NOHY

91-137

43.0°N -1004

2°E 3E 4°E 5°E -100 0 100 -100 0 100 -100 0 100
dx (km)

Moreover, we make visual inspections of variogram fitting.
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Here are the empirical variogram and the fitted exponential and Matérn variograms for a
given day. The exponential variogram fits the empirical one well, benefiting from the
large number of estimation pixels used as virtual gauges. However, the Matérn
variogram appears to better capture the short-range spatial variability, providing a
smoother representation than the exponential variogram. A cross-validation would be
needed to assess the best variogram for precipitation interpolation.

#RC2.8: In the discussion, the authors address many limitations of the method, in
particular the fact that it would be difficult to apply on a larger domain. This is an
important limitation, because it would seem impractical to deploy such a complex
interpolation method operationally if it cannot be applied on a large domain. | encourage
the authors to propose a workflow that would allow the application of the method on a



larger domain. Could it not be applied watershed by watershed? Would the cost of doing
so be prohibitive? Are there other solutions?

We thank the reviewer for raising this important point. We agree that the applicability of
the method over a large domain is a key consideration for operational use, and that the
current implementation is best suited for moderately sized regions. Extending the
approach to larger and topographically complex domains indeed requires additional
methodological considerations.

A first practical solution would be to apply the method watershed by watershed, or more
generally to divide the study area into climatically homogeneous sub-regions. This would
ensure that the covariance structure remains locally stationary while preserving
hydrologically coherent areas. Simulations would remain consistent within each major
watershed, which is often sufficient for hydrological applications. The main challenge is
the definition of appropriate sub-region boundaries and areas, as overly small regions
may lose spatial coherence while overly large regions may violate stationarity
assumptions.

A more robust solution for large-scale applications would involve adopting non-stationary
covariance models. Some geostatistical approaches include non-stationary covariance:
(i) geographical coordinate deformation to map complex terrain into a space where
covariance is closer to stationary, or

(ii) locally stationary covariance models in which parameters evolve spatially but do so
smoothly across the domain.

Such approaches would allow the method to be applied on much larger and more
heterogeneous domains without the need to arbitrarily define sub-regions, but with
heavier computing times.

We have added the following text at L330:

“Extending the method to larger and topographically complex domains would require
non-stationary covariance. A practical option is to partition the region into climatologically
homogeneous sub-regions, ideally preserving major watershed boundaries to maintain
hydrological consistency. Alternatively, a more scalable solution is to incorporate
non-stationary covariance structures, for example, through geographical coordinate
deformation (Youngman, 2023) or locally stationary covariance models (Paciorek and
Schervish, 2006; Risser and Calder, 2017), which would allow spatial dependence to
evolve smoothly across the domain. These approaches would make the method suitable
for operational applications over larger domains.”

#RC2.9: Although evaluating the method on significant events (where more than
50mm/day was observed by at least 5 gauges), in practice one would likely want to
apply the method for all days. Did the authors assess how well the method performs for
less intense precipitation events?



We thank the reviewer for this remark. In this study, we compare covariance estimation
on a collection of 786 daily events, and compute evaluation metrics only on the stations
exceeding 50 mm/day. However, we agree that in practical applications the method

would need to perform well across a full range of precipitation intensities.

We provide in the below figure the metrics for the same set of 786 daily events, including
additional precipitation intensity classes (1-20 mm, 20-50 mm). The ranking is similar for
the three precipitation classes considered, indicating that the conclusions drawn for

intense precipitation events generalize to lighter precipitation.

We also include a figure of CRPS by precipitation intensity class in the Supplementary

Material.
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#RC2.10: The authors also mention in the discussion the possibility of applying the
method using numerical weather forecasts rather than using a RCM. | think this is worth
discussing in more details. In particular, | would expect the precipitation field of a



short-term forecast to correlated better with observed precipitation, and thus it might be
possible to infer more from the forecast than simply the anisotropy of the precipitation
field. Furthermore, one might have access to an ensemble of weather forecasts.

Thank you very much for this remark. We agree that numerical weather forecasts (NWP)
should exhibit a higher correlation with observed precipitation than CP-RCM simulations,
due to the assimilation of past radar reflectivity. Consequently, it is likely that NWP
forecasts could provide not only the anisotropy of the precipitation field, but also
information on precipitation intensity and spatial variability. Moreover, the provision of
ensemble NWP forecasts would allow us to quantify additional interpolation uncertainty.

We have added at L334:

“‘NWP assimilate past radar reflectivity and should therefore display a higher correlation
with observations than CP-RCM simulations. As a result, NWP may allow us to extract
precipitation intensity, spatial patterns and spatial variability, while quantifying
interpolation uncertainty through conditional simulations and the use of ensemble NWP
forecasts. A natural follow-up would be to use NWP forecasts as both drift and
covariance structures within a kriging-with-external-drift framework (e.g. Velasco 2009,
Schiemann 2011)”

#RC2.11: Finally, one important aspect of precipitation interpolation that is not discussed
in this paper is the issue of quality control. When interpolating precipitation observations,
in particular in complex terrain, the issue of quality control is central because it can be
very difficult to identify problematic observations based on neighboring stations, given
the impact of orography on precipitation amounts over short distances. | understand that
this issue might be out of scope for this paper, but | wonder if it was an issue for the
authors when applying the method over 786 events. Was the observed data quality
controlled? How? Could the presence of outliers impact the results of your analysis?
Could your method be used to improve the quality control process through the use of
cross-validation? This would likely be crucial to address before the method can be used
for real-time applications.

We agree with the reviewers that quality control is central before providing gridded
precipitation analysis, especially over a long period where rain gauges can change from
locations and measurement devices, which can cause temporal discontinuity. Moreover,
in complex terrain, strong spatial gradients limit the ability to identify outliers (sensor
malfunctions) from neighboring stations.

The observed data was not quality control in this study, which is beyond the scope of this
study. Because we do not work with climatological statistics, temporal discontinuity is not
a major issue. However, outliers may still occur and could affect the interpolated fields.
Such outliers may influence some local results, but we do not expect them to alter the
conclusions of this study.



Before applying the method in an operational or real-time context, we will consider a
quality control procedure, including a spatial anomaly analysis to identify outliers that
exceed physically plausible differences from nearby stations under similar terrain
characteristics, followed by an homogeneity test such as the Standard Normal
Homogeneity Test (SNHT; Alexandersson 1986). The R package climatol encompasses
those corrections.

Moreover, missing values are commonly filled using a linear regression with nearby rain
gauges as predictors. Our approach could be used as a substitute of the linear
regression, providing a value, and the associated uncertainty.

We propose to add L72: “The observed data was not quality control in this study.
Because we do not work with climatological statistics, temporal discontinuity is not a
major issue. However, outliers may still occur and could affect the interpolated fields.
Such outliers may influence some local results, but we do not expect them to alter the
conclusions of this study. Before applying the method in an operational or real-time
context, a quality control procedure is needed, including a spatial anomaly analysis to
identify outliers that exceed physically plausible differences from nearby stations under
similar terrain characteristics, followed by an homogeneity test such as the Standard
Normal Homogeneity Test (SNHT; Alexandersson 1986)”.
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