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Abstract. Glaciers are a crucial freshwater resource and a key indicator of climate change. However, tracking annual 

changes in glacier inventories remains a significant challenge due to persistent cloud cover and seasonal snow accumulation. 10 

The increasing availability of satellite data, particularly from the Sentinel series, has greatly enhanced glacier monitoring 

capabilities. In this study, we developed an ensemble learning-based random forest classifier using data from Landsat, 

Sentinel-1, Sentinel-2, and NASADEM to automatically delineate glacier extents in southeastern Tibet from 2016 to 2022, 

achieving the first annual-resolution glacier inventory in the region. To extend the time series to 2000, we manually 

constructed glacier inventories for 2000, 2005, 2010, and 2015 by integrating a three-year dataset centered on each target 15 

year, addressing the limitations posed by the absence of early Sentinel data. Our results reveal a consistent decline in glacier 

area, from 7898.61 ± 652.15 km2 in 2000 to 6317.13 ± 592.57 km2 in 2022, with an average annual loss of 85.03 ± 7.60 

km2/y. Notably, the retreat rate accelerated after 2010, increasing from 57.72 ± 16.81 km²/y (2000–2010) to 97.72 ± 17.67 

km²/y (2010–2022). By integrating satellite altimetry data, we calculated the glacier mass balance using dynamically updated 

glacier areas, resulting in an annual mass loss 6.20 ± 1.16 Gt/y. Correlation analysis between glacier thickness and area 20 

changes showed a strong positive relationship (R2 = 0.89, p < 0.001). This study provides a novel approach to high-temporal-

resolution glacier assessments by incorporating annual dynamic glacier areas into mass balance calculations. The improved 

accuracy of these estimations offers a refined understanding of cryosphere changes in southeastern Tibet, underscoring the 

urgency of monitoring glacier dynamics in response to climate change. 

1 Introduction 25 

As a vital component of the cryosphere (Cogley et al., 2010), glaciers are among the best natural indicators of climate 

change and play a crucial role in regulating global sea levels and water resources (Zemp et al., 2019). Glacier mass loss 

accounts for approximately 20% of the total observed sea-level rise (Zemp et al., 2025), while the Greenland Ice Sheet 

contributes about 17% (Otosaka et al., 2023). The Tibetan Plateau, known as the "Roof of the World" and the "Water Tower 

of Asia" (Immerzeel and Bierkens, 2012; Lu et al., 2005), contains the highest concentration of glaciers outside the polar 30 

regions (Yao, 2008). It is the source of many major rivers in China and a critical contributor to surface runoff (Lutz et al., 
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2014; Smith and Bookhagen, 2018; Pritchard, 2019). Global changes significantly affect regional climate, rivers and lakes 

evolution, and the formation of geological hazards (Immerzeel et al., 2013; Richardson and Reynolds, 2000; Kääb et al., 

2018). The southeastern Tibetan Plateau, in particular, exhibits the most pronounced glacier retreat compared to other areas 

of the plateau (Yao et al., 2012; Ye et al., 2017). Strongly influenced by the Indian monsoon, these glaciers exhibits high 35 

accumulation and ablation rates, making it one of the main regions for maritime glaciers in China (Su and Shi, 2002). These 

glacier changes are highly sensitive to climate variability, underscoring their role as critical indicators of climatic shifts 

(Yang et al., 2010b; Sakai and Fujita, 2017) 

Satellites imagery-based glacier area mapping can be achieved by two main approaches: visual interpretation and computer-

based automated classification. Visual interpretation offers high accuracy and ease of use but requires substantial manpower 40 

and resources (Alifu et al., 2015; Hall et al., 1992). Computer-based automated classification methods for remote sensing 

data include the Normalized Difference Snow Index (NDSI), band ratio methods (Liu et al., 2015), and supervised and 

unsupervised classifications (Pope and Rees, 2014). Among these, NDSI is a widely used method for extracting glacier and 

snow cover. It utilizes the ratio of the difference to the sum of the green band and shortwave infrared band, leveraging the 

high reflectance of glacier in the visible spectrum and their low reflectance in the near-infrared spectrum (Hall et al., 1987; 45 

Raup et al., 2007). Huang Lei et al. (Huang et al., 2021) proposed a “multi-temporal minimum NDSI composite” method 

based on Landsat remote sensing images, using the Google Earth Engine cloud platform to extract bare ice areas in the High 

Mountain Asia (HMA) region from 1990 to 2018, and analysing the spatiotemporal changes in glacier coverage. Similarly, 

Keshri et al. (2009) (Keshri et al., 2009) systematically identified debris-covered glaciers using ASTER data by integrating 

three normalized indices. their method demonstrated the effectiveness of combining these indices in distinguishing snow, ice, 50 

and debris-mixed areas. While the normalized index method is highly efficient and accurate for glacier extraction, traditional 

threshold selection is manual and lacks automation. 

The recent surge in machine learning algorithms has expanded their applications in glacier remote sensing. Y. Lu et al. (Lu 

et al., 2021) proposed an composite classification model for glacier regions by combining the advantages of random forest 

and convolutional neural networks (CNN). Alifu et al. (Alifu et al., 2020) conducted a comparative study of six classifiers, 55 

including K-nearest neighbors (KNN), support vector machines (SVM), gradient-boosting decision trees (GBDT), decision 

trees (DT), random forests (RF), and multilayer perceptron (MLP). They found that the RF classifier achieved the highest 

classification accuracy (97%) in effectively retrieving debris-covered glacier information. Xie Fuming et al. (Xie et al., 

2020)used Landsat TM and OLI optical images on the Google Earth Engine platform, employing Otsu thresholding 

combined with machine learning algorithms to extract debris-covered glaciers in the Hunza Basin, Karakoram Mountains. 60 

Their approach achieved a Kappa coefficient of 0.94 ± 0.01 and an overall classification accuracy of 95.5 ± 0.9%. These 

studies highlight the promising applications of machine learning in glacier mapping. Ensemble learning methods, 

particularly random forest, have consistently demonstrated superior performance. 
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Cloud cover and snow presence are two main challenges for the automatic extraction of glacier information from satellite 

imagery. Summer satellite images are generally preferred for identifying glaciers, as most seasonal snow has melted by this 65 

time. However, some glacier in the Tibet areas experience frequent summer snowfall and persistent cloud cover, 

complicating this process. Although clouds can be identified in single images through the combination of multispectral 

information, visual interpretation alone makes it difficult to merge cloud-free images pixel by pixel. At the same time, the 

glacial ablation zone in the region is covered by a large number of surface moraines (Yang et al., 2010a), and the spectral 

information of surface moraines and bare soil are similar and easily misclassified. Consequently, generating high temporal 70 

resolution glacier inventory in southeastern Tibet remains a significant challenge. 

The most recent comprehensive glacier inventory for southeastern Tibet was conducted by Ye et al (Qinghua, 2020).. they 

used 210 scenes of Landsat 8 OLI multispectral remote sensing data (2013–2018), combined with SRTM DEM V4.1 data, 

Google Earth imagery, and HJ1A/1B satellite images from different seasons of the same year. This work also incorporated 

data from China’s first and second glacier inventories to produce the 2017 Tibetan Plateau Glacier Inventory (TPG2017). 75 

Additionally, the team also created glacier inventories for the Tibetan Plateau in 1976, 2001, and 2013 using the same 

method (Qinghua, 2019; Wu Yuwei, 2018; Ye et al., 2017).  

Other Glacier inventories data relevant to southeastern Tibet include the Southeastern Qinghai–Tibet Plateau Glacier 

Inventory (SEQTPGI), created by Ke et al. (Ke et al., 2016) using Landsat and ALOS SAR images (2011–2013), as well as 

SRTM DEM data. Broader datasets include the World Glacier Inventory (WGI), Randolph Glacier Inventory (RGI) 80 

(Consortium, 2023), Hindu Kush Himalayan (HKH) (Bajracharya and Shrestha, 2011; Bolch et al., 2012), Glacier Area 

Mapping for Discharge from the Asian Mountains (GAMDAM) (Nuimura et al., 2015), MODIS Persistent Ice (MODICE) 

(Painter et al., 2012), and the first and second Chinese Glacier Inventories (CGI1 and CGI2) (Shi et al., 2009; Guo et al., 

2015).  

Despite these efforts, recent changes in glacier area remain poorly understood. Most datasets represent single-period 85 

observations with varying acquisition seasons and processing methods, complicating reliable comparisons across studies, 

epochs, and regions for change analysis. Automated annual-resolution glacier mapping has not yet been achieved. However, 

the rapid development of open-access datasets on the Google Earth Engine (GEE) (Gorelick et al., 2017) platform and the 

increasing availability of free or low-cost cloud computing infrastructure offer promising opportunities for creating high-

temporal-resolution glacier inventories. 90 

In the past two decades, three primary satellite-based approaches have been developed to measure changes in glacier mass 

(Taylor et al., 2021; Bamber and Rivera, 2007; Berthier et al., 2023). These approaches include digital elevation model 

(DEM) differencing from stereo-imagery and synthetic aperture radar interferometry, repeat radar and laser altimetry, and 

space gravimetry. These approaches have recently been extensively applied to maritime glaciers within the southeastern 

Tibet, enabling the acquisition of glacier mass balance data at various temporal and spatial scales (Wang et al., 2021; Yi et 95 
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al., 2020; Zhou et al., 2018; Wang et al., 2018). The conventional method of using altimetry satellites to ascertain the 

elevation of glacier surfaces for the purpose of calculating glacier mass change typically utilizes a single glacier boundary. 

This approach, however, fails to consider the contribution of dynamic glacier area to glacier mass change. 

The objectives of this study are: (1) to develop an automated approach for extracting glacier boundaries using multi-source 

data on the GEE platform; (2) to generate annual glacier boundary for southeastern Tibet; and (3) to analyse glacier changes 100 

and glacier mass balance considering dynamic variations in glacier area. 

2 Study area and data 

2.1 Study area 

Southeast Tibet lies in the southeastern part of the Tibetan Plateau, with latitudes ranging from 27° to 32°N and longitudes 

from 91° to 99°E, as shown in Figure 1 (Li Xingdong, 2022; Zhao et al., 2022), The region is at the junction of the Tibetan 105 

Plateau and the Yunnan-Tibet Plateau, including Tibet's Nyingchi, Sichuan's Garzê, Yunnan's Nujiang, Diqing, and Tibet's 

Chamdo Prefectures. The total area of the region is about 152,000 square kilometers. 

 

Figure 1 Study area, the image presents remote sensing data, including the study area, city boundaries, and the RGI 7.0 glacier 

inventor (Consortium, 2023) 110 

Southeast Tibet is located in a plateau area with complex topography and overlapping mountains. Mountain peaks generally 

exceed 5,000 meters, with rivers deeply cutting through gorges, resulting in significant elevation variations. 

Southeast Tibet is an important glacier distribution area in China, with abundant glacier resources. According to the second 

glacier inventory of China, the study area has a glacier area of approximately 10,000 square kilometers, comprising 6,712 

glaciers, with a total ice volume of 923.84 km³. Glacier area classification statistics show that in the southeastern Tibet, 115 

4,935 glaciers have an area of less than 1 km², accounting for 73.5% of the total number of glaciers; 1,623 glaciers have an 

area between 1 and 10 km², accounting for 24.2%, and 154 glaciers have an area greater than 10 km², making up only 2.3% 
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of the total number of glaciers. Most of the glaciers in southeastern Tibet are located between high mountain gorges and 

peaks, with elevations generally ranging from 4,000 to 6,000 meters. Southeastern Tibet is also a significant marine-type 

glacier accumulation zone, characterized by high accumulation and high ablation rates, making it particularly sensitive to 120 

climate change. Due to recent warming and reduced monsoon precipitation, glaciers in this region have accelerated their 

retreat since the 1990s, with a negative mass balance (Yang et al., 2010a; Sakai and Fujita, 2017). 

2.2 Data 

2.2.1 Landsat 

This study utilizes the Landsat-5, Landsat-7 (pre-2003), and Landsat-8 Surface Reflectance Tier 1 datasets, which are 125 

available in an analysis-ready format on GEE. These datasets provide reflectance data processed through calibration and 

atmospheric correction, enhancing the representation of surface features. They include visible (VIS; 400–700 nm), near-

infrared (NIR; 700–900 nm), and shortwave infrared (SWIR; 1400–2400 nm) bands, all with a spatial resolution of 30 m. 

Despite the 16-day revisit period of Landsat, image quality may be affected by cloud cover, seasonal snow, and sensor 

anomalies. Therefore, careful image selection is required. The primary method involves using all valid (Cloud score less than 130 

60) images from June to November within the study period on the GEE for statistical analysis and generating annual 

composite images. This approach mitigates the effects of cloud cover and seasonal snow on the results.  

2.2.2 Sentinel-2 

The Sentinel-2 mission consists of two polar-orbiting satellites in a single orbit: Sentinel-2A, launched in June 2015, and 

Sentinel-2B, which became operational in July 2017. The mission offers a wide coverage and a short revisit period, with data 135 

collected every 2–5 days. Both satellites are equipped with advanced multispectral sensors that provides 13 spectral bands, 

ranging from visible light and near-infrared to shortwave infrared, with varying spatial resolutions. This study uses data from 

the Sentinel-2 Surface Reflectance Tier 1 dataset, available in an analysis-ready format on GEE. 

2.3.3 Sentinel-1 

The Sentinel-1 satellite is a synthetic aperture radar (SAR) mission launched by the European Space Agency (ESA). This 140 

study utilizes the COPERNICUS/S1_GRD dataset, accessed through the GEE platform. The dataset offers high temporal 

resolution, with observation intervals of six days. The VV band, representing vertical-vertical polarization, offers high 

resolution and multi-temporal observations. The data remains reliable during precipitation and cloud cover, which can 

otherwise degrade data quality. In this study, the VV band data is used as supplementary data for training the classification 

model, thereby fully leveraging its resilience to cloud cover and other environmental obstructions. 145 
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2.2.4 NASADEM 

The National Aeronautics and Space Administration (NASA) released the National Aeronautics and Space Administration 

Digital Elevation Database (NASADEM), a high-resolution digital elevation model (DEM) created by integrating satellite, 

aerial, and ground measurement data (Jpl, 2020). NASADEM has a spatial resolution of 30 meters, global coverage, and 

elevation accuracy within 1 meter. NASADEM integrates data from NASA's ICE-Sat and ASTER satellites, SRTM, and 150 

NGA. Advanced processing and fusion algorithms are used to integrate and refine these datasets. The data undergoes several 

processes to generate a high-quality DEM. These include global seamless stitching, removal of height influences from trees, 

buildings, and other objects, and correction of elevation offsets caused by water reflections. In this study, the NASADEM 

dataset is used to calculate elevation, slope, aspect, and shadow of mountain within the study area. 

2.2.5 RGI 7.0 155 

The Randolph Glacier Inventory version 7.0 (RGI 7.0) is a globally consistent dataset of glacier outlines (≥ 0.01 km²), 

excluding the Greenland and Antarctic ice sheets. Developed under the GLIMS initiative, RGI 7.0 provides standardized 

glacier geometries, enabling large-scale analyses of glacier distribution, dynamics, and climate sensitivity. For this study, the 

glacier inventory of the study area was derived from GGI18, which was developed under the Glacier Area Mapping for 

Discharge from the Asian Mountains (GAMDAM) project as an updated and refined version of the earlier CGI15 inventory 160 

(Nuimura et al., 2015; Sakai, 2019). 

3 Methods 

The random forest algorithm was used to automatically identify glaciers by integrating spectral, topographic, texture, and 

radar data. The workflow, outlined in Figure 2, includes data preprocessing, feature extraction, feature analysis, random 

forest classification, and result merging. For the years 2000, 2005, 2010, and 2015, the methodology was slightly adjusted 165 

due to the absence of Sentinel data. In these cases, the model was constructed solely using Landsat and NASADEM data. 

Additionally, the input data were not restricted to the target year but also incorporated images from the preceding and 

following years to enhance robustness. Notably, we constrain the results using the RGI 7.0 bounds. 
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Figure 2 The workflow chart, which begins with the integration of Landsat 8 and Sentinel-2 data (Sentinel series data not 170 
introduced until after 2016), combined with NASADEM and Sentinel-1 data, following a series of data pre-processing steps. 

Twenty features—including spectral, texture, index, radar, topographic attributes, and sketching samples—are extracted to 

construct a random forest classifier. This results in the generation of two groups of glacier extraction results at the decision level. 

The final results are achieved through the amalgamation of these results. 

3.1 Data Preprocessing 175 

This study used all available images from June to November to generate composite images with minimal cloud and snow 

cover. This approach minimizes the influence of environmental factors on glacier extraction, ensuring more accurate and 

reliable glacier extraction. The preprocessing phase consists of three main stages: dataset selection, cloud filtering, and 

image synthesis. Dataset selection ensures only the most relevant summer images are included, cloud filtering removes 

cloud-affected regions, and image synthesis combines cloud-free images into a final composite. 180 

3.1.1 Dataset Selection 

The distinctive geographical position and climatic attributes of southeastern Tibet give rise to a considerable prevalence of 

cloud cover during the summer. After the glacier ablation season, the glacier and surrounding areas are least affected by 

snow. This study used all available imagery from Landsat-5/7/8, Sentinel-1, and Sentinel-2 data collected in the study area 

between June and November. 185 

3.1.2 Cloud Filtering 

The cloud removal algorithm (Gorelick et al., 2017) uses a scoring system to quantify cloud content in each pixel. This 

system integrates three key variables: brightness, temperature, and the Normalized Difference Snow Index (NDSI). This 

method prevents erroneous removal of clean ice or snow and optimizes cloud removal performance in high-altitude, cold 

regions (Xie et al., 2022). 190 

The cloud score for each pixel is calculated using the cloud removal algorithm, ranging from 0 (no clouds) to 100 (dense 

clouds). The GEE cloud scoring algorithm computes several indicators, including brightness in the blue band, presence in 

both visible and infrared bands, low temperatures, and distinction from snow using the NDSI. Eq. (1) is employed to rescale 

the cloud indicators, normalizing the image bands (blue, red, near-infrared, temperature, and NDSI) with an upper threshold 

(Threshold1) and a lower threshold (Threshold0). The upper and lower thresholds are provided by GEE, as illustrated in Eq. 195 

(2). The minimum rescaled value is employed as the cloud score for each pixel, as illustrated in Eq. (3). 

𝑏𝑎𝑛𝑑𝑟𝑒 = 𝑟𝑒𝑠𝑐𝑎𝑙𝑒(𝑏𝑎𝑛𝑑, [𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑0, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1]) =
𝑏𝑎𝑛𝑑 − 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑0

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1 − 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑0
 （1）  

{
 
 

 
 

𝑏𝑙𝑢𝑒𝑟𝑒 = 𝑟𝑒𝑠𝑐𝑎𝑙𝑒(𝜌𝐵𝑙𝑢𝑒[0.1,0.3])

𝑣𝑖𝑠𝑖𝑏𝑙𝑒𝑟𝑒 = 𝑟𝑒𝑠𝑐𝑎𝑙𝑒(𝜌𝑅𝑒𝑑 + 𝜌𝐺𝑟𝑒𝑒𝑛 + 𝜌𝐵𝑙𝑢𝑒[0.2,0.8])

𝑖𝑛𝑓𝑎𝑟𝑒𝑑𝑟𝑒 = 𝑟𝑒𝑠𝑐𝑎𝑙𝑒(𝜌𝑁𝑖𝑟 + 𝜌𝑆𝑤𝑖𝑟1 + 𝜌𝑆𝑤𝑖𝑟2[0.3,0.8])

𝑡𝑒𝑚𝑝𝑟𝑒 = 𝑟𝑒𝑠𝑐𝑎𝑙𝑒(𝜌𝑇𝑒𝑚𝑝[300,290])

𝑁𝐷𝑆𝐼𝑟𝑒 = 𝑟𝑒𝑠𝑐𝑎𝑙𝑒(𝑁𝐷𝑆𝐼[0.8,0.6])

 （2）  
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𝑐𝑙𝑜𝑢𝑑𝑠𝑐𝑜𝑟𝑒 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚(𝑏𝑙𝑢𝑒𝑟𝑒, 𝑣𝑖𝑠𝑖𝑏𝑙𝑒𝑟𝑒 , 𝑖𝑛𝑓𝑎𝑟𝑒𝑑𝑟𝑒 , 𝑡𝑒𝑚𝑝𝑟𝑒 , 𝑁𝐷𝑆𝐼𝑟𝑒) ∗ 100  （3）  

The cloud score for each pixel is calculated, and based on experiments, a threshold of 60 is set. Pixels with score above 60 

are excluded, removing cloud cover while retaining the maximum usable data. 

3.1.3 Image Synthesis 

Landsat 5/7/8 and Sentinel-2 images were processed and corrected on GEE. After applying cloud filtering, a cloud-free pixel 200 

set is generated for each pixel location. Data cubes are then constructed by integrating optical and radar images. 

3.2 Feature Extraction 

Only spectral reflectance is insufficient for glacier identification. supplementary features are essential to improve 

classification precision. This study extracts spectral features, terrain, texture, and radar interferometric features to develop a 

Random Forest classifier. The combination of these features improves the classifier's ability to distinguish glaciers from 205 

other landscape. 

3.2.1 Optical Features 

(1) Reflectance Features 

Cloud-filtered, cloud-free pixel datasets from Landsat and Sentinel-2 are used to generate minimum value composites, 

producing two annual cloud-free composite image sets, as illustrated in Figure 5 (a)-(f). These composites represent the 210 

minimum reflectance values for each pixel throughout the year, reducing the effects of cloud cover and atmospheric 

disturbances. Six spectral reflectance features, including all visible light bands, near-infrared (NIR), and shortwave infrared 

(SWIR), are selected for analysis. These spectral features are crucial for distinguishing different surface types, with glaciers 

serving as a prime example, displaying distinct reflectance characteristics compared to the surrounding terrain. To ensure 

spatial resolution consistency, all datasets are resampled to 30 meters resolution. 215 

(2) Spectral Index Features 

To enhance the accurate classification of surface types, this study selects commonly used spectral indices, including the 

Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), and Normalized Difference 

Snow Index (NDSI). The definitions and calculation formulas for these indices are detailed in the following section. 

Normalized Difference Vegetation Index (NDVI) 220 

The Normalized Difference Vegetation Index (NDVI) is commonly used for evaluating vegetation coverage on Earth's 

surface (Rouse Jr et al., 1974). NDVI is calculated using the following formula: 

𝑁𝐷𝑉𝐼 =
𝜌𝑁𝐼𝑅 − 𝜌𝑅𝑒𝑑
𝜌𝑁𝐼𝑅 + 𝜌𝑅𝑒𝑑

 (4) 

In this formula, 𝜌𝑁𝐼𝑅  represents the reflectance value of the near-infrared band, while 𝜌𝑅𝑒𝑑 denotes the reflectance value of 

the red band. The NDVI ranges from -1 to 1, with higher values indicating more abundant vegetation coverage. In this study, 

https://doi.org/10.5194/egusphere-2025-1772
Preprint. Discussion started: 28 May 2025
c© Author(s) 2025. CC BY 4.0 License.



10 
 

the cloud-free pixel sets, obtained after cloud filtering, serve as the data source for calculating NDVI. NDVI is calculated on 225 

a pixel-by-pixel basis, producing a cloud-free NDVI image set for each year from 2000, 2005, 2010, 2015, and 2016 to 2022. 

Normalized Difference Water Index (NDWI) 

The Normalized Difference Water Index (NDWI) is a common index for evaluating the distribution and extent of surface 

water bodies (Mcfeeters, 1996). NDWI is calculated using the following formula: 

𝑁𝐷𝑊𝐼 =
𝜌𝐺𝑟𝑒𝑒𝑛 − 𝜌𝑁𝐼𝑅
𝜌𝐺𝑟𝑒𝑒𝑛 + 𝜌𝑁𝐼𝑅

 (5) 

In this formula, 𝜌𝑁𝐼𝑅 represents the reflectance value of the near-*band, and 𝜌𝐺𝑟𝑒𝑒𝑛 represents the reflectance value of the 230 

green band. The NDWI value ranges from -1 to 1. A value close to -1 indicates the presence of pure water bodies, while a 

value near 0 suggests a moderate distribution of surface water. A value close to 1 indicates minimal or no surface water. In 

this study, NDWI is calculated on a pixel-by-pixel basis, producing a cloud-free NDWI image set for each year from 2000, 

2005, 2010, 2015, and 2016 to 2022. 

Normalized Difference Snow Index (NDSI) 235 

The Normalized Difference Snow Index (NDSI) is used for detecting snow cover on Earth's surface (Hall et al., 1995), using 

the following formula: 

𝑁𝐷𝑆𝐼 =
𝜌𝐺𝑟𝑒𝑒𝑛 − 𝜌𝑆𝑊𝐼𝑅1
𝜌𝐺𝑟𝑒𝑒𝑛 + 𝜌𝑆𝑊𝐼𝑅1

 (6) 

In this formula, 𝜌𝐺𝑟𝑒𝑒𝑛 represents the reflectance value of the green band, and 𝜌𝑆𝑊𝐼𝑅1  represents the reflectance value of the 

short-wave infrared band. The NDSI value ranges from -1 to 1, with higher values indicating more extensive snow cover. A 

value is close to 1 indicates pure snow cover, while a value near 0 suggests minimal or no snow cover; A value close to -1 240 

indicates non-snow materials. NDSI is calculated on a pixel-by-pixel basis, producing a cloud-free NDWI image set for each 

year from 2000, 2005, 2010, 2015, and 2016 to 2022. 

(3) Spectral Index Composition 

Constructing spectral index features is shown in Figure 3. This involves processing cloud-free image datasets for the 

Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), and Normalized Difference 245 

Snow Index (NDSI), which were previously obtained. 
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Figure 3 Annual index synthesis methodology. Cloud removal, index calculation, and annual index synthesis on a pixel-by-pixel. 

The methodology for processing each pixel is consistent across all years. Firstly, a maximum value composition is applied to 

the NDVI image set to derive the annual maximum NDVI (MaxNDVI) image. The image represents the peak vegetation 250 

cover for each year. Similarly, a maximum value composition is applied to the NDWI image set to obtain the annual 

maximum NDWI (MaxNDWI) image, reflecting the largest extent of water bodies each year. This step ensures accurate 

documentation of water coverage variations. To generate the annual minimum NDSI (MinNDSI) image, a minimum value 

composition is applied to the NDSI image set. This generates a representation of the lowest snow cover for the year, 

minimizing the impact of seasonal snow variations on subsequent analysis. This systematic approach guarantees accurate 255 

representation of key features of vegetation, water, and snow cover in the annual composite images. By focusing on 

maximum and minimum values, we highlight the key characteristics of each land cover type throughout the year. 
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As illustrated in Figure 4, selected areas display the results of spectral index composition. The index composition could 

clearly distinguish between different land cover types so that provide a more accurate representation of glacier distribution. 

 260 

Figure 4 Comparison of annual index results, MaxNDVI and MaxNDWI were obtained from the annual maximum normalized 

vegetation index and the annual maximum normalized water index, respectively. 

3.2.2 Texture Features 

Only using spectral features for glacier extraction may not be sufficient. Texture features are characteristics of an image that 

are independent of color or brightness and capture the visual patterns of uniformity. These features provide essential 265 

information about the structure, configuration, and interactions of objects with their environment. The gray-level co-

occurrence matrix (GLCM), proposed by Haralick (Haralick, 1979), is a widely used method for texture description, 

examining the spatial correlation of gray levels. 

In this study, the GEE provides the GLCM-Texture function, enabling efficient computation of texture features based on the 

GLCM. The texture features, including mean, angular second moment, contrast, correlation, variance, dissimilarity, 270 

homogeneity, and entropy (Khan et al., 2020), were calculated pixel-by-pixel using the annual cloud-free minimum value 

composite images. 
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Texture features were extracted from six bands—visible light, near-infrared, and short-wave infrared—of the annual 

minimum value composite images for each year from 2000, 2005, 2010, 2015, and 2016 to 2022, resulting in 48 images. In a 

recent study, Y. Lu et al.(Lu et al., 2020) conducted a correlation analysis of eight texture indices and found that the mean 275 

value is consistent with other texture features, playing a key role in glacier mapping. To enhance the accuracy of glacier 

classification, this study selected the mean texture feature derived from the six bands as supplementary data to support the 

automated delineation of glacier boundaries. 

3.2.3 Topographic Features 

Topographic features are described using parameters, such as elevation, slope, aspect, terrain curvature, and roughness. This 280 

study selected four topographic indicators—elevation, slope, aspect, and terrain shadow—for classification analysis based on 

NASADEM. These indicators were chosen for their relevance to the classification task and their ability to represent key 

landscape features. 

3.2.4 Radar Image Features 

The VV band of Sentinel-1 imagery was also used for training the random forest classifier. The VV band represents vertical-285 

vertical polarization, where the Synthetic Aperture Radar (SAR) transmits and receives vertically polarized microwave 

signals. A mean synthesis was applied to the annual Sentinel-1 images pixel-by-pixel to reduce salt-and-pepper noise. 

3.3 Feature Analysis 

A total of 20 features were used as input for the random forest classifier. including optical features (blue, green, red, near-

infrared, shortwave infrared 1 and 2, MaxNDVI, MaxNDWI, MinNDSI), texture features (mean texture of spectral 290 

reflectance for the six bands), terrain features (elevation, slope, aspect, and terrain shadow), and radar features (VV 

polarization band). As shown in Figure 5, the surface reflectance characteristics in panels (A) through (F) reveal substantial 

overlap in reflectance information for pristine glaciers, debris-covered glaciers, and other land cover types. The mean texture 

feature images in panels(G)-(L) outline the general contours of the glaciers. The MaxNDVI index in panel (M) effectively 

distinguishes high NDVI values indicative of vegetation cover from low or negative values of other land cover types. 295 

Similarly, the MaxNDWI feature in panel (N) effectively differentiates glaciers from water bodies. The NDSI index has long 

been a key tool for glacier extraction. The MinNDSI in panel (O) provides a more accurate estimate of the minimum glacier 

area for each year, reducing the impact of seasonal snow on the extraction process. 

As shown in Figure 5 panel (P) - (S), the terrain features indicate that bare glaciers and debris-covered glaciers have higher 

elevations than other land covers. Water bodies and debris-covered glaciers have relatively gentle slopes, while mountain 300 

and glacier shadows share consistent aspect characteristics, with high terrain shadow values for both. The radar VV 

polarization band image in panel (T) distinguishes bare soil from debris-covered glaciers, as the thin debris layer allows the 
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VV band penetration, detecting reflections from the underlying ice surface and revealing the glacier reflectance 

characteristics. 
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Figure 5 A total of 20 features were used as input. (A) - (F) represent spectral features (corresponding to red, green, blue, near-

infrared, shortwave infrared band 1, and shortwave infrared band 2, respectively); (G) - (L) correspond to texture features (mean 

texture features for red, green, blue, near-infrared, shortwave infrared band 1, and shortwave infrared band 2, respectively); (M) 

denotes the annual maximum Normalized Difference Vegetation Index (MaxNDVI); (N) represents the annual maximum 

Normalized Difference Water Index (MaxNDWI); (O) refers to the annual minimum Normalized Difference Snow Index 310 
(MinNDSI); (P) - (S) represent topographic features (elevation, slope, aspect, and mountain shadow, respectively); (T) corresponds 

to the Sentinel-1 radar VV polarization band; (U) shows the classification results from the random forest classifier. 

3.4 Random Forest Algorithm 

Random forest is an ensemble method based on decision trees, where multiple trees are combined, and the final classification 

or prediction is determined by majority voting (Breiman, 2001). The random forest method has demonstrated strong 315 

performance in various practical applications, including classification, regression, and feature selection. This is attributed to 

its ability to handle high-dimensional data and to identify complex patterns. Extensive research has demonstrated the 

superiority of the random forest algorithm in classification, especially when using multi-source data and analyzing it from 

diverse perspectives (Alifu et al., 2020; Olthof and Rainville, 2022; Kulinan et al., 2024). 

3.4.1 Classification System Determination 320 

The region is classified into six land cover types: clean glacier, debris-covered glacier, bare land, water bodies, vegetation, 

and mountain shadows. The classification labels, manually interpreted, are shown in Figure 6. 
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Figure 6 Manual interpretation of labels, Six types of features (clean glacier, debris-covered glacier, bare land, water bodies, 

vegetation, and mountain shadows) and their artefactual interpretation markers. 325 

3.4.2 Selection of Classification Samples 

We manually interpret and select 200 sample points for each land cover types: clean glacier, debris-covered glacier, bare 

land, water bodies, vegetation, and mountain shadows on GEE. The sample points were selected to ensure a representative 

distribution of land cover types across the study area. In total, 21600 sample points were selected, covering an area of 19.44 

km². These points represent a diverse range of land cover types, providing a comprehensive dataset for analyzing glacier and 330 

land cover dynamics in southeastern Tibet. 

The calculated Jeffries-Matusita (J-M) distances showed that all selected training samples had a J-M distance greater than 

1.8, indicating high separability between the land cover types in the dataset. For each year's samples, 70% were used for 

training the random forest classifier, with the remaining 30% were reserved for accuracy validation. This split ensures a 

robust evaluation of model performance. The training and testing datasets are randomly split according to a predefined ratio 335 

in each iteration to ensure the model's robustness and generalizability. 

3.4.3 Classification Accuracy Evaluation 

In this study, the confusion matrix method was used to assess the accuracy of the classification model(Townsend, 1971). A 

confusion matrix was constructed to calculate several accuracy metrics, including overall classification accuracy, the Kappa 
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coefficient for overall performance, and producer's and user's accuracy for evaluating the performance of individual 340 

categories. The metrics provided comprehensive insights into both the overall classification results and the specific 

categories performance. 

3.5 RGI 7.0 Boundary Constraints 

We utilized the RGI 7.0 glacier boundary dataset to constrain our automated glacier mapping workflow to manually validate 

boundaries around the year 2000, aiming to reduce the misclassification of seasonal snow cover in later periods. This 345 

constraint introduces an inherent assumption that all glaciers in the study area have retreated from their 2000 extents. 

Additionally, it inherits the uncertainties and omissions associated with the RGI 7.0 dataset. No existing studies have 

reported any glacier advances in the southeastern Tibetan Plateau between 2000 and 2022. 

3.6 Combined results of Landsat-8 and Sentinel-2 images and pixel complementation 

Because of the introduction of the Sentinel data, we realized year-by-year glacier extraction in 2016-2022 using Landsat and 350 

Sentinel data sets to construct models and classify them separately. This study produced two sets of classification results, 

using Landsat-8 and Sentinel-2 imagery along with DEM and Sentinel-1 data. Due to missing values in the images after 

cloud filtering, the two sets of results were merged at the pixel level using the following rule: a pixel is classified as glacier if 

both sets identify it as such, or if one set identifies it as glacier while the other is missing; all other cases are classified as 

non-glacier. This approach was chosen to minimize the impact of missing data and improve the accuracy of the final 355 

classification results. 

Despite using multiple techniques to avoid misclassifying snow as glaciers, the impact of seasonal snow still led to some 

misclassifications. To address this issue, a decision-level fusion strategy was applied to reduces the impact of seasonal snow 

on the final glacier extraction results. 

There are still less than 1% missing pixels of the study area in final annual glacier boundary. These missing pixels are often 360 

concentrated near glaciers. This concentration may disproportionately affect the analysis of glacier dynamics and area 

changes. This phenomenon may impact the interannual variation in glacier area, especially near glacier termini. To address 

this issue and enhance the spatial completeness of the dataset, this study incorporated the RGI7.0 glacier inventory to 

directly fill in the missing pixels. 

3.7 Post-Classification Processing 365 

Pixel-based classification often results in isolated pixels and noise. To mitigate small-area noise and enhance spatial 

consistency, this study employs ArcGIS Focal Statistics for post-processing. Specifically, a 5×5 majority filter is applied, 

where each pixel is reassigned the most frequently occurring class within its 5×5 neighborhood. This approach effectively 

removes isolated pixels, improves the spatial continuity of homogeneous land cover types, and preserves the integrity of 

major land cover boundaries. 370 
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4 Results and analysis 

4.1 Glacier extraction results and error analysis 

The annual classification results were evaluated using the confusion matrix method, showing high accuracy with Kappa 

coefficients above 93% and overall accuracy exceeding 94%. These results highlight the robustness and reliability of the 

classification approach for glacier extraction. 375 

We provide a clear visual representation of specific glacier for detailed comparison in the Figure 7, which shows the 2000 

annual glacier boundary and RGI 7.0 statistical result. Both clean glaciers and surface moraine-type glaciers are well 

identified, but for some missed glacier areas, this is mainly due to shadows obscuring the glacier. Extracts for all years are 

shown in the supplementary document. 

 380 

Figure 7 Glacier boundary at 2000 and RGI7.0 glacier boundary. 

4.2 Glacier area change in Southeast Tibet 

Our glacier area included both clean and debris-covered glaciers. A clear pattern of glacial retreat is evident at the terminus, 

indicating a continuous reduction in ice mass in the region. Changes in glacier extent from 2000, 2005, 2010, 2015, 2016 to 
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2022 were calculated based on these estimated areas and are shown in Figure 8. The calculation of the mapping error was 385 

based on half an image element (15 m) (Paul et al., 2013). Overall, the glaciers in the southeastern Tibet region experienced 

a consistent decline from 7898.61 ± 652.15 km2 in 2000 to 6317.13 ± 592.57 km2 in 2022. Excluding mapping errors, the 

glaciers are retreating at a rate of 85.03 ± 7.60 km2/y. Notably, the retreat rate accelerated after 2010, increasing from 57.72 

± 16.81 km²/y (2000–2010) to 97.72 ± 17.67 km²/y (2010–2022). 

 390 

Figure 8 The top picture shows the retreat of the glacier at the end of the tongue. the low show time series of total southeast Tibet 

glacier area changes over 2000-2022. 

5 Discussion 

5.1 Compare with previous results 

There are few annual observations of glacier area changes in southeastern Tibet. We compared with previous reports that 395 

cover our study regions and close time periods. The Chinese Second Glacier Inventory (V1.0), based on 2006-2011 data, 

estimated a glacier area of 10,288.47 km². in southeastern Tibet. it is note that some glacier areas in the First Glacier 

Inventory precede this range. Ye et al. (Qinghua, 2019, 2020)reported a glacier area of 9,870.47 km² (2013), with their 2017 

estimate at 7,251.48 km²—both higher than the results of this study (6614.10 ± 609.43 km² in 2017). The main reason for 

this is because of the difference in the timing of the data, they are using winter data, which can lead to snow being 400 
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misclassified as glaciers. Ke et al. (Ke et al., 2016), using data from 2011-2013, compiled the Southeastern Qinghai–Tibet 

Plateau Glacier Inventory (SEQTPGI), which estimated an area of 6,566 ± 197 km². However, differences in the study area 

boundaries contributed to the observed inconsistencies. 

The glacier area in southeastern Tibet has been debated. Discrepancies in reported results can be attributed to several factors 

in extraction methods, datasets, study periods, and definitions of glaciers. 405 

5.2 Correlation of information on glacier elevation changes with information on area changes 

Glacier area fluctuates with changes in glacial thickness. This study uses the result glacier thickness changes result from the 

ICESat, Cryosat-2 and ICESat-2 to examine the correlation between changes in glacier area and thickness. The ICESat, and 

Cryosat-2 results were obtained using the results of Jakob et al.(Jakob et al., 2021) and the ICESat-2 results were calculated 

using the method of Wang et al.(Wang and Sun, 2022; Wang et al., 2017) As shown in Figure 9, the annual fluctuations in 410 

glacier thickness and area in southeastern Tibet from 2002 to 2022 exhibit a strong correlation (R² = 0.89), based on data 

points from 2005, 2010, 2015, and 2016–2022. This supports our understanding of glacial retreat characteristics and further 

validates the accuracy of the glacier extraction results. 

 

Figure 9 Relationship between glacier area and thickness changes in Southeast Tibet, (a) Glacier thickness changes derived from 415 
three generations of altimetry satellites (ICESat, CryoSat-2, and ICESat-2). The data from different satellites were merged to 

produce a continuous thickness time series. For clarity, vertical offsets were applied during visualization. Light blue shading 

indicates the uncertainty in glacier thickness, and light red indicates the uncertainty in glacier area. (b) The correlation between 

changes in glacier surface elevation and its area. 

5.3 Glacier Mass Balance in Southeastern Tibet 420 

This study combined year-to-year glacier area and glacier thickness change data to derive glacier mass change. Glacier mass 

change is annually by multiplying the average annual glacier area by the annual change in elevation, then by the ice density. 

The formula is: 
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𝛥𝑀𝑖 = 𝑆𝑖
′ × 𝛥𝐻𝑖 × 𝜌𝐺 (7) 

As the glacier area is variable, the average area for each year is calculated using the following formula(Zhang et al., 2013): 

𝑆𝑖
′ =

1

3
(𝑆𝑖−1 + 𝑆𝑖 + √𝑆𝑖−1𝑆𝑖) (8) 

Using 2003 as the baseline year for calculations, let 𝑆𝑖−1 represent the initial glacier area (i.e., the area from the previous 425 

year), and 𝑆𝑖 represent the glacier area in the final state (i.e., the area for the current year). This allows us to derive the 

average glacier area 𝑆𝑖
′ for the years 2004 to 2022. (Areas for 2003, 2004, 2006-2009, 2011-2014 we supplemented using 

linear interpolation) Substituting this value into the mass change formula yields the annual mass change of the glaciers in the 

southeastern Tibet relative to 2003. The glacier mass for 2003 is set to 0, producing the glacier change curve for 2003 to 

2022, as shown in Figure 10. The results show that glaciers in southeastern Tibet are at a rate of 6.20 Gt/y. By incorporating 430 

dynamic area changes, this study provides high precision result of glacier mass balance.  

To evaluate the impact of incorporating annual glacier inventories on mass change estimates, we also computed glacier mass 

loss using a fixed glacier area from 2003. The comparison shows that including annual inventories changes the estimated 

trend by over 10%, underscoring the importance of inventory updates for accurately capturing glacier mass changes. 

We assessed uncertainties in glacier mass loss trends by considering three independent error sources: surface elevation, 435 

glacier area, and ice density. Glacier area uncertainty was derived from our inventory; although individual mapping errors 

were below 10%, we conservatively assigned a 15% uncertainty to account for glacier retreat and flow. Ice density was 

assumed to be 900 kg/m³ with a 5% uncertainty. Elevation uncertainty, reflecting both fitting and measurement errors, was 

estimated at 10%. Combining these uncertainties, the overall error in glacier mass loss was 18.7%, yielding a mass loss rate 

of 6.20 ± 1.16 Gt/y. 440 
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Figure 10 Changes in glacier mass under year-to-year area changes 

As shown in Table 1, although the study periods and regions differ slightly, we compared our estimates with representative 

published results to better contextualize our findings. Due to differences in methodology, data sources, and study settings, 

some variation exists; however, the comparison shows that our estimates are consistent with and reasonable within the 445 

expected range. 
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Table 1  Comparison of our results with previous studies. 

Study Data Period 
Regions similar to 

this study 

Mass change 

rate (Gt/y) 

(Brun et al., 

2017) 
ASTER stereo images 

2000-

2016 
Nyainqentanglha -4.0 ± 1.5 

(Shean et 

al., 2020) 

WorldView/GeoEye DEMs, ASTER DEMs, and 

TanDEM-X Global DEM 

2000-

2018 

Nyainqentanglha -3.15± 0.93 

Hengduanshan -0.96 ± 0.23 

(Yi et al., 

2020) 
GRACE and ICESat 

2002-

2017 
Nyainqentanglha -6.5 ± 0.80 

(Wang et al., 

2021) 
ICESat-1,2 and GRACE/GRACE-FO 

2003-

2019 
Nyainqentanglha -6 ± 1.0 

(Jakob et al., 

2021) 
CryoSat-2 SARIn L1b 

2010-

2019 

S AND E Tibet -3.38 ± 1.21 

Hengduanshan -4.30 ± 0.98 

(Zhao et al., 

2022) 

ASTER stereo images, CryoSat-2 SARIn L2I, ICESat-

1/2, and GRACE/GRACE-FO 

2000-

2019 

SETP 

-4.72 ±1.18 

2003-

2020 
-4.86 

2011-

2020 

-5.80 ± 0.8

（mean 

seasonal） 

-5.53 ± 0.2

（mean 

annual） 

This study CryoSat-2, ICESat-1/2, Landsat-5/7/8, Sentinel-1/2 
2003-

2022 
* 6.20 ± 1.16 

5.4 Advantages and uncertainties 

Glaciers are highly sensitive indicators of climate change, with changes in their area and mass widely used to assess climatic 

responses at regional and global scales. However, repeated glacier inventories remain scarce, and no second comprehensive 450 

global inventory exists to date. The Randolph Glacier Inventory (RGI) currently available reflects glacier distributions circa 

2000, limiting systematic analyses of glacier area changes over time. Most glacier mass change studies rely on a single static 

glacier boundary, focusing primarily on surface elevation changes while largely neglecting glacier area variations, which 

have not been quantitatively evaluated in detail. To fill this gap, we reconstructed glacier mass changes in southeastern Tibet 

over the last two decades using a time series of annual glacier inventories. Our results reveal that glacier area changes 455 

contribute up to 10% of the total mass loss in this region, highlighting the potential bias introduced when ignoring area 

changes. This study is among the first to employ annually updated glacier inventories for mass change estimation, 

demonstrating their importance for improving accuracy and understanding glacier dynamics. 

Nevertheless, this study has limitations, chiefly the following: 

(1) Cloud cover: 460 
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A cloud score algorithm was applied during preprocessing to mask clouds, yet missing data remain. These gaps were filled 

using RGI 7.0. Missing values comprised less than 1% in single-date images and have minimal impact on results. However, 

cloud shadows are challenging to detect and may cause misclassification, especially over glaciers. 

(2) Seasonal snow: 

Despite efforts to minimize seasonal snow influence, some residual snow remains in composite images due to limited data 465 

availability. The slight area increase observed in 2020 is mainly attributed to seasonal snowpack. Incorporating additional 

data sources could mitigate this issue. 

(3) Mountain shadows: 

Accurately mapping glaciers in shaded alpine terrain remains difficult. While mountain shadows were classified separately 

and terrain features were incorporated to reduce their impact, identifying glaciers in shadowed regions remains problematic. 470 

Observed gaps in ice tongues are primarily due to this limitation. 

6 Conclusion 

We use decades of features of satellite imagery, such as annual spectral indices, topographic features, texture, and radar band 

characteristics, to build a random forest classifier for glacier extraction. Using this method, we show for the first time the 

year-to-year change of glacier area in southeastern Tibet during 2016-2022 while obtaining glacier inventories for 2000, 475 

2005, 2010, and 2015. The total glacier area in the region decreased by 85.03 ± 7.60 km2/y, and glacier retreat was found to 

have increased since 2010, increasing from 57.72 ± 16.81 km²/y (2000-2010) to 97.72 ± 17.67 km²/y (2010-2022). The 

correlation analysis between glacier thickness and area changes was also performed, showing a high correlation (R² = 0.89). 

Additionally, we optimized the glacier mass change estimates from altimetry data using dynamic annual area data, revealing 

that glacier mass in southeastern Tibet is shrinking at a rate of 6.20 ± 1.16 Gt/y (2003-2022). This is the first use of dynamic 480 

annual glacier area changes to calculate glacier mass change, providing a new complement to altimetry-based glacier mass 

change studies. Practical applications show that our study could provide effective support for future glacier inventories and 

monitoring. 
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