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Abstract. The regional lockdowns, implemented around the world over 2020-2022 to contain the rapid spread of the novel
coronavirus disease 2019 (COVID-19), inadvertently created a natural laboratory for investigating the effect of reducing
anthropogenic emissions on urban air quality in unprecedentedly large temporal and spatial scales. In this study, we analyze
multi-year surface PMa.s observations in 21 cities around the globe to examine anomaly of PMz s (particulate matter with an
aerodynamic diameter of less than 2.5 pm) concentrations during major COVID-19 lockdowns with respect to that in the pre-
pandemic years. We then use a set of Goddard Earth Observing System (GEOS) global aerosol transport modeling experiments
to disentangle the effect of the lockdown emission reductions from other non-lockdown effects. Our analysis shows that no
systematic reductions in PMa:s are found in response to the lockdowns globally. In some locations, we find the coincidences
of an increasing stringency index and a decreasing of surface PMa2.s, which often leads to the record low of PMz 5 over extensive
period. These observations clearly suggest the positive impacts of COVID-19 lockdown-induced anthropogenic emission
reductions on air quality. In other stations, however, the lockdown’s impacts could be masked by differing meteorology and
the occurrence of dust and wildfire events. We also found that current satellite remote sensing of aerosol optical depth cannot
be used to reliably discern the change of surface PM2s due to the COVID-19 lockdowns. Results of this study provide a
preview of potential mixed effects on urban air quality when implementing air pollution control regulations such as

transitioning gasoline and diesel-powered vehicles to electric vehicles.

1. Introduction

PMz 5, particulate matter (also referred to aerosol in climate communities) with an aerodynamic diameter of smaller than 2.5
pm, is one of the major air pollutants that adversely affect human health. Exposure to PMa2.s was ranked as the fifth largest
contributing factor to global mortality (Cohen et al., 2017). Currently, about 90% of the global population lives in unhealthy
environments where annual PMa s concentrations are greater than the guideline of 5 ug m™ recently issued by the World Health
Organization (WHO) (Yang et al., 2022). Further, it is estimated that the long-term exposure to ambient PM2s might have
resulted in the premature deaths of 2.9 (1.4 — 4.5) million in 2019, with more than two thirds occurring in Asia (Yang et al.,
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2022). Another study has estimated as many as 8.7 million premature deaths per year that can be attributed to the exposure to
PM2s5 (McDuffe et al., 2021). Clearly, reducing the primary and precursor emissions of PMzs is necessary to improve air
quality and the well-being of citizens. Moreover, emissions reductions should focus on anthropogenic sources because they
are responsible for most of the mortality attributable to PMa.s pollution, whereas the natural sources, like dust storms, are
estimated to cause only about 22% of such mortality (Yang et al., 2022) and are more difficult to control. Purposeful short-
term policy interventions (e.g., the 2008 Beijing Olympics, the 2014 Asia-Pacific Economic Cooperation Summit) have
yielded improvement of air quality at local scales and during the targeted events (W. Wang et al., 2009; X. Wang et al., 2009;
Chen et al., 2013; Liu and Ogunc, 2023). However, it is also revealed that such local-scale emission controls could be
compensated by increases of emissions in surrounding areas, highlighting the importance of regional emission controls in
achieving improved air quality in a city (Wang et al., 2010). Previous studies that carried out global model experiments have
shown potentially significant albeit highly uncertain effects of a hypothetical and uniform 20% reduction of global
anthropogenic emissions on air quality, climate, and ecosystems at local, regional, and intercontinental scales (e.g., Shindell
et al., 2008; Yu et al., 2013; Collins et al., 2013; Anenberg et al., 2014).

The COVID-19 lockdowns created a natural laboratory for studying the effect of reducing anthropogenic activities on urban
air quality at a global scale and during an extended period. Since the emergence of the novel coronavirus disease 2019 (COVID-
19) in early 2020, governments around the globe had enforced a variety of measures, including regional and national
lockdowns, to contain rapid spread of the virus and protect the wellness of human beings. There is no doubt that these
lockdown measures reduced emissions of various anthropogenic pollutants and greenhouse gases. The science community
promptly seized this opportunity to investigate the changes of air pollution following the lockdowns. Over a short period of
less than two years since the lockdowns, a large body of studies had already been published (see reviews in Gkatzelis et al.,
2021; Laughner et al., 2021; Saha et al., 2022; Bakola et al., 2022). The examined atmospheric pollutants included nitrogen
dioxide (NO2), PM2s, and ozone (O3), among others. In general, effects of the COVID-19 lockdown have been derived in the
previous studies by comparing concentrations of air pollutants during the lockdown period against those immediately prior to
the lockdown (e.g., Shi and Brasseur, 2020) or against the climatology during the same period in pre-pandemic years (e.g.,
Venter et al., 2020). Modeling studies driven by the reduced emissions caused by the COVID-19 lockdowns have also been
performed (Miyazaki et al., 2020; Le et al., 2020). These studies have consistently showed reductions in NOz, a short-lived
pollutant with a major source from the transportation sector that is considered as a good proxy for emissions, during the
lockdowns (Liu et al., 2020). However, the change of surface ozone concentrations during the lockdowns was reported to
increase in many locations despite the widespread reduction of its NOz precursor (e.g., Shi and Brasseur, 2020; Venter et al.,
2020; Shi et al., 2021; Le et al., 2020), although one study found a global scale decline in ozone burden using satellite
observations (Miyazaki et al., 2021). For PMzs, the effects of lockdown have showed mixed results (Venter et al. 2020; Shi
et al., 2021; Volta et al., 2022; Putaud et al., 2023), suggesting the challenge in discerning and quantifying the effects induced
by the reductions of anthropogenic emissions associated with lockdowns. Accounting for the effects of variability of

meteorological conditions, anthropogenic emission trends, and contributions of natural sources of PMa s that is not affected by
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the lockdown is crucial to addressing the challenge and reliably assessing the effect of lockdowns (Gkatzelis et al., 2021; Shi
etal., 2021; Le et al., 2020). Several empirical approaches of de-weathering and de-trending have been used in some previous
studies. For example, Volta et al. (2022) attempted to account for meteorological impacts on air pollution by classifying
favorable and unfavorable meteorological conditions for air quality and comparing them between the pandemic and pre-
pandemic years. The linear regression of pre-pandemic air quality data has been applied to account for the air pollution trend
due to clean air policies (Volta et al., 2022). Multivariate regression analysis and machine learning approaches have also been
used to predict air quality in the pandemic year in a no-lockdown scenario (Venter et al., 2020; Shi et al., 2021; Anderson et
al., 2021; Ghahremanloo et al., 2022).

The objective of this study is to improve the understanding of COVID-19 lockdowns’ effects on PMz s air quality through a
synergistic analysis of observational data and model simulations. Our study focuses on surface-level PM2.s because it has the
most detrimental effect to human health among all the pollutants (Cohen et al., 2017). We hypothesize that the overall
reductions in anthropogenic emissions from many sectors brought about by the COVID-19 lockdowns would have improved
the PM2 s air quality on a global scale. However, such impacts might have been masked by other factors such as meteorological
conditions and natural emissions (e.g., dust storms, wildfires) in the observational datasets. The impacts might also be
determined by the relative contributions of individual sectors because some sectors might have increased the emissions during
lockdowns. To test the hypothesis, we analyze multi-year surface PM2s observations in urban areas around the globe to
examine the potential anomaly of PM2 s concentrations during the major lockdown periods with respect to that in the pre-
pandemic years. Then we use modeling experiments to disentangle the effect of the lockdown emission reductions from non-
lockdown effects. We also investigate if satellite remote sensing observations of aerosol optical depth (AOD) can be used to
identify the change of surface PMzs due to the COVID-19 lockdowns.

The rest of paper is organized as follows. In section 2, we provide a brief description of observational and the Goddard Earth
Observing System (GEOS) modeled datasets (such as PMzs, AOD) and an auxiliary stringency index for identifying the
dynamics of the lockdowns around the world. Results of data analysis are presented in Section 3, including the evidence of
coincidence of declining PMa.s with increasing stringency index, comparisons of observed and modeled changes in PMzs in
2020 in the context of climatology, as well as GEOS-based relative contributions of the lockdown emission reductions and
non-lockdown factors in explaining the difference between 2020 and 2019. In Section 4, we discuss some remaining issues
associated with the analysis and an investigation of the feasibility of identifying the lockdown effects on PMa.s from the satellite

AOD measurements. Major conclusions are summarized in Section 5.

2. Descriptions of observational data and model simulations

2.1. Observations of surface PM..s and aerosol optical depth
For the surface PM2 s, we use observations collected from the AirNow Department of State network, which include sites at the

USA  diplomatic  posts (i.e., Embassies and Consulates) in major cities outside the USA
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(https://www.airnow.gov/international/us-embassies-and-consulates/). We selected 17 posts around the world with
observations over a period of at least five years, which includes the pandemic years (2020-2022) and at least two pre-pandemic
years. The number of pre-pandemic years depends on the diplomatic post, as the State Department has been gradually
extending the PMz s monitoring from the diplomatic posts in China to those in India and then other countries. Because most of
the USA diplomatic posts equipped with multi-year PM2.s measurements are in East Asia, South Asia, Middle East, South
America, and North Africa, we also included PMa2.s observations in four additional cities from other national air quality
networks to extend the representativeness of our analysis to North America and Europe. Paris, France and Milano, Italy were
selected to represent Europe, while New York City, New York and Los Angeles, California were chosen to represent North
America. Figure 1 illustrates the geographical distribution of 21 urban stations in 13 countries with PMa.s observations, with
detailed information (including city and country names, longitude, latitude, and years of data used in the analysis) listed in the
supplement (Table SI).

These 21 stations are representative of distinct aerosol characteristics, as shown in Figure 2 for the fractional contributions to
annual mean PMa s by an array of source sectors. The source-sector partitions were based on the GEOS-Chem sector sensitivity
simulations for year 2017 as provided in McDuffie et al. (2021). This modeling used global anthropogenic emission inventory
for seven key pollutants (nitrogen oxides - NOx, sulfur dioxide - SO, carbon monoxide - CO, ammonia - NH3, non-methan
volatile organic carbons - NMVOCs, black carbon - BC, and organic carbon - OC) from 11 anthropogenic sources and four
fuel types, which was developed from the Community Emissions Data System (CEDS) with updates for the Global Burden of

Disease - Major Air Pollution Sources project (CEDS GBD-MAPS) (McDuffie et al, 2020,

https://zenodo.org/records/3754964). Additional emission inputs to GEOS-Chem include those from fires, biogenic sources,
and anthropogenic and desert dust, as described in the supplementary Table 2 of McDuffie et al. (2021) and references therein.
Figure 2 clearly displays that sector contributions to PMz 5 vary substantially from station to station. Among the source sectors
considered in the GEOS-Chem modeling, emissions from energy, industry, transportation, commercial and other combustions,
international shipping, and anthropogenic fugitive, combustion, and industrial dust (AFCID) might have decreased during the
lockdowns due to reduced human mobility, with magnitudes of decrease likely depending on the specific sector. For brevity,

we refer to these six sectors collectively as to potential lockdown emission reduction sectors (LERS). Presumably, the
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transportation sector had the largest reduction in emissions during lockdown. On the other hand, emissions from the residential
sector would have increased during the pandemic because of the “work/study from home” during the lockdown period that
should lead to more extended usage of electricity, heating and cooling at home. Natural events like desert dust storms and
wildfires were likely unaffected by the lockdowns, although anthropogenic emission reductions associated with the lockdowns
may have impacted dust and fire weather to some unquantified extent. An occurrence of such large episodic natural events
could even mask the effect of anthropogenic emission reductions associated with the lockdowns on PMzs air quality. The
modeling-based PMz s source characteristics, albeit inevitably subject to large uncertainties (McDuffie et al., 2021), could
facilitate a qualitative interpretation of observed changes in PMzs in response to the lockdowns discussed in Section 3. In
general, when the fractional contributions by the LERS are high and those by residential sectors are low, the lockdown’s
impacts could be more clearly shown in observed PM..s data. However, when PMzs in a city is dominantly sourced from

episodic events such as desert dust and wildfires, the lockdown’s signals might be masked by these events.
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1 —Beijing; 2 — Shenyang; 3 — Shanghai; 4 — Guangzhou; 5 — Hanoi; 6 — Jakarta;
7 — Chennai; 8 — New Delhi; 9 — Mumbati; 10 — Kolkata; 11 — Hyderabad; 12 —
Addis Ababa; 13 — Dubai; 14 — Kuwait City; 15 — Manama; 16- Paris; 17 — Milan;
18 — Pristina: 19- New York City: 20 — Los Angeles; 21 - Lima

Figure 1: Geographical distributions of PM:s observational stations in 21 cities (open and solid circles, which are
140 numbered from 1 to 21 with names listed below the figure) of 13 countries overlying on the GEOS simulated PM:.s
concentrations (colored contours, with a unit of pg m3) in March 2020. Solid black circles, corresponding to site
numbers of 3, 8, 14, 16, 20, and 21, denote the six cities being selected for in-depth analysis and representative of distinct
aerosol characteristics. Detailed information about all these cities is listed in Table S1 of the supplement, including city

and country names, latitude, longitude, and the period of PM:s data used in this study.
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1. Beijing (50.3%)

2. Shenyang (51.1%)

3. Shanghai (60.0%)

4. Guangzhou (55.6%)
5. Hanoi (32.3%)

6. Jakarta (38.3%)

7. Chennai (51.3%)

8. New Delhi (48.4%)

9. Mumbai (54.2%)

10. Kolkata (57.1%)

11. Hyderabad (57.4%)
12. Addis Ababa (26.6%)
13. Dubai (29.6%)

14. Kuwait City (28.8%)
15. Manama (38.6%)

16. Paris (42.8%)

17. Milan (40.6%)

18. Pristina (42.6%)

19. New York City (58.0%)
20. Los Angeles (57.9%)
21. Lima (43.7%)
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Figure 2: Fractional contributions to PM:sin 21 stations by source sectors, with a total percentage (%) of the six
lockdown emission reduction sectors (LERS, including energy, industry, transportation, commercial & other
combustion, AFCID dust, and shipping) denoted in the parenthesis immediately after the station name. The chart was
made with the sector contributions derived from the GEOS-Chem sensitivity simulations for 2017 and provided by the
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supplementary material of McDuffie et al. (2021) and https://zenodo.org/records/4739100.
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Even with the same emissions, the surface PM2 s concentrations can vary greatly from day to day because of strong regulation
by rapidly evolving meteorological and chemical processes. It is oftentimes formidable to discern any meaningful changes in
PM2 5 during the pandemic years relative to the pre-pandemic years on a daily basis. In this study, we calculate 5-day running
means of PMz s to smooth out high-frequency variations so that potential differences between the pandemic years (2020, 2021,
and 2022) and pre-pandemic years (prior to 2020) could show up in the observations more clearly. A sensitivity test of using
3-day or 7-day running means suggests that the major conclusions of this study will not change. To obtain quantitative
estimates of PMa2.s changes due to prolonged lockdowns, we also compute the monthly average PMa.s for both the pandemic
years and pre-pandemic years.

AOD observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Aqua satellite (Levy et al.,
2013) were also used in this study. Unlike surface PM2 5 that measures the concentration of air pollution at our nose level,
AOD measures the load of aerosol in the whole column of the atmosphere. Because of the appealing nature of routine satellite
observations at a global scale, numerous studies have explored the use of satellite AOD to derive surface PMa.s concentrations
(e.g., van Donkelaar et al., 2010; Wei et al., 2021). However, the relationship between AOD and PMas is complicated by
several factors, such as aerosol composition, vertical profile of aerosol, relative humidity of ambient atmosphere, and
atmospheric long-range transport. In this study, we examine if satellite AOD measurements can be used to detect the change
in PMzs due to the COVID lockdowns.

2.2. GEOS simulations of PMzs and AOD

Simulations from the NASA GEOS model are used for both AOD and PMzs in this study. The modular GEOS model is a
global Earth system model that includes components for atmospheric circulation and composition, ocean circulation and
biogeochemistry, and land surface processes (Rienecker et al., 2011; Molod et al., 2015). The coupled atmospheric constituent
module within the GEOS architecture most relevant to this project is an aerosol module based on the Goddard Chemistry
Acerosol Radiation Transport (GOCART) model (Collow et al., 2024). GOCART simulates major components of aerosols
(with a diameter between 0.02 and 20 um) and several gaseous precursors, including dust, sea-salt, sulfate, nitrate, organic
carbon, black carbon, SOz, and dimethyl sulfide (Chin et al., 2002, 2007, 2009, 2014; Ginoux et al., 2001; Bian et al., 2017).

The model considers the atmospheric processes of chemistry, convection, advection, boundary layer mixing, dry and wet
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deposition, and gravitational settling (Chin et al., 2002, 2014). Aerosol particle sizes are simulated with parameterized
hygroscopic growth, which is a function of ambient relative humidity. Total mass of sulfate and carbonaceous aerosols are
calculated, while nitrate aerosol mass is calculated in three bins (Bian et al., 2017). For dust and sea salt, the particle size
distribution is explicitly resolved across five size bins (Chin et al., 2002, 2009).

For this study, the GEOS model is run at a horizontal resolution of 0.5° for 2019 (pre-pandemic year) and 2020 (the first year
of the pandemic). The required meteorological fields are taken from the Modern-Era Retrospective analysis for Research and
Applications - version 2 (MERRA2, Gelaro et al., 2017). For 2019, anthropogenic emissions were taken from an updated
version (V_2021 04 21) of the Community Emission Data System (CEDS) (Hoesly et al., 2018). For 2020, we carry out two
modeling experiments, denoted as 2020-BAU and 2020-COVID, by using two anthropogenic aerosol and precursor emissions.
In the 2020-BAU scenario, we used the anthropogenic emissions for 2019 to approximate the business-as-usual (BAU)
anthropogenic emissions for 2020. In the 2020-COVID scenario, the 2019 anthropogenic emissions from different sectors
were adjusted based on daily mobility data gathered by Apple and Google to reflect the lockdown’s effects on the
anthropogenic emissions (Foster et al., 2020). Note that in both 2020-BAU and 2020-COVID runs, emissions from desert dust,
sea-sprays, and wildfires are representative for 2020 conditions; specifically, emissions from wildfires are prescribed based on
satellite observations in 2020 (Darmenov and da Silva, 2015) and dust and sea-salt emissions are calculated online within the
GEOS model based on surface and meteorological fields in 2020 from the MERRA-2 analysis (Chin et al., 2014).

One of the advantages of using GEOS modeling is that it provides not only total AOD and PM::s but also their composition.
This allows for distinguishing anthropogenic sources from natural sources (e.g., dust storms, wildfires, volcanic eruption or
degassing, and sea sprays). In addition to providing the 10-year pre-pandemic climatology of PMazs and AOD, the two
experiments for year 2020 (i.e., 2020-BAU and 2020-COVID) together with the 2019 run can be used to distinguish the effects
of anthropogenic emission reductions associated with the COVID-19 lockdowns from those associated with differing

meteorological conditions (through affecting aerosol transport and removal processes) as well as effects from emissions of

natural aerosols, which are not directly related to the lockdowns. For brevity, we refer to the differences between 2020-COVID
and 2020-BAU as the “lockdown effect” whereas the difference between 2020-BAU and 2019 is referred to as the “non-

lockdown effect” that is due to changes in meteorological conditions and natural emissions. These experiments can be used to
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facilitate the interpretation of the observed PMzs difference between 2020 and 2019. In this study, it is assumed that the
differing meteorology and natural emissions between 2020 and 2019 are not caused by the lockdown-induced anthropogenic
emissions.

2.3. Stringency index measuring the scope of lockdowns

The rapid spread of COVID-19 promoted a wide range of government responses in containing the disease and protecting the
wellness of human beings. The Oxford COVID-19 Government Response Tracker (OxCGRT) project was established to track
the policy indicators of government responses at national and even state/province levels. The project remained active for most
of the nations tracked until the end of 2022. The OxCGRT provided four composite indices by grouping different families of
policy indicators, namely the government response index, the stringency index, the containment and health index, and the
economic support index (Hale et al., 2021). A stringency index, measuring the severity of lockdown restrictions, was developed
by aggregating nine policy indicators, including school closures, workplace closures, public event cancellations, restrictions
in gathering size, and travel bans, among others. The index is rescaled to a number between 0 and 100, with 100 being the
most extreme lockdown situation (Hale et al., 2021). In this study, we use the stringency index to identify major lockdown
periods to facilitate the analysis of change in PM2 ;s air quality. Although for 11 stations in China, India, and USA the stringency
indices were derived from lockdown measures implemented at the state/province level, the stringency indices for the other 10

stations were determined based on national lockdown measures.

3. Results

In this section, we first present a detailed analysis of PMa2.s change in response to the lockdowns on the 5-day running mean
and monthly mean basis in six populated major cities (marked as filled black dots in Figure 1), namely Shanghai (China), New
Delhi (India), Los Angeles (USA), Paris (France), Lima (Peru), and Kuwait City (Kuwait). These stations are selected to
represent broad geographical regions with different aerosol characteristics in terms of source sectors (as shown in Figure 2),
which would determine how PMa:s levels responded to the COVID-19 lockdowns. Then we interpret the observed changes in
PM:s in the context of regional PMa.s trends and attribute them to the COVID-lockdown induced anthropogenic emissions

reductions and the interannual variability of meteorological conditions with the aid of GEOS modeling experiments. Finally,
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we present a general discussion of observed PMz s changes during the major lockdown periods in the remaining 15 stations
(open circles in Figure 1).

3.1. Observed changes in PM:zs corresponding to COVID lockdowns — Case studies of selected stations

Figures 3-8 display PM. s variations at the six stations on the 5-day running mean and monthly mean basis. For each monitoring
station, shown in the top panel (a) is the time series of stringency index during 2020 — 2022 period, which can be used to
identify the lockdown periods and facilitate the interpretation of observed PMz s variations, whereas shown in panel (b) and
(c) are the observed time series of 5-day running mean and monthly average of PMzs, respectively, in pre-pandemic years
prior to 2020 (the number of years depending on available observations at the station) and during the pandemic years of 2020-
2022. The pre-pandemic (2019 and earlier) climatologies are represented by the average (black lines) and the range of
observations (gray vertical bars). We also display the time series in 2019, a year immediately prior to the pandemic, laying the
ground for a focused analysis of 2020 and 2019 in the next section. Major characteristics of the PMa.slevel in response to the
COVID-19 lockdowns are detailed in the following subsections. We particularly focus on PMa2s changes during relatively
stringent lockdown periods, defined in this study as periods with a stringency index > 60.

3.1.1. Shanghai, China

Shanghai’s lockdowns began in late January 2020, when its stringency index increased from almost 0 to more than 70 on
January 27 (day of the year or DOY = 27), as shown by the red line in Figure 3a. Moderately strict lockdown regulations
continued through the rest of this year, seeing that values for the stringency index remained above 45. The station’s observed
5-day moving average concentrations of PMzs in 2020 were generally lower than that in 2019 and other pre-pandemic years.
There was a sudden drop of the 2020 (red line) average from the pre-pandemic multi-year average (black line) in Figure 3b
when DOY = 27, and a clear disparity between the two lines continues throughout the year except a period of DOY=196-265
(mid-July to late-September). Similarly, monthly PM> 5 levels portrayed in Figure 3¢ from February through December 2020
were significantly lower than the pre-pandemic averages except July-September when differences became smaller. The most
evident pullback from years preceding the pandemic to 2020 seems to be in March, which was a relative reduction of 55% in

comparison to the pre-pandemic average. This matches with how Shanghai’s stringency index was at its largest for that year
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from February through May. Thus, it is reasonable to assume that Shanghai’s lockdowns during this time contributed to
lowering the PMzs levels.

Furthermore, Shanghai’s second major lockdown began around April 2022 that was even stricter than the 2020 lockdown with
the stringency index >90. The blue line in Figure 3a reaches a peak of 97, an almost maximum stringency, and only falls to
approximately 60 at the start of June. During these months of regulations triggered by the Chinese government’s zero-COVID
policy, where rapid lockdowns and mass testing would occur whenever positive cases emerged, and Shanghai’s 26 million
citizens were mostly confined in their homes (Han et al., 2024). As indicated in Figure 3¢, Shanghai’s 2022 monthly PMa.s
means during April, May, and June 2022 reached record lows, staying well below the means of all past years. In particular,
the April 2022 average was less than the 2012-2019 average by about 35 ug m=. On the monthly basis, PM2.s from March to
May decreased from pre-pandemic means by 43% to 56%. In Figure 3b, 5-day moving averages for 2022 also occasionally
dipped to historical minimums once in late April and twice in May. It is evident that Shanghai’s unyielding shutdown of 2022
that practically locked its population indoors had a pronounced impact on PMzs levels. In summary, the above data analysis
shows that the COVID-19 lockdowns reduced the PMas load, consistent with the fact that 60% of PM2s in Shanghai came
from those potential LERS (Figure 2) as discussed in section 2.1.

3.1.2. New Delhi, India

In New Delhi, it is estimated that about 47% of PMa.s were sourced from those potential LERS, while residential sector
accounted for about 27% (Figure 2). Based on the time series in Figure 4a, New Delhi’s government started imposing stricter
shutdown measures in February of 2020, and went into a full lockdown by mid-March that lasted until the end of May, where
the stringency index hit 100. From June through September 2020, the stringency index gradually decreased yet was always
above 60, meaning that New Delhi continued moderate COVID-19 regulations for most of the year. Comparing these values
with the 5-day running means of PMz 5 in Figure 4b, it is likely that the COVID-19 lockdowns had at least some impact on air
quality in New Delhi. The red line of PM2.sin 2020 falls under the black line of pre-pandemic (2015-2019) averages from
around DOY = 90 to DOY = 135, demonstrating lowered PM25 in April and part of May, when lockdown measures were at

maximum severeness. The monthly PMzs levels for March through May 2020 in Figure 4c were also lower than the
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corresponding 2015-2019 monthly means by 29% to 45%. In the later months of 2020, when shutdown restrictions lessened,
monthly average PMz s concentrations became similar to those in past years.

In the spring of 2021, New Delhi experienced a second, smaller-scale COVID-19 lockdown. According to the stringency index
graph, the yellow line representing the city’s index in 2021 up ticked to values between 80 and 100 from DOY = 109 to DOY
=158. New Delhi’s PM2 5 levels, however, did not have any noticeable decrease or change in the early stages of this timeframe,
as the March and April 2021 means were almost the same magnitude as or even higher than the same means of pre-pandemic
years. But by the end of the lockdown period, the monthly PMa.s concentration dropped to a record low (October 2021). The
May 2021 average PM:.s dropped to as small as the May 2020 mean. Despite this occurrence, there is no strong indication that
the 2021 lockdown in New Delhi had much influence on air pollution, because the amount of PMzs in its atmosphere only
decreased during less than half of the highly stringent period.

3.1.3. Los Angeles, USA

For Los Angeles, 58% of PM2s in pre-pandemic years were sourced from potential LERS. The reductions in PM2 s from these
LERS during the pandemic years might be compensated by an increase associated with the residential sector, which accounted
for about 17% of pre-pandemic PMas. COVID-19 lockdown measures were strictest when the stringency index quickly
elevated to above 80 in mid-March 2020, specifically on DOY = 79, from an initial value of around 20 ten days earlier (Figure
5a). The index plateaued in the low 80s through April of 2020. In this timespan, PMa2.s concentrations diminished to some
extent, with the red line of 2020 means remaining under the black line of pre-pandemic means throughout March and the
beginning of April (Figure 5b). Moreover, we show in Figure 5c that March 2020 and April 2020 PMz.5 averages were smaller
than their pre-pandemic counterparts by 47% and 32%. Several steep spikes in 5-day moving averages of PMa:s levels also
occurred in the 2020 summer and autumn (Figure 5b), due to the extreme wildfires that struck California that year, which
burned about 4.3 million acres of land total, a number twice the state’s previous record (Safford et al., 2022).

3.1.4. Paris, France

Paris experienced lockdowns induced by COVID-19 in 2020 and 2021. In 2020, the city’s stringency index reached 88 at DOY
=77 (mid-March) and stayed at a similar level until around DOY = 131 (mid-May) in Figure 6a. Interestingly, the PM.s level

hit a record low in many days in February, prior to the lockdown (Figure 6b). For the rest of the year, the 5-day moving
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average of the PM2.5 level stayed below the 2013-2019 mean for most days, although it became closer to the 2019 level
starting from July after the lockdown measures were eased. For the monthly averages in Figure 6¢, PMa.s values in March and
April 2020 decreased from the 2013-2019 means by approximately 43% and 13%, respectively, although it is noticed that the
PMz5 in February (before lockdown) was the lowest in the entire year. Unlike other sites discussed earlier in this paper, the
PM::s levels in Paris rarely hit record lows during lockdowns, even though they are near the bottom of the range from pre-
pandemic years.

Another less rigid lockdown for Paris went into place during January to mid-May of 2021, where the stringency index lay
between 60 and 80. This time, the PM2.5 concentrations were also lower than the pre-pandemic values (except April) but higher
than in 2020. This is more clearly seen in the monthly means, as the PMazsin 2021 from January to May are lower than the
same months before the pandemic but are higher than 2020 except May, apparently consistent with the different degrees of the
stringency between 2020 and 2021, although such attribution might be ambiguous.

3.1.5. Lima, Peru

Lima’s most strict lockdown occurred mid-March through June of 2020, as seen in Figure 7a. In these nearly four months, the
stringency index ranged from 90 to 97, a sign of extremely tight lockdown measures. Evidently, in Figure 7b, the PMa s levels
for 2020 fell well below 2016-2019 amounts during the exact same period. Monthly averages of PMzs in Lima rendered by
Figure 7c were also significantly diminished in March to June of 2020, where concentrations consistently were lower than pre-
pandemic averages by 47% to 54%. Since the timings of declines in PM2.s matched with the timings of escalated stringency
indices, it seems to present a line of strong evidence that the reduction of human activities had direct impact on lowering the
PMzslevels in Lima. Such effects are more clearly seen in the monthly mean PM..s in Figure 7c that the 2020 values are lower
than the pre-pandemic years throughout the year with the largest reduction in the months with highest stringency index.

In contrast, the lockdown measures in 2021 did not seem to help reducing the PMzs in Lima despite the still high stringency
index (around 60) throughout the year. The PM2s levels in 2021 were very similar to the pre-pandemic values, although they
were noticeably lower by 6.5 and 10.3 pg m (corresponding to 30% and 41%) in February and March of 2021 respectively
(Figure 7b and 7¢) when the stringency index was higher (~70-75).

3.1.6. Kuwait City, Kuwait
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During April, May, June, and July of 2020, Kuwait City’s stringency index enlarged to values between 80 and nearly 100
(Figure 8a). Despite this severe lockdown, there were not many apparent signs of change in PMa.s concentrations in the spring
and summer of 2020, which often surpassed pre-pandemic concentrations and occasionally fell to record lows. Figure 8b’s red
line for PMa.s 5-day moving averages in 2020 does reach minimums under the black line of pre-pandemic averages at points
in mid-April and early May, and monthly means in Figure 8c for March and April 2020 were less than their complementary
2017-2019 means by 13% to 40%. Nonetheless, the concentration of PMzs in 2020 in general were well within the range of
pre-pandemic years. In 2021, although the stringency index remained above 60 from January to July, the PM2s levels did not
respond to the stringency measures (Figure 8b and 8c). These levels hit the record low in August-October despite the relaxed
stringency.

It should be noted that Kuwait City is heavily influenced by desert dust, which was not affected by the lockdown. Therefore,
it is expected that dust frequently plays a determining role in PMz 5 levels in Kuwait City. This is most evident in 2022 (blue
lines in Figures 8b and 8c) when the PM» 5 concentrations were pulsed and abnormally large with the May average being close
to twice as high as the mean for May from pre-pandemic years. The heavy dust storms that occurred in late May across the
Middle East in that year (Francis et al., 2023) are a probable explanation for this growth. It is logical to assume then, that this
event is proof of how the presence of dust storms can have a magnified effect on the overall levels of PMzs in Kuwait City,

which would overwhelm changes due to other influences like COVID-19 lockdowns, in observational data.
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345 Figure 3: Time series of (a) the lockdown stringency index during the pandemic years (2020 - red, 2021 - orange, and
2022 - blue) and (b) the 5-day running mean PM:s concentration over years for four individual years of 2019-2022
(with brown, red, orange, and blue line denotes 2019, 2020, 2021, and 2022, respectively) in Shanghai, China. The
monthly average PM:.s concentrations (ug m) are shown in (c). Also shown in (b) and (c) is the pre-pandemic
climatology with black line denoting the average and gray shaded areas the range of observations during the pre-
350 pandemic period.
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Figure 4: Same as Figure 3, except for New Delhi, India.
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Figure 6: Same as Figure 3, except for Paris, France.
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(a) Lima Stringency Index
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Figure 7: Same as Figure 3, except for Lima, Peru.
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(a) Kuwait City Stringency Index
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3.2. Attribution of the observed changes in PM:sbetween the pandemic and pre-pandemic years

In this section, we attempt to interpret the observed changes in PMzs by carrying out additional analyses of in-situ PMaz.s
observations and GEOS model simulations to address two major questions: (1) are the observed changes in PM2 s during the
lockdowns coincident with the regional PMz s trends? (2) what are the relative contributions of the COVID-lockdown induced
anthropogenic emission reductions, interannual variability of meteorology, and natural emissions to the PMa.s changes during
the pandemic?

3.2.1. Inferring the Lockdowns’ impacts in the context of regional PMz s trends

The analysis in section 3.1 showed that on a monthly basis, PMzs in 2020 during the lockdown periods was systematically
lower than the pre-pandemic averages in six cities except at locations significantly affected by wildfires and dust storms. In
some cities, the 2020 PM2s concentrations even made it to record lows in the study periods. However, these reductions in
PM2 5 during the pandemic may not be simply credited to the effects of COVID-19 lockdowns. For instance, if the PMa2.s level
in a city had been declining before the pandemic, an apparent decrease in PM25 observed in 2020 might be just following the
trend in a business-as-usual scenario. It is thus necessary to put them in the context of regional PMa.s interannual variations or
trends to reduce ambiguity in attributing the observed PMa.s reductions to the lockdown impacts.

Here we investigate the March-April average PM2 5 concentrations in pre-pandemic years (black dots) and during the pandemic
years (red triangles) for all six cities, as shown in Figure 9. We restricted the period to March and April because this was when
the first wave of lockdowns occurred at most of the cities in 2020. These plots also contain standard deviations and linear
regression lines (black lines) of the data for all years up until 2019 (i.e., excluding the pandemic years 2020-2022). The
coefficients of determination, R?, of the linear regressions for Shanghai and Paris is 0.739 and 0.785, respectively, which
suggests that the pre-pandemic decreasing trend is statistically significant with p = 0.01 based on the student t-test. Although
R? for Lima and Kuwait City are higher, the limited data points in the PMa.s observations make the R? values less meaningful
in terms of statistical significance of the decreasing trend. Contrary to the other four locations, PMz s levels in New Delhi and
Los Angeles contained no meaningful trends, as R? values for both sets of data points are 0.1 or less. The linear regression
lines based on the pre-pandemic PM2 s observations are then extrapolated to later years as an estimation of PM2.s under a BAU

scenario in 2020-2022 without COVID-19 lockdown. A deviation of observed PMz s levels during the pandemic years from
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the predicted values is compared with the pre-pandemic standard deviation to assess the likelihood of influences by the
COVID-19 lockdown. For Shanghai, the deviation of observed PMazs from the predicted value is -13.73, -7.07, and -9.94 pg
m™ for 2020, 2021, and 2022, respectively. For comparison, the pre-pandemic standard deviation is 7.33 pg m™. This suggests
that emission decreased associated with Shanghai’s stringent pandemic restrictions most likely have caused significant
reductions of PMz5 in 2020 and 2022. Similarly, the deviation from the predicted value in 2020 is -30.94, -5.44, and -6.38
pg m~ in New Delhi, Los Angeles, and Lima, respectively. These deviations are significantly greater than the corresponding
pre-pandemic standard deviations of 6.81, 2.58, and 3.89 ug m™, most likely suggesting that the COVID-19 lockdowns in
2020 caused significant reduction of PMa.s in New Delhi, Los Angeles, and Lima. On the other hand, 2020’s PM> 5 levels in
Paris and Kuwait City were above the regression line by 2.55 and 4.12 pg m?, respectively, despite being lower than pre-
pandemic averages. In these cases, external causes may have offset any impacts of reduced anthropogenic emissions during
COVID-19 lockdowns.

Notably, in March-April of 2021 and 2022, all six cities except for Shanghai demonstrated upticks in PM2.s concentration to a
level near or well above the BAU projection. Shanghai’s PMa2s increased in 2021 but decreased again in 2022 due to the second
stringent lockdown discussed earlier. The PM2.s concentration in 2022 was even lower than that in 2020. The question of how
much the loosening of COVID-19 pandemic regulations truly contributed to these increases in PMas requires further
investigation, but so far, there is some evidence of elements besides the lockdown stringency, such as the dust storms in Kuwait

City, playing a role as well.
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Figure 9: Interannual variations of the March-April average PM:s (ug m?) in (a) Shanghai, (b) New Delhi, (c) Los
Angeles, (d) Paris, (e¢) Lima, and (f) Kuwait City. Black dots indicate pre-pandemic years and red dots for the pandemic
years. Black line represents a linear regression of PM:s for pre-pandemic years only (excluding data points in the
pandemic years), which is used to predict the business-as-usual (BAU) PM:s during the pandemic years. R? and pre-

pandemic standard deviation (o) is noted in the box. Red triangles indicate average PMa.sin the pandemic years.

24



425

430

435

440

445

3.2.2. Attributing the observed PM:schanges to the lockdown-induced emission reductions with GEOS modeling

In this section, we focus on an analysis of the observed and modeled changes in March-April average PMa.5 concentration
between 2020 and 2019. This focused analysis is done based on the three GEOS model experimental runs (as described earlier)
to provide insight into how the observed PM2.s changes are related to the anthropogenic emission reductions associated with
the COVID-lockdowns and differing meteorology/natural emissions. The three GEOS runs for 2019, 2020-BAU, and 2020-
COVID are compared against each other to distinguish a change associated the lockdowns (i.e., reductions in anthropogenic
emissions) from those non-lockdown effects (e.g., interannual variations in meteorological conditions and natural emissions).
Specifically, the difference between 2020-BAU and 2019 indicates the effect of differing meteorology and natural emissions
between 2020 and 2019, as the same anthropogenic emissions were applied in these two runs. On the other hand, the difference
between 2020-COVID and 2020-BAU measures the effect of reducing anthropogenic emissions by the lockdown restrictions,
as the two runs were driven by the same meteorology and emissions of natural aerosols from dust storms, sea sprays,
biogenic/volcanic sources, and wildfires were largely the same. These simple attributions are insightful, although the so-
derived lockdown effects and those by the differing meteorology and natural emissions (i.e., non-lockdown effects) may not
add up exactly to the reduction in PM25 due to the nonlinearity of the aerosol system.

Table 1 lists the relative changes (%) of anthropogenic SO2, NH3, BC, and OC emissions in the six cities due to implementation
of the lockdowns, on a basis of March-April average (annual cycles of BAU and COVID emissions are shown in the
supplement, Figures S3-S8). We derived these numbers by calculating differences of March-April emissions around the six
cities (averaged over a 3° x3° box around each city) between 2020-COVID and 2020-BAU scenarios of anthropogenic
emissions that were used to drive the GEOS simulations. As described in section 2.2, for the 2020-BAU scenario,
anthropogenic emissions in 2019 were used to represent the baseline emissions of 2020, assuming the anthropogenic emissions
would not have significant changes from 2019 to 2020 in a business-as-usual (BAU) scenario. For the 2020-COVID scenario,
the 2019 anthropogenic emissions in individual sectors were adjusted (decreased or increased, depending on sectors) based on
daily mobility data gathered by Apple and Google to reflect the COVID lockdown’s impacts on anthropogenic emissions,
which was developed by Foster et al. (2020). While the anthropogenic emissions generally decreased because of the lockdowns

by a large range of magnitudes (-2.1% to -45.9%) depending on locations and species, OC in New Delhi increased slightly by
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+1.5%. Our analysis shows that the increase of OC in New Delhi (and other cities in India) came from the increase of OC in
residential sector, presumably due to the large share of biofuel uses in residential cooking that increased significantly during

the lockdowns.

Table 1: Relative change (%) of March-April average anthropogenic SOz, NH3, BC, and OC emissions
averaged over 3°x3° box around the cities due to COVID lockdowns. Negative value indicates a decrease of
emission due to the lockdowns.

City, Country SO2 NH; BC oC

Shanghai, China -16.1 -11.7 -14.4 -10.4

New Delhi, India -28.2 -12.3 -2.1 +1.5

Los Angeles, USA -26.3 -16.4 -27.7 -19.2

Paris, France -34.3 -6.8 -27.0 -5.3

Lima, Peru -45.9 -11.1 -28.9 -10.5

Kuwait City, Kuwait -9.3 -8.1 -23.3 -21.1

Figure 10 shows the observed and modeled PM» 5 changes (2020-2019) as well as the GEOS attributions of bulk PM2 5 changes
into different acrosol components and into the lockdown and meteorological/natural effects. For brevity, we group the GEOS
aerosol components into four broad groups, namely inorganic aerosols (including sulfate, ammonia, and nitrate), carbonaceous
aerosols (including organic matter, black carbon, and brown carbon), dust, and sea-salt. Relative changes in total PM2 s between
2020 and 2019 derived from both the observations and GEOS simulations are listed in Table 2. To facilitate the discussion of
potential effects of the differing meteorology and natural emissions on PMzs, we also derived March-April averages of the
planetary boundary layer height (PBLH), wind speed at 10 m, total precipitation rate, and OC emissions associated with fires
from the GEOS simulation, as listed in Table 3. While PBLH affects PM2.5 through vertical mixing, wind speed at 10 m
represents local ventilation conditions and affects dust emissions as well. The precipitation rate determines wet removals of
aerosol. Major features for the individual stations are summarized in the following:

Shanghai, China: The observations show that PM2sin 2020 was 19.5 ng m™ or 41.4% lower than that observed in 2019. In
comparison, GEOS model shows a smaller reduction of PM2 s in 2020, i.e., 12.2 pg m™ or 18.4% (with respect to the modeled
value), of which 7.5% is due to the lockdown-induced reduction in anthropogenic emissions and 11.8% due to the differing
meteorology and natural emissions. Analysis of aerosol composition further shows that carbonaceous PM2s made a larger
contribution to the reduction of PMz.s than inorganic PMas did for both the lockdown-induced emissions reduction and the

differing meteorology and natural emissions. In comparison to March-April 2019, PBLH and precipitation rate during the 2020
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COVID-lockdowns increased by 90 m (18.2%) and 0.42 mm d! (16.9%), respectively, both contributing to the decrease of
surface PMzs. Although fire-emissions increased by 83.3% from 2019 to 2020, the amount of fire emissions was relatively
small and did not contribute significantly to PM2.

New Delhi, India: The observed PM2.5in 2020 was about 27 ug m™ or 36.2% smaller than that in 2019. GEOS model predicted
a much smaller reduction of 4 ug m= or 7.7% in 2020. The model also suggests that the differing meteorology (e.g., an increase
of 115.5% in precipitation rate) and natural emissions (e.g., dust reduction associated with a 30.4% decrease of near-surface
wind speed) constitutes of about the 4.6% reduction in PMazs, while the lockdown-induced reduction in anthropogenic
inorganic emissions for the 3.2% reduction.

Los Angeles, USA: Observed PM2s in 2020 was lower than that in 2019 by 2.4 ug m™ or 18.4%. In comparison, the GEOS
predicted a much smaller reduction of only 0.2 pg m™ or 3%. However, the 3% reduction in PMaz.s is a balance of the 8.2%
reduction in both inorganic and carbonaceous aerosols associated with the lockdown and the 5.7% increase in inorganic aerosol
and sea salt due to differing meteorology. Dust and carbonaceous aerosol had much smaller increases, compared to inorganic
aerosol and sea salt.

Paris, France: Although observed PM2 s decreased by 2.7 pg m™ or 17.5% from 2019 to 2020, GEOS model only predicted a
reduction of 0.8 ug m or 8%. Further analysis of GEOS modeling experiments shows that the reduction of anthropogenic
emissions due to the lockdowns contributed to a 5.1% reduction in PMzs, which is evenly contributed by inorganic and
carbonaceous PMaz.s. Due to the differing meteorology between 2020 and 2019, dust PMa s increased by 0.2 ug m while sea-
salt PM2 s decreased by 0.5 ug m=. An increase of 0.3 pg m™ in carbonaceous PM2 s was associated with a 167.5% increase in
wildfire emissions. However, differing meteorology reduced the formation of inorganic PM2s5by 0.3 ug m™ in 2020.

Lima, Peru: PM: s was observed to decrease by 7.5 pg m™ or 36.3% in 2020. In comparison, the GEOS modeling predicted a
relatively smaller reduction of 26.7% in PMas. Further analysis shows that the lockdown-induced anthropogenic emission
reduction yielded a 16.7% reduction in PMas, with more reduction in inorganic than carbonaceous aerosol. The differing
meteorology (e.g., about 10% increase in PBLH) reduced inorganic and carbonaceous PMzs by a similar amount, which

collectively contributed to the 12.7% reduction in total PMa:s.
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Kuwait City, Kuwait: Different from the five cities discussed above, the observed reduction of 1.4 ug m™ in PMas in 2020
is smaller than the GEOS simulated reduction of 4.7 pg m™ by more than a factor of 3. However, due to GEOS model
overestimated PM2.5in 2019 by more than a factor of 2, the relative reduction is 3.8% and 5.6% for the observation and GEOS
model respectively. Furthermore, the GEOS model suggests that the reduction of 2.0% associated with the lockdowns is
smaller than the 3.7% reduction due to the differing meteorology. The lockdown-induced reduction in inorganic PMa.s is more
than a factor of two larger than that in carbonaceous PMzs. One can also notice that dust PMz s had a small reduction caused
by the lockdown-induced anthropogenic emissions reduction, which might be attributed to the dynamic aerosol-radiation
interactions accounted for in the GEOS simulations that affected both emissions and transport of dust. The differing
meteorology had influenced PM2.s components differently. On one hand, the reduction of dust PM2 5 by 6.5 ug m™ is consistent
with the 56.3% decrease in near-surface wind speed. On the other hand, an increase of 2.6 pg m™ in inorganic PM2.sand an

increase of 0.4 ug m in carbonaceous PMz.s are consistent with the 32.8% reduction in precipitation rate.

Table 2: March-April average PMz.s in 2019 and relative change (%) of PM2zsbetween 2020 and 2019 derived
from the observations and GEOS simulations. Negative values indicate that PMz.s was smaller in 2020 than
2019. The relative changes of 2020_COVID vs 2020_BAU and 2020_BAU vs 2019 represent contributions of
the lockdown-induced anthropogenic emission reductions and the differing meteorology, respectively.
City, Country | Observed PMa.s GEOS-simulated PMa.s
2019 (ug | 2020 vs | 2019 (ug | 2020_COVID vs | 2020_COVID vs | 2020_BAU vs
m>) 2019 (%) m?) 2019 (%) 2020 BAU (%) 2019 (%)
Shanghai, 472 41.4 66.3 -18.4 7.5 118
China
New  Delhi, | 736 | 362 483 7.7 32 4.6
India
Los Angeles,
USA 12.9 -18.4 7.2 -3.0 -8.2 +5.7
Paris, France 15.5 -17.5 9.8 -8.0 -5.1 -3.0
Lima, Peru 21.2 -36.3 15.5 -26.7 -16.7 -12.1
Kuwait  City, | 54 7 3.8 83.3 5.6 2.0 3.7
Kuwait
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Table 3: Comparisons of some major meteorological variables and fire-emitted OC between 2020 and 2019
on a basis of Mar-April average. The data are derived from GEOS simulations by averaging over 3°x3°
box around the cities. Numbers in the parentheses represent the percentage change with respect to 2019.

PBLH (m) 10 m wind speed | Precipitation (mm d!) | OC emissions from fires
(ms) (gm?d?
Shanghai
2019 493 1.19 2.53 5.3E-5
2020 583 1.20 2.95 9.7E-5
2020 vs 2019 +90 (+18.2%) +0.01 (+0.8%) +0.42 (+16.9%) +4.4E-5 (+83.3%)
New Delhi
2019 1073 1.59 0.51 1.8E-4
2020 980 1.11 1.09 4.7E-5
2020 vs 2019 -93 (-8.7%) -0.48 (-30.4%) +0.58 (+115.5%) -1.3E-4 (-74.4%)
Los Angeles
2019 622 1.65 0.65 4.8E-5
2020 633 1.48 2.64 1.7E-4
2020 vs 2019 +11 (+1.8%) -0.17 (-10.1%) +1.99 (+304.3%) +1.2E-4 (+247.5%)
Paris
2019 728 1.94 1.61 4.1E-6
2020 655 0.67 1.78 1.1E-5
2020 vs 2019 -73 (-10.0%) -1.27 (-65.7%) +0.17 (+10.6%) +7.0E-6 (+167.5%)
Lima
2019 322 1.91 2.97 1.7E-5
2020 354 2.08 243 2.8E-5
2020 vs 2019 132 (9.9%) +0.17 (+8.7%) -0.54 (-18.1%) +1.1E-5 (+63.2%)
Kuwait City
2019 732 1.41 0.53 2.1E-3
2020 746 0.61 0.36 2.0E-3
2020 vs 2019 +14 (1.9%) -0.80 (-56.3%) -0.17 (-32.8%) -1.0E-4 (-5.3%)
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Figure 10: Absolute differences (ug m™) in March-April average PMazs between 2020 and 2019 (a negative value
indicating that PM>.s was smaller in 2020 than 2019) in Shanghai, China (a), New Delhi, India (b), Los Angeles, USA
(c), Paris, France (d), Lima, Peru (e), and Kuwait City, Kuwait (f). Shown here include observed (yellow bars) and
GEOS simulated (blue bars) changes in total PMz.s. The GEOS simulations are further classified into dust, inorganic
aerosol, carbonaceous aerosol, and sea salt, shown below the total PM:s change. For both total and component PM:s,
GEOS simulation is partitioned into GEOS PM:s change due to anthropogenic emission change (orange) and GEOS
PM:s change due to differing meteorology (gray). Relative changes in PM:s are listed in Table 2.
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In summary, the GEOS modeling experiments show that both the lockdowns and the differing meteorology as well as natural
emissions contribute to the PMa2.s reduction in 2020, in comparison to that in 2019. In Shanghai, New Delhi, and Kuwait City,
the differing meteorology and natural emissions made a larger contribution to the PMa2.s reduction than the lockdowns did. On
the other hand, the lockdown effects in Los Angeles, Paris, and Lima were larger than that due to the differing meteorology
and natural emissions. Clearly, for all stations the effects of the differing meteorology and natural emissions need to be
considered when interpreting and attributing the observed PMzs reduction in 2020 to the lockdown induced reductions in
anthropogenic emissions. We also want to point out that large differences exist between the observed and modeled PMa s for
most of these stations. Although it is difficult to pinpoint these large discrepancies in a quantitative way, sources of errors
would include several aspects of uncertainty in GEOS modeling. First, the relative contributions to emissions from different
sources or sectors in CEDS may have large uncertainties (Hoesly et al., 2018). Natural emissions from wildfires and dust
would also be very uncertain. As documented in a recent paper (Collow et al., 2024), GEOS simulated aerosol components
have large discrepancies against surface observations. Second, the sector-dependent adjusting factors for COVID-lockdowns
based on the mobility data may be subjected to large uncertainties due to assumptions of relationships between anthropogenic
emissions and mobility (Forster et al., 2020). Third, GEOS modeling of meteorological effects on PM2.s concentration may be
also biased, due to uncertainties associated with meteorological fields themselves and/or parameterizations of aerosol removal
processes.

3.3. Observed changes in PMz.s during the major lockdown period in other stations.

In previous sections, we have presented a detailed analysis in the six representative stations about the responses of surface
PM2 5 to the lockdowns marked by the stringency index as well as to the meteorological conditions and natural aerosol events.
Although similar analysis has been performed for all the stations, for the sake of brevity here we only present monthly PMa s
during and prior to the pandemic years for other 16 stations in 15 cities (Jakarta South and Central sites are presented
separately), as shown in Figures 11 and 12. When examining these plots along with the stringency index of lockdowns
(Figures S1 and S2), we observe that eight stations in Figure 11 show the reduced monthly PMzs in correspondence to the
elevation of stringency index. These stations are located in China, India, and United States. For those in China, the high

stringency index was recorded not only in early 2020 (February — April) but also in March-October of 2022. On the contrary,
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the stations in Figure 12 generally do not show a clear decrease in monthly PMas corresponding to the lockdowns. When
further looking into the source attributions of PMa s in individual stations (Figure 2), we notice that those stations showing the
reduced PMa:s in correspondence to the lockdowns generally have a higher contribution (e.g., >47%) from the LERS, a much
smaller fraction (16-27%) for residential sources, and no significant contribution (<6%) from episodic events such as dust
storms. On the contrary, those stations without displaying a decrease in PM2.5 corresponding to the high stringency index have
a lower LERS contribution (e.g., <40%) and a relatively higher contribution (20-50%) by the residential sector (Jakarta and
Hanoi, in particular), or the predominance of desert dust (e.g., Dubai, Manama, and Addis Ababa). It is necessary to note that
extremely high PM2s in spring and summer of 2022 in Dubai may suggest a potential problem associated with the
measurements in this station. Although high dust events occurred frequently in the region in 2022 (Francis et al., 2023),
Manama and Kuwait City in the region did not record as high PMa:s as that in Dubai. Further analysis of AERONET monthly
AOD in Dubai (see Figure S9 in the supplement) shows that AOD in May 2022 had a similar magnitude to that in May 2019,
contrary to the large difference in the observed surface PMa:s.

In summary, our analysis shows that there were no systematic reductions in PMa:s in response to the reduced human mobility
due to the implementation of lockdown measures. In some urban areas, the coincidences of decreasing PMz.s and increasing
stringency index strongly suggest the impact of COVID-lockdowns on improving air quality. In fact, the lockdowns yielded a
historic low PMazs level in several cities. In other urban areas, there was no reduction of PMzs in response to the lockdown,
suggesting that the impact of lockdowns could have been compounded with other factors such as meteorological conditions
and natural emissions (desert dust and wildfire smoke) to some extent. Our analysis also manifests the importance of PMaz.s
source attributions in determining how the level of PMz s responds to the lockdowns. When the energy, industry, transportation,
commercial and other combustions, AFCID (anthropogenic fugitive, combustion, and industrial dust), and international
shipping sectors are major attributors of PMz:s, it would be easier to detect the PMa2.s reduction in response to the lockdowns.
On the other hand, when residential sector and/or natural emissions such as dust or wildfires are major contributors of PMas,
the response of PMa s to the lockdowns might be masked out and even an increase of PM2.5 could occur during the lockdown
periods. Finally, it is important to bear in mind that even for those cities with the lowest level of PMa2s in the recent decade
occurred during the COVID-19 lockdowns, the observed PMa.s reductions should not be attributed fully to the lockdowns. The

variability in meteorological conditions and natural emissions might have made sizable contributions.
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570 Figure 11: Monthly variations of PM>.s concentration in 2019 (brown), 2020 (red), 2021 (orange), 2022 (blue), and the
pre-pandemic climatology (with black line denoting the average and gray shaded areas the range of observations during
the pre-pandemic period) in Beijing (a), Shenyang (b), Guangzhou (c), Chennai (d), Hyderabad (e), Kolkata (f),
Mumbai (g), and New York City (h). The time series of stringency index for these cities are shown in Figure S1.
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Figure 12: Monthly variations of PM2s concentration in 2019 (brown), 2020 (red), 2021 (orange), 2022 (blue), and the
pre-pandemic climatology (with black line denoting the average and gray shaded areas the range of observations during
the pre-pandemic period) in Milano (a), Pristina (b), Hanoi (c), Jakarta (central and south) (d and e), Addis Ababa (f),

580 Dubai (g), and Manama (h). The time series of stringency index for these cities are shown in Figure S2.

4. Discussion
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4.1. Can satellite observations of AOD be used to detect surface PM:.s changes in response to the lockdowns?

The ground-based observations of PMa s are inherently limited in spatial coverage. Numerous studies have explored the use of
satellite observations of AOD to estimate the surface PMa:s that can fill the spatial gaps of surface based PM2.s measurements
(van Donkelaar et al., 2010; Wei et al., 2021). Satellite remote sensing is appealing in this regard because it provides routine
observations of AOD on a global scale and over a multi-year or even multi-decade time scale. Can such satellite remote sensing
observations be used to discern the lockdowns’ impacts on surface PM25? To answer this question, we sample MODIS/Aqua
AOD over the 21 cities in 2019 (a pre-pandemic year) and 2020 (the pandemic year). We then calculate the relative changes
of March-April average AOD values between 2020 and 2019 as follows:

AOD — AOD
AOD change (%) = ZOAZ(O)D 201 % 100%
2019

The relative changes of observed March-April average PMas at the location of the same sites are calculated with similar
methodology. From the modeling perspective, we compute the relative changes of AOD and PMz s based on GEOS simulations
for 2019 and 2020 (for the COVID scenario, namely 2020-COVID, as discussed earlier).

Figure 13 compares the relative changes of AOD and PMzs in March-April from 2019 to 2020 over the 21 cites from both
observational (left panel) and modeling (right panel). The observations show that in half (10) of those 20 cities (excluding
Hanoi because of the lack of PM2s data in March and April of 2019) where the changes of AOD and PMzs are in the same
directions. In the other half the changes are opposite. On the other hand, the GEOS model shows a majority (17) of the 20
cities having the same directions of AOD and PMz s changes. Quantitatively, AOD and PM2.5 changes can differ substantially
for both observations and modeling, depending on cities. This presumably reflects the complexity of local/regional aerosol
sources including both anthropogenic and natural, transported amount, and their dependance on altitudes. Our analysis suggests
that satellite AOD, despite its great advantage in spatial and temporal sampling, cannot always be used to detect changes in
surface PM2 s quantitatively (e.g., percentage of change) or even qualitatively (e.g., direction of change). Previous studies using
satellite AOD measurements for detecting or inferring the COVID-lockdown’s impacts on PMa:s air quality may need to be
reassessed. There is also a possibility that MODIS AOD is subject to large uncertainties (e.g.,15-20% at least), particularly in

urban areas where the surface is bright and highly heterogeneous (Levy et al., 2013). It is understandable that when the AOD
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uncertainty in satellite remote sensing is comparable to or larger than the interannual variability, the value of using satellite

remote sensing product for discerning the changes is greatly reduced.
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Figure 13: Relative changes (%) of March-April average PMzsand AOD between 2020 and 2019 in 20 stations based
on the observations (a) and GEOS simulations (b).

4.2. Discrepancies in PM25 changes between observations and GEOS simulations

To use the GEOS modeling for attributing the observed changes in PM2s to different factors, it requires that the GEOS

simulations and observational data are at least consistent in the direction of PM2.s changes. This fundamental requirement was

met for the six stations discussed in section 3.2.2, albeit the magnitude of the changes in the GEOS results was smaller than

observed. Here we examine observation-model discrepancies in the PMa.s changes for 20 stations, as shown in Figure 14, both

for absolute (left panel) and relative (right panel) changes in the March-April average PMa.s concentration (i.e., 2020 minus

2019). Note again that the Hanoi/Vietnam station was excluded because it did not have PMa.s observations in March-April

2019. We found that 17 out of 20 stations show consistent directional changes in PM25 concentration between observations
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and GEOS simulations. Of these, 13 stations had negative differences (2020 lower than 2019) and four stations had positive
differences (2020 higher than 2019). Opposite changes in PM2s between the observations and GEOS modeling were found in
the remaining three stations, namely Guangzhou/China, Chennai/India, Jakarta/Indonesia. Quantitatively, the observation-
model disparity can be substantial, depending on stations. For all the stations the relative changes in the observed PMa.s
between 2020 and 2019 range from -41.4% to +21.0%, while the GEOS modeling gives a relatively smaller range of -25.2%
to +10.6%.

The opposite changes in PM2.s between the observation and GEOS modeling warrant further analysis of the GEOS modeling
experiments. Figure 15 shows the GEOS attributions of simulated bulk PMs changes into different aerosol components and
into the lockdown and meteorological/natural effects for Guangzhou in China and Jakarta in Indonesia. Chennai in India has
a pattern of change similar to Jakarta but with a much smaller magnitude, which is shown along with other 11 stations in the
supplement (Figure S10). We also include changes in major meteorological variables and OC emissions associated with
wildfires in Table S2 of the supplement for all the stations not included in Table 3. In Guangzhou, the observation shows a
decrease of 1.3 pg m? in PMas. However, GEOS simulations suggest that the effect of anthropogenic emission reduction
associated with the lockdown is overcompensated by an increase of PMzs due to the differing meteorology (e.g., a 38%
decrease of precipitation rate, see Table S2) and natural emissions (e.g., a 215% increase of wildfire emission, see Table S2),
leading to an overall increase of 5.7 ug m™ in PMas. It is possible that the precipitation rate was too low, and the wildfire
emissions were too high in 2020 in the GEOS modeling. An opposite pattern of changes is displayed in Jakarta. While the
observation shows an increase of 6.0 pg m™ in PM2.s, GEOS modeling gives a decrease of 6.6 pg m™ in PM25— a result of the
reduced anthropogenic emissions and the differing meteorology/natural emissions (e.g., a 30.9% of increase in precipitation
rate and a 12.6% of decrease in wildfire emissions, see Table S2). It is possible that sources of PM2.sused in GEOS simulations
may have significant biases in Jakarta.

To better explain the observed PMzs changes with the model simulations, future research is clearly needed to improve the
model’s performance. One of such endeavors is to improve the accuracy of emission inventories, particularly the relative
importance of individual source sectors. The estimated emission reduction used in the GEOS model simulation was obtained

by applying the adjustment factors to the 2019 emission based on preliminary, incomplete information from the Apple/Google
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mobility data, which could have large uncertainties. The newly released CEDS emission that covers the emission inventory

during the COVID years is expected to be more accurate for use in the model for future studies.
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Figure 14: Changes in PMzs concentration (March-April average, 2020 minus 2019) from the observations (orange
bars) and GEOS simulations (blue bars) in 20 stations. Left panel (a) is for absolute change in PM.s (ug m™) and right
panel (b) for relative change (%).
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Figure 15: Absolute differences (ug m™) in March-April average PM2s between 2020 and 2019 (a negative value
indicating that PM.s was smaller in 2020 than 2019) in Guangzhou China (a), and Jakarta, Indonesia (b). Shown here
include observed (yellow bars) and GEOS simulated (blue bars) changes in total and component PM:s. For both total
and component PM:.s, GEOS simulation is partitioned into GEOS PM:5 change due to anthropogenic emission change
(orange) and GEOS PM:s change due to differing meteorology (gray).

5. Conclusion

Our analysis of multi-year surface PMa.s observations in 21 cities around the globe shows that reductions in PMz 5 (particulate
matter with an aerodynamic diameter of less than 2.5 um) did not occur systematically in all the cities in response to the

reduced human activities due to the implementation of COVID-19 lockdown measures. In some cities, the decreasing PMzs

was coincident with the increasing stringency index and yielded a historic record of low PMa:s level, strongly suggesting the

39



670

675

680

685

690

impact of COVID-lockdowns on improving the air quality. On the contrary, in other cities there was no reduction of PMas in
response to the lockdown, suggesting that the positive impact of lockdown-induced emission reductions on air quality could
have been compounded with other factors such as meteorological conditions and emissions/transport of desert dust and wildfire
smoke. Our analysis also suggests that the PMa2s source attributions determine how the level of PMa.s responds to the
lockdowns. When the potential lockdown emission reduction sectors (LERS) such as the energy, industry, transportation,
combustions, anthropogenic fugitive, combustion, and industrial dust (AFCID), and shipping sectors predominates over the
residential sector, it was easier to detect the PMz s reduction in response to the lockdowns. On the other hand, when residential
sector and/or natural emissions such as dust storms and wildfires were more important contributors of PM2 s than those potential
LERS, the response of PMa:s to the lockdown-induced anthropogenic emission reductions might be masked out and even an
increase of PM2s could occur during the lockdown. This manifests the importance of PMa.s source attributions in developing
effective pollution control strategies for improving the air quality. Results of this study provide a preview of potential mixed
effects on urban air quality when transitioning gasoline and diesel-powered vehicles to electric vehicles.

Even for those cities with the lowest level of PMa:s in the recent decade that were coincident with the elevation of stringency
index, the observed PMa.s reductions should not be attributed fully to the lockdowns. The non-lockdown effect resulting from
variabilities in meteorological conditions and natural emissions might have made sizable contributions. The analysis of
Goddard Earth Observing System (GEOS) modeling experiments suggests that effects other than anthropogenic emissions
were significant and could well exceed the lockdown effect in some cases.

Our analysis also suggests that the GEOS model is still subject to large uncertainties and may not be used to reliably attribute
the observed PMas changes to changes in anthropogenic emissions, natural emissions, and meteorological conditions. The
model and observations show disparities in the quantitative change in PMzs. In some cases, the direction of change in PMaz.s
can be opposite between the model and observations, which makes it impossible to use the model to interpret the observations.
This manifests the importance of continuous efforts on improving modeling performance in general and the source
apportionments of PMz s particularly. The change of anthropogenic emissions in each sector during COVID is subject to large
uncertainties, and the model results shown here should be considered more as a “sensitivity” study. When the gridded

Community Emission Data System (CEDS) 2024 release is prepared, we could rerun the model for a more systematic
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assessment. Despite the advantage of satellite remote sensing in terms of routine daily sampling over decadal time spans, using
aerosol optical depth (AOD) observations from satellites cannot always detect the impacts of COVID-19 lockdowns on the
PMz5 air quality and even the columnar aerosol loading. This is a result of the complex and non-proportional relationship
between AOD and surface PMzs, as well as the large uncertainty in AOD retrievals from the Moderate Resolution Imaging

Spectrometer (MODIS).
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