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Abstract. Sulfur dioxide (SO2) is an important air pollutant that contributes to negative health effects, acid rain, and aerosol 

formation and growth. SO2 has been measured using ground-based air quality monitoring networks, but routine monitoring 

sites are predominantly in urban areas, leaving large gaps in the network in less populated locations. Previous studies have 

used chemical transport models (CTMs) or machine learning (ML) techniques to estimate surface SO2 concentrations from 

satellite vertical column densities, but their performance has never been directly compared. In this study, we estimated surface 15 

SO2 concentrations using Ozone Monitoring Instrument (OMI) retrievals over eastern China from 2015-2018 utilizing GEOS-

Chem CTM simulations and an extreme gradient boosting ML model. For the first time, we quantified methodological 

uncertainties for both methods and directly compared their performance on the same truth dataset. The surface concentrations 

estimated from the CTM-based method had similar spatial distributions (r = 0.58) and temporal variations compared to the in 

situ measurements but were underestimated (slope = 0.24; RPE = 75%) and had worsening performance over time. The ML-20 

based method produced more accurate spatial distributions (r = 0.77) and temporal variations with a smaller discrepancy (slope 

= 0.69; RPE = 30%) and stable performance over time. Despite the higher accuracy of the ML-based method at the monitoring 

sites, the CTM-based method produced more reasonable gridded spatial distributions over areas without monitoring data. 

These results suggest that satellite data could be a reliable way to estimate global SO2 concentrations to parameterize other 

chemical processes in the atmosphere. 25 

 

1 Introduction 

Sulfur dioxide (SO2) is an important air pollutant due to its effects on human health, air quality, weather, and climate. 

SO2 has many anthropogenic sources such as fossil fuel combustion in power plants and ore smelters, as well as natural sources 

from volcanoes (Engdahl, 1973). Surface SO2 concentrations are mainly driven by anthropogenic activity in urban areas and 30 
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are known to negatively impact cardiovascular and respiratory health (Engdahl, 1973; Krzyzanowski & Wojtyniak, 1982). SO2 

also readily undergoes oxidation reactions in the atmosphere to form sulfuric acid, which further contributes to acid rain 

(Seinfeld and Pandis, 2016) and participates in aerosol formation and growth (Lee et al., 2019). These aerosols can then 

additionally affect weather and the global energy budget (NASEM, 2016).  

 Concentrations of SO2 at the surface have been regularly measured using ground-based air quality monitoring 35 

networks. Surface concentrations are typically measured on hourly to daily time intervals, but the sites are predominantly 

located in urban areas, leaving large gaps in the network elsewhere. In addition to surface-based air quality monitors, satellite-

based instruments can measure total-column concentrations of SO2 globally from space. These SO2 vertical column densities 

(VCDs) are retrieved using the absorption of backscattered solar radiation in the ultraviolet wavelengths measured by a 

spectrometer (e.g., Krotkov et al., 2008; Levelt et al., 2006; Li et al., 2013; Li et al., 2020a; Nowlan et al., 2011; Theys et al., 40 

2015). The VCDs are typically available over large areas in cloud-free locations on a daily basis but do not directly provide 

the concentrations at the surface. Additional analysis is required to estimate the surface concentrations from the satellite-

retrieved VCDs. 

Chemical transport models (CTMs) can be used to convert satellite VCDs into surface concentrations using simulated 

surface-to-VCD ratios (SVRs). This method was initially developed for estimating surface concentrations of particulate matter 45 

from satellite-based aerosol optical depth retrievals (Liu et al., 2004) and was later applied to nitrogen dioxide (NO2; Lamsal 

et al., 2008) and SO2 (Lee et al., 2011). Lee et al. (2011) and Zhang et al. (2021) each used coarse-resolution CTMs (grid 

spacings on the order of 100 km) to convert SO2 VCDs from the Ozone Monitoring Instrument (OMI) into surface 

concentrations over North America for 2006, and China for 2005-2018, respectively. McLinden et al. (2014) and Kharol et al. 

(2017) used higher-resolution CTMs (grid spacing on the order of 10 km) and OMI SO2 VCDs to estimate the surface 50 

concentrations over the Canadian oil sands from 2005-2011, and the North American continent from 2005-2015, respectively. 

These four studies each demonstrated that annual mean satellite-derived surface SO2 concentrations can accurately capture the 

spatial distribution of ground-based air quality monitoring networks, although the estimated surface concentrations were 

generally underestimated. An advantage of the CTM-based method is that it is based on fundamental principles of atmospheric 

dynamics and chemistry and can produce results that are independent of observed surface concentrations. The main limitations 55 

of CTMs are the computational expense of running the simulations (Fan et al., 2022) and relatively coarse resolution, which 

may lead to large biases in the representation of emissions, meteorology, and chemical processes (Wang et al., 2020b; Wang 

et al., 2020c).  

More recently, machine learning (ML) techniques have been used to estimate surface SO2 concentrations from 

satellite retrievals, meteorology, and other geographic variables such as emission inventories. Zhang et al. (2022) used a Light 60 

Gradient Boosting Machine (LightGBM) to estimate surface SO2 concentrations over northern China using OMI SO2 VCDs, 

meteorological variables, emissions, land use classifications, population density, and others. Yang et al. (2023a) used radiances 

from the Geostationary Environment Monitoring Spectrometer (GEMS) satellite to estimate the surface concentrations of SO2 

and other criteria air pollutants in a multi-output random forest model. Both studies showed that ML techniques can accurately 
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capture the spatial distribution and magnitude of the surface concentrations but may have artificial biases due to nonphysical 65 

links between predictors and the observed surface concentrations, such as interactions between land use classifications and 

skin temperature as shown by Zhang et al. (2022). In these studies, the ML models incorporated spatial (e.g., longitude, latitude, 

population density) and temporal (e.g., numeric day of year, hour of day) proxies to improve performance rather than 

depending only on measurable quantities, but this limits the physical usefulness, interpretability, and applicability of the model 

(Zhang et al., 2022; Yang et al., 2023a; Yang et al., 2023b). An advantage of the ML-based method is that the models are 70 

typically much faster to train and run than a full CTM simulation and can utilize higher spatial and temporal resolution data 

(Fan et al., 2022); however, since ML models can only use statistical relationships to make predictions, they are often limited 

in their physical interpretability and may make their predictions based on predictors that have no physical relevance to the 

estimated surface concentrations.  

Although the CTM- and ML-based methods have each been used to estimate surface SO2 concentrations from satellite 75 

retrievals, there is a lack of direct comparisons between them. Here, we estimated surface SO2 concentrations using OMI SO2 

VCDs over eastern China (105-125°E, 25-45°N) from 2015-2018 to directly compare the two methods. First, we quantified 

methodological uncertainties for each method for the first time. Next, we used simulated SVRs from the GEOS-Chem model 

to estimate the surface SO2 concentrations from OMI using the CTM-based method. Then, we used a ML model to predict 

surface SO2 concentrations from OMI VCDs, meteorological variables, and an emission inventory, which are all physically 80 

relevant to the spatial distribution or lifetime of SO2. The results from each method were validated against ground-based in 

situ measurements from the China National Environmental Monitoring Centre (CNEMC) air quality monitoring network on 

annual and seasonal mean timescales. Finally, we compared the performance of each method on the same truth dataset over 

the same times and locations to gain insights on their abilities and limitations to accurately estimate the surface SO2 

concentrations from satellite data.  85 

2 Data and methods 

2.1 Study region 

Eastern China has abundant anthropogenic SO2 emissions and thus is a region with elevated surface concentrations. 

Satellite SO2 retrievals typically have a low signal-to-noise ratio due to interfering absorbers (Li et al., 2020), so regions with 

large SO2 emissions and pollution, such as eastern China, are required to obtain sufficient signals from the spectrometer and 90 

provide more reliable retrievals compared to less polluted regions. A map of our study region including the locations of OMI-

derived SO2 emission sources (Fioletov et al., 2022; Fioletov et al., 2023) and CNEMC monitoring sites is shown in Fig. 1. 

The main sources of SO2 in the study region include around 70 power plants, five ore smelters, and one area of oil and gas 

production (Fig. 1b). There are also approximately 1000 air quality monitoring stations located in the study region that were 

used to validate the estimated surface concentrations (Fig. 1c). Our analysis covers the period from 2015 (the first full year of 95 

in situ measurements) to 2018 (to avoid the impacts of the COVID-19 lockdowns).  
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Figure 1: Maps showing the (a) study region (box; 105°E-125°E, 25°N-45°N) relative to the rest of the Asian continent, (b) locations 

of large SO2 sources from the 2015 OMI emission catalogue (Fioletov et al., 2022) including 70 power plants (stars), five ore smelters 100 
(triangles), and one area of oil and gas production (square), and (c) locations of the CNEMC monitoring stations (circles).  

 

2.2 OMI satellite data 

We employed data from the Ozone Monitoring Instrument (OMI; Levelt et al., 2006), a hyperspectral 

ultraviolet/visible nadir solar backscatter spectrometer launched onboard the Aura satellite in 2004. Aura flies in a sun-105 

synchronous polar orbit, and OMI is used to retrieve SO2 VCDs with daily global coverage and a spatial resolution of 13 km 

x 24 km at nadir, a significant improvement from previous satellite-based instruments. The VCDs were gridded to a horizontal 

resolution of 0.25° x 0.25° to decrease noise in the SO2 retrieval without significantly coarsening it from the native 

measurement resolution. The OMI overpass time of our study region ranged from approximately 12:15 pm to 2:45 pm local 

time. For both the CTM- and ML-based methods, we used the OMI Planetary Boundary Layer (PBL) SO2 product to estimate 110 

the surface concentrations due to its main application for anthropogenic, near-surface SO2 (Krotkov et al., 2014; Li et al., 
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2020b). The OMI retrievals use a principal component analysis- (PCA) based algorithm for spectral fitting based on the 

radiances for each row in the measurement swath with wavelengths between 310.5-340 nm (Li et al., 2013; Li et al., 2020a). 

This version of the PCA retrievals include pixel-specific air mass factor calculations to convert slant column densities (SCDs) 

to VCDs rather than using a fixed value worldwide (Li et al., 2020a). The VCDs express the number of SO2 molecules in the 115 

column and are reported in Dobson Units (DU; 1 DU = 2.69 x 1016 molecules cm-2). To ensure good data quality, we screened 

out measurements with cloud fractions greater than 0.3, solar zenith angles greater than 65°, located in the outer ten cross-

track positions, or affected by the row anomaly (NASA, 2020). We also excluded extreme outliers that fell outside of five 

standard deviations from the mean as thresholds less than this appeared to remove legitimate data. 

2.3 CNEMC ground-based monitoring data 120 

Ground-based SO2 concentrations from the China National Environmental Monitoring Centre (CNEMC) air quality 

monitoring network were used to validate the performance of both the CTM- and ML-based methods. The concentrations were 

converted from µg m-3 to parts per billion (ppbv) following the procedure outlined in Wei et al. (2023). To ensure the ground-

based measurements were temporally aligned with the OMI overpass, we averaged the hourly concentrations from 12:00 pm 

to 3:00 pm local time on days where there was at least one OMI observation within 40 km of the station. Like the OMI data, 125 

we also removed data that fell more than five standard deviations outside of the mean.  

2.4 CTM-based technique 

We used simulated SVRs from the GEOS-Chem model (version 14.2.2; The International GEOS-Chem User 

Community, 2023) to convert the OMI VCDs into surface concentrations for the CTM-based method. We ran simulations for 

January, April, July, and October 2015. Each simulation was conducted with a one-month spin-up following Kharol et al. 130 

(2015). To reduce the computational expense, we used the monthly average SVR from each simulation to estimate the daily 

surface concentrations within the corresponding winter (DJF), spring (MAM), summer (JJA), and autumn (SON) months 

(referred hereafter as quasi-seasonal temporal sampling) for all years of the study period. The model was run at a horizontal 

resolution of 2.5° (longitude) x 2.0° (latitude) with 47 vertical layers and was driven by assimilated GEOS-FP meteorology 

(Lucchesi, 2018) and the Community Emissions Data System (CEDS) anthropogenic emission inventory (Hoesly et al., 2018). 135 

The internal time steps for the chemistry and advection calculations in the model were lengthened by 50% from the default 

values to reduce simulation times while minimizing errors following Philip et al. (2016). Despite the longer internal timesteps, 

the Courant-Friedrichs-Lewy condition is maintained with a Courant number of 0.041, indicating numerical stability of the 

simulations. The surface concentrations were assumed to be equal to the concentrations at the lowest model level (~60 m above 

ground level). The output timestep of GEOS-Chem was every three hours, so it was sampled at 2:00 pm local time, which is 140 

the only output inside the OMI overpass window. We only included GEOS-Chem data in the analysis if there was at least one 

valid OMI observation within the model grid cell on a given day. 
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The approach from Lee et al. (2011) was used to infer surface SO2 concentrations from OMI VCDs and simulated 

vertical SO2 profiles from GEOS-Chem (GC). Lee et al. (2011) showed that the CTM-based method provided accurate results 

even with CTM resolutions that are much coarser than the satellite data. The monthly averaged profiles and SVRs from GEOS-145 

Chem are shown in Fig. S1. The profiles indicate that most of the SO2 within the vertical column is located near the surface 

and within the boundary layer (Fig. S1). The concentrations then drop to near zero in the free troposphere and have small 

variations, indicating a lack of elevated SO2 plumes (Fig. S1). The profiles from the GEOS-Chem simulations are similar to 

those from aircraft observations (e.g., Li et al., 2012; Norman et al., 2025; Shan et al., 2025; Xue et al., 2010) and higher 

resolution simulations (Norman et al., 2025) over China. The surface SO2 concentrations for the CTM-based method (SOMI) 150 

were calculated on a daily basis at 0.25° x 0.25° resolution using the daily OMI VCDs and averaged GEOS-Chem SVRs from 

the model grid cell that the OMI measurement lies within using Eqn. 1: 

𝑆𝑂𝑀𝐼 =
𝜈𝑆𝐺𝐶

𝜈𝛺𝐺𝐶,𝑃𝐵𝐿+𝛺𝐺𝐶,𝐹𝑇
× 𝛺𝑂𝑀𝐼 ,           (1) 

where S is the surface SO2 concentration in ppbv and Ω is the SO2 VCD in DU. The FT and PBL subscripts are the free-

tropospheric and boundary layer VCDs, respectively, which were calculated relative to the GEOS-FP PBL height. Since there 155 

is a significant difference in horizontal resolution between the satellite and model data, OMI VCDs were used to provide sub-

model grid variability (ν) using Eqn. 2: 

𝜈 =
𝛺𝑂𝑀𝐼

𝛺′𝑂𝑀𝐼
,             (2) 

where ΩOMI is the OMI VCD at 0.25° x 0.25° resolution and Ω'OMI is the average OMI VCD over the 2.5° x 2.0° 

GEOS-Chem grid cell. To compare the estimated surface concentrations to the in situ surface monitoring data, we used a 40 160 

km averaging radius around each station to increase the amount of usable data and further reduce the noise in the OMI data. 

This is similar to previous studies (i.e., Kharol et al., 2017) and maximizes both the slope and correlation compared to other 

radii, as shown in Fig. S2.  In Sect. 3.1, the surface concentrations estimated from the CTM-based method will be validated 

against the in situ measurements on the full four years of data since an independent testing dataset is not required for this 

method. Then, the CTM-derived concentrations will be resampled to match the independent testing dataset to directly compare 165 

to the performance of the ML-derived concentrations in Sect. 4.  

Since only simulations for January, April, July, and October 2015 were available to provide SVRs, there are two 

inherent assumptions regarding the temporal representativeness of the SVRs. The first assumption was using quasi-seasonal 

temporal sampling for the SVRs and calculating the estimated surface concentrations. To test the impact of temporal 

representativeness on the estimated surface concentrations, we ran an additional GEOS-Chem simulation to cover all of spring 170 

(MAM) 2015. We also employed a full year of archived 2018 GEOS-CF data (NASA GMAO, 2023), which has improved 

temporal (hourly) and spatial (0.25° x 0.25°) resolution compared to GEOS-Chem and uses the same chemistry module, so 

they tend to produce similar results (Keller et al., 2021). We found that the intraseasonal variability in the SVR was 0.6 ppbv 

DU-1 for MAM in both GEOS-Chem and GEOS-CF, as shown by Fig. S3. Therefore, we used the GEOS-CF data to estimate 

this uncertainty for the entire year. We found that the average intraseasonal variability in the SVRs for the full year was 0.8 175 
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ppbv DU-1 (Fig. S3). We also used the full year of GEOS-CF data to test the impact of temporal representativeness on the 

annual mean surface SO2 concentrations. Figures S4b-f show that there was no significant difference in the accuracy of the 

annual average surface SO2 concentrations among the different temporal sampling techniques ranging from daily to annual 

mean SVRs. The slopes and correlations of the surface concentrations were consistent only ranging between 0.23 – 0.29 and 

0.33 – 0.40, respectively (Fig. S4b-f). The sensitivity analysis with GEOS-CF also suggested that improving the spatial 180 

resolution of the CTM while maintaining the same temporal sampling of the SVRs did not have a large impact on the accuracy 

of the estimated surface concentrations despite an improvement in spatial resolution by nearly a factor a 10, as indicated by 

Figs. S4a and S4d for 2018 data, as well as Fig. S5 for all years of the study period. 

The other assumption was only using a single year of simulations to convert four years of OMI data into surface 

concentrations. Kharol et al. (2017) did not have simulations that spanned their entire analysis period, but the implications of 185 

this were never discussed. To address this, we first compared the monthly averaged SVRs from observations (calculated using 

CNEMC surface concentrations and OMI VCDs) for each year in the study period to the 2015 GEOS-Chem simulations to 

ensure there is no significant changes over time. Figure S6 shows boxplots of the observed and GEOS-Chem SVRs with the 

percent difference between them. In general, the differences between the observed and GEOS-Chem SVRs were consistent 

across all years of the study period, typically ranging from 73 – 89% (Fig. S6). We also ran additional GEOS-Chem simulations 190 

for January, April, July, and October 2018 to assess if the simulated SVRs change over time. Boxplots for these two sets of 

simulations can be seen in Fig. S7 and indicate that the GEOS-Chem SVRs only changed by 0.8 ppbv DU-1, or 9%, from 2015 

to 2018. The implications of these uncertainties on the resultant concentrations are discussed further in Sect. 2.6. 

2.5 ML-based technique 

To estimate the surface SO2 concentrations using a ML model, we used an eXtreme Gradient Boosting regression 195 

model (XGBoost; Chen & Guestrin, 2016) to statistically relate satellite-based SO2 VCDs, meteorological variables, and 

emissions data to the in situ measurements. XGBoost models use a scalable tree boosting system to efficiently train an 

ensemble of decision trees by adding a new tree with each training epoch and learning with each iteration (Chen & Guestrin, 

2016; Friedman, 2001). Previous studies have shown that XGBoost and LightGBM models are able to estimate surface 

concentrations from satellite data more effectively than other ML architectures as shown by Kang et al. (2021) and Zhang et 200 

al. (2022). We trained our XGBoost model with an ensemble of 500 trees, a maximum tree depth of 15 splits, and a learning 

rate of 0.15 on a mean squared error loss function. Neither a larger ensemble nor deeper trees improved the performance of 

the model, as shown by Fig. S8 and Fig. S9, respectively.  

Our ML model was trained on a small number of variables (five) that each have known physical relationships to the 

spatial distribution or lifetime of atmospheric SO2. By using a small number of variables, it is easier to derive physical meaning 205 

from the ML predictions without sacrificing accuracy since the input variables are already known to affect surface SO2 

concentrations. We used daily OMI SO2 VCDs to estimate the spatial distribution of SO2, hourly European Centre for Medium-

Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5; Hersbach et al., 2020; ECMWF, 2019) 100 m u-winds, 100 m v-
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winds, and boundary layer heights averaged over the OMI overpass window were used to account for the meteorological 

mixing and dispersion of SO2, and monthly SO2 emissions from the CEDS inventory to capture the locations of SO2 sources. 210 

The ERA5 meteorological variables were provided at 0.25° x 0.25° horizontal resolution, and the CEDS emissions were 

provided at 0.5° x 0.5° horizontal resolution. We trained the model on logarithmic boundary layer heights to get better 

sensitivity to variations in low boundary layers, and logarithmic emissions since the values ranged several orders of magnitude. 

The model is summarized in Eqn. 3 as: 

𝑆𝑀𝐿 = 𝑋𝐺𝐵𝑜𝑜𝑠𝑡(𝛺𝑂𝑀𝐼 , 𝑈𝐸𝑅𝐴5, 𝑉𝐸𝑅𝐴5 , log10[𝑃𝐵𝐿𝐻𝐸𝑅𝐴5] , log10[𝐸𝐶𝐸𝐷𝑆]),      (3) 215 

where SML is the predicted surface concentrations from the XGBoost ML model, ΩOMI is the satellite SO2 VCD, UERA5 is the 

u-wind, VERA5 is the v-wind, PBLHERA5 is the boundary layer height, and ECEDS is the SO2 emissions. Earlier versions of the 

model were trained on 11 predictors, but the predicted surface concentrations produced an unrealistic spatial distribution of 

SO2, as shown in Fig. S10. Additionally, some of the predictors were shown to be relatively unimportant to the model output, 

as indicated by the permutation importance in Fig. S11. The reduction of predictors from 11 down to five led to an improvement 220 

in the statistical performance and spatial distribution of the estimated surface concentrations, suggesting that utilizing known 

physical relationships between variables is more beneficial than the number of predictors in a ML model. 

We trained the model on 90% of the daily data (N = 137630) from 2015-2018 with ERA5 and CEDS predictors 

sampled to match the valid OMI observations. The input variables were sampled and averaged within 40 km of the CNEMC 

sites for training, as done in the CTM-based method, and the predicted surface concentrations from the XGBoost model are 225 

provided at each CNEMC site in the dataset. The remaining 10% of the data (N = 15292) was reserved for a sample-based 

independent validation. This split of the training and independent testing datasets was used by previous studies (e.g., Zhang et 

al., 2022; Yang et al., 2023a; Yang et al., 2023b) and was shown to have the best performance for the independent testing 

dataset for our model as shown in Fig. S12. Figure 2 shows that the model had noticeably better performance with the training 

data (slope = 0.89; r = 0.95) compared to the testing data (slope = 0.67; r = 0.76), indicating that the model has good 230 

performance, but is slightly overfitting, a common artifact of complex machine learning models such as XGBoost. While the 

model was trained to estimate the surface SO2 concentration at each CNEMC station, the trained model can then be used to 

make predictions on gridded input data to obtain estimates of the surface SO2 concentrations on a continuous domain at the 

same horizontal resolution as the inputs. 

 235 
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Figure 2: Scatterplots between the daily ML model predictions and CNEMC in situ measurements for the (a) independent dataset 

and (b) training dataset. Scatterplots are binned every 1 ppbv. Each scatterplot is colored by the number of stations in each bin and 

includes a linear regression analysis with the best fit line (solid line), best-fit equation, correlation coefficient, total number of 

stations, 1:1 line (black dashed line), MAE, RMSE, and RPE. 240 

2.6 Methodological uncertainties 

 This study provides the first detailed discussion of the individual sources and summation of uncertainties for either 

methodology. To estimate the uncertainty of the input variables for both methods, we performed moving-block bootstrapping 

with 10000 iterations on the daily gridded data. For each bootstrap, a horizontal coordinate and date was randomly sampled 

with replacement. For each random sample, a temporal block of five days in each direction from the randomly sampled day 245 

was used to calculate the standard deviation. After all bootstraps were completed, the uncertainty was defined as the average 

of the standard deviations calculated from each iteration. This was done for the OMI SO2 VCDs, GEOS-Chem SVRs, and 

ERA5 meteorology. The uncertainty in the CEDS emission inventory was not included due to the monthly temporal resolution, 

and a lack of uncertainty quantification in previous literature (e.g., Hoesly et al., 2018; McDuffie et al., 2020).  

 For the CTM-based method, the summation of error was determined using error propagation. For the error 250 

propagation, Eq. 1 was simplified such that: 

𝑆𝑂𝑀𝐼 = (𝑆𝑉𝑅𝐺𝐶) × 𝛺𝑂𝑀𝐼 ,            (4) 

where SVRGC is the monthly averaged SVR from the GEOS-Chem simulations. Equation 4 was used in the error propagation 

formula to obtain Eq. 5:  
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𝜎𝑆𝑂𝑀𝐼
= √𝜎𝑆𝑉𝑅𝐺𝐶

2(𝛺𝑂𝑀𝐼)
2 + 𝜎𝛺𝑂𝑀𝐼

2(𝑆𝑉𝑅𝐺𝐶)
2         (5) 255 

where 𝜎𝑆𝑂𝑀𝐼
 is the propagated error of the CTM-derived concentration, 𝜎𝑆𝑉𝑅𝐺𝐶  is the uncertainty in the GEOS-Chem SVR, 

and 𝜎𝛺𝑂𝑀𝐼
 is the uncertainty in the OMI SO2 VCD. The uncertainty in the GEOS-Chem SVR was initially calculated with 

bootstrapping, but also needs to account for the uncertainties of the quasi-seasonal and single-year assumptions in the CTM-

based methodology. The quasi-seasonal and single-year assumptions were defined and quantified in Section 2.4. These three 

sources of GEOS-Chem SVR uncertainty were assumed to be independent of each other and were combined using the sum of 260 

the squares of each term. The results of the bootstrapping and error propagation are shown in Table 1. Ultimately, the 

methodological uncertainty of the CTM-based method is ±4.9 ppbv when considering the uncertainties of the OMI SO2 VCDs 

(±0.67 ppbv DU-1) and GEOS-Chem SVRs (±1.7 ppbv DU-1). The OMI SO2 VCD uncertainty has a relative standard deviation 

of 136%, which is comparable to the reported uncertainty of 60 – 120% for moderately polluted areas from Li et al. (2020). 

 265 

Table 1: Sources and magnitudes of uncertainty for the CTM-based method. Uncertainties for the OMI SO2 VCDs and GEOS-Chem 

SO2 SVRs were determined using moving-block bootstrapping. The uncertainty for the quasi-seasonal SVR assumption was 

determined using GEOS-CF data. The single-year SVR assumption was determined using the 2015 and 2018 GEOS-Chem 

simulations. The overall uncertainty for the CTM-based method was determined using error propagation. 

Variable Uncertainty 

OMI SO2 VCDs ± 0.67 DU 

GEOS-Chem SO2 SVR ± 1.4 ppbv DU-1 

Quasi-Seasonal SVR Assumption ± 0.8 ppbv DU-1 

Single-Year SVR Assumption ± 0.6 ppbv DU-1 

Overall Uncertainty ± 4.9 ppbv 

 270 

 It is much less straightforward to propagate error through a ML model since it effectively acts as a “black box,” so 

analytical error propagation methods cannot be used. First, uncertainties of the ERA5 meteorological fields were calculated 

using the moving-block bootstrapping approach. To obtain the overall uncertainty, we used traditional bootstrapping 

techniques to resample the training dataset with replacement and train an ensemble of XGBoost models to obtain an uncertainty 

in the model output based on changes in the training data given to the model. To maintain consistency, the same independent 275 

testing dataset was used to make the model predictions for each bootstrap. The standard deviation was calculated for each 

station and day across the different models and was then averaged over space and time to obtain the overall uncertainty. The 

uncertainties of the ML inputs and overall uncertainty from the retraining analysis are shown in Table 2. For the ML-based 

method, the overall uncertainty was estimated to be ±2.0 ppbv, which is lower than the propagated error for the CTM-based 

method. The overall uncertainty for the ML-based method does not directly account for uncertainty in the model inputs, but 280 

since traditional error propagation and summation of uncertainties are not possible for ML, this is our best estimate at how the 

training data can impact the predictions from the model. 
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Table 2: Sources and magnitudes of uncertainty for the ML-based method. Uncertainties for the OMI SO2 VCDs and ERA5 

meteorology were determined using moving-block bootstrapping. The overall uncertainty for the ML-based method was determined 285 
using bootstrapping on the training dataset and retraining multiple XGBoost models to estimate the uncertainty in the model 

training. The uncertainty for the CEDS inventory was not able to be quantified (NQ). 

Variable Uncertainty 

OMI SO2 VCDs ± 0.67 DU 

ERA5 U-Wind ± 1.9 m s-1 

ERA5 V-Wind ± 1.9 m s-1 

ERA5 Boundary Layer Height ± 326 m 

CEDS Emissions NQ 

Overall Uncertainty ± 2.0 ppbv 

 

2.7 Evaluation metrics  

To quantify the discrepancies between the estimated surface SO2 concentrations from the CTM-based method, ML-290 

based method, and the CNEMC in situ measurements, we used several different metrics from previous studies (e.g., Yang et 

al., 2023b; Zhang et al., 2021; Zhang et al., 2022) including the mean absolute error (MAE; Eq. 6), root mean squared error 

(RMSE; Eq. 7), and relative percent error (RPE; Eq. 8),  

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑆𝑒𝑠𝑡,𝑖 − 𝑆𝐶𝑁𝐸𝑀𝐶,𝑖|
𝑁
𝑖 ,           (6) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑆𝑒𝑠𝑡,𝑖 − 𝑆𝐶𝑁𝐸𝑀𝐶,𝑖)

2𝑁
𝑖 ,          (7) 295 

𝑅𝑃𝐸 =
1

𝑁
(∑ |

𝑆𝑒𝑠𝑡,𝑖−𝑆𝐶𝑁𝐸𝑀𝐶,𝑖

𝑆𝐶𝑁𝐸𝑀𝐶,𝑖
|𝑁

𝑖 ) × 100%,          (8) 

where N is the number of stations, Sest is the estimated surface concentration from the CTM- or ML-based method, and SCNEMC 

is the surface concentration from the in situ measurements. Previous studies have also used slopes and correlations from linear 

regression analyses between the estimated and in situ concentrations to assess the relative magnitudes and spatial distributions, 

respectively (e.g., Kharol et al., 2017; Lee et al., 2011; McLinden et al., 2014). In Sect. 3.1, results from the CTM-based 300 

method were validated and compared to previous studies using the full dataset since they are independent on in situ 

measurements. In Sect. 3.2, results from the ML-based method were validated and compared to previous studies using only 

the independent testing dataset. Finally, in Sect. 4, both methods were directly compared using the independent testing dataset 

(i.e., retained from ML training) such that the comparisons are made on an identical truth dataset for the first time. 
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3 Estimations of surface SO2 concentrations from OMI satellite data 305 

3.1 Evaluation of the CTM-based method 

Maps, histograms, and scatterplots of the annual mean surface SO2 concentrations from the CTM-based method and 

CNEMC in situ measurements are shown in Fig. 3. Both datasets have a similar spatial distribution with the highest 

concentrations in the North China Plain (Fig. 3), a highly industrialized region with many anthropogenic sources of SO2 (Fig. 

1b). The average correlation between the estimated and in situ concentrations is 0.58, indicating that the CTM-based method 310 

can accurately distinguish between polluted and clean areas (Fig. 3). The CTM-based method also captures a 45% decrease in 

the concentrations from 2015-2018, also seen in the data from the monitoring network (Fig. 3). Despite the similarities in the 

spatial distribution and temporal trends, the surface concentrations obtained from the CTM-based method are significantly 

underestimated. The slope between the estimated and in situ concentrations is 0.24 with an RPE around 75% (Fig. 3). The 

discrepancy in the estimated concentrations is also apparent in the frequency distributions with peaks and mean values around 315 

1-3 ppbv compared to around 5-10 ppbv from the in situ measurements. The surface concentrations from the CTM-based 

method were also separated by season, averaged from 2015-2018, and validated against in situ measurements for the first time. 

As shown in Fig. S13, the CTM-based method was able to accurately capture the spatial distribution (r = 0.56) and seasonality 

of the in situ measurements with higher concentrations in the winter and lower concentrations in the summer but still suffered 

from underestimation (slope = 0.24; RPE = 76%).  320 
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Figure 3: Spatial distributions of the annual average surface SO2 concentrations from the CTM-based method (top row) and 

CNEMC in situ measurements (second row), histograms of the surface concentrations from each dataset with vertical bars 

representing the means (third row), and scatterplots between the two datasets (bottom row). Each column represents a different 325 
year in the study period. Histograms and scatterplots are binned every 1 ppbv. Each scatterplot is colored by the number of stations 

in each bin and includes a linear regression analysis with the best fit line (solid line), best-fit equation, correlation coefficient, total 

number of stations, 1:1 line (black dashed line), MAE, RMSE, and RPE. 

 

Table 3 summarizes the results from the validation of annual mean concentrations from our study and previous studies 330 

using the CTM-based method. The studies by Lee et al. (2011) and McLinden et al. (2014) each utilized the OMI band residual 
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difference (BRD) SO2 product and used SVRs from coarse- and high-resolution CTMs, respectively. McLinden et al. (2014) 

outperformed Lee et al. (2011) with slopes of 0.88 and 0.79, respectively, and correlations of 0.91 and 0.81, respectively. 

Similarly, our study and Kharol et al. (2017) both use the OMI PCA SO2 product and used SVRs from coarse-resolution and 

high-resolution CTMs, respectively. Our study had slightly worse performance than Kharol et al. (2017) with slopes of 0.24 335 

and 0.39, respectively, and correlations of 0.58 and 0.61, respectively. These two sets of studies suggest that given the same 

OMI product, the model resolution may affect the accuracy of the estimated surface concentrations compared to the in situ 

observations, assuming that the surface monitoring data are accurate. Our sensitivity tests comparing the impact of spatial 

resolution on the accuracy of the CTM-based method (Fig. S5) showed a discrepancy in the correlations of 0.05 between 

GEOS-Chem and GEOS-CF compared to a difference of 0.03 between our study and Kharol et al. (2017); however, the 340 

sensitivity tests only showed a discrepancy in the slopes of 0.02 between GEOS-Chem and GEOS-CF, which is much smaller 

than the 0.15 difference in slopes between our study and Kharol et al. (2017). This suggests that the difference in spatial 

resolution of our CTM simulations may account for the discrepancy in the correlations between our study and Kharol et al. 

(2017), but not the slopes, indicating that there may be another factor contributing to the underestimation of the CTM-based 

method. Additionally, previous studies have also shown that there are differences in SO2 VCDs across different retrieval 345 

algorithms and sensors (Wang et al., 2020a). The higher slopes from the BRD product may be due to a high bias in the retrievals 

in polluted areas whereas the PCA product is thought to be more accurate (Li et al., 2013). Additionally, the slope of 0.75 from 

Kharol et al. (2017) and the results from Zhang et al. (2021) use a scaling factor on the in situ measurements to eliminate some 

of the bias, so these results are not directly comparable to our study. 

  350 
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Table 3: Comparison of study design (satellite data, model name and resolution, study location and study period) and performance 

metrics (mean absolute error, root mean square error, relative percent error, slope, and correlation) between our study and previous 

studies that utilized the CTM-based method for annual mean surface SO2 concentrations. NR indicates that the value was not 

reported, and asterisks (*) indicate a scaling factor applied to the in situ surface concentrations. 

Study 
Satellite 

data 

CTM 

(resolution) 

Study 

location 

(time 

period) 

MAE  

[ppbv] 

RMSE  

[ppbv] 

RPE  

[%] 

Slope 

[-] 

Correlation 

[-] 

This 

study  

OMI 

SO2 

PCA 

GEOS-

Chem, 

(2.5° x 

2.0°) 

Eastern 

China 

(2015-

2018) 

5.7 6.3 74 0.23 0.58 

Lee et al. 

(2011) 

OMI 

SO2 

BRD 

GEOS-

Chem, 

(2.5° x 

2.0°) 

North 

America 

(2006) 

NR NR NR 0.79 0.81 

McLinden 

et al. 

(2014) 

OMI 

SO2 

BRD 

GEM-

MACH, 

(15 km) 

Canadian 

oil sands 

(2005-

2011) 

NR NR NR 0.88 0.91 

Kharol et 

al. (2017) 

OMI 

SO2 

PCA 

GEM-

MACH, 

(15 km)  

North 

America 

(2005-

2015) 

NR NR NR 0.39/0.75* 0.61 

Zhang et 

al. (2021) 

OMI 

SO2 

PCA 

MOZART, 

 1.9° x 2.5° 

Resolution 

China 

(2014) 
NR 3.9 19 0.83* 0.86 

 355 

 

Inaccuracies in the CTM-based method can be partially attributed to noise in the satellite data. Individual VCD 

retrievals have large uncertainties estimated from 60 – 120% from Li et al. (2020a) and 136% from our bootstrapping analysis 

(Table 1), making it difficult to compare to the ground-based measurements on short timescales; however, the noise in the data 
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can decrease with temporal averaging by a factor of n1/2 where n is the number of measurements being averaged (Krotkov et 360 

al., 2008). As a result, longer averaging periods (i.e., annual means) tend to have better performance than shorter timescales 

(i.e., seasonal means). Additionally, the consistent underestimation of the CTM-based method may be a result of either 

underestimated SVRs from the GEOS-Chem simulations or a low bias in the OMI PCA product. Figure S6 suggests that the 

SVRs from GEOS-Chem are typically between 70-90% lower than observed SVRs calculated from CNEMC in situ surface 

concentrations and OMI VCDs, which is similar to the discrepancy in the surface concentrations from the CTM-based method 365 

compared with the in situ measurements. Based on the error propagation from Sect. 2.6, the combined methodological 

uncertainty of the CTM-based method considering both the OMI retrievals and GEOS-Chem SVRs is ±4.9 ppbv (Table 1). 

This is larger than most of the estimated surface concentrations shown in the histograms from Fig. 3, indicating the 

methodological uncertainty associated with this method is large and is highly affected by the accuracy of the input data.  

3.2 Evaluation of the ML-based method  370 

The spatial distribution, frequency distribution, and validation scatterplots of the ML and CNEMC annual mean 

surface SO2 concentrations from the independent testing dataset are shown in Fig. 4. The ML model estimated the surface 

concentrations more accurately than the CTM-based method with an improved average correlation of 0.77, lower RPE of 33%, 

and an average slope of 0.69. These improvements indicate that the ML-based method has better accuracy in the spatial 

distributions and magnitudes compared to the CTM-based method. The ML estimated concentrations also have a 45% decline 375 

from 2015-2018, which is the same as the CNEMC in situ measurements (Fig. 4). The shapes of the ML-based frequency 

distributions also agree well with the CNEMC observations with peaks at the same concentrations (5-10 ppbv) and similar 

ranges (Fig. 4). The ML-derived and in situ concentrations were also assessed using the seasonal concentrations averaged from 

2015-2018. As shown in Fig. S14, the ML-based method was able to capture the spatial distribution (r = 0.72), seasonality, 

and magnitudes (slope = 0.64; RPE = 36%) of the seasonal mean surface concentrations more accurately than the CTM-based 380 

method. Additionally, the overall uncertainty of the ML-based method is much lower than the CTM-based method at around 

±2 ppbv (Table 2). Since the ML predictions have a much larger magnitude, the methodological uncertainty for the ML-based 

method appears to be more reasonable compared to the CTM-based method. 
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 385 

Figure 4: Spatial distributions of the annual average surface SO2 concentrations from the ML-based method (top row) and CNEMC 

in situ measurements (second row), histograms of the surface concentrations from each dataset with vertical bars representing the 

means (third row), and scatterplots between the two datasets (bottom row). Each column represents a different year in the study 

period. Histograms and scatterplots are binned every 1 ppbv. Each scatterplot is colored by the number of stations in each bin and 

includes a linear regression analysis with the best fit line (solid line), best-fit equation, correlation coefficient, total number of 390 
stations, 1:1 line (black dashed line), MAE, RMSE, and RPE. 
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Previous studies have shown that ML models can skillfully capture day-to-day variations in surface SO2 concentrations in 

addition to the annual and seasonal means as summarized in Table 4 (e.g., Zhang et al., 2022; Yang et al., 2023b). The estimated 

daily surface concentrations from our independent testing dataset had a slope of 0.67, correlation of 0.76, and RPE of 58% 395 

compared to the in situ measurements, indicating good performance on short timescales (Fig. 2; Table 4). The performance of 

our model was comparable to previous studies but had a slightly larger discrepancy (Table 4). Our ML model only used five 

predictors compared to nine in Yang et al. (2023b) and 66 in Zhang et al. (2022), which may partially account for the increased 

discrepancy. Additionally, our study did not use any spatial or temporal proxies, which could also explain the slight reduction 

in performance compared to other studies that have used them. 400 

 

Table 4: Comparison of study design (satellite data, machine learning model type and number of predictors, study location and 

study period) and performance metrics (mean absolute error, root mean square error, relative percent error, slope, and correlation) 

between our study and previous studies that utilized a ML-based method for daily surface SO2 concentrations. NR indicates that the 

value was not reported. 405 

Study 
Satellite 

data 

Machine 

learning 

model 

(number 

of 

predictors) 

Study 

location 

(time 

period) 

MAE  

[ppbv] 

RMSE  

[ppbv] 

RPE  

[%] 

Slope 

[-] 

Correlation 

[-] 

This 

study  

OMI SO2 

PCA 

XGBoost 

(5) 

Eastern 

China 

(2015-

2018) 

3.0 5.2 59 0.67 0.75 

Zhang 

et al. 

(2022) 

OMI SO2 

PCA 

LightGBM 

(66) 

Northern 

China  

(2013-

2019) 

NR 4.0 39 NR 0.94 

Yang et 

al. 

(2023b) 

Landsat-8 

visible and 

infrared 

reflectance 

Deep 

neural 

network 

multi-task 

learning 

(9) 

China 

(2019) 
3.5 5.7 47 0.76 0.85 
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We performed a permutation importance analysis to assess how each predictor impacted the model predictions. Figure 

5a indicates that the boundary layer heights and OMI SO2 VCDs are the two most influential predictors followed by emissions 

and wind speeds. It is also worth noting that all of the predictors contribute toward the estimated surface concentrations with 410 

all permutation importance scores falling between 0.2 and 0.5 with none being unused. The boundary layer heights have a 

much smaller variation on short timescales compared to the OMI SO2 VCDs. Based on the bootstrapped uncertainties from 

Table 2, the relative standard deviations are 20% for boundary layer heights, and 136% for OMI VCDs. As a result, the ML 

model is likely able to learn the relationship between boundary layer height and surface SO2 concentrations more easily than 

the OMI SO2 VCDs. Scatterplots between each ML predictor variable and the ML estimated surface SO2 concentrations with 415 

Spearman rank coefficients (rs) are shown in Figs. 5b-f. The ML-derived SO2 concentrations increase with larger SO2 VCDs 

and emissions, as well as decrease with increasing boundary layer heights and wind speeds (Figs. 5b-f). The surface 

concentrations and boundary layer heights each have a strong, inverse seasonality, as shown in Fig. S14 and Fig. S15, 

respectively, so the strong temporal correlations between them also likely lead to a high permutation importance in the model. 

The behavior of the ML predictions is consistent with the expected physical relationships between each predictor and the 420 

surface SO2 concentrations. Large OMI VCDs and emissions indicate areas of high SO2 loading, and large boundary layer 

heights and wind speeds lead to mixing and the dilution of SO2. The magnitudes of the rs values are small, indicating that the 

model may be making predictions based on the interactions between variables rather than any individual predictor. The small 

number of predictors used in our model allows us to link the ML predictions to known atmospheric processes, adding 

confidence to the model in its ability to accurately estimate the surface concentrations. 425 

 



20 

 

 

Figure 5: Evaluation of the daily ML-predicted surface concentrations using (a) permutation importance analysis, and scatterplots 

showing the ML predictor variables against the ML estimated surface SO2 concentrations for (b) ERA5 PBLH, (c) OMI SO2 VCDs, 

(d) CEDS SO2 emissions, (e) ERA5 U-wind speeds, and (f) ERA5 V-wind speeds. Each scatterplot is colored by the number of stations 430 
in each bin and includes the Spearman rank coefficient (rs). 

4 Direct comparison of the CTM- and ML-based methods  

The validation results from the CTM-based method in Sect. 3.1 were based on the full dataset since the estimated 

surface concentrations are independent of the in situ monitoring data; however, the validation results from the ML-based 

method in Sect. 3.2 were only based on 10% of the data that was and reserved for an independent validation and not used for 435 

training. The comparison of these results using different datasets is still important but does not provide a direct comparison of 

their performance. Here, the CTM- and ML-based methods were directly compared using the same truth dataset over the same 

locations and study period for the first time. Each method was resampled to match the independent testing dataset (i.e., data 

retained from ML training) and the performance of each method was assessed given identically sampled data. First, each 

technique was validated at the CNEMC measurement sites in Sect. 4.1, similar to the analyses in Sect. 3. Then, both methods 440 

will be used to create gridded surface SO2 concentrations in Sect. 4.2 to assess how effective both methods are for filling in 

the gaps of the CNEMC monitoring network, one of the main motivations for estimating surface concentrations from satellite 

VCDs.  
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4.1 Performance on independent data 

Scatterplots between the in situ concentrations and estimates of the surface concentrations from both the CTM- and 445 

ML-based methods for the testing dataset are shown in Fig. 6. The surface concentrations estimated by the ML model are 

much closer to the in situ measurements (i.e., the 1:1 line) than the CTM-based method, which is consistent with the previous 

results in Figs. 3-4. For the annual mean concentrations, the ML-based method had an average slope of 0.69 and correlation 

of 0.77, compared to values of 0.18 and 0.30, respectively, from the CTM-based method (Figs. 6a-d). The ML model also 

outperforms the CTM-based method on the seasonal data averaged over 2015-2018. The ML-based method had an average 450 

slope and correlation of 0.64 and 0.73, compared to 0.19 and 0.31, respectively, from the CTM-based method (Figs. 6e-h). 

The CTM-based method performed worse on this smaller dataset compared to the full dataset in Sect. 3.1 due to less temporal 

averaging, leading to larger discrepancies with the in situ measurements. There is a smaller decrease in the performance of the 

ML-based method compared to the CTM-based method when assessing the performance of individual seasons rather than the 

2015-2018 average for each season, as shown by Fig. S16. The slope and correlation for the ML-based method each decreased 455 

by around 0.1 to 0.59 and 0.67, compared to a decrease of 0.05 and 0.1 to 0.15 and 0.22, respectively, for the CTM-based 

method (Fig. S16). On both annual and seasonal timescales, the ML-based method more accurately captured the spatial 

distribution and magnitudes of the surface SO2 concentrations compared to the CTM-based method. 

 

 460 

Figure 6: Scatterplots showing the estimated surface SO2 concentrations from the CTM-based method (light blue squares) and ML-

based method (dark blue triangles) against the in situ measurements from the independent dataset for (a-d) annual mean 

concentrations for each year in the study period, and (e-h) the 2015-2018 mean concentrations separated by season. Each scatterplot 
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includes a linear regression analysis with the best fit line (solid lines), best-fit equation, correlation coefficient, total number of 

stations, 1:1 line (black dashed line), MAE, RMSE, and RPE. 465 

 

Time series of the annual and seasonal mean surface SO2 concentrations from the in situ measurements, and estimated 

concentrations from the CTM- and ML-based methods are shown in Figs. 7a-b. The ML estimated concentrations were much 

closer to the CNEMC measurements than the CTM-based method. The mean ML concentrations had an average discrepancy 

of 5% with the in situ measurements, compared to a discrepancy of 58% from the CTM-based method (Figs. 7a-b). The ML-470 

based method also captured the same temporal variations as the in situ measurements each with a 44% decrease in 

concentrations from 2015-2018, and an average seasonal fluctuation by a factor of 1.9 between the winter and summer seasons 

(Figs. 7a-b). The CTM-based method also had good agreement in the temporal trends of the in situ measurements but was not 

as good as the ML-based method with a 36% decrease from 2015-2018 and a seasonal fluctuation by a factor of 2.4 (Figs. 7a-

b). Since the CTM-based surface SO2 concentrations were underestimated, the magnitude of the temporal trends is much 475 

smaller than the observations and ML-based method, but the relative change was similar, as shown by Table S1. The decrease 

in SO2 from 2015-2018 detected by both methods is consistent with previous studies that showed a reduction in emissions over 

China shown using satellite VCDs (Li et al., 2017; Wang et al., 2020a), satellite-derived emissions (Fioletov et al., 2023), and 

surface concentrations (Wei et al., 2023; Zhang et al., 2021). Despite the similarities in the year-to-year and season-to-season 

variations, the greatest difference between the time series of the two methods was the magnitude of the concentrations. 480 

 



23 

 

 

Figure 7: Time series of the surface SO2 concentrations from the CTM-based method (light blue squares), ML-based method (dark 

blue triangles), and CNEMC in situ measurements (red circles) from the independent dataset as (a) annual and (b) seasonal means, 

as well as the slopes (pink x’s) and correlations (green crosses) from the (c) annual and (d) seasonal mean validations between the 485 
CTM-based method (dashed line) and ML-based method (solid line) with the in situ measurements. Error bars on the concentrations 

represent a 1 standard deviation uncertainty, and error bars on the slopes represent a 95% confidence interval based on the standard 

error of the linear regression fit. Data for all panels can be found in Table S1.  

 

To assess how the accuracy of each method changed over time, time series of the slopes and correlations from the 490 

annual and seasonal comparisons between the estimated and in situ surface concentrations from Fig. S16 and Table S1 are 

shown in Figs. 7c-d. For the entire study period, the performance of the ML-based method was more accurate than the CTM-

based method as indicated by the higher slopes and correlations (Figs. 7c-d). Additionally, the CTM-based method suffered 

from a decrease in accuracy over time alongside declining SO2 concentrations while the ML-based method remained stable 

from year to year (Figs. 7c-d). The accuracy of the CTM-based method is highly dependent on noise in the satellite data. As 495 

SO2 loading decreased over China, it became more difficult for OMI to detect, which may have introduced additional noise 

into the VCDs. Comparatively, the ML-based method was more resistant to noise in the satellite data. As SO2 VCDs decreased, 

the ML predictions can utilize other predictors such as meteorology and emissions to estimate the surface concentrations, 

limiting the impact of the noisy satellite data (Figs. S17a-d). The accuracy of the ML-based method also had a distinct 

seasonality with generally better performance in the winter and worse in the summer (Fig. 7d). The boundary layer heights 500 

and OMI SO2 VCDs were the dominant predictors in the winter, whereas the CEDS emissions and boundary layer heights 
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were the dominant predictors in the summer (Figs. S17e-h). The CEDS emissions are less consistent with the in situ 

measurements than the OMI VCDs with rs values of 0.22 and 0.28, respectively (Fig. 5), which may account for the increased 

discrepancy of the ML-derived concentrations during the summer.  

In summary, both the CTM- and ML-based methods captured similar temporal variations as the in situ measurements, 505 

but the ML-based method was more accurate and had more stable performance over time compared to the CTM-based method, 

which had decreasing performance over time, likely due to increased noise in the satellite data from decreasing SO2 loading.  

4.2 Comparison of gridded products 

The CTM- and ML-based methods were used to create gridded surface SO2 concentrations at 0.25° x 0.25° horizontal 

resolution to assess how effective each technique is for filling in the gaps of the CNEMC air quality monitoring network. The 510 

gridded annual mean surface SO2 concentrations from the CTM- and ML-based methods are shown in Fig. 8. Both methods 

produced similar spatial distributions to one another over land with the highest concentrations in the North China Plain and 

lower concentrations elsewhere. Over land, each method also has a spatial distribution similar to the retrieved SO2 VCDs from 

OMI as shown in Fig. S18a-d, further indicating that both methods effectively utilizing the OMI data. Over the oceans, there 

is disagreement in the spatial distributions with the ML-based method producing high concentrations and the CTM-based 515 

method producing low concentrations. Since the ML predictions are significantly affected by boundary layer heights (Fig. 5), 

the model is likely incorrectly associating the low marine boundary layer with areas elevated SO2, as suggested by the 

seasonally averaged ERA5 boundary layer heights in Fig. S15. Inaccuracies over the oceans have also been reported in Kang 

et al. (2021) where ML was used to estimate surface concentrations of NO2 and ozone and was attributed to a lack of training 

data for the ML model in these locations. Since the ML model was only trained for conditions over land, it learned the 520 

relationship between high surface SO2 concentrations and low continental boundary layer heights during the winter months 

but could not accurately apply this knowledge over the oceans. As a result, the CTM-based method may produce more 

reasonable spatial distributions of surface SO2 concentrations in locations with a lack of surface observations where a ML 

model cannot be trained.  

As shown in Fig. 8, both gridded products captured the decrease in annual mean concentrations from 2015 to 2018 525 

observed at the CNEMC sites. Both methods were also able to capture the seasonal variations in their gridded products with 

the highest concentrations in the winter and lowest concentrations in the summer, as shown in Fig. S19. The seasonal gridded 

surface SO2 concentrations were also still consistent with the OMI SO2 VCDs (Fig. S18e-h). Although it is not possible to 

validate the gridded products, since the ML-based method had more accurate spatial distributions, temporal variations, and 

magnitudes than the CTM-based method when validated at the CNEMC sites, the gridded product is likely to be more accurate 530 

as well, but only over land. The unexpected area of elevated concentrations over the oceans exposed a major limitation of the 

ML-based method and suggests that future work in improving the CTM-based method may be worthwhile, especially for 

estimating surface SO2 concentrations in locations where training data are not available. 
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 535 

Figure 8: Maps of the annual mean surface SO2 concentrations in ppbv from the ML-based method (top row) and CTM-based 

method (bottom row) over the study area at 0.25° x 0.25° horizontal resolution. Each column represents a different year of the study 

period.  

5 Discussion and Conclusion  

In this study, we estimated surface SO2 concentrations over eastern China from 2015-2018 using OMI SO2 VCDs 540 

with two different methodologies. First, we used simulated SVRs from the GEOS-Chem model to convert the OMI SO2 VCDs 

into surface concentrations using the CTM-based method. Then, we used an XGBoost model to statistically relate OMI VCDs, 

ERA5 meteorology, and CEDS SO2 emissions to in situ surface concentrations using the ML-based method. The novelty of 

this study includes a first time investigation of quantifying methodological uncertainties for both the CTM- and ML-based 

techniques, a validation of seasonal mean surface concentrations from the CTM-based method, and a direct comparison 545 

between the two methods on the same truth dataset. 

We found that the ML-based method was more accurate than the CTM-based method at estimating the surface 

concentrations when validated against in situ measurements from the CNEMC air quality monitoring network. The ML-based 

method had a discrepancy of ~30% with no significant bias (slope = 0.69), whereas the CTM-based method had a discrepancy 

of ~75% with a significant underestimation (slope = 0.24). Despite the underestimation, the CTM-based method also produced 550 

surface SO2 concentrations that had similar spatial distributions (r = 0.58) and temporal patterns as the CNEMC in situ 

measurements, similar to previous studies. The CTM-based method requires averaging data over relatively long timescales to 

reduce the noise in the satellite retrievals and obtain more accurate estimates of the surface concentrations. The underestimation 

of this method is likely due to a low bias in the simulated SVRs. The CTM-based method also suffered from decreasing 
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accuracy over time due to decreasing SO2 loading over time since the retrieval that has a low signal-to-noise ratio. In addition 555 

to lower discrepancies, the ML-based method outperformed the CTM-based method in terms of the spatial distribution (r = 

0.77) and temporal variations. The accuracy of the ML-based method was especially apparent for smaller datasets that have 

limited temporal averaging and noisier OMI data since the model can rely on other predictors, which was indicated by the 

stable accuracy over time. Even though our ML model was only based on five input variables, the results were similar to 

previous studies that used far more predictors. The small number of predictors also allowed us to relate the model predictions 560 

and input variables to known physical processes such as pollutant emissions and dispersion, thus lending more confidence in 

our ML model as compared with other “black box” ML models. Finally, both methods were used to create gridded products 

to provide estimates of surface SO2 concentrations in locations that do not have access to ground-based air quality monitoring 

measurements. This analysis exposed a major limitation in the ML-based method where it produced unrealistic spatial 

distributions of SO2 over the ocean since it was only trained on data from over the land. Despite the underestimation of the 565 

CTM-based method, there is still value in using it to estimate surface SO2 concentrations in locations where there is no training 

data available for developing ML-based techniques, but additional steps should be taken to decrease the underestimation of 

this method.  

In addition to using these estimated surface concentrations for filling in the gaps of air quality monitoring networks, 

the gridded products can be used to investigate other chemical processes in the atmosphere related to SO2, such as estimating 570 

sulfuric acid concentrations and parameterizing aerosol nucleation and growth. New particle formation studies in China have 

shown that strong and frequent aerosol nucleation events occur in the presence of SO2 in both heavily polluted urban (Dai et 

al., 2017; Wu et al., 2007) and relatively cleaner rural locations (Dai et al., 2017; Du et al., 2022). Estimating surface SO2 

concentrations using these satellite-based methods may be helpful for predicting the locations and intensities of new particle 

formation events or estimating sulfuric acid concentrations, especially for locations without in situ measurements or air quality 575 

monitoring sites. 

 In the future, the performance of these methods may be improved by higher-resolution satellite data, which may help 

to improve the results. OMI can only detect sources as small as 30 kt yr-1, but newer instruments like the Tropospheric 

Monitoring Instrument (TROPOMI; Veefkind et al., 2012) or can detect sources as small as 8 kt yr-1 (Fioletov et al., 2023). 

Additionally, geostationary satellites like Tropospheric Emissions: Monitoring of Pollution (TEMPO; Zoogman et al., 2017) 580 

may offer future opportunities to estimate surface concentrations of air pollutants at even higher spatial and temporal 

resolution, which may improve the accuracy of both methods. Additionally, this study only focused on SO2, but both methods 

can also be applied to other air pollutants such as NO2, ozone, and particulate matter to see if the relative performance of each 

method is similar for other species. Since these two methods can utilize space-based measurements to fill in the gaps of ground-

based air quality networks, investigating their relative performance as improvements are made to the satellite retrievals, CTMs, 585 

and ML models is critical for monitoring near-surface air pollution with high accuracy in locations where traditional 

observations are not possible.  
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