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Abstract. Sulfur dioxide (SOy) is an important air pollutant that contributes to negative health effects, acid rain, and aerosol
formation and growth. SO, has been measured using ground-based air quality monitoring networks, but routine monitoring
sites are predominantly in urban areas, leaving large gaps in the network in less populated locations. Previous studies have
used chemical transport models (CTMs) or machine learning (ML) techniques to estimate surface SO, concentrations from
satellite vertical column densities, but their performance has never been directly compared. In this study, we estimated surface
SO, concentrations using Ozone Monitoring Instrument (OMI) retrievals over eastern China from 2015-2018 utilizing GEOS-
Chem CTM simulations and an extreme gradient boosting ML model. For the first time, we quantified methodological
uncertainties for both methods and directly compared their performance on the same truth dataset. The surface concentrations
estimated from the CTM-based method had similar spatial distributions (r = 0.58) and temporal variations compared to the in
situ measurements but were underestimated (slope = 0.24; RPE = 75%) and had worsening performance over time. The ML-
based method produced more accurate spatial distributions (r = 0.77) and temporal variations with a smaller discrepancy (slope
= 0.69; RPE = 30%) and stable performance over time. Despite the higher accuracy of the ML-based method at the monitoring
sites, the CTM-based method produced more reasonable gridded spatial distributions over areas without monitoring data.
These results suggest that satellite data could be a reliable way to estimate global SO, concentrations to parameterize other

chemical processes in the atmosphere.

1 Introduction

Sulfur dioxide (SO>) is an important air pollutant due to its effects on human health, air quality, weather, and climate.
SO; has many anthropogenic sources such as fossil fuel combustion in power plants and ore smelters, as well as natural sources

from volcanoes (Engdahl, 1973). Surface SO concentrations are mainly driven by anthropogenic activity in urban areas and
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are known to negatively impact cardiovascular and respiratory health (Engdahl, 1973; Krzyzanowski & Wojtyniak, 1982). SO,
also readily undergoes oxidation reactions in the atmosphere to form sulfuric acid, which further contributes to acid rain
(Seinfeld and Pandis, 2016) and participates in aerosol formation and growth (Lee et al., 2019). These aerosols can then
additionally affect weather and the global energy budget (NASEM, 2016).

Concentrations of SO, at the surface have been regularly measured using ground-based air quality monitoring
networks. Surface concentrations are typically measured on hourly to daily time intervals, but the sites are predominantly
located in urban areas, leaving large gaps in the network elsewhere. In addition to surface-based air quality monitors, satellite-
based instruments can measure total-column concentrations of SO, globally from space. These SO, vertical column densities
(VCDs) are retrieved using the absorption of backscattered solar radiation in the ultraviolet wavelengths measured by a
spectrometer (e.g., Krotkov et al., 2008; Levelt et al., 2006; Li et al., 2013; Li et al., 2020a; Nowlan et al., 2011; Theys et al.,
2015). The VVCDs are typically available over large areas in cloud-free locations on a daily basis but do not directly provide
the concentrations at the surface. Additional analysis is required to estimate the surface concentrations from the satellite-
retrieved VCDs.

Chemical transport models (CTMs) can be used to convert satellite VCDs into surface concentrations using simulated
surface-to-VCD ratios (SVRs). This method was initially developed for estimating surface concentrations of particulate matter
from satellite-based aerosol optical depth retrievals (Liu et al., 2004) and was later applied to nitrogen dioxide (NO»; Lamsal
et al., 2008) and SO- (Lee et al., 2011). Lee et al. (2011) and Zhang et al. (2021) each used coarse-resolution CTMs (grid
spacings on the order of 100 km) to convert SO, VCDs from the Ozone Monitoring Instrument (OMI) into surface
concentrations over North America for 2006, and China for 2005-2018, respectively. McLinden et al. (2014) and Kharol et al.
(2017) used higher-resolution CTMs (grid spacing on the order of 10 km) and OMI SO, VCDs to estimate the surface
concentrations over the Canadian oil sands from 2005-2011, and the North American continent from 2005-2015, respectively.
These four studies each demonstrated that annual mean satellite-derived surface SO, concentrations can accurately capture the
spatial distribution of ground-based air quality monitoring networks, although the estimated surface concentrations were
generally underestimated. An advantage of the CTM-based method is that it is based on fundamental principles of atmospheric
dynamics and chemistry and can produce results that are independent of observed surface concentrations. The main limitations
of CTMs are the computational expense of running the simulations (Fan et al., 2022) and relatively coarse resolution, which
may lead to large biases in the representation of emissions, meteorology, and chemical processes (Wang et al., 2020b; Wang
et al., 2020c).

More recently, machine learning (ML) techniques have been used to estimate surface SO, concentrations from
satellite retrievals, meteorology, and other geographic variables such as emission inventories. Zhang et al. (2022) used a Light
Gradient Boosting Machine (LightGBM) to estimate surface SO, concentrations over northern China using OMI SO, VCDs,
meteorological variables, emissions, land use classifications, population density, and others. Yang et al. (2023a) used radiances
from the Geostationary Environment Monitoring Spectrometer (GEMS) satellite to estimate the surface concentrations of SO,

and other criteria air pollutants in a multi-output random forest model. Both studies showed that ML techniques can accurately
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capture the spatial distribution and magnitude of the surface concentrations but may have artificial biases due to nonphysical
links between predictors and the observed surface concentrations, such as interactions between land use classifications and
skin temperature as shown by Zhang et al. (2022). In these studies, the ML models incorporated spatial (e.g., longitude, latitude,
population density) and temporal (e.g., numeric day of year, hour of day) proxies to improve performance rather than
depending only on measurable quantities, but this limits the physical usefulness, interpretability, and applicability of the model
(Zhang et al., 2022; Yang et al., 2023a; Yang et al., 2023b). An advantage of the ML-based method is that the models are
typically much faster to train and run than a full CTM simulation and can utilize higher spatial and temporal resolution data
(Fan et al., 2022); however, since ML models can only use statistical relationships to make predictions, they are often limited
in their physical interpretability and may make their predictions based on predictors that have no physical relevance to the
estimated surface concentrations.

Although the CTM- and ML-based methods have each been used to estimate surface SO, concentrations from satellite
retrievals, there is a lack of direct comparisons between them. Here, we estimated surface SO, concentrations using OMI SO
VCDs over eastern China (105-125°E, 25-45°N) from 2015-2018 to directly compare the two methods. First, we quantified
methodological uncertainties for each method for the first time. Next, we used simulated SVRs from the GEOS-Chem model
to estimate the surface SO, concentrations from OMI using the CTM-based method. Then, we used a ML model to predict
surface SO, concentrations from OMI VCDs, meteorological variables, and an emission inventory, which are all physically
relevant to the spatial distribution or lifetime of SO,. The results from each method were validated against ground-based in
situ measurements from the China National Environmental Monitoring Centre (CNEMC) air quality monitoring network on
annual and seasonal mean timescales. Finally, we compared the performance of each method on the same truth dataset over
the same times and locations to gain insights on their abilities and limitations to accurately estimate the surface SO;
concentrations from satellite data.

2 Data and methods
2.1 Study region

Eastern China has abundant anthropogenic SO, emissions and thus is a region with elevated surface concentrations.
Satellite SO, retrievals typically have a low signal-to-noise ratio due to interfering absorbers (Li et al., 2020), so regions with
large SO emissions and pollution, such as eastern China, are required to obtain sufficient signals from the spectrometer and
provide more reliable retrievals compared to less polluted regions. A map of our study region including the locations of OMI-
derived SO, emission sources (Fioletov et al., 2022; Fioletov et al., 2023) and CNEMC monitoring sites is shown in Fig. 1.
The main sources of SO in the study region include around 70 power plants, five ore smelters, and one area of oil and gas
production (Fig. 1b). There are also approximately 1000 air quality monitoring stations located in the study region that were
used to validate the estimated surface concentrations (Fig. 1c). Our analysis covers the period from 2015 (the first full year of

in situ measurements) to 2018 (to avoid the impacts of the COVID-19 lockdowns).
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Figure 1: Maps showing the (a) study region (box; 105°E-125°E, 25°N-45°N) relative to the rest of the Asian continent, (b) locations
of large SOz sources from the 2015 OMI emission catalogue (Fioletov et al., 2022) including 70 power plants (stars), five ore smelters
(triangles), and one area of oil and gas production (square), and (c) locations of the CNEMC monitoring stations (circles).

2.2 OMI satellite data

We employed data from the Ozone Monitoring Instrument (OMI; Levelt et al., 2006), a hyperspectral
ultraviolet/visible nadir solar backscatter spectrometer launched onboard the Aura satellite in 2004. Aura flies in a sun-
synchronous polar orbit, and OMI is used to retrieve SO, VCDs with daily global coverage and a spatial resolution of 13 km
x 24 km at nadir, a significant improvement from previous satellite-based instruments. The VCDs were gridded to a horizontal
resolution of 0.25° x 0.25° to decrease noise in the SO, retrieval without significantly coarsening it from the native
measurement resolution. The OMI overpass time of our study region ranged from approximately 12:15 pm to 2:45 pm local
time. For both the CTM- and ML-based methods, we used the OMI Planetary Boundary Layer (PBL) SO, product to estimate

the surface concentrations due to its main application for anthropogenic, near-surface SO, (Krotkov et al., 2014; Li et al.,
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2020b). The OMI retrievals use a principal component analysis- (PCA) based algorithm for spectral fitting based on the
radiances for each row in the measurement swath with wavelengths between 310.5-340 nm (Li et al., 2013; Li et al., 2020a).
This version of the PCA retrievals include pixel-specific air mass factor calculations to convert slant column densities (SCDs)
to VCDs rather than using a fixed value worldwide (Li et al., 2020a). The VCDs express the number of SO, molecules in the
column and are reported in Dobson Units (DU; 1 DU = 2.69 x 106 molecules cm?). To ensure good data quality, we screened
out measurements with cloud fractions greater than 0.3, solar zenith angles greater than 65°, located in the outer ten cross-
track positions, or affected by the row anomaly (NASA, 2020). We also excluded extreme outliers that fell outside of five

standard deviations from the mean as thresholds less than this appeared to remove legitimate data.

2.3 CNEMC ground-based monitoring data

Ground-based SO, concentrations from the China National Environmental Monitoring Centre (CNEMC) air quality
monitoring network were used to validate the performance of both the CTM- and ML-based methods. The concentrations were
converted from pg m to parts per billion (ppbv) following the procedure outlined in Wei et al. (2023). To ensure the ground-
based measurements were temporally aligned with the OMI overpass, we averaged the hourly concentrations from 12:00 pm
to 3:00 pm local time on days where there was at least one OMI observation within 40 km of the station. Like the OMI data,

we also removed data that fell more than five standard deviations outside of the mean.

2.4 CTM-based technique

We used simulated SVRs from the GEOS-Chem model (version 14.2.2; The International GEOS-Chem User
Community, 2023) to convert the OMI VCDs into surface concentrations for the CTM-based method. We ran simulations for
January, April, July, and October 2015. Each simulation was conducted with a one-month spin-up following Kharol et al.
(2015). To reduce the computational expense, we used the monthly average SVR from each simulation to estimate the daily
surface concentrations within the corresponding winter (DJF), spring (MAM), summer (JJA), and autumn (SON) months
(referred hereafter as quasi-seasonal temporal sampling) for all years of the study period. The model was run at a horizontal
resolution of 2.5° (longitude) x 2.0° (latitude) with 47 vertical layers and was driven by assimilated GEOS-FP meteorology
(Lucchesi, 2018) and the Community Emissions Data System (CEDS) anthropogenic emission inventory (Hoesly et al., 2018).
The internal time steps for the chemistry and advection calculations in the model were lengthened by 50% from the default
values to reduce simulation times while minimizing errors following Philip et al. (2016). Despite the longer internal timesteps,
the Courant-Friedrichs-Lewy condition is maintained with a Courant number of 0.041, indicating numerical stability of the
simulations. The surface concentrations were assumed to be equal to the concentrations at the lowest model level (~60 m above
ground level). The output timestep of GEOS-Chem was every three hours, so it was sampled at 2:00 pm local time, which is
the only output inside the OMI overpass window. We only included GEOS-Chem data in the analysis if there was at least one

valid OMI observation within the model grid cell on a given day.
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The approach from Lee et al. (2011) was used to infer surface SO, concentrations from OMI VVCDs and simulated
vertical SO, profiles from GEOS-Chem (GC). Lee et al. (2011) showed that the CTM-based method provided accurate results
even with CTM resolutions that are much coarser than the satellite data. The monthly averaged profiles and SVRs from GEOS-
Chem are shown in Fig. S1. The profiles indicate that most of the SO, within the vertical column is located near the surface
and within the boundary layer (Fig. S1). The concentrations then drop to near zero in the free troposphere and have small
variations, indicating a lack of elevated SO plumes (Fig. S1). The profiles from the GEOS-Chem simulations are similar to
those from aircraft observations (e.g., Li et al., 2012; Norman et al., 2025; Shan et al., 2025; Xue et al., 2010) and higher
resolution simulations (Norman et al., 2025) over China. The surface SO, concentrations for the CTM-based method (Somr)
were calculated on a daily basis at 0.25° x 0.25° resolution using the daily OMI VCDs and averaged GEOS-Chem SVRs from

the model grid cell that the OMI measurement lies within using Eqn. 1:

vSgc

Somt = ———————— X Loy, €Y)

vQ26c,pBLT2GCFT
where S is the surface SO, concentration in ppbv and Q is the SO, VCD in DU. The FT and PBL subscripts are the free-
tropospheric and boundary layer VCDs, respectively, which were calculated relative to the GEOS-FP PBL height. Since there
is a significant difference in horizontal resolution between the satellite and model data, OMI VCDs were used to provide sub-
model grid variability (v) using Eqn. 2:

_ Domr
" ooml’ )

where Qowm is the OMI VCD at 0.25° x 0.25° resolution and Q'om is the average OMI VCD over the 2.5° x 2.0°
GEQOS-Chem grid cell. To compare the estimated surface concentrations to the in situ surface monitoring data, we used a 40
km averaging radius around each station to increase the amount of usable data and further reduce the noise in the OMI data.
This is similar to previous studies (i.e., Kharol et al., 2017) and maximizes both the slope and correlation compared to other
radii, as shown in Fig. S2. In Sect. 3.1, the surface concentrations estimated from the CTM-based method will be validated
against the in situ measurements on the full four years of data since an independent testing dataset is not required for this
method. Then, the CTM-derived concentrations will be resampled to match the independent testing dataset to directly compare
to the performance of the ML-derived concentrations in Sect. 4.

Since only simulations for January, April, July, and October 2015 were available to provide SVRs, there are two
inherent assumptions regarding the temporal representativeness of the SVRs. The first assumption was using quasi-seasonal
temporal sampling for the SVRs and calculating the estimated surface concentrations. To test the impact of temporal
representativeness on the estimated surface concentrations, we ran an additional GEOS-Chem simulation to cover all of spring
(MAM) 2015. We also employed a full year of archived 2018 GEOS-CF data (NASA GMAO, 2023), which has improved
temporal (hourly) and spatial (0.25° x 0.25°) resolution compared to GEOS-Chem and uses the same chemistry module, so
they tend to produce similar results (Keller et al., 2021). We found that the intraseasonal variability in the SVR was 0.6 ppbv
DU for MAM in both GEOS-Chem and GEOS-CF, as shown by Fig. S3. Therefore, we used the GEOS-CF data to estimate

this uncertainty for the entire year. We found that the average intraseasonal variability in the SVRs for the full year was 0.8
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ppbv DU (Fig. S3). We also used the full year of GEOS-CF data to test the impact of temporal representativeness on the
annual mean surface SO, concentrations. Figures S4b-f show that there was no significant difference in the accuracy of the
annual average surface SO, concentrations among the different temporal sampling techniques ranging from daily to annual
mean SVRs. The slopes and correlations of the surface concentrations were consistent only ranging between 0.23 — 0.29 and
0.33 — 0.40, respectively (Fig. S4b-f). The sensitivity analysis with GEOS-CF also suggested that improving the spatial
resolution of the CTM while maintaining the same temporal sampling of the SVRs did not have a large impact on the accuracy
of the estimated surface concentrations despite an improvement in spatial resolution by nearly a factor a 10, as indicated by
Figs. S4a and S4d for 2018 data, as well as Fig. S5 for all years of the study period.

The other assumption was only using a single year of simulations to convert four years of OMI data into surface
concentrations. Kharol et al. (2017) did not have simulations that spanned their entire analysis period, but the implications of
this were never discussed. To address this, we first compared the monthly averaged SVRs from observations (calculated using
CNEMC surface concentrations and OMI VCDs) for each year in the study period to the 2015 GEOS-Chem simulations to
ensure there is no significant changes over time. Figure S6 shows boxplots of the observed and GEOS-Chem SVRs with the
percent difference between them. In general, the differences between the observed and GEOS-Chem SVRs were consistent
across all years of the study period, typically ranging from 73 —89% (Fig. S6). We also ran additional GEOS-Chem simulations
for January, April, July, and October 2018 to assess if the simulated SVRs change over time. Boxplots for these two sets of
simulations can be seen in Fig. S7 and indicate that the GEOS-Chem SVRs only changed by 0.8 ppbv DU, or 9%, from 2015

to 2018. The implications of these uncertainties on the resultant concentrations are discussed further in Sect. 2.6.

2.5 ML-based technique

To estimate the surface SO, concentrations using a ML model, we used an eXtreme Gradient Boosting regression
model (XGBoost; Chen & Guestrin, 2016) to statistically relate satellite-based SO, VCDs, meteorological variables, and
emissions data to the in situ measurements. XGBoost models use a scalable tree boosting system to efficiently train an
ensemble of decision trees by adding a new tree with each training epoch and learning with each iteration (Chen & Guestrin,
2016; Friedman, 2001). Previous studies have shown that XGBoost and LightGBM models are able to estimate surface
concentrations from satellite data more effectively than other ML architectures as shown by Kang et al. (2021) and Zhang et
al. (2022). We trained our XGBoost model with an ensemble of 500 trees, a maximum tree depth of 15 splits, and a learning
rate of 0.15 on a mean squared error loss function. Neither a larger ensemble nor deeper trees improved the performance of
the model, as shown by Fig. S8 and Fig. S9, respectively.

Our ML model was trained on a small number of variables (five) that each have known physical relationships to the
spatial distribution or lifetime of atmospheric SO». By using a small number of variables, it is easier to derive physical meaning
from the ML predictions without sacrificing accuracy since the input variables are already known to affect surface SO,
concentrations. We used daily OMI SO, VCDs to estimate the spatial distribution of SO, hourly European Centre for Medium-
Range Weather Forecasts (ECMWF) Reanalysis v5 (ERAS5; Hersbach et al., 2020; ECMWF, 2019) 100 m u-winds, 100 m v-
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winds, and boundary layer heights averaged over the OMI overpass window were used to account for the meteorological
mixing and dispersion of SO, and monthly SO, emissions from the CEDS inventory to capture the locations of SO, sources.
The ERA5 meteorological variables were provided at 0.25° x 0.25° horizontal resolution, and the CEDS emissions were
provided at 0.5° x 0.5° horizontal resolution. We trained the model on logarithmic boundary layer heights to get better
sensitivity to variations in low boundary layers, and logarithmic emissions since the values ranged several orders of magnitude.
The model is summarized in Eqn. 3 as:

Sur = XGBoost(Qoy;, Ugras, Veras, 10810 [PBLHERas], 10810 [Eceps]), ©))
where Swy is the predicted surface concentrations from the XGBoost ML model, Qowm is the satellite SO, VCD, Uggas is the
u-wind, Veras is the v-wind, PBLHEggras is the boundary layer height, and Eceps is the SO, emissions. Earlier versions of the
model were trained on 11 predictors, but the predicted surface concentrations produced an unrealistic spatial distribution of
SO, as shown in Fig. S10. Additionally, some of the predictors were shown to be relatively unimportant to the model output,
as indicated by the permutation importance in Fig. S11. The reduction of predictors from 11 down to five led to an improvement
in the statistical performance and spatial distribution of the estimated surface concentrations, suggesting that utilizing known
physical relationships between variables is more beneficial than the number of predictors in a ML model.

We trained the model on 90% of the daily data (N = 137630) from 2015-2018 with ERA5 and CEDS predictors
sampled to match the valid OMI observations. The input variables were sampled and averaged within 40 km of the CNEMC
sites for training, as done in the CTM-based method, and the predicted surface concentrations from the XGBoost model are
provided at each CNEMC site in the dataset. The remaining 10% of the data (N = 15292) was reserved for a sample-based
independent validation. This split of the training and independent testing datasets was used by previous studies (e.g., Zhang et
al., 2022; Yang et al., 2023a; Yang et al., 2023b) and was shown to have the best performance for the independent testing
dataset for our model as shown in Fig. S12. Figure 2 shows that the model had noticeably better performance with the training
data (slope = 0.89; r = 0.95) compared to the testing data (slope = 0.67; r = 0.76), indicating that the model has good
performance, but is slightly overfitting, a common artifact of complex machine learning models such as XGBoost. While the
model was trained to estimate the surface SO, concentration at each CNEMC station, the trained model can then be used to
make predictions on gridded input data to obtain estimates of the surface SO, concentrations on a continuous domain at the
same horizontal resolution as the inputs.



240

245

250

(a) Independent dataset (b) Training dataset

70 y = 0.67x + 2.56 ,/' 70 y = 0.89x + 0.82 ,/'
R =0.76 N = 15292 e R = 0.95 N = 137630 4
60 | MAE = 2.9 ppbv S I 60 | MAE = 1.2 ppbv
RMSE = 5.3 ppbv " RMSE = 2.6 ppbv
RPE = 58% wr A RPE = 23%
50 =L SA 50

[pPpbv]

ML predictions

% 10 20 30 40 50 60 70
CNEMC in situ [ppbv]

1 10 100 1000
Number of stations

Figure 2: Scatterplots between the daily ML model predictions and CNEMC in situ measurements for the (a) independent dataset
and (b) training dataset. Scatterplots are binned every 1 ppbv. Each scatterplot is colored by the number of stations in each bin and
includes a linear regression analysis with the best fit line (solid line), best-fit equation, correlation coefficient, total number of
stations, 1:1 line (black dashed line), MAE, RMSE, and RPE.

2.6 Methodological uncertainties

This study provides the first detailed discussion of the individual sources and summation of uncertainties for either
methodology. To estimate the uncertainty of the input variables for both methods, we performed moving-block bootstrapping
with 10000 iterations on the daily gridded data. For each bootstrap, a horizontal coordinate and date was randomly sampled
with replacement. For each random sample, a temporal block of five days in each direction from the randomly sampled day
was used to calculate the standard deviation. After all bootstraps were completed, the uncertainty was defined as the average
of the standard deviations calculated from each iteration. This was done for the OMI SO, VCDs, GEOS-Chem SVRs, and
ERAS meteorology. The uncertainty in the CEDS emission inventory was not included due to the monthly temporal resolution,
and a lack of uncertainty quantification in previous literature (e.g., Hoesly et al., 2018; McDuffie et al., 2020).

For the CTM-based method, the summation of error was determined using error propagation. For the error
propagation, Eq. 1 was simplified such that:

Somr = (SVRge) X Qo 4)
where SVRgc is the monthly averaged SVR from the GEOS-Chem simulations. Equation 4 was used in the error propagation

formula to obtain Eq. 5:
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where o, is the propagated error of the CTM-derived concentration, gy, is the uncertainty in the GEOS-Chem SVR,
and a,,,,, is the uncertainty in the OMI SO, VCD. The uncertainty in the GEOS-Chem SVR was initially calculated with
bootstrapping, but also needs to account for the uncertainties of the quasi-seasonal and single-year assumptions in the CTM-
based methodology. The quasi-seasonal and single-year assumptions were defined and quantified in Section 2.4. These three
sources of GEOS-Chem SVR uncertainty were assumed to be independent of each other and were combined using the sum of
the squares of each term. The results of the bootstrapping and error propagation are shown in Table 1. Ultimately, the
methodological uncertainty of the CTM-based method is +4.9 ppbv when considering the uncertainties of the OMI SO, VCDs
(£0.67 ppbv DU™) and GEOS-Chem SVRs (1.7 ppbv DU™). The OMI SO, VCD uncertainty has a relative standard deviation
of 136%, which is comparable to the reported uncertainty of 60 — 120% for moderately polluted areas from Li et al. (2020).

Table 1: Sources and magnitudes of uncertainty for the CTM-based method. Uncertainties for the OMI SO2 VCDs and GEOS-Chem
SOz SVRs were determined using moving-block bootstrapping. The uncertainty for the quasi-seasonal SVR assumption was
determined using GEOS-CF data. The single-year SVR assumption was determined using the 2015 and 2018 GEOS-Chem
simulations. The overall uncertainty for the CTM-based method was determined using error propagation.

Variable Uncertainty
OMI SO, VCDs +0.67 DU
GEOS-Chem SO, SVR + 1.4 ppbv DU
Quasi-Seasonal SVR Assumption + 0.8 ppbv DU™!
Single-Year SVR Assumption + 0.6 ppbv DU!
Overall Uncertainty + 4.9 ppbv

It is much less straightforward to propagate error through a ML model since it effectively acts as a “black box,” S0
analytical error propagation methods cannot be used. First, uncertainties of the ERA5 meteorological fields were calculated
using the moving-block bootstrapping approach. To obtain the overall uncertainty, we used traditional bootstrapping
techniques to resample the training dataset with replacement and train an ensemble of XGBoost models to obtain an uncertainty
in the model output based on changes in the training data given to the model. To maintain consistency, the same independent
testing dataset was used to make the model predictions for each bootstrap. The standard deviation was calculated for each
station and day across the different models and was then averaged over space and time to obtain the overall uncertainty. The
uncertainties of the ML inputs and overall uncertainty from the retraining analysis are shown in Table 2. For the ML-based
method, the overall uncertainty was estimated to be +2.0 ppbv, which is lower than the propagated error for the CTM-based
method. The overall uncertainty for the ML-based method does not directly account for uncertainty in the model inputs, but
since traditional error propagation and summation of uncertainties are not possible for ML, this is our best estimate at how the

training data can impact the predictions from the model.
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Table 2: Sources and magnitudes of uncertainty for the ML-based method. Uncertainties for the OMI SO2 VCDs and ERA5
meteorology were determined using moving-block bootstrapping. The overall uncertainty for the ML-based method was determined
using bootstrapping on the training dataset and retraining multiple XGBoost models to estimate the uncertainty in the model
training. The uncertainty for the CEDS inventory was not able to be quantified (NQ).

Variable Uncertainty
OMI SO, VCDs +0.67 DU
ERAS5 U-Wind +19ms?
ERAS5 V-Wind +19ms?
ERAGS Boundary Layer Height +326m
CEDS Emissions NQ
Overall Uncertainty + 2.0 ppbv

2.7 Evaluation metrics

To quantify the discrepancies between the estimated surface SO2 concentrations from the CTM-based method, ML-
based method, and the CNEMC in situ measurements, we used several different metrics from previous studies (e.g., Yang et
al., 2023b; Zhang et al., 2021; Zhang et al., 2022) including the mean absolute error (MAE; Eq. 6), root mean squared error
(RMSE; Eg. 7), and relative percent error (RPE; Eq. 8),

1
MAE = ;Zﬂsesr,i - SCNEMC,i|v (6)
1 2
RMSE = \[ﬁ Z?I(Sest,i - SCNEMC,i) ' (7
RPE =1 (Ziv Sest,i"SCNEMC,i ) x 100%, 8)
N ScNEMC,i

where N is the number of stations, Ses is the estimated surface concentration from the CTM- or ML-based method, and Scnemc
is the surface concentration from the in situ measurements. Previous studies have also used slopes and correlations from linear
regression analyses between the estimated and in situ concentrations to assess the relative magnitudes and spatial distributions,
respectively (e.g., Kharol et al., 2017; Lee et al., 2011; McLinden et al., 2014). In Sect. 3.1, results from the CTM-based
method were validated and compared to previous studies using the full dataset since they are independent on in situ
measurements. In Sect. 3.2, results from the ML-based method were validated and compared to previous studies using only
the independent testing dataset. Finally, in Sect. 4, both methods were directly compared using the independent testing dataset

(i.e., retained from ML training) such that the comparisons are made on an identical truth dataset for the first time.

11



305

310

315

320

3 Estimations of surface SO concentrations from OMI satellite data
3.1 Evaluation of the CTM-based method

Maps, histograms, and scatterplots of the annual mean surface SO, concentrations from the CTM-based method and
CNEMC in situ measurements are shown in Fig. 3. Both datasets have a similar spatial distribution with the highest
concentrations in the North China Plain (Fig. 3), a highly industrialized region with many anthropogenic sources of SO, (Fig.
1b). The average correlation between the estimated and in situ concentrations is 0.58, indicating that the CTM-based method
can accurately distinguish between polluted and clean areas (Fig. 3). The CTM-based method also captures a 45% decrease in
the concentrations from 2015-2018, also seen in the data from the monitoring network (Fig. 3). Despite the similarities in the
spatial distribution and temporal trends, the surface concentrations obtained from the CTM-based method are significantly
underestimated. The slope between the estimated and in situ concentrations is 0.24 with an RPE around 75% (Fig. 3). The
discrepancy in the estimated concentrations is also apparent in the frequency distributions with peaks and mean values around
1-3 ppbv compared to around 5-10 ppbv from the in situ measurements. The surface concentrations from the CTM-based
method were also separated by season, averaged from 2015-2018, and validated against in situ measurements for the first time.
As shown in Fig. S13, the CTM-based method was able to accurately capture the spatial distribution (r = 0.56) and seasonality
of the in situ measurements with higher concentrations in the winter and lower concentrations in the summer but still suffered
from underestimation (slope = 0.24; RPE = 76%).
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Figure 3: Spatial distributions of the annual average surface SO2 concentrations from the CTM-based method (top row) and
CNEMC in situ measurements (second row), histograms of the surface concentrations from each dataset with vertical bars
representing the means (third row), and scatterplots between the two datasets (bottom row). Each column represents a different
year in the study period. Histograms and scatterplots are binned every 1 ppbv. Each scatterplot is colored by the number of stations
in each bin and includes a linear regression analysis with the best fit line (solid line), best-fit equation, correlation coefficient, total
number of stations, 1:1 line (black dashed line), MAE, RMSE, and RPE.

Table 3 summarizes the results from the validation of annual mean concentrations from our study and previous studies
using the CTM-based method. The studies by Lee et al. (2011) and McLinden et al. (2014) each utilized the OMI band residual

13



335

340

345

350

difference (BRD) SO, product and used SVRs from coarse- and high-resolution CTMs, respectively. McLinden et al. (2014)
outperformed Lee et al. (2011) with slopes of 0.88 and 0.79, respectively, and correlations of 0.91 and 0.81, respectively.
Similarly, our study and Kharol et al. (2017) both use the OMI PCA SO, product and used SVRs from coarse-resolution and
high-resolution CTMs, respectively. Our study had slightly worse performance than Kharol et al. (2017) with slopes of 0.24
and 0.39, respectively, and correlations of 0.58 and 0.61, respectively. These two sets of studies suggest that given the same
OMI product, the model resolution may affect the accuracy of the estimated surface concentrations compared to the in situ
observations, assuming that the surface monitoring data are accurate. Our sensitivity tests comparing the impact of spatial
resolution on the accuracy of the CTM-based method (Fig. S5) showed a discrepancy in the correlations of 0.05 between
GEOS-Chem and GEOS-CF compared to a difference of 0.03 between our study and Kharol et al. (2017); however, the
sensitivity tests only showed a discrepancy in the slopes of 0.02 between GEOS-Chem and GEOS-CF, which is much smaller
than the 0.15 difference in slopes between our study and Kharol et al. (2017). This suggests that the difference in spatial
resolution of our CTM simulations may account for the discrepancy in the correlations between our study and Kharol et al.
(2017), but not the slopes, indicating that there may be another factor contributing to the underestimation of the CTM-based
method. Additionally, previous studies have also shown that there are differences in SO, VCDs across different retrieval
algorithms and sensors (Wang et al., 2020a). The higher slopes from the BRD product may be due to a high bias in the retrievals
in polluted areas whereas the PCA product is thought to be more accurate (Li et al., 2013). Additionally, the slope of 0.75 from
Kharol et al. (2017) and the results from Zhang et al. (2021) use a scaling factor on the in situ measurements to eliminate some

of the bias, so these results are not directly comparable to our study.
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Table 3: Comparison of study design (satellite data, model name and resolution, study location and study period) and performance
metrics (mean absolute error, root mean square error, relative percent error, slope, and correlation) between our study and previous
studies that utilized the CTM-based method for annual mean surface SOz concentrations. NR indicates that the value was not
reported, and asterisks (*) indicate a scaling factor applied to the in situ surface concentrations.

Study
Stud Satellite CT™M location MAE RMSE RPE Slope Correlation
u
Y data (resolution) (time [ppbv] [ppbv]  [%] [-] [-]
period)
GEOS- Eastern
. OMI .
This Chem, China
SO, 5.7 6.3 74 0.23 0.58
study (2.5° x (2015-
PCA
2.0°) 2018)
GEOS-
OMI North
Lee et al. Chem, ]
SO, America NR NR NR 0.79 0.81
(2011) (2.5° x
BRD (2006)
2.0°)
. Canadian
McLinden OoMI GEM- )
oil sands
etal. SO, MACH, NR NR NR 0.88 0.91
(2005-
(2014) BRD (15 km)
2011)
North
OMI GEM- )
Kharol et America
SO, MACH, NR NR NR 0.39/0.75* 0.61
al. (2017) (2005-
PCA (15 km)
2015)
OMI MOZART, )
Zhang et China
SO, 1.9°x2.5° NR 3.9 19 0.83* 0.86
al. (2021) (2014)

PCA Resolution

355

Inaccuracies in the CTM-based method can be partially attributed to noise in the satellite data. Individual VCD
retrievals have large uncertainties estimated from 60 — 120% from Li et al. (2020a) and 136% from our bootstrapping analysis

(Table 1), making it difficult to compare to the ground-based measurements on short timescales; however, the noise in the data
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can decrease with temporal averaging by a factor of n'2 where n is the number of measurements being averaged (Krotkov et
al., 2008). As a result, longer averaging periods (i.e., annual means) tend to have better performance than shorter timescales
(i.e., seasonal means). Additionally, the consistent underestimation of the CTM-based method may be a result of either
underestimated SVRs from the GEOS-Chem simulations or a low bias in the OMI PCA product. Figure S6 suggests that the
SVRs from GEOS-Chem are typically between 70-90% lower than observed SVRs calculated from CNEMC in situ surface
concentrations and OMI VCDs, which is similar to the discrepancy in the surface concentrations from the CTM-based method
compared with the in situ measurements. Based on the error propagation from Sect. 2.6, the combined methodological
uncertainty of the CTM-based method considering both the OMI retrievals and GEOS-Chem SVRs is £4.9 ppbv (Table 1).
This is larger than most of the estimated surface concentrations shown in the histograms from Fig. 3, indicating the

methodological uncertainty associated with this method is large and is highly affected by the accuracy of the input data.

3.2 Evaluation of the ML-based method

The spatial distribution, frequency distribution, and validation scatterplots of the ML and CNEMC annual mean
surface SO, concentrations from the independent testing dataset are shown in Fig. 4. The ML model estimated the surface
concentrations more accurately than the CTM-based method with an improved average correlation of 0.77, lower RPE of 33%,
and an average slope of 0.69. These improvements indicate that the ML-based method has better accuracy in the spatial
distributions and magnitudes compared to the CTM-based method. The ML estimated concentrations also have a 45% decline
from 2015-2018, which is the same as the CNEMC in situ measurements (Fig. 4). The shapes of the ML-based frequency
distributions also agree well with the CNEMC observations with peaks at the same concentrations (5-10 ppbv) and similar
ranges (Fig. 4). The ML-derived and in situ concentrations were also assessed using the seasonal concentrations averaged from
2015-2018. As shown in Fig. S14, the ML-based method was able to capture the spatial distribution (r = 0.72), seasonality,
and magnitudes (slope = 0.64; RPE = 36%) of the seasonal mean surface concentrations more accurately than the CTM-based
method. Additionally, the overall uncertainty of the ML-based method is much lower than the CTM-based method at around
+2 ppbv (Table 2). Since the ML predictions have a much larger magnitude, the methodological uncertainty for the ML-based

method appears to be more reasonable compared to the CTM-based method.

16



385

390

Annual Annual Annual
2015 2016 2017
45°N 45°N 45°N 45°N
T - _’_,r": - ’;ﬁ o _/_;“2 o
—l ° > n, #' !° f- !o
g£38 50980
[Ty o e
ve &) . A
g— 0T, | 25on | /| 25°N
5°E 125°E  105°E 125°E  105°
T 45°N s 45°N
Usmo e e
E -‘: > J o, .f o, 2
wo 'g_ Sa 35°N | 4 35°N
2ca @ & 3o & :
25°N | %80y | 25N BT | ason [P n. 25°N b
105°E 125°E 105°E 125°E 105°E 125°E 105°E 125°E
| |
0 6 9 12 15 18
SO, concentration [ppbv]
« wn 200 200 200 200
0 £
2, 6 150 150 150 150
£o = 100 100 100 100
3
> # 50 50 50 50

V]
0 10 20 30 40

0
0 10 20 30 40

0
0 10 20 30 40

SO, concentration [ppbv]

[0 CNEMC in situ

@ ML method

1]
0 10 20 30 40

T —_ 40'y_= 0.67x + 3.19 40 40 ¥ =0.73x +_1.99,’ 40'y_= 0.73x + 1 66,”
o> {MAE = 28" pioty. 30 30 {MAE = 1.8 paiiv 30 {MAE= 14 ot -
E'f, 2 ' 20 20 |Rre =30 20 {Rre=3m
gn. 10 10 ke 10 {2
[ == "
o/ " o~ __ (1 B -
0 10203040 0 10203040 0 10203040
CNEMC in situ [ppbv]
m |
I I | 1
1 10 50

Number of stations

Figure 4: Spatial distributions of the annual average surface SOz concentrations from the ML-based method (top row) and CNEMC
in situ measurements (second row), histograms of the surface concentrations from each dataset with vertical bars representing the
means (third row), and scatterplots between the two datasets (bottom row). Each column represents a different year in the study
period. Histograms and scatterplots are binned every 1 ppbv. Each scatterplot is colored by the number of stations in each bin and
includes a linear regression analysis with the best fit line (solid line), best-fit equation, correlation coefficient, total number of
stations, 1:1 line (black dashed line), MAE, RMSE, and RPE.
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Previous studies have shown that ML models can skillfully capture day-to-day variations in surface SO, concentrations in
addition to the annual and seasonal means as summarized in Table 4 (e.g., Zhang et al., 2022; Yang et al., 2023b). The estimated
daily surface concentrations from our independent testing dataset had a slope of 0.67, correlation of 0.76, and RPE of 58%
compared to the in situ measurements, indicating good performance on short timescales (Fig. 2; Table 4). The performance of
our model was comparable to previous studies but had a slightly larger discrepancy (Table 4). Our ML model only used five
predictors compared to nine in Yang et al. (2023b) and 66 in Zhang et al. (2022), which may partially account for the increased
discrepancy. Additionally, our study did not use any spatial or temporal proxies, which could also explain the slight reduction
in performance compared to other studies that have used them.

Table 4: Comparison of study design (satellite data, machine learning model type and number of predictors, study location and
study period) and performance metrics (mean absolute error, root mean square error, relative percent error, slope, and correlation)
between our study and previous studies that utilized a ML-based method for daily surface SOz concentrations. NR indicates that the
value was not reported.

Machine

learning Study

stud Satellite model location MAE RMSE RPE Slope Correlation
u
Y data (number (time [ppbv]  [ppbv] [%0] [-1 [-1
of period)
predictors)
Eastern
This OMI SO, XGBoost China
3.0 5.2 59 0.67 0.75
study PCA (5) (2015-
2018)
Northern
Zhang ) .
OMI SO, LightGBM China
etal. NR 4.0 39 NR 0.94
PCA (66) (2013-
(2022)
2019)
Deep
Landsat-8 neural
Yang et o )
visible and network China
al. ) ) 35 5.7 47 0.76 0.85
infrared multi-task (2019)
(2023b) )
reflectance learning
)
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We performed a permutation importance analysis to assess how each predictor impacted the model predictions. Figure
5a indicates that the boundary layer heights and OMI SO, VCDs are the two most influential predictors followed by emissions
and wind speeds. It is also worth noting that all of the predictors contribute toward the estimated surface concentrations with
all permutation importance scores falling between 0.2 and 0.5 with none being unused. The boundary layer heights have a
much smaller variation on short timescales compared to the OMI SO, VCDs. Based on the bootstrapped uncertainties from
Table 2, the relative standard deviations are 20% for boundary layer heights, and 136% for OMI VCDs. As a result, the ML
model is likely able to learn the relationship between boundary layer height and surface SO, concentrations more easily than
the OMI SO, VVCDs. Scatterplots between each ML predictor variable and the ML estimated surface SO, concentrations with
Spearman rank coefficients (rs) are shown in Figs. 5b-f. The ML-derived SO, concentrations increase with larger SO, VCDs
and emissions, as well as decrease with increasing boundary layer heights and wind speeds (Figs. 5b-f). The surface
concentrations and boundary layer heights each have a strong, inverse seasonality, as shown in Fig. S14 and Fig. S15,
respectively, so the strong temporal correlations between them also likely lead to a high permutation importance in the model.
The behavior of the ML predictions is consistent with the expected physical relationships between each predictor and the
surface SO, concentrations. Large OMI VCDs and emissions indicate areas of high SO loading, and large boundary layer
heights and wind speeds lead to mixing and the dilution of SO». The magnitudes of the rs values are small, indicating that the
model may be making predictions based on the interactions between variables rather than any individual predictor. The small
number of predictors used in our model allows us to link the ML predictions to known atmospheric processes, adding

confidence to the model in its ability to accurately estimate the surface concentrations.
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Figure 5: Evaluation of the daily ML-predicted surface concentrations using (a) permutation importance analysis, and scatterplots
showing the ML predictor variables against the ML estimated surface SOz concentrations for (b) ERA5 PBLH, (c) OMI SO; VCDs,
(d) CEDS SOz emissions, (e) ERA5 U-wind speeds, and (f) ERA5 V-wind speeds. Each scatterplot is colored by the number of stations
in each bin and includes the Spearman rank coefficient (rs).

4 Direct comparison of the CTM- and ML-based methods

The validation results from the CTM-based method in Sect. 3.1 were based on the full dataset since the estimated
surface concentrations are independent of the in situ monitoring data; however, the validation results from the ML-based
method in Sect. 3.2 were only based on 10% of the data that was and reserved for an independent validation and not used for
training. The comparison of these results using different datasets is still important but does not provide a direct comparison of
their performance. Here, the CTM- and ML-based methods were directly compared using the same truth dataset over the same
locations and study period for the first time. Each method was resampled to match the independent testing dataset (i.e., data
retained from ML training) and the performance of each method was assessed given identically sampled data. First, each
technique was validated at the CNEMC measurement sites in Sect. 4.1, similar to the analyses in Sect. 3. Then, both methods
will be used to create gridded surface SO, concentrations in Sect. 4.2 to assess how effective both methods are for filling in

the gaps of the CNEMC monitoring network, one of the main motivations for estimating surface concentrations from satellite

VCDs.
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4.1 Performance on independent data

Scatterplots between the in situ concentrations and estimates of the surface concentrations from both the CTM- and
ML-based methods for the testing dataset are shown in Fig. 6. The surface concentrations estimated by the ML model are
much closer to the in situ measurements (i.e., the 1:1 line) than the CTM-based method, which is consistent with the previous
results in Figs. 3-4. For the annual mean concentrations, the ML-based method had an average slope of 0.69 and correlation
of 0.77, compared to values of 0.18 and 0.30, respectively, from the CTM-based method (Figs. 6a-d). The ML model also
outperforms the CTM-based method on the seasonal data averaged over 2015-2018. The ML-based method had an average
slope and correlation of 0.64 and 0.73, compared to 0.19 and 0.31, respectively, from the CTM-based method (Figs. 6e-h).
The CTM-based method performed worse on this smaller dataset compared to the full dataset in Sect. 3.1 due to less temporal
averaging, leading to larger discrepancies with the in situ measurements. There is a smaller decrease in the performance of the
ML-based method compared to the CTM-based method when assessing the performance of individual seasons rather than the
2015-2018 average for each season, as shown by Fig. S16. The slope and correlation for the ML-based method each decreased
by around 0.1 to 0.59 and 0.67, compared to a decrease of 0.05 and 0.1 to 0.15 and 0.22, respectively, for the CTM-based
method (Fig. S16). On both annual and seasonal timescales, the ML-based method more accurately captured the spatial
distribution and magnitudes of the surface SO, concentrations compared to the CTM-based method.

(a) Annual 2015 (b) Annual 2016 (c) Annual 2017 (d) Annual 2018
401y =0:23x +0.44 y = 0.67x + 3,19 40]Y =0:16x + 0.53 y = 0.64x + 2,87 40y =017x + 0.35 y = 0.73x + 1.99 ag]y =014x+0.74 y = 0.73x + 1.66
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Figure 6: Scatterplots showing the estimated surface SOz concentrations from the CTM-based method (light blue squares) and ML-

based method (dark blue triangles) against the in situ measurements from the independent dataset for (a-d) annual mean
concentrations for each year in the study period, and (e-h) the 2015-2018 mean concentrations separated by season. Each scatterplot
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includes a linear regression analysis with the best fit line (solid lines), best-fit equation, correlation coefficient, total number of
stations, 1:1 line (black dashed line), MAE, RMSE, and RPE.

Time series of the annual and seasonal mean surface SO concentrations from the in situ measurements, and estimated
concentrations from the CTM- and ML-based methods are shown in Figs. 7a-b. The ML estimated concentrations were much
closer to the CNEMC measurements than the CTM-based method. The mean ML concentrations had an average discrepancy
of 5% with the in situ measurements, compared to a discrepancy of 58% from the CTM-based method (Figs. 7a-b). The ML-
based method also captured the same temporal variations as the in situ measurements each with a 44% decrease in
concentrations from 2015-2018, and an average seasonal fluctuation by a factor of 1.9 between the winter and summer seasons
(Figs. 7a-b). The CTM-based method also had good agreement in the temporal trends of the in situ measurements but was not
as good as the ML-based method with a 36% decrease from 2015-2018 and a seasonal fluctuation by a factor of 2.4 (Figs. 7a-
b). Since the CTM-based surface SO, concentrations were underestimated, the magnitude of the temporal trends is much
smaller than the observations and ML-based method, but the relative change was similar, as shown by Table S1. The decrease
in SO, from 2015-2018 detected by both methods is consistent with previous studies that showed a reduction in emissions over
China shown using satellite VCDs (Li et al., 2017; Wang et al., 2020a), satellite-derived emissions (Fioletov et al., 2023), and
surface concentrations (Wei et al., 2023; Zhang et al., 2021). Despite the similarities in the year-to-year and season-to-season

variations, the greatest difference between the time series of the two methods was the magnitude of the concentrations.
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Figure 7: Time series of the surface SOz concentrations from the CTM-based method (light blue squares), ML-based method (dark
blue triangles), and CNEMC in situ measurements (red circles) from the independent dataset as (a) annual and (b) seasonal means,
as well as the slopes (pink x’s) and correlations (green crosses) from the (c) annual and (d) seasonal mean validations between the
CTM-based method (dashed line) and ML-based method (solid line) with the in situ measurements. Error bars on the concentrations
represent a 1 standard deviation uncertainty, and error bars on the slopes represent a 95% confidence interval based on the standard
error of the linear regression fit. Data for all panels can be found in Table S1.

To assess how the accuracy of each method changed over time, time series of the slopes and correlations from the
annual and seasonal comparisons between the estimated and in situ surface concentrations from Fig. S16 and Table S1 are
shown in Figs. 7c-d. For the entire study period, the performance of the ML-based method was more accurate than the CTM-
based method as indicated by the higher slopes and correlations (Figs. 7c-d). Additionally, the CTM-based method suffered
from a decrease in accuracy over time alongside declining SO, concentrations while the ML-based method remained stable
from year to year (Figs. 7c-d). The accuracy of the CTM-based method is highly dependent on noise in the satellite data. As
SO, loading decreased over China, it became more difficult for OMI to detect, which may have introduced additional noise
into the VCDs. Comparatively, the ML-based method was more resistant to noise in the satellite data. As SO, VCDs decreased,
the ML predictions can utilize other predictors such as meteorology and emissions to estimate the surface concentrations,
limiting the impact of the noisy satellite data (Figs. S17a-d). The accuracy of the ML-based method also had a distinct
seasonality with generally better performance in the winter and worse in the summer (Fig. 7d). The boundary layer heights

and OMI SO, VCDs were the dominant predictors in the winter, whereas the CEDS emissions and boundary layer heights
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were the dominant predictors in the summer (Figs. S17e-h). The CEDS emissions are less consistent with the in situ
measurements than the OMI VVCDs with r; values of 0.22 and 0.28, respectively (Fig. 5), which may account for the increased
discrepancy of the ML-derived concentrations during the summer.

In summary, both the CTM- and ML-based methods captured similar temporal variations as the in situ measurements,
but the ML-based method was more accurate and had more stable performance over time compared to the CTM-based method,

which had decreasing performance over time, likely due to increased noise in the satellite data from decreasing SO loading.

4.2 Comparison of gridded products

The CTM- and ML-based methods were used to create gridded surface SO, concentrations at 0.25° x 0.25° horizontal
resolution to assess how effective each technique is for filling in the gaps of the CNEMC air quality monitoring network. The
gridded annual mean surface SO, concentrations from the CTM- and ML-based methods are shown in Fig. 8. Both methods
produced similar spatial distributions to one another over land with the highest concentrations in the North China Plain and
lower concentrations elsewhere. Over land, each method also has a spatial distribution similar to the retrieved SO, VCDs from
OMI as shown in Fig. S18a-d, further indicating that both methods effectively utilizing the OMI data. Over the oceans, there
is disagreement in the spatial distributions with the ML-based method producing high concentrations and the CTM-based
method producing low concentrations. Since the ML predictions are significantly affected by boundary layer heights (Fig. 5),
the model is likely incorrectly associating the low marine boundary layer with areas elevated SO, as suggested by the
seasonally averaged ERAS5 boundary layer heights in Fig. S15. Inaccuracies over the oceans have also been reported in Kang
et al. (2021) where ML was used to estimate surface concentrations of NO, and ozone and was attributed to a lack of training
data for the ML model in these locations. Since the ML model was only trained for conditions over land, it learned the
relationship between high surface SO concentrations and low continental boundary layer heights during the winter months
but could not accurately apply this knowledge over the oceans. As a result, the CTM-based method may produce more
reasonable spatial distributions of surface SO, concentrations in locations with a lack of surface observations where a ML
model cannot be trained.

As shown in Fig. 8, both gridded products captured the decrease in annual mean concentrations from 2015 to 2018
observed at the CNEMC sites. Both methods were also able to capture the seasonal variations in their gridded products with
the highest concentrations in the winter and lowest concentrations in the summer, as shown in Fig. S19. The seasonal gridded
surface SO, concentrations were also still consistent with the OMI SO, VCDs (Fig. S18e-h). Although it is not possible to
validate the gridded products, since the ML-based method had more accurate spatial distributions, temporal variations, and
magnitudes than the CTM-based method when validated at the CNEMC sites, the gridded product is likely to be more accurate
as well, but only over land. The unexpected area of elevated concentrations over the oceans exposed a major limitation of the
ML-based method and suggests that future work in improving the CTM-based method may be worthwhile, especially for

estimating surface SO, concentrations in locations where training data are not available.
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Figure 8: Maps of the annual mean surface SOz concentrations in ppbv from the ML-based method (top row) and CTM-based
method (bottom row) over the study area at 0.25° x 0.25° horizontal resolution. Each column represents a different year of the study
period.

5 Discussion and Conclusion

In this study, we estimated surface SO, concentrations over eastern China from 2015-2018 using OMI SO, VCDs
with two different methodologies. First, we used simulated SVRs from the GEOS-Chem model to convert the OMI SO, VCDs
into surface concentrations using the CTM-based method. Then, we used an XGBoost model to statistically relate OMI VCDs,
ERA5 meteorology, and CEDS SO, emissions to in situ surface concentrations using the ML-based method. The novelty of
this study includes a first time investigation of quantifying methodological uncertainties for both the CTM- and ML-based
techniques, a validation of seasonal mean surface concentrations from the CTM-based method, and a direct comparison
between the two methods on the same truth dataset.

We found that the ML-based method was more accurate than the CTM-based method at estimating the surface
concentrations when validated against in situ measurements from the CNEMC air quality monitoring network. The ML-based
method had a discrepancy of ~30% with no significant bias (slope = 0.69), whereas the CTM-based method had a discrepancy
of ~75% with a significant underestimation (slope = 0.24). Despite the underestimation, the CTM-based method also produced
surface SO, concentrations that had similar spatial distributions (r = 0.58) and temporal patterns as the CNEMC in situ
measurements, similar to previous studies. The CTM-based method requires averaging data over relatively long timescales to
reduce the noise in the satellite retrievals and obtain more accurate estimates of the surface concentrations. The underestimation

of this method is likely due to a low bias in the simulated SVRs. The CTM-based method also suffered from decreasing
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accuracy over time due to decreasing SO, loading over time since the retrieval that has a low signal-to-noise ratio. In addition
to lower discrepancies, the ML-based method outperformed the CTM-based method in terms of the spatial distribution (r =
0.77) and temporal variations. The accuracy of the ML-based method was especially apparent for smaller datasets that have
limited temporal averaging and noisier OMI data since the model can rely on other predictors, which was indicated by the
stable accuracy over time. Even though our ML model was only based on five input variables, the results were similar to
previous studies that used far more predictors. The small number of predictors also allowed us to relate the model predictions
and input variables to known physical processes such as pollutant emissions and dispersion, thus lending more confidence in
our ML model as compared with other “black box” ML models. Finally, both methods were used to create gridded products
to provide estimates of surface SO, concentrations in locations that do not have access to ground-based air quality monitoring
measurements. This analysis exposed a major limitation in the ML-based method where it produced unrealistic spatial
distributions of SO, over the ocean since it was only trained on data from over the land. Despite the underestimation of the
CTM-based method, there is still value in using it to estimate surface SO, concentrations in locations where there is no training
data available for developing ML-based techniques, but additional steps should be taken to decrease the underestimation of
this method.

In addition to using these estimated surface concentrations for filling in the gaps of air quality monitoring networks,
the gridded products can be used to investigate other chemical processes in the atmosphere related to SO, such as estimating
sulfuric acid concentrations and parameterizing aerosol nucleation and growth. New particle formation studies in China have
shown that strong and frequent aerosol nucleation events occur in the presence of SO; in both heavily polluted urban (Dai et
al., 2017; Wu et al., 2007) and relatively cleaner rural locations (Dai et al., 2017; Du et al., 2022). Estimating surface SO,
concentrations using these satellite-based methods may be helpful for predicting the locations and intensities of new particle
formation events or estimating sulfuric acid concentrations, especially for locations without in situ measurements or air quality
monitoring sites.

In the future, the performance of these methods may be improved by higher-resolution satellite data, which may help
to improve the results. OMI can only detect sources as small as 30 kt yr?, but newer instruments like the Tropospheric
Monitoring Instrument (TROPOMI; Veefkind et al., 2012) or can detect sources as small as 8 kt yr (Fioletov et al., 2023).
Additionally, geostationary satellites like Tropospheric Emissions: Monitoring of Pollution (TEMPO; Zoogman et al., 2017)
may offer future opportunities to estimate surface concentrations of air pollutants at even higher spatial and temporal
resolution, which may improve the accuracy of both methods. Additionally, this study only focused on SO, but both methods
can also be applied to other air pollutants such as NO,, ozone, and particulate matter to see if the relative performance of each
method is similar for other species. Since these two methods can utilize space-based measurements to fill in the gaps of ground-
based air quality networks, investigating their relative performance as improvements are made to the satellite retrievals, CTMs,
and ML models is critical for monitoring near-surface air pollution with high accuracy in locations where traditional
observations are not possible.
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