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formation and growth. SO, has been measured using ground-based air quality monitoring networks, but routine monitoring

sites are predominantly placed in urban areas, leaving large gaps in the network in less populated locations. Previous studies

have used chemical transport models (CTMs) or machine learning (ML) techniques to estimate surface SO, concentrations

from satellite vertical column densities, but their performance has never been directly compared. In this study, we estimated

surface SO, concentrations using Ozone Monitoring Instrument (OMI) retrievals over eastern China from 2015-2018 utilizing

GEOS-Chem CTM simulations and an extreme gradient boosting ML model. For the first time, we quantified methodological

uncertainties for both methods, directly compared their performance on the same truth dataset, and validated the CTM-based

method on a sub-annual timescale. The surface concentrations estimated from the CTM-based method had similar spatial

distributions (r = 0.58) and temporal variations compared to the in situ measurements but were underestimated (slope = 0.24;

RPE = 75%) and had worsening performance over time. The ML-based method produced more accurate spatial distributions

(r =0.77) and temporal variations with a smaller discrepancy (slope = 0.69; RPE = 30%) and stable performance over time.

Despite the higher accuracy of the ML-based method at the monitoring sites, the CTM-based method produced more

reasonable gridded spatial distributions over areas without monitoring data, such as over the oceans, since its estimations are

independent from the in situ measurements.
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1 Introduction

Sulfur dioxide (SO,) is an important air pollutant due to its effects on human health, air quality, weather, and climate.
SO, has many anthropogenic sources such as fossil fuel combustion in power plants and ore smelters, as well as natural sources
from volcanoes (Engdahl, 1973). Surface SO concentrations are mainly driven by anthropogenic activity in urban areas and
are known to eausenegatively impact cardiovascular and respiratory health impacts—(Engdahl, 1973; Krzyzanowski &

Woijtyniak, 1982). SO, also readily undergoes oxidation reactions in the atmosphere to form sulfuric acid, which further

contributes to acid rain (Seinfeld and Pandis, 2016) and participates in aerosol formation and growth (Lee et al., 2019) ; leading

te-furtherThese aerosols can then additionally aeffects-on weather and the global energy budget (NASEM, 2016).
Concentrations of SO at the surface have been regularly measured using ground-based air quality monitoring
networks. Surface concentrations are typically measured on hourly to daily time intervals, but the sites are predominantly

located in urban areas, leaving large gaps in the network elsewhere. In addition to surface-based air quality monitors, Ssatellite-

based instruments can measure total-column concentrations of SO globally from space. These SO, vertical column densities
(VCDs) are retrieved using the absorption of backscattered solar radiation in the ultraviolet wavelengths measured by a
spectrometer (e.g., Krotkov et al., 2008; Levelt et al., 2006; Li et al., 2013; Li et al., 2020a; Nowlan et al., 2011; Theys et al.,
2015). The VCDs are typically available everforeloud-freelocations-over large areas in cloud-free locations on a daily basis
but do not directly provide the-surface concentrations at the surface. Additional teelsanalysis-are is required to estimate the
surface concentrations from the satellite-retrieved VVCDs-as-¢liscussed-below.

Fhe first-method-is-to-use-cChemical transport models (CTMSs) can be used to convert satellite VCDs into surface
concentrations using simulated surface-to-VCD ratios (SVRs). This method was initially developed for estimating surface
PMo. sconcentrations of particulate matter from satellite-based aerosol optical depth retrievals (Liu et al., 2004) and was later
applied to nitrogen dioxide (NO-; Lamsal et al., 2008) and SO, (Lee et al., 2011). Lee et al. (2011) and Zhang et al. (2021)
each used coarse-resolution CTMs (grid spacings on the order of 100 km) to convert SO, VCDs from the Ozone Monitoring

Instrument (OMI) into surface concentrations over North America for 2006, and China for 2005-2018, respectively. McLinden
etal. (2014) and Kharol et al. (2017) used higher-resolution CTMs (grid spacing on the order of 10 km) and OMI SO, VCDs
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to estimate the surface concentrations with-focuses-enover the Canadian oil sands from 2005-2011, and the North American
continent from 2005-2015, respectively. These four studies each demonstrated that annual mean satellite-derived surface SO>
concentrations can accurately capture the spatial distribution offrem-the ground-based air quality monitoring networks,
despitealthough the estimated surface concentrations werebeing generally underestimated. An advantage of the CTM-based
method is that it is based on fundamental principles of atmospheric dynamics and chemistry and can produce results that are
independent of observed surface concentrations. The main limitations of CTMs are the computational expense of running the
simulations (Fan et al., 2022) and relatively coarse- resolution, simulations-may-havewhich may lead to large biases due-tein
the representation of emissions, meteorology, and chemical processes (Wang et al., 2020b; Wang et al., 2020c).

More recently, machine learning (ML) techniques have been used to estimate surface SO, concentrations from
satellite retrievals, meteorology, and other geographic variables such as emission inventories-and-land-use-types. Zhang et al.
(2022) used a Light Gradient Boosting Machine (LightGBM) to estimate surface SO, concentrations over northern China using
OMI SO, VCDs, meteorological variables, emissions, land use classifications, population density, and others. Yang et al.
(2023a) used radiances from the Geostationary Environment Monitoring Spectrometer (GEMS) satellite to estimate the surface
concentrations of SO, and other criteria air pollutants in a multi-output random forest model. Both studies showed that ML
techniques can accurately capture the spatial distribution and magnitude of the surface concentrations but had-may have
artificial biases due to nonphysical links between variables—predictors and the observed surface concentrations, such as

interactions between eertain-land use typesclassifications and skin temperature as shown by Zhang et al. (2022). In these

studies, the ML models-alse incorporated spatial (e.g., longitude, latitude, population density) and/er temporal (e.g., numeric

day of year, hour of day) proxies to improve performance rather than depending only on measurable guantities, but this ean

quantities-limitsing the physical usefulness, and-interpretability, and applicability of the model (Zhang et al., 2022; Yang et
al., 2023a; Yang et al., 2023b). An advantage of the ML-based method is that theML models are typically much faster to train

and run than a full CTM simulation and can-eften utilize higher spatial and temporal resolution data (Fan et al., 2022);-
however, sSince ML models can only use statistical relationships to make predictions, they are often limited in their physical

interpretability_and may make their predictions based on predictors that have no physical relevance to the estimated surface

concentrations.

Although the CTM- and ML-based methods have beth-each been empleyed-in-estimatingused to estimate surface SO
concentrations from satellite retrievals,se-far there has-is been-a lack of direct comparisons between them-twe-metheds. Here,
we estimated surface SO, concentrations using OMI SO, VCDs over eastern China (105-125°E, 25-45°N) from 2015-2018 to

[ Formatted: Subscript

[ Formatted: Subscript

directly compare the two methods. First, we guantified methodological uncertainties for each method for the first time.
FirstNext, we used therelati j ations-simulated SVRs fromby the GEOS-
Chem model to estimate the surface SO, concentrations from the-satellite-dataOM| using the CTM-based method. Then, we

used a ML model to predict surface SO concentrations from OMI VCDs, meteorological variables, and an emission inventory,

which are all physically relevant to the spatial distribution or lifetime of SO.. The results from each method were validated
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against ground-based in situ measurements from the China National Environmental Monitoring Centre (CNEMC) air quality

monitoring network_on annual and seasonal mean timescales, the latter of which has never been done for the CTM-based

method. Finally, we compared the performance of each method on an-identical-the same truth dataset over the same times and

locations for the first time to gain insights on their abilities and limitations to accurately estimate the surface SO, concentrations

from satellite data.

2 Data and methods
2.1 Study region

Eastern China has abundant anthropogenic SO, emissions and thus is a region with elevated surface concentrations.
Satellite SO, retrievals typically have a low signal-to-noise ratio due to interfering absorbers (Li et al., 2020), so regions with

large SO, emissions and pollution, such as eastern China, are required to obtain sufficient signals from the spectrometer and

provide more reliable retrievals compared to less polluted regions. A map of our study region with-including the locations of
OMI-derived SO, emission sources (Fioletov et al., 2022; Fioletov et al., 2023) and CNEMC monitoring sites —-the-stuey
region-areis shown in Fig. 1. The largestmain sources of SO in the study region eeme-freminclude around 70 power plants,

as-well-as five ore smelters, and one area of oil and gas production (Fig. 1b). There are also approximately 1000 air guality
monitoring stations located acress-in the study region that ean-bewere used to validate the estimated surface concentrations
from-the-satellite-data-(Fig. 1c). Our analysis covers the period from 2015 (the first full year of in situ measurements) to 2018
(to avoid the impacts of the COVID-19 lockdowns).
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Figure 1: Maps showing the (a) study region (selid-box; 105°E---125°E, 25°N---45°N) relative to the rest of the Asian continent, (b)
locations of large SOz sources from the 2015 OMI emission catalogue-euring-2015 (Fioletov et al., 2022) including 70 power plants
(stars), five ore smelters (triangles), and one area of oil and gas production (square), and (c) locations of the CNEMC monitoring
stations (circles).

2.2 OMI satellite data

We employed data from the Ozone Monitoring Instrument (OMI; Levelt et al., 2006), a hyperspectral
ultraviolet/visible nadir solar backscatter spectrometer launched onboard the Aura satellite in 2004. Aura flies in a sun-
synchronous polar orbit, and OMI is used to retrieve SO, VCDs with daily global coverage and a spatial resolution of 13 km
X 24 km at nadir, a significant improvement from previous satellite-based instruments. The \VCDs were gridded to a horizontal

measurement resolution. The OMI overpass time of our study region rangeds from approximately 12:15 pm to 2:45 pm local
time. For both the CTM- and ML-based methods, we used the OMI Planetary Boundary Layer (PBL) SO, product to estimate
the surface concentrations due to its main application for anthropogenic, near-surface SO, (Krotkov et al., 2014; Li et al.,
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2020b). The OMI retrievals use a principal component analysis- (PCA) based algorithm for spectral fitting based on the

radiances of wavelengths-between-310.5-340-nm-for each row in the measurement swath with wavelengths between 310.5-
340 nm (Li et al., 2013; Li et al., 2020a). This version of the PCA retrievals include pixel-specific air mass factor calculations

to convert slant column densities (SCDs) to VCDs rather than using a fixed value worldwide (Li et al., 2020a). The VCDs
express the number of SO, molecules in the column and are reported in Dobson Units (DU; 1 DU = 2.69 x 10*® molecules cm-
2). To ensure good data quality, we gridded-the-data-to-0.25°%-0.25° reselution-and-screened out measurements with cloud
fractions greater than 0.3, solar zenith angles greater than 65°, located in the outer ten cross-track positions, or affected by the
row anomaly (NASA, 2020). We also excluded extreme outliers that fell outside of five standard deviations from the mean as

thresholds less than this appeared to remove legitimate data.

2.3 CNEMC ground-based monitoring data

Ground-based SO concentrations from the China National Environmental Monitoring Centre (CNEMC) air quality

monitoring network were used to validate the performance of eachboth the CTM- and ML-based methods. The concentrations

were converted from pg m= to parts per billion (ppbv) following the procedure outlined in Wei et al. (2023). To ensure the
ground-based measurements were temporally aligned with the OMI overpass, we averaged the hourly concentrations from
12:00 pm to 3:00 pm local time on days where there was at least one OMI observation within 40 km of the station. Like the

OMI data, we also removed data that fell more than five standard deviations outside of the mean.

2.4 GEOS-ChemCTM-based technique

We used simulated SVRs from the GEOS-Chem model (version 14.2.2; Bey-et-ak—2001The International GEOS-
Chem User Community, 2023) to convert the OMI VCDs into surface concentrations for the CTM-based method. We
conducted-ran simulations for January, April, July, and October 2015. each-with-a-one-menth-spin-up-to-represent-the-SO,
profiles-in-different-seasons—Each simulation was conducted with a oneZ--month spin-up following Kharol et al. (2015). To
reduce the computational expense, we used the monthly average SVR from each simulation to estimate the daily surface

concentrations within the corresponding winter (DJF), spring (MAM), summer (JJA), and autumn (SON) months (referred
hereafter as quasi-seasonal temporal sampling) for all years of the study period. The model was run at a horizontal resolution

of 2.5° (longitude) x 2.0° (latitude) with 47 vertical layers and was driven by assimilated GEOS-FP meteorology (Lucchesi,

2018) and the Community Emissions Data System (CEDS) anthropogenic emission inventory (Hoesly et al., 2018). The
internal time steps for the chemistry and advection calculations in the model were lengthened by 50% from the default values
to reduce simulation times while minimizing errors following {Philip et al.; (2016). Despite the longer internal timesteps, the

Courant-Friedrichs-Lewy condition is maintained with a Courant number of 0.041, indicating numerical stability of the
simulations. We-used-model-output-at-the-lowest-modeHevel-The surface concentrations were assumed to be equal to the
concentrations at the lowest model level (~60 m above ground level). atThe medel-eutput-dataoutput timestep of GEOS-Chem
was every three hours, so it was sampled at 2:00 pm local time, which is the only output timestep-inside the OMI overpass
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window. We only included GEOS-Chem data in the analysis if there was at least one valid OMI observation within the model
grid cell on a given day.

The approach from Lee et al. (2011) was used to infer surface SO, concentrations from OMI VCDs using-the GEOS-
Chem{(GC)and simulated vertical SO, profiles from GEOS-Chem (GC). Lee et al. (2011) showed that the CTM-based method
provided accurate results even with CTM resolutions that are much coarser than the satellite data. The monthly averaged

profiles and SVRs from GEOS-Chem are shown in Fig. S1. The profiles indicate that most of the SO, within the vertical

column is located near the surface and within the boundary layer (Fig. S1). The concentrations then drop to near zero in the
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free troposphere and have small variations, indicating a lack of elevated SO, plumes (Fig. S1). The profiles from the GEOS-

Chem simulations are similar to those from aircraft observations (e.g., Li et al., 2012; Norman et al., 2025; Shan et al., 2025;
Xue et al., 2010) and higher resolution simulations (Norman et al., 2025) over China. The-daily surface SO, concentrations for

the CTM-based method (Somi) were calculated on a daily basis at 0.25° x 0.25° resolution using the daily OMI VCDs and
averaged GEOS-Chem SVRs from the model grid cell that the OMI measurement lies within using Eqn. 1:Fhe-conversion-was
done-using-the followingrelationship:

VS,
X Doy, (€))
v26c,PBLY2GCFT

where S is the surface SO concentration in ppbv and Q is the SO, VCD in DU. The FT and PBL subscripts are the free-

Somr =

tropospheric and boundary layer VCDs, respectively, which were calculated relative to the GEOS-FP PBL height. Since there
is a significant difference in_horizontal resolution between the satellite and model data, OMI VCDs were used to provide sub-
model grid variability (v) using Eqn. 2:

_ QoM (2)

" 2om'
where Qo is the OMI VCD at 0.25° x 0.25° resolution and Q'owm is the average OMI VCD over the 2.5° x 2.0° GEOS-Chem
grid cell. To compare the estimated surface concentrations to the in situ surface monitoring data, we used a 40 km averaging

radius -around each station to increase the amount of usable data and further reduce the noise in the OMI data. This is similar

to previous studies (i.e., Kharol et al., 2017) and maximizes both the slope and correlation compared to other radii, as shown

in Fig. S2. Since this method does not require prior knowledge of in situ measurements, the analysis in Sect. 3.1 will be

performed over the full dataset.
Since only simulations for January, April, July, and October 2015 were available to provide SVRs, there are two

inherent assumptions regarding the temporal representativeness of the SVRs. The first assumption was using quasi-seasonal

temporal sampling for the SVRs and resultantcalculating the estimated surface concentrations. To test the impact of temporal

representativeness on the estimated surface concentrations, we ran an additional GEOS-Chem simulation to cover all of spring
(MAM) 2015. -We also employed a full year of archived 2018 GEOS-CF data (NASA GMAO, 2023), which has improved
temporal (hourly) and spatial (0.25° x 0.25°) resolution compared to GEOS-Chem and uses the same chemistry module, so

they tend to produce similar results (Keller et al., 2021). We found that the intraseasonal variability in the SVR was 0.6 ppbv
DU for MAM in both GEOS-Chem and GEOS-CF, as shown by Fig. S3. Therefore, we used the GEOS-CF data to estimate
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this uncertainty for the entire year. We found that the average intraseasonal variability in the SVRs for the full year was 0.8

ppbv DU (Fig. S3). We also used the full year of GEOS-CF data to test the impact of temporal representativeness on the
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of the estimated surface concentrations despite an improvement in spatial resolution by nearly a factor a 10, as indicated by [“"maﬁed: Font color: Auto
Figs. S4a and S4d for 2018 data, as well as Fig. S5 for all years of the study period. [ Formatted: Font color: Auto
The other assumption was only using a single year of simulations to convert four years of OMI data into surface { Formatted: Font color: Auto
concentrations. Kharol et al. (2017) did not have simulations that spanned their entire analysis period, but the implications of
this were never discussed. To address this, we first compared the monthly averaged SVRs from observations (calculated using
CNEMC surface concentrations and OMI VCDs) for each year in the study period to the 2015 GEOS-Chem simulations to
ensure there is no significant changes over time. Figure S6 shows boxplots of the observed and GEOS-Chem SVRs with the
percent difference between them. In general, the differences between the observed and GEOS-Chem SVRs were consistent
across all years of the study period, typically ranging from 73 —89% (Fig. S6). We also ran additional GEOS-Chem simulations
for January, April, July, and October 2018 to assess if the simulated SVRs change over time. Boxplots for these two sets of
simulations can be seen in Fig. S7 and indicate that the GEOS-Chem SVRs only changed by 0.8 ppbv DU;*, or 9%, from 2015 [Formatted: Superscript
to 2018. The implications of these uncertainties on the resultant concentrations are discussed further in Sect. 2.6.
2.5 MachinelearningML-based technique
To estimate the surface SO, concentrations using a ML model, we used an eXtreme Gradient Boosting regression [Formatted: Subscript

model (XGBoost; Chen & Guestrin, 2016) to statistically relate satellite-based SO, VCDs, meteorological variables, and
emissions data to the in situ measurements. XGBoost models use a scalable tree boosting system to efficiently train an
ensemble of decision trees by adding a new tree with each training epoch and learning with each iteration (Chen & Guestrin,
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2016; Friedman, 2001). Previous studies have showned that XGBoost and LightGBM models are able to estimate surface

concentrations from satellite data more effectively than other ML architectures as shown by Kang et al. (2021) and Zhang et
al. (2022). We trained theour XGBoost model with an ensemble of 500 trees,-with a maximum tree depth of 15 splits, and a
learning rate of 0.15 on a mean squared error loss function. NeitherUsing a largern ensemble with-mere-nor deeper trees- did
netimproved the performance of the model, as shown by Fig. S8 and Fig. S9, respectively..and-using-a-depth-of 15-sphits-was

Our ML model was trained on a small number of variables (five) that each have known physical relationships to the
spatial distribution or lifetime of atmospheric SO,. By using a small number of variables, it is easier to derive physical meaning
from the ML predictions without sacrificing accuracy since the input variables are already known to affect surface SO»
concentrations. First—w\We used daily OMI SO, VCDs to estimate the spatial distribution of SO,—Next, we-used-hourly
European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5; Hersbach et al., 2020; ECMWF,
2019) 100 m u-winds, 100 m v-winds, and boundary layerPBL heights (PBLHs)-averaged over the OMI overpass window

were used to from-the European-Centre for Medium-Range Weathe ore CMW Rean RAS-Hersbache

al2020:- ECMWFE-2019) o account for the meteorological mixing and dispersion of SO,,—Finatywe-used and monthly SO,

emissions from the CEDS inventory to capture the-knews locations of SO, sources. The ERA5 meteorological variables were

provided at 0.25° x 0.25° horizontal resolution, and the CEDS emissions were provided at 0.5° x 0.5° horizontal resolution.

We trained the model on-legari

logarithmic boundary
layer heights to get better sensitivity to variations in low boundary layers, and logarithmic emissions since the values ranged

several orders of magnitude. The model ean-beis summarized in Egn. 3 as:

S = XGBoost(2omy, Ugras, Veras, 10810[PBLHERas |, 10810[Eceps]), (©)]
where Sy is the predicted surface concentrations from the XGBoost ML model, Qowm is the satellite SO, VCD, Ugras is the

u-wind, Veras is the v-wind, PBLHegras is the boundary layer height, and Eceps is the SO, emissions. Earlier versions of the

model were trained on 11 predictors, sbut the predicted surface concentrations produced an unrealistic spatial distribution of

SO, as shown in Fig. S10. Additionally, some of the predictors were shown to be relatively unimportant to the model output,

as indicated by the permutation importance in Fig. S11. The reduction of predictors from 11 down to five led to an improvement

in the statistical performance and spatial distribution of the estimated surface concentrations, suggesting that utilizing known

physical relationships between variables is more beneficial than the number of predictors in a ML model.
We trained the model on 90% of the daily data (N = 137630) from 2015--t6-2018 with meteerolegy-ERAS and
erission-CEDS wvariables-predictors sampled to match the valid OMI observations. The input variables were sampled and

averaged within 40 km of the CNEMC sites for training, as done in the GEOS-ChemCTM-based method, and the predicted
surface concentrations from the XGBoost model are provided at each CNEMC site in the dataset.- The remaining 10% of the

data (N = 15292) was reserved for a sample-based independent validation. This split of the training and independent testing

datasets; aswas deneused by previous studies (e.g., Zhang et al., 2022; Yang et al., 2023a; Yang et al., 2023b)- and was
shown to have the best performance for the independent testing dataset for our model as shown in Fig. S12. each
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CNEMCgridded-the—Figure 2 shows that the model had noticeably better performance with the training data (slope = 0.89; r
= 0.95) compared to the testing data (slope = 0.67; r = 0.76), indicating that the model has good performance, but is slightly
overfitting, a common artifact of complex machine learning models such as XGBoost. \While the model was trained to estimate

the surface SO, concentration at each CNEMC station, the trained model can then be used to make predictions on gridded

input data to obtain estimates of the surface SO, concentrations on a continuous domain at the same horizontal resolution as
the inputs.

(b) Training dataset

(a) Independent dataset

70 y = 0.67X + 2.56 o 70 y = 0.89x + 0.82 2
R = 0.76 N = 15292 . R = 0.95 N = 137630 /
[1)] 60 | MAE = 2.9 ppbv L 60 | MAE = 1.2 pphv
€ s ssSoen R
O 50 - 50
Y '
._E -g- 40 ; 40
E & 30 30
2™ 29 20
-
z 10 10
0

0 10 20 30 40 50 60 70
CNEMC in situ [ppbv]

1 10 100 1000
Number of stations

Figure 2: Scatterplots between the daily ML model predictions and CNEMC in situ measurements for the (a) independent dataset
and (b) training dataset. Ea elin es-a-linear regression-analysis-with best-fithine (solid-line)-a iscrepancy statisti

the estimated-surface- SO ration: nmpnrnd to-in-situ-measurements- Scatterplots are binned every 1 DDbV. Each scatterplot
is colored by the number of stations in each bin and includes a linear regression analysis with the best fit line (solid line), best-fit
equation, correlation coefficient, total number of stations, 1:1 line (black dashed line), MAE, RMSE, and RPE.Fhescatterplots-are

2.6 Methodologicaly Yuncertainties

A This study provides the first detailed discussion of the individual sources and summation of uncertainties for either

methodology. To estimate the uncertainty of the input variables for both methods, we performed moving-block bootstrapping

with 10000 iterations on the daily gridded data. For each bootstrap, a horizontal coordinate and date was randomly sampled

with replacement. For each random sample, a temporal block of five days in each direction from the randomly sampled day

was used to calculate the standard deviation. After all bootstraps were completed, the uncertainty was defined as the average
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of the standard deviations calculated from each iteration. This was done for the OMI SO, VCDs, GEOS-Chem SVRs, and [Formatted: Subscript

ERAS meteorology. The uncertainty in the CEDS emission inventory was not included due to the monthly temporal resolution,

and a lack of uncertainty quantification in previous literature (e.g., Hoesly et al., 2018; McDuffie et al., 2020).

For the CTM-based method, the summation of error was determined using error propagation. For the error

propagation, Eqg. 1 was simplified such that:

Somn= SVRs) X Lomm (4 __—{ Formatted )
where SVRgc is the monthly averaged SVR from the GEOS-Chem simulations. Equation 4 was used in the error propagation [Formatted: Subscript ]
formula to obtain Eq. 5:
Osom; = \[USVRGCZ(HOMI)Z + Gaoui 2 (SVRGc)? (5) /£ Formatted ﬁ
where o, is the propagated error of the CTM-derived concentration, ogyg,.is the uncertainty in the GEOS-Chem SVR,
and ay,,,,,1s the uncertainty in the OMI SO, VCD. The uncertainty in the GEOS-Chem SVR was initially calculated with Formatted [—ﬂ
bootstrapping, but also needs to account for the uncertainties of the quasi-seasonal and single-year assumptions in the CTM-
based methodology. The quasi-seasonal and single-year assumptions were defined and quantified in Section 2.4. These three
sources of GEOS-Chem SVR uncertainty were assumed to be independent of each other and- were combined using the sum of
the squares of each term. The results of the bootstrapping and error propagation are shown in Table 1. Ultimately, the
methodological uncertainty of the CTM-based method is +4.9 ppbv when considering the uncertainties of the OMI SO, VCDs
(£0.67 ppbv DU;%) and GEOS-Chem SVRs (+1.7 ppbv DU;*). The OMI SO, VCD uncertainty has a relative standard deviation
of 136%, which is comparable to the reported uncertainty of 60 — 120% for moderately polluted areas from Li et al. (2020).
JTable 1% Sources and magnitydes of uncertginty for the CTM-bgsed method. Un_certainties for the OMI SO, VCDs and QEOS- Formatted [ﬂ
Chem SO SVRs were determined using moving-block bootstrapping. The uncertainty for the quasi-seasonal SVR assumption was
determined using GEOS-CF datg, The single-year SVR assumption was determined using the 2015 and 2018 GEOS-Chem
simulations. ,The overall uncertainty for the CTM-based method was determined using error propagation
Variable Uncertainty ( Formatted: Font: 10 pt
OMI SO, VCDs +0.67 DU [Formatted: Font: 10 pt
GEQOS-Chem SO, SVR +1.4 ppbv DU [Formatted: Font: 10 pt
uasi-Seasonal SVR Assumption +0.8 ppbv DU [Formatted: Font: 10 pt
Single-Year SVR Assumption +0.6 ppbv DU™! [Formatted: Font: 10 pt
Overall Uncertainty £4.9 ppbv ( Formatted: Font: 10 pt
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It is much less straightforward to propagate error through a ML model since it effectively acts as a “black box,” so

analytical error propagation methods cannot be used. First, uncertainties of the ERA5 meteorological fields were calculated

using the moving-block bootstrapping approach. To obtain the overall uncertainty, we used traditional bootstrapping

techniques to resample the training dataset with replacement and train an ensemble of XGBoost models to obtain an uncertainty
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in the model output based on changes in the training data given to the model. To maintain consistency, the same independent

testing dataset was used to make the model predictions for each bootstrap. The standard deviation was calculated for each

station and day across the different models and was then averaged over space and time to obtain the overall uncertainty. The

uncertainties of the ML inputs and overall uncertainty from the retraining analysis are shown in Table 2. For the ML-based

method, the overall uncertainty was estimated to be +2.0 ppbv, which is lower than the propagated error for the CTM-based

method. The overall uncertainty for the ML-based method does not directly account for uncertainty in the model inputs, but

since traditional error propagation and summation of uncertainties are not possible for ML, this is our best estimate at how the

training data can impact the predictions from the model.

Table 2: Sources and magnitudes of uncertainty for the ML-based method. Uncertainties for the OMI SO, VCDs and ERA5S

meteorology were determined using moving-block bootstrapping. The overall uncertainty for the ML -based method was determined
using bootstrapping on the training dataset and retraining multiple XGBoost models to estimate the uncertainty in the model
training. The uncertainty for the CEDS inventory was not able to be quantified (NQ).

Variable Uncertainty “
OMI SO, VCDs +0.67 DU
ERA5 U-Wind £19ms?
ERAS5 V-Wind £19ms?
ERADS Boundary Layer Height +326m
CEDS Emissions NQ
Overall Uncertainty + 2.0 ppbv

2.7 Evaluation metrics

To quantify the discrepancies between the estimated surface SO2 concentrations from the CTM-based method, ML-
based method, and the CNEMC in situ measurements,surface-SO.—concentrations—and—the—estimates—using—the-GEOS-
ChemCTM--and-Ml-based-metheds; we used several different metrics that-were-utiized-infrom previous studies (e.g., Yang
etal., 2023b; Zhang et al., 2021; Zhang et al., 2022) including the mean absolute error (MAE; Eq. 64), root mean squared error
(RMSE; Eq. 75), and relative percent error (RPE; Eq. 86),

1
MAE = ;Zﬂsest,i - SCNEMC,i|! (64)
1 2
RMSE = % 58(Suss = Sevames) 75)
RPE =1 (z’-v Sesti=Scnemcy ) X 100% (86)
AN SCNEMC,i ' 5

where N is the number of stations, Sest is the estimated surface concentration from the GEQS-ChemCTM- or ML-based method,

and Scnemc is the in-situ-surface concentration_from the in situ measurements. Previous studies have also used slopes and
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correlations from linear regression analyses between the estimated and in situ concentrations to assess the relative magnitudes

and spatial distributions, respectively (e.g., Kharol et al., 2017; Lee et al., 2011; McLinden et al., 2014). In Sect. 3.1, results

from the CTM-based method were validated and compared to previous studies using the full dataset since they are independent
on in situ measurements. In Sect. 3.2, The-GEOS-Chem-and-Mb-results from the ML-based method were validated and
compared to previous studies_using only the independent testing dataset,-as-weH-as-te-each-ether. Finally, in Sect. 4, Fhe

comparison-between-the-two-metheds-in-ourstudyboth methods were directly compared-were-made using an-the identical;
independent testing dataset (i.e., retained from ML training)-dataset such that the comparisons areis made on an identical truth

dataset for the first time.

3 Estimations of surface SO2 cSoncentrations from OMI satellite data
3.1 Evaluation of the GEOS-ChemCTM-based method

Maps, histograms, and scatterplots of the annual mean surface SO, concentrations from the GEOS-Chem-CTM-based
method and CNEMC in situ measurements are shown in Fig. 3. Both datasets have a similar spatial distribution with the highest
concentrations in the North China Plain (Fig. 3), a highly industrialized region with many anthropogenic sources of SO (Fig.
1b). The average correlation between the estimated and in situ concentrations is 0.58, indicating that the GEOS-ChemCTM-
based method can accurately distinguish between polluted and clean areas (Fig. 3). The GEOS-ChemCTM-based method also
captures a 45% decrease in the concentrations from 2015-2018, matehing-the-changealso seen in the data from the monitoring
network (Fig. 3). Fhed iR-SO,-is-due-te-the—regulati issi i i i i
studies-using-satellite VCDs(Li-et-al2017;-Wang

2024—Despite the similarities in the spatial distribution and temporal trends, the surface concentrations obtained from the

GEOS-ChemCTM-based method are significantly underestimated. The slope between the estimated and in situ concentrations
is 0.24 with an RPE around 75% (Fig. 3). The discrepancy in the estimated concentrations is also apparent in the frequency

distributions with a-peaks and mean values at-lower-concentrationsaround 1-3 ppbv and-a-smakerrange-compared-tothan
compared to around 5-10 ppbv from the in situ measurements. The surface concentrations from the CTM-based method

were also separated by season,-and averaged from
2015-2018, fromand validated against in situ measurements for the first time-2045-2018. As shown in Fig. S13, the GEOS-
ChemCTM-based method was able to accurately capture the spatial distribution (r = 0.56) and seasonality of the in situ
measurements_with higher concentrations in the winter and lower concentrations in the summer but still suffered from
underestimation (slope = 0.24; RPE = 76%).
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Figure 3: Spatial distributions of the annual average surface SOz concentrations from the CTM-based method (top row) and
CNEMC in situ measurements (second row), histograms of the surface concentrations from each dataset with vertical bars
representing the means (third row), and scatterplots between the two datasets (bottom row). Each column represents a different
year in the study period. Histograms and scatterplots are binned every 1 ppbv. Each scatterplot is colored by the number of stations
in each bin and includes a linear regression analysis with the best fit line (solid lines), best-fit equation, correlation coefficient, total
number of stations, 1:1 line (black dashed line), MAE, RMSE, and RPE.

Table 31 summarizes the results from the validation of annual mean concentrations from our study eempared-teand
previous studies using the CTM-based method. These-previous-studies-were-primarily-focused-on-estimating-annual-mean
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surface-SO.-concentrations-using OMIV/CDs-and CTMs-of varyingreselution-The studies by Lee et al. (2011) and McLinden
et al. (2014) each utilized the OMI band residual difference (BRD) SO product and used SVRs from coarse-reselution and
high-resolution CTMs, respectively. McLinden et al. (2014) outperformed Lee et al. (2011) with slopes of 0.88 and 0.79,
respectively, and correlations of 0.91 and 0.81, respectively. Similarly, our study and Kharol et al. (2017) both use the OMI
PCA SO, product and used SVRs from coarse-resolution and high-resolution CTMs, respectively. Our study had slightly worse
performance than Kharol et al. (2017) with slopes of 0.24 and 0.39, respectively, and correlations of 0.58 and 0.61, respecti vely.
These two sets of studies suggest that given the same OMI dataproduct, the model resolution may plays-an-tmpertant-rele-in
aceuratelyestimatingaffect the accuracy of the estimated surface concentrations compared to the in situ observations, assuming
that the surface monitoring data are accurate. Our sensitivity tests comparing the impact of spatial resolution on the accuracy
of the CTM-based method (Fig. S5) showed a discrepancy in the correlations of 0.05 between GEOS-Chem and GEOS-CF

compared to a difference of 0.03 between our study and Kharol et al. (2017); however, the sensitivity tests only showed a
discrepancy in the slopes of 0.02 between GEOS-Chem and GEOS-CF, which is much smaller than the 0.15 difference in

slopes between our study and Kharol et al. (2017). This suggests that the difference in spatial resolution of our CTM

simulations may account for the discrepancy in the correlations between our study and Kharol et al. (2017), but not the slopes

indicating that there may be another factor contributing to the underestimation of the CTM-based method. Additionally.

Pprevious studies have also shown that there are differences in SO, VVCDs as-a-result-of-across different retrieval algorithms
and sensors (Wang et al., 2020a). The higher slopes from the BRD product may be due to a high bias in the retrievals in
polluted areas whereas the PCA product is thought to be more accurate (Li et al., 2013). Additionally, the slope of 0.75 from
Kharol et al. (2017) and the results from Zhang et al. (2021) are-based-en-apphyinguse a scaling factor onte the in situ
measurements to eliminate some of the bias, so these results are not directly comparable to our study.
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Table 3%: Comparison of study design (satellite data, model name and resolution, study location and study period) and performance

metrics (mean absolute error, root mean square error, relative percent error, slope, and correlation) between our study and previous

studies that utilized the CTM-based method_for annual mean surface SOp concentrations. NR indicates that the value was not
400 reported, and asterisks (*) indicate a scaling factor applied to the in situ surface concentrations.

Study
stud Satellite CTM location MAE RMSE RPE Slope Correlation
tu
Y data (resolution) (time [ppbv]  [ppbv]  [%] [-] [-]
period)
GEOS- Eastern
) oMl )
ThisOur Chem, China
SO: 5.7 6.3 74 0.23 0.58
study (2.5°x (2015-
PCA
2.0°) 2018)
GEOS-
OoMI North
Lee et al. Chem, .
SO2 America NR NR NR 0.79 0.81
(2011) (2.5° x
BRD (2006)
2.0°)
. Canadian
McLinden OoMI GEM- .
oil sands
etal. SO2 MACH, NR NR NR 0.88 0.91
(2005-
(2014) BRD (15 km)
2011)
North
oMl GEM- )
Kharol et America
SO, MACH, NR NR NR 0.39/0.75* 0.61
al. (2017) (2005-
PCA (15 km)
2015)
oMl MOZART, .
Zhang et China
SO, 1.9°x 2.5° NR 39 19 0.83* 0.86
al. (2021) (2014)

PCA Resolution

Inaccuracies in the CTM-based method can be partially attributed to noise in the satellite data. Individual VCD

retrievals have-very large uncertainties estimated from 60 — 120% from Li et al. (2020a) and 136% from our bootstrapping

405 analysis (Table 1){60-130%;-Li-et-al,—2020a), making it difficult to compare to the ground-based measurements on short
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timescales;- Hhowever, the noise in the data can decrease with temporal averaging by a factor of n*2 where n is the number of

measurements being averaged (Krotkov et al., 2008). As a result, longer averaging periods (i.e., annual means) tend to have

better performance than shorter timescales (i.e., seasonal means). Fhe- CTM-resolution-is-also-impertantforobtaining-aceurate
‘ ions. . , ial - . 1_Thi

- —Additionally, the consistent underestimation of the CTM-based method may be a

result of either underestimated SVRs from the GEOS-Chem simulations or a low bias in the OMI PCA product. Figure S6
suggests that the SVRs from GEOS-Chem are typically between 70-90% lower than observed SVRs calculated from CNEMC
in situ surface concentrations and OMI VCDs, which is similar to the discrepancy in the surface concentrations from the CTM-

based method compared with the in situ measurements. Based on the error propagation from Sect. 2.6, the combined
methodological uncertainty of the CTM-based method considering both the OMI retrievals and GEOS-Chem SVRs is +4.9
ppbv (Table 1). This is larger than most of the estimated surface concentrations shown in the histograms from Fig. 3, indicating

the methodological uncertainty associated with this method is large and is highly affected by the accuracy of the input data.,

3.2 Evaluation of the machine-learningML-based method

The spatial distribution, frequency distribution, and validation scatterplots of the ML and CNEMC annual mean
surface SO, concentrations from the independent testing dataset are shown in Fig. 4. The ML model estimated the surface
concentrations more accurately than the GEOS-ChemCTM-based method—Fhe with an improved average spatial-correlation

wasof 0.77, and-the ML predictions-also-matched-the 45% decline from-2015 to-2018 observed-from-the CNEMG netwo

at-33%, and anthe average slope ofis 0.69.; These improvements indicate that the ML-based method has better accuracy in the

spatial distributions and magnitudes compared to the CTM-based methodindicating-both-less-discrepancy-and-underestimation;
respeetively. The ML estimated concentrations also have a 45% decline from 2015-2018, which is the same as the CNEMC in

situ measurements (Fig. 4). The shapes of the ML-based frequency distributions also agree well with the CNEMC observations

with peaks at the same concentrations (5-10 ppbv) and similar ranges (Fig. 4). The ML-derived and in situ concentrations were
also assessed using the seasonal concentrations averaged from 2015-2018. As shown in Fig. S14, the ML-based method was
able to capture the spatial distribution (r = 0.72), seasonality, and magnitudes (slope = 0.64; RPE = 36%) of the seasonal mean
surface concentrations en-the-seasenal-data-more accurately than the GEOS-ChemCTM-based method. Additionally, the

overall uncertainty of the ML-based method is much lower than the CTM-based method at around +2 ppbv (Table 2). Since

the ML predictions have a much larger magnitude, the methodological uncertainty for the ML -based method appears to be

more reasonable compared to the CTM-based method.
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Figure 4: Spatial distributions of the annual average surface SOz concentrations from the ML-based method (top row) and CNEMC
in situ measurements (second row), histograms of the surface concentrations from each dataset with vertical bars representing the
means (third row), and scatterplots between the two datasets (bottom row). Each column represents a different year in the study
period. Histograms and scatterplots are binned every 1 ppbv. Each scatterplot is colored by the number of stations in each bin and
includes a linear regression analysis with the best fit line (solid lines), best-fit equation, correlation coefficient, total number of
stations, 1:1 line (black dashed line), MAE, RMSE, and RPE.
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Previous studies have shown that ML models can skillfully capture day-to-day variations in surface SO»
concentrations in addition to the annual and seasonal means as summarized in Table 42 (e.g., Zhang et al., 2022; Yang et al.,
2023b). The estimated daily surface concentrations from our independent testing dataset had a slope of 0.67, correlation of
0.76, and RPE of 58% compared to the in situ measurements, indicating aceuracy-good performance on short timescales (Fig.
2; Table 24). The performance of our model was comparable to previous studies but had a slightly larger discrepancy (Table
42). Our ML model only used five predictors compared to nine in Yang et al. (2023b) and 66 in Zhang et al. (2022), which
may partially account for the increased discrepancy. Additionally, our study did not use any spatial or temporal proxies, which

could also explain the slight reduction in performance compared to other studies that have used them.
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Table 42: Comparison of study design (satellite data, machine learning model type and number of predictors, study location and

study period) and performance metrics (mean absolute error, root mean square error, relative percent error, slope, and correlation)

between our study and previous studies that utilized a ML-based method for daily surface SO, concentrations. NR indicates that the [ Formatted: Subscript
value was not reported.

Machine
learning Study
Stud Satellite model location MAE RMSE RPE Slope Correlation
u
y data (number (time [ppbv]  [ppbv]  [%] [-] [
of period)
predictors)
Eastern
ThisOur  OMI SO, XGBoost China
3.0 5.2 59 0.67 0.75
study PCA (5) (2015-
2018)
Northern
Zhang i i
OMI SO, LightGBM China
etal. NR 4.0 39 NR 0.94
PCA (66) (2013-
(2022)
2019)
Deep
Landsat-8 neural
Yang et = .
visible and network China
al. ) ) 35 5.7 47 0.76 0.85
infrared multi-task (2019)
(2023b) )
reflectance learning
9

We performed a permutation importance analysis to assess how each predictor impacted the model predictions. Figure

5a indicates that the PBLH-boundary layer heights and OMI SO, VCDs are the two most influential predictors followed by

emissions and wind speeds. It is also worth noting that all of the predictors contribute toward the estimated surface

concentrations with all permutation importance scores falling between 0.2 and 0.5 with none being unused. The boundary layer

heights have a much smaller variation on short timescales compared to the OMI SO, VCDs. Based on the bootstrapped [Formatted: Subscript

uncertainties from Table 2, the relative standard deviations are 20% for boundary layer heights, and 136% for OMI VCDs. As

a result, the ML model is likely able to learn the relationship between boundary layer height and surface SO, concentrations [Formatted: Subscript
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more easily than the OMI SO, VVCDs. Scatterplots between each ML predictor variable and the ML estimated surface SO,

concentrations with Spearman rank coefficients (rs) are shown in Figs. 5b-f. The ML-derived SO, concentrations increase with
larger SO, VCDs and emissions, as well as decrease with increasing PBLH-boundary layer heights and wind speeds (Figs. 5b-

f). The surface concentrations and boundary layer heights alseeach have a strong, inverse seasonality, as shown in Fig. S14

and Fig. S15, respectively, so the strong temporal correlations between them also likely lead to a high permutation importance
in_the model. Fhese-trendsThe behavior of the ML predictions is-are consistent with the expected physical relationships
between each variable-predictor and the surface SO, concentrations-in-the-real-atmosphere. Large OMI VCDs and emissions
indicateing areas of high SO, loading, and elevated-large PBLHs-boundary layer heights and wind speeds lead to mixing and

the dilution of SO,. The magnitudes of the rs values are small, indicating that the model may be making predictions based on
the interactions between variables rather than any individual predictor. The small number of predictors used in our model
allows us to link the ML predictions to known atmospheric processes, adding confidence to the model in its ability to accurately

estimate the surface concentrations.
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Figure 5: Evaluation of the daily ML-predicted surface concentrations using (a) permutation importance analysis, and scatterplots
showing the ML predictor variables against the ML estimated surface SO2 concentrations for (b) ERA5 PBLH, (c) OMI SOz VCDs,
(d) CEDS SO2 emissions, (e) ERA5 U-wWind_speedss, and (f) ERA5 V-w\Winds _speeds. Each scatterplot is colored by the number
of stations in each bin and includes the Spearman rank coefficient (rs).
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Direct comparison of the CTM- and ML-

based methods

The validation results from the GEOS-ChemCTM-based method in Sect. 3.1 were based on the full dataset since the
methodelogy producesresultsthatestimated surface concentrations are independent of the in situ monitoring data;- Hhowever,
the validation results from the ML-based method in Sect. 3.2 were only based on 10% of the data that was-ret-used-for training
and reserved for an independent validation and not used for training. The comparison of these results using different datasets

is still important but does not provide a direct comparison of their performance. Here, the GEOS-ChemCTM- and ML-based

methods-with-be_were directly compared_using the same truth dataset over the same locations and study period for the first

time. using-tEach method was resampled to match the independent testing dataset (i.e., data retained from ML training) was

used-to-assessand the relative-performance of each method was assessed given identically sampled data. First, each technique
waswith-be validated at the CNEMC measurement sites in Sect. 4.1, similar to the analyses in Sect. 3. Then, both methods will
be used to create gridded surface SO, concentrations in Sect. 4.2 to assess how effective both methods are for filling in the
gaps of the CNEMC monitoring network, one of the main motivations for estimating surface concentrations from satellite
dataVCDs.

4.1 Performance on independent data

Scatterplots between the in situ concentrations and estimates of the surface concentrations from both the GEOS-
ChemCTM- and ML-based methods for the-icentical testing dataset are shown in Fig. 6. The surface concentrations estimated
by the ML model are much closer to the in situ measurements (i.e., the 1:1 line) than the GEGS-ChemCTM-based method,
which is consistent with the previous results in Figs. 3-4. For the annual mean concentrations, the ML-based method had an
average slope of 0.69 and correlation of 0.77, compared to values of 0.18 and 0.30, respectively, from the GEOS-ChemCTM-
based method;+espectively (Figs. 6a-d). The ML model also outperforms the GEOS-ChemCTM-based method on the seasonal
data averaged over 2015-2018. The ML-based method had an average slope and correlation of 0.64 and 0.73, compared to
0.19 and 0.31, respectively, from the CTM-based method (Figs. 6e-h). The GEOS-ChemCTM-based method performed worse
on this smaller dataset compared to the full dataset in Sect. 3.1 due to less temporal averaging, leading to larger discrepancies
with the in situ measurements. As-shown-in-Fig—S5-Tthere is a smaller decrease in the performance of the ML-based method
compared to the GEOSS-ChemCTM-based method when assessing the performance ferof individual seasons rather than the

2015-2018 average for each season, as shown by Fig. S16. The slope and correlation for the ML-based method each decreased

by around 0.1 to 0.59 and 0.67, compared to a decrease of 0.05 and 0.1 to 0.15 and 0.22, respectively, for the GEOS-
ChemCTM-based method—respectively (Fig. S516). Despite-the-smaller-amounts-of data-in-the-independent dataset-andfo
individual-seasensOn both annual and seasonal timescales, the ML-based method stiHimore accurately captureds the spatial

distribution and magnitudes of the surface SO concentrations; indicating-betterconsisteney-with-the CNEMC-measurements
than-the-compared to the GEOS-ChemCTM-based method.
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Figure 6: Scatterplots showing the estimated surface SOz concentrations from the GEOS-ChemCTM-based method (light blue
squares) and ML-based method (dark blue triangles) against the in situ measurements from the independent dataset for (a-d) annual
mean concentrations for each year in the study period, and (e-h) the 2015-2018 mean concentrations separated by season. Each
scatterplot includes a linear regression analysis with the best fit line (solid lines), best-fit equation, correlation coefficient, total
number of stations, 1:1 line (black dashed line), MAE, RMSE, and RPE.

Time series of the annual and seasonal mean surface SO, concentrations from the in situ measurements, and estimated
concentrations from the GEOS-ChemCTM- and ML-based methods are shown in Figs. 7a-b. The ML estimated concentrations
were much mere-aceuratecloser to the CNEMC measurements than the GEOS-ChemCTM-based method-compared-to-the
CNEMC-in-situ-coneentrations. The-overall mean ML concentrations had an average discrepancy of 5% with the in situ
measurements, compared to a-58% discrepancy of 58% from the GEOS-ChemCTM-based method (Figs. 7a-b). The ML-based
method also captured the same temporal variations as the in situ measurements each with a 44% decrease in concentrations

from 2015-2018, and an average seasonal fluctuation by a factor of 1.9 between the winter and summer seasons (Figs. 7a-b).
The GEOS-ChemCTM-based method also had good agreement in the temporal trends of the in situ measurements; but was

not as good as the ML-based method with a 36% decrease from 2015-2018 and a seasonal fluctuation by a factor of 2.4 between
(Figs. 7a-b). Since the CTM-based surface SO, concentrations were

underestimated, the magnitude of the temporal trends is much smaller than the observations and ML-based method, but the

relative change was similar, as shown by Table S1. The decrease in SO, from 2015-2018 detected by both methodsis is
consistent with previous studies that showed a due-to-theregulation-of-reduction in emissions over China; which-has-been

previously reperted-in-previous studies usingshown using satellite VCDs (Li et al., 2017; Wang et al., 2020a), satellite-derived
emissions (Fioletov et al., 2023), and surface concentrations (Wei et al., 2023; Zhang et al., 2021). Despite the similarities in
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the everal-year-to-year and season-to-seasonat variations, the greatest difference between the time series of the two methods
was the magnitude of the concentrations;-as-shewn-in-Seet-3.
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Figure 7: Time series of the surface SOz concentrations from the GEOS-Chem{CTM-based} method (light blue squares), ML-based
method (dark blue triangles), and CNEMC in situ measurements (red circles) from the independent dataset as (a) annual and (b)
seasonal means, as well as the slopes (pink x’s) and correlations (green plus-signscrosses) from the (c) annual and (d) seasonal mean
validations between the GEOS-Chem—{(CTM-based} method (dashed line) and ML-based method (solid line) with the in situ
measurements. Error bars on the concentrations represent a 1 standard deviation uncertainty, and error bars on the slopes represent
a 95% confidence interval based on the standard error of the linear regression fit. Data for all panels can be found in Table S1.

To assess how the accuracy of each method changeds over time, time series of the slopes and correlations from the
individual annual and seasonal comparisons between the estimated and in situ surface concentrations {from Fig. S165 and
Table S1} are shown in Figs. 7c-d. For the entire study period, the performance of the ML-based method was much-more
accurate than the GEOS-ChemCTM-based method as indicated by the higher slopes and correlations (Figs. 7c-d). Additionally,
the GEOS-ChemCTM-based method suffered from a decrease in accuracy over time alongside declining SO» concentrations
while the ML-based method remained stable from year to year (Figs. 7c-d). The accuracy of the CTM-based method is highly

dependent on noise in the satellite data. SmaHerdatasets-with -
worse-performance—Additionallyas SO, loading decreaseds_over China, it becomesbecame hardermore difficult for OMI to
detect-from-the-satellite, which may have introduceding additional noise into the \VVCDsever-time-as-SO,-leading-drops-below

25



565

570

575

580

585

590

the-detection-himitof OMI. Comparatively, the ML-based method wasis more resistant to noise in the satellite data. As-the SO,
VCDs decreasedd, the ML predictions can becoame-mere-reliant-upenutilize other predictors such as meteorologyieal and
emissions predictors-to estimate the surface concentrations, limiting the impact of the noisy satellite data (Figs. S176a-d). The

accuracy of the ML-based method also hads a distinct seasonality with generally better performance in the winter and worse
in the summer (Fig. 7d). The -boundary layer heightsPBLEH and OMI SO, VCDs wereare the dominant predictors in the winter,
compared-towhereas the CEDS emissions and PBLH-boundary layer heights were the dominant predictors in the summer
(Figs. S176e-h). The CEDS emissions are less consistent with the in situ measurements than the OMI VCDs with correlations
1 values of 0.2215 and 0.289, respectively (Fig. 5), which may account for the increased discrepancy of the ML-derived

concentrations during the summer.
In summary, both metheds-the CTM- and ML-based methods captured the-same-similar temporal variations as the in

situ measurements, but the ML-based method perfermed-betterwas more accurate and had more stable performance over time

compared tothan the CTM-based method, which had decreasing performance over time, likely due to increasedmere noise in

the satellite data from decreasing SO loading.

4.2 Comparison of gridded products

HeretThe GEOS-ChemCTM- and ML-based methods wit-bewere used to create high-reselution-gridded products
efsurface SO concentrations at 0.25° x 0.25° horizontal resolution to assess how effective each technique is for filling in the

gaps of the CNEMC air quality monitoring network. The gridded annual mean surface SO, concentrations from the CTM- and
ML-based-and-GEOS-Chem methods are shown in Fig. 8-at-0-25°-x-0.25% horizental-reselution. Both methods producedhave
similar spatial distributions to one another over land with the highest concentrations in the North China Plain and lower
concentrations elsewhere. Over land, each method also has a spatial distribution similar to the retrieved SO, VCDs from OMI
as shown in Fig. S187a-d, further indicating that both methods effectively utilizing the OMI data. Over the oceans, there is

disagreement in the spatial distributions with the ML-based method producing high concentrations and the CTM-based method
producing low concentrations. Since the ML predictions are significantly affected by boundary layer heights (Fig. 5), the model
is-most likely incorrectly associating the low marine boundary layer with areas elevated peltutantsSOp, as suggested by the
seasonally averaged ERAS boundary layer heights in Fig. S15.typical-oflow-continental-boundary-layers;as-shownin-Fig—8-

Inaccuracies over the oceans have also been reported in Kang et al. (2021) where ML was used to estimate surface

concentrations of NO and ozone and wasere attributed to a lack of training data for the ML model in these locations. Since

the ML model was only trained for conditions over land, it learned the relationship between high surface SO, concentrations

and low continental boundary layer heights during the winter months; #-isbut was-net-able-te-makecould not accurately apply
this knowledge predictions-over the oceans.-or-other-areas-that-are-different from-where-the-model was-trained- As a result, the
CTM-based method may be-mere—reliable-for-estimating-theproduce more reasonable spatial distributions of surface SO>

concentrations in locations with a lack of surface observations where a ML model cannot be trained.
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As shown in Fig. 8, both gridded products captured the decrease in annual mean concentrations from 2015 to 2018
observed at the CNEMC sites. Both methods were also able to capture the seasonal variations in their gridded products with
the highest concentrations in the winter and lowest concentrations in the summer, as shown in Fig. S198. The seasonal gridded
surface SO concentrations were also still consistent with the OMI SO, VCDs (Fig. S187e-h). Although it is not possible to
validate the gridded products, since the ML-based method had more accurate spatial distributions, temporal variations, and
magnitudes than the CTM-based method when validated at the CNEMC sites, the gridded product is likely to be more accurate

as well, but only over land. The unexpected area of elevated concentrations over the oceans exposed a major limitation of the
ML-based method and suggests that future work in improving the CTM-based method may be worthwhile, especially for
estimating surface SO, concentrations in locations where training data are not available.
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Figure 8: Maps of the annual mean surface SOz concentrations in ppbv from the ML-based method (top row) and GEOS-
ChemCTM-based method (bottom row) over the study area at 0.25° x 0.25° horizontal resolution. Each column represents a different

year of the study period-(frem-left-toright:- 20152016, 2017-and-2018).

5 Conclusion and discussion

In this study, Wwe estimated surface SO, concentrations over eastern China from 2015-2018 using OMI satellite
dataSO, VCDs with two different methodologies. :First, we used simulated SVRs from the GEOS-Chem model to convert the
OMI SO; VCDs into surface concentrations_using the CTM-based method. ;—andThen, we used an XGBoost model to
statistically relate OMI SO,-V CDsretrievals, ERA5 meteorology, and CEDS SO emissions to in situ surface concentrations

using the ML-based method. The novelty of this study includes a first time investigation of quantifying methodological
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uncertainties for both the CTM- and ML-based techniques, a validation of seasonal mean surface concentrations from the

CTM-based method, and a direct comparison between the two methods on the same truth dataset.
We found that the ML-based method had-betterperformancewas more accurate than the GEOS-ChemCTM-based

method at estimating the surface concentrations when validated against in situ measurements from the CNEMC air quality

monitoring network. The ML-based method had a discrepancy of ~30% with no significant bias (slope = 0.69), whereas the
GEOS-ChemCTM-based method had a discrepancy of ~75% with a significant underestimation (slope = 0.24). Despite the
underestimation, the GEOS-ChemCTM-based method also produced surface SO, concentrations that had similar spatial
distributions (r = 0.58) and temporal patterns as the CNEMC in situ measurements, similar to previous studies.-usingthe CTFM-

tThe CTM-based method requires averaging data over

seasenal-or-annualrelatively long timescales to reduce the noise in the satellite retrievals and obtain more accurate estimates
of the surface concentrations.;-ane- tThe underestimation of this method is likely due to-the-coarse resolution-of GEOS-Chem
smoeething-out-the-SVR-near-SO.-hetspetsto a low bias in the simulated SVRs. The CTM-based method also suffered from

decreasing accuracy over time due to decreasing SO loading_over time since the retrieval that has a low signal-to-noise ratio.

In addition to lower discrepancies, the ML-based method outperformed the CTM-based method in terms of the spatial
distribution (r = 0.77) and temporal variations. The accuracysuecess of the ML-based method was especially apparent for
smaller datasets that have limited temporal averaging and thus-higher-noise-in-thenoisier OMI data since the model can rely
on other predictors, which was-alse indicated by the stable accuracy over time. Even though our ML model was only based on

five input variables, the results were similar to previous studies that used far more predictors. The small number of predictors
also allowed us to relate the model predictions and input variables to known physical processes such as pollutant emissions
and dispersion, thus lending more confidence in our ML model as compared with other “black box” ML models. Finally, both
methods were used to create high-reselution-gridded products to provide estimates of surface SO concentrations in locations
that do not have access to ground-based air quality monitoring measurements. This analysis exposed a major limitation in the
ML-based method where it produced unrealistic spatial distributions of SO, over the ocean since it was only trained on data
from over the land. Despite the underestimation of the CTM-based method, there is still value in using it to estimate surface
SO concentrations in locations where there is no training data available for developing ML-based techniques, but future
additional steps should be taken to decrease the underestimation of this method.

In addition to using these estimated surface concentrations for filling in the gaps of air quality monitoring networks,

the gridded products can be used to investigate other chemical processes in the atmosphere related to SOp, such as estimating

sulfuric acid concentrations and parameterizing aerosol nucleation and growth. New particle formation studies in China have

shown that strong and frequent aerosol nucleation events occur in the presence of SO2 in both heavily polluted urban (Dai et
al., 2017; Wu et al., 2007) and relatively cleaner rural locations (Dai et al., 2017; Du et al., 2022). Estimating surface SO2
concentrations using these satellite-based methods may be helpful for predicting the locations and intensities of new particle

formation events or estimating sulfuric acid concentrations, especially for locations without in situ measurements or air guality

monitoring sites.
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In the future, these performance of these methods sheuld-be-apphied-tomay be improved by higher-resolution satellite
data, which may help to improve the results. OMI can only detect sources as small as 30 kt yr, but newer instruments like the

Tropospheric Monitoring Instrument (TROPOMI; Veefkind et al., 2012) or can detect sources as small as 8 kt yr-* (Fioletov

et al., 2023). Newerpolarorbiting-sateliteslike TROPOMI-andAdditionally, geostationary satellites like Tropospheric
Emissions: Monitoring of Pollution (TEMPO; Zoogman et al., 2017) may offer future opportunities to estimate surface

concentrations of air pollutants at even higher spatial and temporal resolution, which may improve the accuracy of both

methods.—This-also—may—improve-the-accuracy—of both-methods—especially higher-resolution-CTMs-are—also—utilized-

Additionally, this study only focused on SO, but both methods can also be applied to other air pollutants such as NO2, ozone,
and particulate matter to see if the relative performance of each method is similar for other species. Since these two methods
can utilize space-based measurements to fill in the gaps of ground-based air quality networks, investigating their relative
performance as improvements are made to the satellite retrievalséata, CTMs, and ML models is critical for monitoring near-

surface air pollution with high accuracy in locations where traditional observations are not possible.

Acknowledgements

The authors would like to thank Dr. Joanna Joiner from NASA Goddard Space Flight Center for their support and guidance<

and inspiration for pursuing this work.

Code and data availability

All  data wused in this work are open source. The OMI PBL SO, VCDs are available at
https://doi.org/10.5067/Aura/lOMI/DATA2023, and the OMI emission catalogue is available at
https://s02.gsfc.nasa.gov/measures.html. The GEOS-Chem source code is available at

https://github.com/geoschem/GCClassic, and the GEOS-Chem input data, including the CEDS emission inventory, is available

at https://geos-chem.s3.amazonaws.com/index.html. The ERAS5 meteorology data are available at https:/nsf-ncar-

era5.s3.amazonaws.com/index.html. The CNEMC in situ measurements were obtained from http://www.cnemc.cn. The

XGBoost model was developed using the scikit-learn  (https:/scikit-learn.org/stable/) and  XGBoost

(https://xgboost.readthedocs.io/en/stable/) Python packages. Finally, all maps were made with Natural Earth via the Cartopy
Python package (https://scitools.org.uk/cartopy).

Supplement link

To be added.

29

[ Formatted: Normal



https://doi.org/10.5067/Aura/OMI/DATA2023
https://so2.gsfc.nasa.gov/measures.html
https://github.com/geoschem/GCClassic
https://geos-chem.s3.amazonaws.com/index.html
https://nsf-ncar-era5.s3.amazonaws.com/index.html
https://nsf-ncar-era5.s3.amazonaws.com/index.html
http://www.cnemc.cn/
https://scikit-learn.org/stable/
https://xgboost.readthedocs.io/en/stable/
https://scitools.org.uk/cartopy

675

680

685

690

695

700

Author contributions

ZW conducted the data analysis, prepared the paper, and created figures. ZW, CL, FL, and SL contributed to the development
of the GEOS-Chem analysis in the paper. ZW, CL, SWF, and SL contributed to the development of the machine learning
analysis in the paper. HZ and JW provided the CNEMC in situ data. All authors provided feedback and improvements to the
paper.

Competing interests

The authors declare that they have no conflicts of interest.

Financial support

We acknowledge funding support from the National Science Foundation (Award numbers 2209772 and 2107916).

References

Data Min., 785-794, doi:10.1145/2939672.2939785, 2016.

China National Environmental Monitoring Centre (CNEMC): http://www.cnemc.cn, last access: 28 April 2024.
Dai, L., Wang, H., Zhou, L., An, J., Tang, L., Lu, C., Yan, W., Liu, R., Kong, S., Chen, M., Lee, S.-H., and Yu, H.: Regional

and local new particle formation events observed in the Yangtze River Delta region, China, J. Geophys. Res. Atmos., 122,
2389-2402, doi:10.1002/2016JD026030, 2017.

Du, W., Cai, J., Zheng, F., Yan, C., Zhou, Y., Guo, Y., Chu, B., Yao, L., Heikkinen, L. M., Fan, X., Wang, Y., Cai, R., Hakala,
S., Chan, T., Kontkanen, J., Tuovinen, S., Petdja, T., Kangasluoma, J., Bianchi, F., Paasonen, P., Sun, Y., Kerminen, V.-M.,

Liu, Y., Daellenbach, K. R., Dada, L., and Kulmala, M.: Influnce of Aerosol Chemical Composition on Condensation Sink
Efficiency and New Particle Formation in Beijing, Environ. Sci. Technol. Lett., 9, 375-382, doi:10.1021/acs.estlett.2c00159,
2022.

Engdahl, R. B.: A Critical Review of Regulations for the Control of Sulfur Oxide Emissions, J. Air Pollut. Control Assoc., 23,
364-375, doi:10.1080/00022470.1973.10469782, 1973.

30


http://www.cnemc.cn/

705

710

715

720

725

730

European Centre for Medium-Range Weather Forecasts (ECMWF): ERA5 Reanalysis (0.25 Degree Latitude-Longitude Grid)
(Updated monthly), Res. Data Arch. Natl. Cent. Atmos. Res., Comput. Inf. Syst. Lab., doi:10.5065/BH6N-5N20, 2019, last
access: 2 Mar 2025.

Fan, K., Dhammapala, R., Harrington, K., Lamastro, R., Lamb, B., and Lee, Y.: Development of a Machine Learning Approach
for Local-Scale Ozone Forecasting: Application to Kennewick, WA, Front. Big Data, 5, 781309,
doi:10.3389/fdata.2022.781309, 2022.

Fioletov, V., McLinden, C. A., Griffin, D., Abboud, I., Krotkov, N., Leonard, P. J. T., Li, C., Joiner, J., Theys, N., and Carn,
S.: Multi-Satellite Air Quality Sulfur Dioxide (S02) Database Long-Term L4 Global V2, Goddard Earth Sci. Data Inf. Serv.
Cent. (GES DISC), doi:10.5067/MEASURES/SO2/DATA406, accessed: 29 October 2024.

Fioletov, V. E., McLinden, C. A., Griffin, D., Abboud, I., Krotkov, N., Leonard, P. J. T., Li, C., Joiner, J., Theys, N., and Carn,
S.: Version 2 of the global catalogue of large anthropogenic and volcanic SO2 sources and emissions derived from satellite
measurements, Earth Syst. Sci. Data, 15, 75-93, doi:10.5194/essd-15-75-2023, 2023.

Flyvbjerg, H. and Petersen, H. G.. Error estimates on averages of correlated data, J. Chem. Phys., 91, 461,
doi:10.1063/1.457480, 1989,

Friedman, J. H.: Greedy Function Approximation: A Gradient Boosting Machine, Ann. Stat., 29, 1189-1232,
http://www.jstor.org/stable/2699986, 2001.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horanyi, A., Mufioz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers,
D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara,
G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L.,

Healy, S., Hogan, R. J., H6Im, E., Janiskova, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P.,
Rozum, 1., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. R. Meteorol. Soc., 146, 1999—
2049, doi:10.1002/qj.3803, 2020.

Hoesly, R. M., Smith, S. J., Feng, L., Klimont, Z., Janssens-Maenhout, G., Pitkanen, T., Seibert, J. J., Vu, L., Andres, R. J.,
Bolt, R. M., Bond, T. C., Dawidowski, L., Kholod, N., Kurokawa, J.-1., Li, M., Liu, L., Lu, Z., Moura, M. C. P., O'Rourke, P.
R., and Zhang, Q.: Historical (1750-2014) anthropogenic emissions of reactive gases and aerosols from the Community
Emissions Data System (CEDS), Geosci. Model Dev., 11, 369408, doi:10.5194/gmd-11-369-2018, 2018.

The International GEOS-Chem User Community.: geoschem/GCClassic: GCClassic 14.2.2 (14.2.2), Zenodo [code],
doi:10.5281/zen0do.10034814, 2023.

Kang, Y., Choi, H., Im, J., Park, S., Shin, M., Song, C.-K., and Kim, S.: Estimation of surface-level NO2 and O3 concentrations
using TROPOM I data and machine learning over East Asia, Environ. Pollut., 288, 117711, doi:10.1016/j.envpol.2021.117711,
2021.

Keller, C. A., Knowland, K. E., Duncan, B. N., Liu, J., Anderson, D. C., Das, S., Lucchesi, R. A., Lundgren, E. W., Nicely, J.
M., Nielsen, E., Oft, L. E., Saunders, E., Strode, S. A., Wales, P. A., Jacob, D. J., and Pawson, S.: Description of the NASA

31

[ Formatted: English (United Kingdom)



http://www.jstor.org/stable/2699986
https://doi.org/10.5281/zenodo.10034814

735

740

745

750

755

760

765

GEOS Composition Forecast Modeling System GEOS-CF v1.0, Journal of Advances in Earth Modeling Systems, 13,

£2020MS002413, doi:10.1029/2020MS002413, 2021.

Kerminen, V.-M., Chen, X., Vakkari, V., Petdja, T., Kulmala, M., and Bianchi, F.: Atmospheric new particle formation and
growth: review of field observations, Environ. Res. Lett., 13, 103003, doi:10.1088/1748-9326/aadf3c, 2018.

Kharol S. K., Martin, R. V., Philip, S., Boys, B., Lamsal, L. N., Jerrett, M., Brauer, M., Crouse, D. L., McLinden C., and

Burnett, R. T.: Assessment of the magnitude and recent trends in satellite-derived ground-level nitrogen dioxide over North

America, Atmospheric Environment, 118, 236-245, doi:10.1016/j.atmosenv.2015.08.011, 2015,
Kharol, S. K., McLinden, C. A,, Sioris, C. E., Shephard, M. W., Fioletov, V., van Donkelaar, A., Philip, S., and Martin, R. V.:

OMI satellite observations of decadal changes in ground-level sulfur dioxide over North America, Atmos. Chem. Phys., 17,
5921-5929, doi:10.5194/acp-17-5921-2017, 2017.

Krotkov, N. A., McClure, B., Dickerson, R. R, Carn, S. A,, Li, C., Bhartia, P. K., Yang, K., Krueger, A. J., Li, Z., Levelt, P.
F., Chen, H., Wang, P., and Lu, D.: Validation of SO2 retrievals from the Ozone Monitoring Instrument over NE China, J.
Geophys. Res. Atmos., 113, D16S40, doi:10.1029/2007JD008818, 2008.

Krotkov, N. A, Li, C., and Leonard, P.: OMI/Aura Sulphur Dioxide (SO2) Total Column Daily L2 Global Gridded 0.125
degree x 0.125 degree V3, Goddard Earth Sci. Data Inf. Serv. Cent. (GES DISC), doi:10.5067/Aura/OMI/DATA2023,
accessed: 03/10/2024, 2014.

Krzyzanowski, M., and Wojtyniak, B.: Ten-Year Mortality in a Sample of an Adult Population in Relation to Air Pollution, J.
Epidemiol. Community Health, 36, 262—268, http://www.jstor.org/stable/25566349, 1992.

Lamsal, L. N., Martin, R. V., van Donkelaar, A., Steinbacher, M., Celarier, E. A., Bucsela, E., Dunlea, E. J., and Pinto, J. P.:
Ground-level nitrogen dioxide concentrations inferred from the satellite-borne Ozone Monitoring Instrument, J. Geophys.
Res., 113, D16308, doi:10.1029/2007JD009235, 2008.

Lee, C., Martin, R. V., van Donkelaar, A., Lee, H., Dickerson, R. R., Hains, J. C., Krotkov, N., Richter, A., Vinnikov, K., and

Schwab, J. J.: SO2 emissions and lifetimes: Estimates from inverse modeling using in situ and global, space-based
(SCIAMACHY and OMI) observations, J. Geophys. Res., 116, D06304, doi:10.1029/2010JD014758, 2011.

Lee, S.-H., Gordon, H., Yu, H., Lehtipalo, K., Haley, R., Li, Y., and Zhang, R.: New particle formation in the atmosphere:
From molecular clusters to global climate, J. Geophys. Res. Atmos., 124, doi:10.1029/2018JD029356, 2019.

Levelt, P. F., van den Oord, G. H. J., Dobber, M. R., Mélkki, A., Visser, H., de Vries, J., Stammes, P., Lundell, J. O. V., and
Saari, H.: The Ozone Monitoring Instrument, IEEE Trans. Geosci. Remote Sens., 44, 1093-1101,
doi:10.1109/TGRS.2006.872333, 2006.

Li, C., Joiner, J., Krotkov, N. A., and Bhartia, P. K.: A fast and sensitive new satellite SO2 retrieval algorithm based on
principal component analysis: Application to the ozone monitoring instrument, Geophys. Res. Lett., 40, 6314-6318,
doi:10.1002/2013GL058134, 2013.

32

[ Formatted: English (United Kingdom)



http://www.jstor.org/stable/25566349

770

775

780

785

790

795

Li, C., Stehr, J. W., Marufu, L. T., Li, Z., and Dickerson, R. R.: Aircraft measurements of SO2 and aerosols over northeastern

China: Vertical profiles and the influence of weather on air quality, Atmospheric Environment, 62, 492-501,
doi:10.1016/j.atmosenv.2012.07.076, 2012.,

Li, C., McLinden, C., Fioletov, V., Krotkov, N., Carn, S., Joiner, J., Streets, D., He, H., Ren, X,, Li, Z., and Dickerson, R. R.:
India Is Overtaking China as the World's Largest Emitter of Anthropogenic Sulfur Dioxide, Sci. Rep., 7, 14304,
doi:10.1038/541598-017-14639-8, 2017.

Li, C., Krotkov, N. A., Leonard, P. J. T., Carn, S., Joiner, J., Spurr, R. J. D., and Vasilkov, A.: Version 2 Ozone Monitoring
Instrument SO2 product (OMSO2 V2): New anthropogenic SO2 vertical column density dataset, Atmos. Meas. Tech., 13,
6175-6191, doi:10.5194/amt-13-6175-2020, 2020a.

Li, C., Krotkov, N. A., Leonard, P., and Joiner, J.: OMI/Aura Sulphur Dioxide (SO2) Total Column 1-orbit L2 Swath 13x24
km V003, Goddard Earth Sci. Data Inf. Serv. Cent. (GES DISC), doi:10.5067/Aura/OMI/DATA2022, accessed: 29 October
2024, 2020b.

Liu, Y., Park, R. J., Jacob, D. J., Li, Q., Kilaru, V., and Sarnat, J. A.: Mapping annual mean ground-level PM2.5 concentrations

using Multiangle Imaging Spectroradiometer aerosol optical thickness over the contiguous United States, J. Geophys. Res.,
109, D22206, doi:10.1029/2004JD005025, 2004.

Lucchesi, R.: File Specification for GEOS FP, GMAO Office Note No. 4, Version 1.2, 61 pp., available at
http://gmao.gsfc.nasa.gov/pubs/office_notes, 2018.

McDuffie, E. E., Smith, S. J., O’Rourke, P., Tibrewal, K., Venkataraman, C., Marais, E. A., Zhen

B., Crippa, M., Brauer.

M., and Martin, R. V.: A global anthropogenic emission inventory of atmospheric pollutants from sector- and fuel-specific
sources (1970-2017): an application of the Community Emissions Data System (CEDS), Earth Syst. Sci. Data, 12, 3413-3442,
d0i:10.5194/essd-12-3413-2020, 2020.,

McLinden, C. A., Fioletov, V., Boersma, K. F., Kharol, S. K., Krotkov, N., Lamsal, L., Makar, P. A., Martin, R. V., Veefkind,
J. P., and Yang, K.: Improved satellite retrievals of NO2 and SO2 over the Canadian oil sands and comparisons with surface
measurements, Atmos. Chem. Phys., 14, 3637-3656, doi:10.5194/acp-14-3637-2014, 2014.

National Academy of Sciences, Engineering, and Medicine (NASEM): The Future of Atmospheric Chemistry Research:

Remembering Yesterday, Understanding Today, Anticipating Tomorrow, Washington, DC, The National Academies Press,
doi:10.17226/23573, 2016.

National Aeronautics and Space Administration (NASA): README Document for OMSO2: Aura/OMI Sulfur Dioxide Level
2 Product, Goddard Earth Sciences Data and Information Services Center (GES DISC), available at
https://aura.gesdisc.eosdis.nasa.gov/data/Aura_OMI_Level2/OMS02.003/doc/OMSO2Readme_V2.pdf, 2020.

National Aeronautics and Space Administration Global Modeling and Assimilation Office (NASA GMAO): GEOS
Composition Forecast (GEOS-CF), NASA Center for Climate Simulation, NASA Goddard Space Flight Center [Dataset],

available at https://portal.nccs.nasa.gov/datashare/gmao/geos-cf/vl/anal.,

33

[ Formatted: English (United Kingdom)

[ Formatted: English (United Kingdom)

[ Formatted: English (United Kingdom)



http://gmao.gsfc.nasa.gov/pubs/office_notes
https://aura.gesdisc.eosdis.nasa.gov/data/Aura_OMI_Level2/OMSO2.003/doc/OMSO2Readme_V2.pdf
https://portal.nccs.nasa.gov/datashare/gmao/geos-cf/v1/ana/

800

805

810

815

820

825

830

Norman, O. G., Heald, C. L., Bililign, S., Campuzano-Jost, P., Coe, H., Fiddler, M. N., Green, J. R., Jimenez, J. L., Kaiser, K.,
Liao, J., Middlebrook, A. M., Nault, B. A., Nowak, J. B., Schneider, J., and Welti, A.: Exploring the processes controlling

secondary inorganic aerosol: evaluating the global GEOS-Chem simulation using a suite of aircraft campaigns, Atmos. Chem.
Phys., 25, 771-795, doi:10.5194/acp-25-771-2015, 2025.,

Nowlan, C. R., Liu, X., Chance, K., Cai, Z., Kurosu, T. P., Lege, C., and Martin, R. V.: Retrievals of sulfur dioxide from the
Global Ozone Monitoring Experiment 2 (GOME-2) using an optimal estimation approach: Algorithm and initial validation, J.
Geophys. Res., 116, D18301, doi:10.1029/2011JD015808, 2011.

Philip, S., Martin, R. V., and Keller, C. A.: Sensitivity of chemistry-transport model simulations to the duration of chemical
and transport operators: A case study with GEOS-Chem v10-01, Geosci. Model Dev., 9, 1683-1695, doi:10.5194/gmd-9-
1683-2016, 2016.

Seinfeld, J. H., and Pandis, S. N. (3rd Ed.): Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, Wiley,
Hoboken, New Jersey, United States, 874-876, ISBN 9781118947401, 2016.

Shan, Y., Zhu, Y., Sui, H., Zhao, N., Li, H., Wen, L., Chen, T., Qi, Y., Qi, W., Wang, X., Zhang, Y., Xue, L., and Wang, W.:

Vertical distribution and regional transport of air pollution over Northeast China: Insights from an intensive aircraft study,
Atmospheric Environment, 358, 121327, doi:10.1016/j.atmosenv.2025.121327, 2025,

Veefkind, J. P., Aben, I., McMullan, K., Forster, H., de Vries, J., Otter, G., Claas, J., Eskes, H. J., de Haan, J. F., Kleipool, Q.,
van Weele, M., Hasekamp, O., Hoogeveen, R., Landgraf, J., Snel, R., Tol, P., Ingmann, P., Voors, R., Kruizinga, B., Vink, R.,
Visser, H., and Levelt, P. F.: TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the
atmospheric composition for climate, air quality, and ozone layer applications, Remote Sens. Environ., 120, 70-83,
doi:10.1016/j.rse.2011.09.027, 2012.

Theys, N., De Smelt, I., van Gent, J., Danckaert, T., Wang, T., Hendrick, F., Stavrakou, T., Bauduin, S., Clarisse, L., Li, C.,
Krotkov, N., Yu, H., Brenot, H., and VVan Roozendael, M.: Sulfur dioxide vertical column DOAS retrievals from the Ozone

Monitoring Instrument: Global observations and comparison to ground-based and satellite data, J. Geophys. Res. Atmos., 120,
2470-2491, doi:10.1002/2014JD022657, 2015.

Wang, Y. and Wang, J.: Tropospheric SO2 and NO2 in 2012-2018: Contrasting views of two sensors (OMI and OMPS) from
space, Atmospheric Environment, 223, 117214, doi:10.1016/j.atmosenv.2019.117214, 2020a.

Wang, Y., Wang, J., Xu, X., Henze, D. K., Qu, Z., and Yang, K.: Inverse modeling of SO2 and NOx emissions over China
using multisensory satellite data — Part 1: Formulation and sensitivity analysis, Atmos. Chem. Phys., 20, 6631-6650,
doi:10.5194/acp-20-6631-2020, 2020b

Wang, Y., Wang, J., Zhou, M., Henze, D. K., Ge, C., and Wang, W.: Inverse modeling of SO2 and NOx emissions over China
using multisensory satellite data — Part 2: Downscaling techniques for air quality analysis and forecasts, Atmos. Chem. Phys.,
20, 6651-6670, doi:10.5194/acp-20-6651-2020, 2020c.

34

[ Formatted: English (United Kingdom)

[ Formatted: English (United Kingdom)




835

840

845

850

855

860

Wei, J., Li, Z., Wang, J., Li, C., Gupta, P., and Cribb, M.: Ground-level gaseous pollutants (NO2, SO2, and CO) in China:
Daily seamless mapping and spatiotemporal variations, Atmos. Chem. Phys., 23, 1511-1532, doi:10.5194/acp-23-1511-2023,
2023.

Wu, Z., Hu, M., Liu, S., Wehner, B., Bauer, S., Bling, A. M., Wiedensohler, A., Pet4j4, T., Maso, M. D., and Kulmala, M.:
New particle formation in Beijing, China: Statistical analysis of a 1-year data set, J. Geophys. Res., 112, D09209, doi:
10.1029/2006JD007406, 2007.

Xue, L., Ding, A., Gao, J., Wang, T., Wang, W., Wang, X., Lei, H., Jin, D., and Qi, Y.: Aircraft measurements of the vertical
distribution of sulfur dioxide and aerosol scattering coefficient in China, Atmospheric Environment, 44, 278-282,
doi:10.1016/j.atmosenv.2009.10.026, 2010.,

Yang, Q., Kim, J., Cho, Y., Lee, W.-J,, Lee, D.-W., Yuan, Q., Wang, F., Zhou, C., Zhang, X., Xiao, X., Guo, M., Guo, Y.,
Carmichael, G. R., and Gao, M.: A synchronized estimation of hourly surface concentrations of six criteria air pollutants with
GEMS data, npj Clim. Atmos. Sci., 6, 94, doi:10.1038/s41612-023-00407-1, 2023a.

Yang, Q., Yuan, Q., Gao, M., and Li, T.: A new perspective to satellite-based retrieval of ground-level air pollution:

Simultaneous estimation of multiple pollutants based on physics-informed multi-task learning, Sci. Total Environ., 857,
159542, doi:10.1016/j.scitotenv.2022.159542, 2023b.

Zhang, S., Mi, T., Wu, Q., Luo, Y., Grieneisen, M. L., Shi, G., Yang, F., and Zhan, Y.: A data-augmentation approach to
deriving long-term surface SO2 across Northern China: Implications for interpretable machine learning, Sci. Total Environ.,
827, 154278, doi:10.1016/j.scitotenv.2022.154278, 2022.

Zhang, X., Wang, Z., Cheng, M., Wu, X., Zhan, N., and Xu, J.: Long-term ambient SO2 concentration and its exposure risk
across China inferred from OMI observations from 2005 to 2018, Atmos. Res., 247, 105150,
doi:10.1016/j.atmosres.2020.105150, 2021.

Zoogman, P., Liu, X., Suleiman, R. M., Pennington, W. F., Flittner, D. E., Al-Saadi, J. A., Hilton, B. B., Nicks, D. K.,
Newchurch, M. J., Carr, J. L., Janz, S. J., Andraschko, M. R., Arola, A., Baker, B. D., Canova, B. P., Chan Miller, C., Cohen,
R. C., Davis, J. E., Dussault, M. E., Edwards, D. P., Fishman, J., Ghulam, A., Gonzalez Abad, G., Grutter, M., Herman, J. R.,
Houck, J., Jacob, D. J., Joiner, J., Kerridge, B. J., Kim, J., Krotkov, N. A., Lamsal, L., Li, C., Lindfors, A., Martin, R. V.,
McElroy, C. T., McLinden, C., Natraj, V., Neil, D. O., Nowlan, C. R., O’Sullivan, E. J., Palmer, P. I, Pierce, R. B., Pippin,
M. R., Saiz-Lopez, A., Spurr, R. J. D., Szykman, J. J., Torres, O., Veefkind, J. P., Veihelmann, B., Wang, H., Wang, J., and
Chance, K.: Tropospheric emissions: Monitoring of pollution (TEMPO), J. Quant. Spectrosc. Radiat. Transf., 186, 17-39,
doi:10.1016/j.jgsrt.2016.05.008, 2017.

35

[ Formatted: English (United Kingdom)




