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Abstract. Sulfur dioxide (SO2) is an important air pollutant that contributes to negative health effects, acid rain, and aerosol 

formation and growth. SO2 has been measured using ground-based air quality monitoring networks, but routine monitoring 

sites are predominantly placed in urban areas, leaving large gaps in the network in less populated locations. Previous studies 

have used chemical transport models (CTMs) or machine learning (ML) techniques to estimate surface SO2 concentrations 

from satellite vertical column densities, but their performance has never been directly compared. In this study, we estimated 15 

surface SO2 concentrations using Ozone Monitoring Instrument (OMI) retrievals over eastern China from 2015-2018 utilizing 

GEOS-Chem CTM simulations and an extreme gradient boosting ML model. For the first time, we quantified methodological 

uncertainties for both methods, directly compared their performance on the same truth dataset, and validated the CTM-based 

method on a sub-annual timescale. The surface concentrations estimated from the CTM-based method had similar spatial 

distributions (r = 0.58) and temporal variations compared to the in situ measurements but were underestimated (slope = 0.24; 20 

RPE = 75%) and had worsening performance over time. The ML-based method produced more accurate spatial distributions 

(r = 0.77) and temporal variations with a smaller discrepancy (slope = 0.69; RPE = 30%) and stable performance over time. 

Despite the higher accuracy of the ML-based method at the monitoring sites, the CTM-based method produced more 

reasonable gridded spatial distributions over areas without monitoring data, such as over the oceans, since its estimations are 

independent from the in situ measurements. 25 

Sulfur dioxide (SO2) is an important air pollutant that contributes to negative health effects, acid rain, and aerosol formation 

and growth. SO2 has been measured using ground-based air quality monitoring networks, but the routine monitoring sites are 

predominantly placed in urban areas, leaving large gaps in the network in less populated locations. Previous studies have used 

chemical transport models (CTMs) or machine learning techniques to estimate surface SO2 concentrations from satellite 

vertical column densities, but no direct comparisons between the methods have been made. In this study, we estimated surface 30 

SO2 concentrations using Ozone Monitoring Instrument (OMI) retrievals over eastern China from 2015-2018 utilizing GEOS-

Chem simulations and an extreme gradient boosting machine learning model. Compared to the in situ measurements, the SO2 

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript



2 

 

concentrations estimated from the CTM method had similar spatial distributions (r = 0.58) and intra- and interannual variations 

but were underestimated (slope = 0.24) with a relative percent error of ~75% and had worsening performance over time. The 

machine learning method produced more accurate spatial distributions (r = 0.77) and temporal variations, a smaller discrepancy 35 

and bias (~30%; slope = 0.69) and relatively stable performance over time. The machine learning method performed better 

than the GEOS-Chem method on smaller datasets and timescales with shorter temporal averaging periods. Ultimately, both 

methods were useful for estimating surface SO2 concentrations since the CTM-based method does not rely on in situ 

monitoring and produced more reasonable spatial distributions than the machine learning method over areas without surface 

monitoring data.  40 

1 Introduction 

Sulfur dioxide (SO2) is an important air pollutant due to its effects on human health, air quality, weather, and climate. 

SO2 has many anthropogenic sources such as fossil fuel combustion in power plants and ore smelters, as well as natural sources 

from volcanoes (Engdahl, 1973). Surface SO2 concentrations are mainly driven by anthropogenic activity in urban areas and 

are known to causenegatively impact cardiovascular and respiratory health impacts (Engdahl, 1973; Krzyzanowski & 45 

Wojtyniak, 1982). SO2 also readily undergoes oxidation reactions in the atmosphere to form sulfuric acid, which further 

contributes to acid rain (Seinfeld and Pandis, 2016) and participates in aerosol formation and growth (Lee et al., 2019)., leading 

to furtherThese aerosols can then additionally aeffects on weather and the global energy budget (NASEM, 2016).  

 Concentrations of SO2 at the surface have been regularly measured using ground-based air quality monitoring 

networks. Surface concentrations are typically measured on hourly to daily time intervals, but the sites are predominantly 50 

located in urban areas, leaving large gaps in the network elsewhere. In addition to surface-based air quality monitors, Ssatellite-

based instruments can measure total-column concentrations of SO2 globally from space. These SO2 vertical column densities 

(VCDs) are retrieved using the absorption of backscattered solar radiation in the ultraviolet wavelengths measured by a 

spectrometer (e.g., Krotkov et al., 2008; Levelt et al., 2006; Li et al., 2013; Li et al., 2020a; Nowlan et al., 2011; Theys et al., 

2015). The VCDs are typically available overfor cloud-free locations over large areas in cloud-free locations on a daily basis 55 

but do not directly provide the surface concentrations at the surface. Additional toolsanalysis are is required to estimate the 

surface concentrations from the satellite-retrieved VCDs as discussed below. 

The first method is to use cChemical transport models (CTMs) can be used to convert satellite VCDs into surface 

concentrations using simulated surface-to-VCD ratios (SVRs). This method was initially developed for estimating surface 

PM2.5concentrations of particulate matter from satellite-based aerosol optical depth retrievals (Liu et al., 2004) and was later 60 

applied to nitrogen dioxide (NO2; Lamsal et al., 2008) and SO2 (Lee et al., 2011). Lee et al. (2011) and Zhang et al. (2021) 

each used coarse-resolution CTMs (grid spacings on the order of 100 km) to convert SO2 VCDs from the Ozone Monitoring 

Instrument (OMI) into surface concentrations over North America for 2006, and China for 2005-2018, respectively. McLinden 

et al. (2014) and Kharol et al. (2017) used higher-resolution CTMs (grid spacing on the order of 10 km) and OMI SO2 VCDs Formatted: Subscript



3 

 

to estimate the surface concentrations with focuses onover the Canadian oil sands from 2005-2011, and the North American 65 

continent from 2005-2015, respectively. These four studies each demonstrated that annual mean satellite-derived surface SO2 

concentrations can accurately capture the spatial distribution offrom the ground-based air quality monitoring networks, 

despitealthough the estimated surface concentrations werebeing generally underestimated. An advantage of the CTM-based 

method is that it is based on fundamental principles of atmospheric dynamics and chemistry and can produce results that are 

independent of observed surface concentrations. The main limitations of CTMs are the computational expense of running the 70 

simulations (Fan et al., 2022) and relatively coarse- resolution, simulations may havewhich may lead to large biases due toin 

the representation of emissions, meteorology, and chemical processes (Wang et al., 2020b; Wang et al., 2020c).  

More recently, machine learning (ML) techniques have been used to estimate surface SO2 concentrations from 

satellite retrievals, meteorology, and other geographic variables such as emission inventories and land use types. Zhang et al. 

(2022) used a Light Gradient Boosting Machine (LightGBM) to estimate surface SO2 concentrations over northern China using 75 

OMI SO2 VCDs, meteorological variables, emissions, land use classifications, population density, and others. Yang et al. 

(2023a) used radiances from the Geostationary Environment Monitoring Spectrometer (GEMS) satellite to estimate the surface 

concentrations of SO2 and other criteria air pollutants in a multi-output random forest model. Both studies showed that ML 

techniques can accurately capture the spatial distribution and magnitude of the surface concentrations but had may have 

artificial biases due to nonphysical links between variables predictors and the observed surface concentrations, such as 80 

interactions between certain land use typesclassifications and skin temperature as shown by Zhang et al. (2022). In these 

studies, the ML models also incorporated spatial (e.g., longitude, latitude, population density) and/or temporal (e.g., numeric 

day of year, hour of day) proxies to improve performance rather than depending only on measurable quantities, but this can 

lead the model to learn the locations of cities and introduce an artificial seasonality rather than depending on measurable 

quantities, limitsing the physical usefulness, and interpretability, and applicability of the model (Zhang et al., 2022; Yang et 85 

al., 2023a; Yang et al., 2023b). An advantage of the ML-based method is that theML models are typically much faster to train 

and run than a full CTM simulation and can often utilize higher spatial and temporal resolution data (Fan et al., 2022);. 

however, sSince ML models can only use statistical relationships to make predictions, they are often limited in their physical 

interpretability and may make their predictions based on predictors that have no physical relevance to the estimated surface 

concentrations.  90 

Although the CTM- and ML-based methods have both each been employed in estimatingused to estimate surface SO2 

concentrations from satellite retrievals, so far there has is been a lack of direct comparisons between them two methods. Here, 

we estimated surface SO2 concentrations using OMI SO2 VCDs over eastern China (105-125°E, 25-45°N) from 2015-2018 to 

directly compare the two methods. First, we quantified methodological uncertainties for each method for the first time. 

FirstNext, we used the relationship between the surface and total column concentrations simulated SVRs fromby the GEOS-95 

Chem model to estimate the surface SO2 concentrations from the satellite dataOMI using the CTM-based method. Then, we 

used a ML model to predict surface SO2 concentrations from OMI VCDs, meteorological variables, and an emission inventory, 

which are all physically relevant to the spatial distribution or lifetime of SO2. The results from each method were validated 
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against ground-based in situ measurements from the China National Environmental Monitoring Centre (CNEMC) air quality 

monitoring network on annual and seasonal mean timescales, the latter of which has never been done for the CTM-based 100 

method. Finally, we compared the performance of each method on an identical the same truth dataset over the same times and 

locations for the first time to gain insights on their abilities and limitations to accurately estimate the surface SO2 concentrations 

from satellite data.  

2 Data and methods 

2.1 Study region 105 

Eastern China has abundant anthropogenic SO2 emissions and thus is a region with elevated surface concentrations. 

Satellite SO2 retrievals typically have a low signal-to-noise ratio due to interfering absorbers (Li et al., 2020), so regions with 

large SO2 emissions and pollution, such as eastern China, are required to obtain sufficient signals from the spectrometer and 

provide more reliable retrievals compared to less polluted regions. A map of our study region with including the locations of 

OMI-derived SO2 emission sources (Fioletov et al., 2022; Fioletov et al., 2023) and CNEMC monitoring sites  in the study 110 

region areis shown in Fig. 1. The largestmain sources of SO2 in the study region come frominclude around 70 power plants, 

as well as five ore smelters, and one area of oil and gas production (Fig. 1b). There are also approximately 1000 air quality 

monitoring stations located across in the study region that can bewere used to validate the estimated surface concentrations 

from the satellite data (Fig. 1c). Our analysis covers the period from 2015 (the first full year of in situ measurements) to 2018 

(to avoid the impacts of the COVID-19 lockdowns).  115 
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Figure 1: Maps showing the (a) study region (solid box; 105°E - 125°E, 25°N - 45°N) relative to the rest of the Asian continent, (b) 

locations of large SO2 sources from the 2015 OMI emission catalogue during 2015 (Fioletov et al., 2022) including 70 power plants 

(stars), five ore smelters (triangles), and one area of oil and gas production (square), and (c) locations of the CNEMC monitoring 120 
stations (circles).  

 

2.2 OMI satellite data 

We employed data from the Ozone Monitoring Instrument (OMI; Levelt et al., 2006), a hyperspectral 

ultraviolet/visible nadir solar backscatter spectrometer launched onboard the Aura satellite in 2004. Aura flies in a sun-125 

synchronous polar orbit, and OMI is used to retrieve SO2 VCDs with daily global coverage and a spatial resolution of 13 km 

x 24 km at nadir, a significant improvement from previous satellite-based instruments. The VCDs were gridded to a horizontal 

resolution of 0.25° x 0.25° to decrease noise in the SO2 retrieval without significantly coarsening it from the native 

measurement resolution. The OMI overpass time of our study region rangeds from approximately 12:15 pm to 2:45 pm local 

time. For both the CTM- and ML-based methods, we used the OMI Planetary Boundary Layer (PBL) SO2 product to estimate 130 

the surface concentrations due to its main application for anthropogenic, near-surface SO2 (Krotkov et al., 2014; Li et al., 
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2020b). The OMI retrievals use a principal component analysis- (PCA) based algorithm for spectral fitting based on the 

radiances of wavelengths between 310.5-340 nm for each row in the measurement swath with wavelengths between 310.5-

340 nm (Li et al., 2013; Li et al., 2020a). This version of the PCA retrievals include pixel-specific air mass factor calculations 

to convert slant column densities (SCDs) to VCDs rather than using a fixed value worldwide (Li et al., 2020a). The VCDs 135 

express the number of SO2 molecules in the column and are reported in Dobson Units (DU; 1 DU = 2.69 x 1016 molecules cm-

2). To ensure good data quality, we gridded the data to 0.25° x 0.25° resolution and screened out measurements with cloud 

fractions greater than 0.3, solar zenith angles greater than 65°, located in the outer ten cross-track positions, or affected by the 

row anomaly (NASA, 2020). We also excluded extreme outliers that fell outside of five standard deviations from the mean as 

thresholds less than this appeared to remove legitimate data. 140 

2.3 CNEMC ground-based monitoring data 

Ground-based SO2 concentrations from the China National Environmental Monitoring Centre (CNEMC) air quality 

monitoring network were used to validate the performance of eachboth the CTM- and ML-based methods. The concentrations 

were converted from µg m-3 to parts per billion (ppbv) following the procedure outlined in Wei et al. (2023). To ensure the 

ground-based measurements were temporally aligned with the OMI overpass, we averaged the hourly concentrations from 145 

12:00 pm to 3:00 pm local time on days where there was at least one OMI observation within 40 km of the station. Like the 

OMI data, we also removed data that fell more than five standard deviations outside of the mean.  

2.4 GEOS-ChemCTM-based technique 

We used simulated SVRs from the GEOS-Chem model (version 14.2.2; Bey et al., 2001The International GEOS-

Chem User Community, 2023) to convert the OMI VCDs into surface concentrations for the CTM-based method. We 150 

conducted ran simulations for January, April, July, and October 2015. each with a one-month spin-up to represent the SO2 

profiles in different seasons. Each simulation was conducted with a one1- month spin-up following Kharol et al. (2015). To 

reduce the computational expense, we used the monthly average SVR from each simulation to estimate the daily surface 

concentrations within the corresponding winter (DJF), spring (MAM), summer (JJA), and autumn (SON) months (referred 

hereafter as quasi-seasonal temporal sampling) for all years of the study period. The model was run at a horizontal resolution 155 

of 2.5° (longitude) x 2.0° (latitude) with 47 vertical layers and was driven by assimilated GEOS-FP meteorology (Lucchesi, 

2018) and the Community Emissions Data System (CEDS) anthropogenic emission inventory (Hoesly et al., 2018). The 

internal time steps for the chemistry and advection calculations in the model were lengthened by 50% from the default values 

to reduce simulation times while minimizing errors following (Philip et al., (2016). Despite the longer internal timesteps, the 

Courant-Friedrichs-Lewy condition is maintained with a Courant number of 0.041, indicating numerical stability of the 160 

simulations. We used model output at the lowest model level The surface concentrations were assumed to be equal to the 

concentrations at the lowest model level (~60 m above ground level). atThe model output dataoutput timestep of GEOS-Chem 

was every three hours, so it was sampled at 2:00 pm local time, which is the only output timestep inside the OMI overpass 
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window. We only included GEOS-Chem data in the analysis if there was at least one valid OMI observation within the model 

grid cell on a given day. 165 

The approach from Lee et al. (2011) was used to infer surface SO2 concentrations from OMI VCDs using the GEOS-

Chem (GC)and simulated vertical SO2 profiles from GEOS-Chem (GC). Lee et al. (2011) showed that the CTM-based method 

provided accurate results even with CTM resolutions that are much coarser than the satellite data. The monthly averaged 

profiles and SVRs from GEOS-Chem are shown in Fig. S1. The profiles indicate that most of the SO2 within the vertical 

column is located near the surface and within the boundary layer (Fig. S1). The concentrations then drop to near zero in the 170 

free troposphere and have small variations, indicating a lack of elevated SO2 plumes (Fig. S1). The profiles from the GEOS-

Chem simulations are similar to those from aircraft observations (e.g., Li et al., 2012; Norman et al., 2025; Shan et al., 2025; 

Xue et al., 2010) and higher resolution simulations (Norman et al., 2025) over China. The daily surface SO2 concentrations for 

the CTM-based method (SOMI) were calculated on a daily basis at 0.25° x 0.25° resolution using the daily OMI VCDs and 

averaged GEOS-Chem SVRs from the model grid cell that the OMI measurement lies within using Eqn. 1:The conversion was 175 

done using the following relationship: 

𝑆𝑂𝑀𝐼 =
𝜈𝑆𝐺𝐶

𝜈𝛺𝐺𝐶,𝑃𝐵𝐿+𝛺𝐺𝐶,𝐹𝑇
× 𝛺𝑂𝑀𝐼 ,           (1) 

where S is the surface SO2 concentration in ppbv and Ω is the SO2 VCD in DU. The FT and PBL subscripts are the free-

tropospheric and boundary layer VCDs, respectively, which were calculated relative to the GEOS-FP PBL height. Since there 

is a significant difference in horizontal resolution between the satellite and model data, OMI VCDs were used to provide sub-180 

model grid variability (ν) using Eqn. 2: 

𝜈 =
𝛺𝑂𝑀𝐼

𝛺′𝑂𝑀𝐼
,             (2) 

where ΩOMI is the OMI VCD at 0.25° x 0.25° resolution and Ω'OMI is the average OMI VCD over the 2.5° x 2.0° GEOS-Chem 

grid cell. To compare the estimated surface concentrations to the in situ surface monitoring data, we used a 40 km averaging 

radius  around each station to increase the amount of usable data and further reduce the noise in the OMI data. This is similar 185 

to previous studies (i.e., Kharol et al., 2017) and maximizes both the slope and correlation compared to other radii, as shown 

in Fig. S2. Since this method does not require prior knowledge of in situ measurements, the analysis in Sect. 3.1 will be 

performed over the full dataset. 

Since only simulations for January, April, July, and October 2015 were available to provide SVRs, there are two 

inherent assumptions regarding the temporal representativeness of the SVRs. The first assumption was using quasi-seasonal 190 

temporal sampling for the SVRs and resultantcalculating the estimated surface concentrations. To test the impact of temporal 

representativeness on the estimated surface concentrations, we ran an additional GEOS-Chem simulation to cover all of spring 

(MAM) 2015.  We also employed a full year of archived 2018 GEOS-CF data (NASA GMAO, 2023), which has improved 

temporal (hourly) and spatial (0.25° x 0.25°) resolution compared to GEOS-Chem and uses the same chemistry module, so 

they tend to produce similar results (Keller et al., 2021). We found that the intraseasonal variability in the SVR was 0.6 ppbv 195 

DU-1 for MAM in both GEOS-Chem and GEOS-CF, as shown by Fig. S3. Therefore, we used the GEOS-CF data to estimate 
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this uncertainty for the entire year. We found that the average intraseasonal variability in the SVRs for the full year was 0.8 

ppbv DU-1 (Fig. S3). We also used the full year of GEOS-CF data to test the impact of temporal representativeness on the 

annual mean surface SO2 concentrations. Figures S4b-f show that there was no significant difference in the accuracy of the 

annual average surface SO2 concentrations among the different temporal sampling techniques ranging from daily to annual 200 

mean SVRs. The slopes and correlations of the surface concentrations were consistent only ranging between 0.23 – 0.29 and 

0.33 – 0.40, respectively (Fig. S4b-f). The sensitivity analysis with GEOS-CF also suggested that improving the spatial 

resolution of the CTM while maintaining the same temporal sampling of the SVRs did not have a large impact on the accuracy 

of the estimated surface concentrations despite an improvement in spatial resolution by nearly a factor a 10, as indicated by 

Figs. S4a and S4d for 2018 data, as well as Fig. S5 for all years of the study period. 205 

The other assumption was only using a single year of simulations to convert four years of OMI data into surface 

concentrations. Kharol et al. (2017) did not have simulations that spanned their entire analysis period, but the implications  of 

this were never discussed. To address this, we first compared the monthly averaged SVRs from observations (calculated using 

CNEMC surface concentrations and OMI VCDs) for each year in the study period to the 2015 GEOS-Chem simulations to 

ensure there is no significant changes over time. Figure S6 shows boxplots of the observed and GEOS-Chem SVRs with the 210 

percent difference between them. In general, the differences between the observed and GEOS-Chem SVRs were consistent 

across all years of the study period, typically ranging from 73 – 89% (Fig. S6). We also ran additional GEOS-Chem simulations 

for January, April, July, and October 2018 to assess if the simulated SVRs change over time. Boxplots for these two sets of 

simulations can be seen in Fig. S7 and indicate that the GEOS-Chem SVRs only changed by 0.8 ppbv DU-1, or 9%, from 2015 

to 2018. The implications of these uncertainties on the resultant concentrations are discussed further in Sect. 2.6. 215 

One simplification of our approach is to use January, April, July, and October simulations for a single year (2015) to 

estimate the surface SO2 concentrations over the entire study period. To evaluate this approach, we first compared the GEOS-

Chem and OMI SO2 VCDs. We found that there was no significant change in the correlation between them from 2015-2018 

(Fig. S1). This indicates the spatial distributions remained similar, and the model can distinguish between relatively polluted 

and unpolluted areas, and thus, the SVRs in those environments. We also ran four additional GEOS-Chem simulations for 220 

January, April, July, and October 2018 to assess the year-to-year changes in the SVR. The slopes in Fig. S2 indicate that the 

monthly average SVR does not have a systematic change from 2015-2018 and has a maximum discrepancy of 13%. Since the 

spatial distribution of SO2 and simulated SVRs remained relatively constant over time, we believe this simplification made to 

reduce computational expense will not have a significant impact on the results. 

2.5 Machine learningML-based technique 225 

To estimate the surface SO2 concentrations using a ML model, we used an eXtreme Gradient Boosting regression 

model (XGBoost; Chen & Guestrin, 2016) to statistically relate satellite-based SO2 VCDs, meteorological variables, and 

emissions data to the in situ measurements. XGBoost models use a scalable tree boosting system to efficiently train an 

ensemble of decision trees by adding a new tree with each training epoch and learning with each iteration (Chen & Guestrin, 
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2016; Friedman, 2001). Previous studies have showned that XGBoost and LightGBM models are able to estimate surface 230 

concentrations from satellite data more effectively than other ML architectures as shown by Kang et al. (2021) and Zhang et 

al. (2022). We trained theour XGBoost model with an ensemble of 500 trees, with a maximum tree depth of 15 splits, and a 

learning rate of 0.15 on a mean squared error loss function. NeitherUsing a largern ensemble with more nor deeper trees  did 

not improved the performance of the model, as shown by Fig. S8 and Fig. S9, respectively., and using a depth of 15 splits was 

found to be the best balance between overfitting and underfitting during training.  235 

Our ML model was trained on a small number of variables (five) that each have known physical relationships to the 

spatial distribution or lifetime of atmospheric SO2. By using a small number of variables, it is easier to derive physical meaning 

from the ML predictions without sacrificing accuracy since the input variables are already known to affect surface SO2 

concentrations. First, wWe used daily OMI SO2 VCDs to estimate the spatial distribution of SO2. Next, we used hourly 

European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5; Hersbach et al., 2020; ECMWF, 240 

2019) 100 m u-winds, 100 m v-winds, and boundary layerPBL heights (PBLHs) averaged over the OMI overpass window 

were used to from the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5; Hersbach et 

al., 2020; ECMWF, 2019) to account for the meteorological mixing and dispersion of SO2,. Finally, we used and monthly SO2 

emissions from the CEDS inventory to capture the known locations of SO2 sources. The ERA5 meteorological variables were 

provided at 0.25° x 0.25° horizontal resolution, and the CEDS emissions were provided at 0.5° x 0.5° horizontal resolution. 245 

We trained the model on logarithmic emissions since the values ranged several orders of magnitude, and logarithmic boundary 

layer heights to get better sensitivity to variations in low boundary layers, and logarithmic emissions since the values ranged 

several orders of magnitude. The model can beis summarized in Eqn. 3 as: 

𝑆𝑀𝐿 = 𝑋𝐺𝐵𝑜𝑜𝑠𝑡(𝛺𝑂𝑀𝐼 , 𝑈𝐸𝑅𝐴5, 𝑉𝐸𝑅𝐴5 , log10[𝑃𝐵𝐿𝐻𝐸𝑅𝐴5] , log10[𝐸𝐶𝐸𝐷𝑆]),      (3) 

where SML is the predicted surface concentrations from the XGBoost ML model, ΩOMI is the satellite SO2 VCD, UERA5 is the 250 

u-wind, VERA5 is the v-wind, PBLHERA5 is the boundary layer height, and ECEDS is the SO2 emissions. Earlier versions of the 

model were trained on 11 predictors, ,but the predicted surface concentrations produced an unrealistic spatial distribution of 

SO2, as shown in Fig. S10. Additionally, some of the predictors were shown to be relatively unimportant to the model output, 

as indicated by the permutation importance in Fig. S11. The reduction of predictors from 11 down to five led to an improvement 

in the statistical performance and spatial distribution of the estimated surface concentrations, suggesting that utilizing known 255 

physical relationships between variables is more beneficial than the number of predictors in a ML model. 

We trained the model on 90% of the daily data (N = 137630) from 2015- to 2018 with meteorology ERA5 and 

emission CEDS variables predictors sampled to match the valid OMI observations. The input variables were sampled and 

averaged within 40 km of the CNEMC sites for training, as done in the GEOS-ChemCTM-based method, and the predicted 

surface concentrations from the XGBoost model are provided at each CNEMC site in the dataset.. The remaining 10% of the 260 

data (N = 15292) was reserved for a sample-based independent validation. This split of the training and independent testing 

datasets, aswas doneused inby previous studies (e.g., Zhang et al., 2022; Yang et al., 2023a; Yang et al., 2023b). and was 

shown to have the best performance for the independent testing dataset for our model as shown in Fig. S12. each 
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CNEMCgridded the  Figure 2 shows that the model had noticeably better performance with the training data (slope = 0.89; r 

= 0.95) compared to the testing data (slope = 0.67; r = 0.76), indicating that the model has good performance, but is slightly 265 

overfitting, a common artifact of complex machine learning models such as XGBoost. While the model was trained to estimate 

the surface SO2 concentration at each CNEMC station, the trained model can then be used to make predictions on gridded 

input data to obtain estimates of the surface SO2 concentrations on a continuous domain at the same horizontal resolution as 

the inputs. 

 270 

 

Figure 2: Scatterplots between the daily ML model predictions and CNEMC in situ measurements for the (a) independent dataset 

and (b) training dataset. Each panel includes a linear regression analysis with best fit line (solid line) and discrepancy statistics for 

the estimated surface SO2 concentrations compared to in-situ measurements. Scatterplots are binned every 1 ppbv. Each scatterplot 

is colored by the number of stations in each bin and includes a linear regression analysis with the best fit line (solid line), best-fit 275 
equation, correlation coefficient, total number of stations, 1:1 line (black dashed line), MAE, RMSE, and RPE.The scatterplots are 

binned every 1 ppbv. The dashed line indicates the 1:1 line. 

2.6 Methodologicaly Uuncertainties 

A This study provides the first detailed discussion of the individual sources and summation of uncertainties for either 

methodology. To estimate the uncertainty of the input variables for both methods, we performed moving-block bootstrapping 280 

with 10000 iterations on the daily gridded data. For each bootstrap, a horizontal coordinate and date was randomly sampled 

with replacement. For each random sample, a temporal block of five days in each direction from the randomly sampled day 

was used to calculate the standard deviation. After all bootstraps were completed, the uncertainty was defined as the average 
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of the standard deviations calculated from each iteration. This was done for the OMI SO2 VCDs, GEOS-Chem SVRs, and 

ERA5 meteorology. The uncertainty in the CEDS emission inventory was not included due to the monthly temporal resolution, 285 

and a lack of uncertainty quantification in previous literature (e.g., Hoesly et al., 2018; McDuffie et al., 2020).  

 For the CTM-based method, the summation of error was determined using error propagation. For the error 

propagation, Eq. 1 was simplified such that: 

𝑆𝑂𝑀𝐼 = (𝑆𝑉𝑅𝐺𝐶) × 𝛺𝑂𝑀𝐼 ,            (4) 

where SVRGC is the monthly averaged SVR from the GEOS-Chem simulations. Equation 4 was used in the error propagation 290 

formula to obtain Eq. 5:  

𝜎𝑆𝑂𝑀𝐼
= √𝜎𝑆𝑉𝑅𝐺𝐶

2(𝛺𝑂𝑀𝐼)2 + 𝜎𝛺𝑂𝑀𝐼
2(𝑆𝑉𝑅𝐺𝐶)2         (5) 

where 𝜎𝑆𝑂𝑀𝐼
 is the propagated error of the CTM-derived concentration, 𝜎𝑆𝑉𝑅𝐺𝐶

 is the uncertainty in the GEOS-Chem SVR, 

and 𝜎𝛺𝑂𝑀𝐼
 is the uncertainty in the OMI SO2 VCD. The uncertainty in the GEOS-Chem SVR was initially calculated with 

bootstrapping, but also needs to account for the uncertainties of the quasi-seasonal and single-year assumptions in the CTM-295 

based methodology. The quasi-seasonal and single-year assumptions were defined and quantified in Section 2.4. These three 

sources of GEOS-Chem SVR uncertainty were assumed to be independent of each other and  were combined using the sum of 

the squares of each term. The results of the bootstrapping and error propagation are shown in Table 1. Ultimately, the 

methodological uncertainty of the CTM-based method is ±4.9 ppbv when considering the uncertainties of the OMI SO2 VCDs 

(±0.67 ppbv DU-1) and GEOS-Chem SVRs (±1.7 ppbv DU-1). The OMI SO2 VCD uncertainty has a relative standard deviation 300 

of 136%, which is comparable to the reported uncertainty of 60 – 120% for moderately polluted areas from Li et al. (2020). 

 

Table 11: Sources and magnitudes of uncertainty for the CTM-based method. Uncertainties for the OMI SO2 VCDs and GEOS-

Chem SO2 SVRs were determined using moving-block bootstrapping. The uncertainty for the quasi-seasonal SVR assumption was 

determined using GEOS-CF data. The single-year SVR assumption was determined using the 2015 and 2018 GEOS-Chem 305 
simulations. The overall uncertainty for the CTM-based method was determined using error propagation. 

Variable Uncertainty 

OMI SO2 VCDs ± 0.67 DU 

GEOS-Chem SO2 SVR ± 1.4 ppbv DU-1 

Quasi-Seasonal SVR Assumption ± 0.8 ppbv DU-1 

Single-Year SVR Assumption ± 0.6 ppbv DU-1 

Overall Uncertainty ± 4.9 ppbv 

 

 It is much less straightforward to propagate error through a ML model since it effectively acts as a “black box,” so 

analytical error propagation methods cannot be used. First, uncertainties of the ERA5 meteorological fields were calculated 

using the moving-block bootstrapping approach. To obtain the overall uncertainty, we used traditional bootstrapping 310 

techniques to resample the training dataset with replacement and train an ensemble of XGBoost models to obtain an uncertainty 
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in the model output based on changes in the training data given to the model. To maintain consistency, the same independent 

testing dataset was used to make the model predictions for each bootstrap. The standard deviation was calculated for each 

station and day across the different models and was then averaged over space and time to obtain the overall uncertainty. The 

uncertainties of the ML inputs and overall uncertainty from the retraining analysis are shown in Table 2. For the ML-based 315 

method, the overall uncertainty was estimated to be ±2.0 ppbv, which is lower than the propagated error for the CTM-based 

method. The overall uncertainty for the ML-based method does not directly account for uncertainty in the model inputs, but 

since traditional error propagation and summation of uncertainties are not possible for ML, this is our best estimate at how the 

training data can impact the predictions from the model. 

 320 

Table 2: Sources and magnitudes of uncertainty for the ML-based method. Uncertainties for the OMI SO2 VCDs and ERA5 

meteorology were determined using moving-block bootstrapping. The overall uncertainty for the ML-based method was determined 

using bootstrapping on the training dataset and retraining multiple XGBoost models to estimate the uncertainty in the model 

training. The uncertainty for the CEDS inventory was not able to be quantified (NQ). 

Variable Uncertainty 

OMI SO2 VCDs ± 0.67 DU 

ERA5 U-Wind ± 1.9 m s-1 

ERA5 V-Wind ± 1.9 m s-1 

ERA5 Boundary Layer Height ± 326 m 

CEDS Emissions NQ 

Overall Uncertainty ± 2.0 ppbv 

 325 

2.7 Evaluation metrics  

To quantify the discrepancies between the estimated surface SO2 concentrations from the CTM-based method, ML-

based method, and the CNEMC in situ measurements,surface SO2 concentrations and the estimates using the GEOS-

ChemCTM- and ML-based methods, we used several different metrics that were utilized infrom previous studies (e.g., Yang 

et al., 2023b; Zhang et al., 2021; Zhang et al., 2022) including the mean absolute error (MAE; Eq. 64), root mean squared error 330 

(RMSE; Eq. 75), and relative percent error (RPE; Eq. 86),  

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑆𝑒𝑠𝑡,𝑖 − 𝑆𝐶𝑁𝐸𝑀𝐶,𝑖|

𝑁
𝑖 ,           (64) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑆𝑒𝑠𝑡,𝑖 − 𝑆𝐶𝑁𝐸𝑀𝐶,𝑖)

2𝑁
𝑖   ,          (75) 

𝑅𝑃𝐸 =
1

𝑁
(∑ |

𝑆𝑒𝑠𝑡,𝑖−𝑆𝐶𝑁𝐸𝑀𝐶,𝑖

𝑆𝐶𝑁𝐸𝑀𝐶,𝑖
|𝑁

𝑖 ) × 100%,          (86) 

where N is the number of stations, Sest is the estimated surface concentration from the GEOS-ChemCTM- or ML-based method, 335 

and SCNEMC is the in situ surface concentration from the in situ measurements. Previous studies have also used slopes and 
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correlations from linear regression analyses between the estimated and in situ concentrations to assess the relative magnitudes 

and spatial distributions, respectively (e.g., Kharol et al., 2017; Lee et al., 2011; McLinden et al., 2014). In Sect. 3.1, results 

from the CTM-based method were validated and compared to previous studies using the full dataset since they are independent 

on in situ measurements. In Sect. 3.2, The GEOS-Chem and ML results from the ML-based method were validated and 340 

compared to previous studies using only the independent testing dataset, as well as to each other. Finally, in Sect. 4, The 

comparison between the two methods in our studyboth methods were directly compared were made using an the identical, 

independent testing dataset (i.e., retained from ML training) dataset such that the comparisons areis made on an identical truth 

dataset for the first time. 

3 Estimations of surface SO2 cConcentrations from OMI satellite data 345 

3.1 Evaluation of the GEOS-ChemCTM-based method 

Maps, histograms, and scatterplots of the annual mean surface SO2 concentrations from the GEOS-Chem CTM-based 

method and CNEMC in situ measurements are shown in Fig. 3. Both datasets have a similar spatial distribution with the highest 

concentrations in the North China Plain (Fig. 3), a highly industrialized region with many anthropogenic sources of SO2 (Fig. 

1b). The average correlation between the estimated and in situ concentrations is 0.58, indicating that the GEOS-ChemCTM-350 

based method can accurately distinguish between polluted and clean areas (Fig. 3). The GEOS-ChemCTM-based method also 

captures a 45% decrease in the concentrations from 2015-2018, matching the changealso seen in the data from the monitoring 

network (Fig. 3). The decrease in SO2 is due to the regulation of emissions, which has been previously reported in previous 

studies using satellite VCDs (Li et al., 2017; Wang et al., 2020a) and surface concentrations (Wei et al., 2023; Zhang et al., 

2021). Despite the similarities in the spatial distribution and temporal trends, the surface concentrations obtained from the 355 

GEOS-ChemCTM-based method are significantly underestimated. The slope between the estimated and in situ concentrations 

is 0.24 with an RPE around 75% (Fig. 3). The discrepancy in the estimated concentrations is also apparent in the frequency 

distributions with a peaks and mean values at lower concentrationsaround 1-3 ppbv and a smaller range compared tothan 

compared to around 5-10 ppbv from the in situ measurements. The surface concentrations from the CTM-based method 

concentrations from the GEOS-Chem method and CNEMC measurements were also separated by season, and averaged from 360 

2015-2018, fromand validated against in situ measurements for the first time 2015-2018. As shown in Fig. S13, the GEOS-

ChemCTM-based method was able to accurately capture the spatial distribution (r = 0.56) and seasonality of the in situ 

measurements with higher concentrations in the winter and lower concentrations in the summer but still suffered from 

underestimation (slope = 0.24; RPE = 76%).  

 365 
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Figure 3: Spatial distributions of the annual average surface SO2 concentrations from the CTM-based method (top row) and 

CNEMC in situ measurements (second row), histograms of the surface concentrations from each dataset with vertical bars 

representing the means (third row), and scatterplots between the two datasets (bottom row). Each column represents a different 

year in the study period. Histograms and scatterplots are binned every 1 ppbv. Each scatterplot is colored by the number of stations 370 
in each bin and includes a linear regression analysis with the best fit line (solid lines), best-fit equation, correlation coefficient, total 

number of stations, 1:1 line (black dashed line), MAE, RMSE, and RPE. 

 

Table 31 summarizes the results from the validation of annual mean concentrations from our study compared toand 

previous studies using the CTM-based method. These previous studies were primarily focused on estimating annual mean 375 
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surface SO2 concentrations using OMI VCDs and CTMs of varying resolution. The studies by Lee et al. (2011) and McLinden 

et al. (2014) each utilized the OMI band residual difference (BRD) SO2 product and used SVRs from coarse-resolution and 

high-resolution CTMs, respectively. McLinden et al. (2014) outperformed Lee et al. (2011) with slopes of 0.88 and 0.79, 

respectively, and correlations of 0.91 and 0.81, respectively. Similarly, our study and Kharol et al. (2017) both use the OMI 

PCA SO2 product and used SVRs from coarse-resolution and high-resolution CTMs, respectively. Our study had slightly worse 380 

performance than Kharol et al. (2017) with slopes of 0.24 and 0.39, respectively, and correlations of 0.58 and 0.61, respectively. 

These two sets of studies suggest that given the same OMI dataproduct, the model resolution may plays an important role in 

accurately estimatingaffect the accuracy of the estimated surface concentrations compared to the in situ observations, assuming 

that the surface monitoring data are accurate. Our sensitivity tests comparing the impact of spatial resolution on the accuracy 

of the CTM-based method (Fig. S5) showed a discrepancy in the correlations of 0.05 between GEOS-Chem and GEOS-CF 385 

compared to a difference of 0.03 between our study and Kharol et al. (2017); however, the sensitivity tests only showed a 

discrepancy in the slopes of 0.02 between GEOS-Chem and GEOS-CF, which is much smaller than the 0.15 difference in 

slopes between our study and Kharol et al. (2017). This suggests that the difference in spatial resolution of our CTM 

simulations may account for the discrepancy in the correlations between our study and Kharol et al. (2017), but not the slopes, 

indicating that there may be another factor contributing to the underestimation of the CTM-based method. Additionally, 390 

Pprevious studies have also shown that there are differences in SO2 VCDs as a result of across different retrieval algorithms 

and sensors (Wang et al., 2020a). The higher slopes from the BRD product may be due to a high bias in the retrievals in 

polluted areas whereas the PCA product is thought to be more accurate (Li et al., 2013). Additionally, the slope of 0.75 from 

Kharol et al. (2017) and the results from Zhang et al. (2021) are based on applyinguse a scaling factor onto the in situ 

measurements to eliminate some of the bias, so these results are not directly comparable to our study. 395 
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Table 31: Comparison of study design (satellite data, model name and resolution, study location and study period) and performance 

metrics (mean absolute error, root mean square error, relative percent error, slope, and correlation) between our study and previous 

studies that utilized the CTM-based method for annual mean surface SO2 concentrations. NR indicates that the value was not 

reported, and asterisks (*) indicate a scaling factor applied to the in situ surface concentrations. 400 

Study 
Satellite 

data 

CTM 

(resolution) 

Study 

location 

(time 

period) 

MAE  

[ppbv] 

RMSE  

[ppbv] 

RPE  

[%] 

Slope 

[-] 

Correlation 

[-] 

ThisOur 

study  

OMI 

SO2 

PCA 

GEOS-

Chem, 

(2.5° x 

2.0°) 

Eastern 

China 

(2015-

2018) 

5.7 6.3 74 0.23 0.58 

Lee et al. 

(2011) 

OMI 

SO2 

BRD 

GEOS-

Chem, 

(2.5° x 

2.0°) 

North 

America 

(2006) 

NR NR NR 0.79 0.81 

McLinden 

et al. 

(2014) 

OMI 

SO2 

BRD 

GEM-

MACH, 

(15 km) 

Canadian 

oil sands 

(2005-

2011) 

NR NR NR 0.88 0.91 

Kharol et 

al. (2017) 

OMI 

SO2 

PCA 

GEM-

MACH, 

(15 km)  

North 

America 

(2005-

2015) 

NR NR NR 0.39/0.75* 0.61 

Zhang et 

al. (2021) 

OMI 

SO2 

PCA 

MOZART, 

 1.9° x 2.5° 

Resolution 

China 

(2014) 
NR 3.9 19 0.83* 0.86 

 

 

Inaccuracies in the CTM-based method can be partially attributed to noise in the satellite data. Individual VCD 

retrievals have very large uncertainties estimated from 60 – 120% from Li et al. (2020a) and 136% from our bootstrapping 

analysis (Table 1)(60-130%; Li et al., 2020a), making it difficult to compare to the ground-based measurements on short 405 
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timescales;. Hhowever, the noise in the data can decrease with temporal averaging by a factor of n1/2 where n is the number of 

measurements being averaged (Krotkov et al., 2008). As a result, longer averaging periods (i.e., annual means) tend to have 

better performance than shorter timescales (i.e., seasonal means). The CTM resolution is also important for obtaining accurate 

surface concentrations. Coarse grid cells may smooth out SO2 hotspots potentially resulting in an SVR that is too small. This 

may account for the consistent underestimation observed from this method and the relatively better performance in Kharol et 410 

al. (2017) with a higher resolution CTM. Additionally, the consistent underestimation of the CTM-based method may be a 

result of either underestimated SVRs from the GEOS-Chem simulations or a low bias in the OMI PCA product. Figure S6 

suggests that the SVRs from GEOS-Chem are typically between 70-90% lower than observed SVRs calculated from CNEMC 

in situ surface concentrations and OMI VCDs, which is similar to the discrepancy in the surface concentrations from the CTM-

based method compared with the in situ measurements. Based on the error propagation from Sect. 2.6, the combined 415 

methodological uncertainty of the CTM-based method considering both the OMI retrievals and GEOS-Chem SVRs is ±4.9 

ppbv (Table 1). This is larger than most of the estimated surface concentrations shown in the histograms from Fig. 3, indicating 

the methodological uncertainty associated with this method is large and is highly affected by the accuracy of the input data.  

3.2 Evaluation of the machine learningML-based method  

The spatial distribution, frequency distribution, and validation scatterplots of the ML and CNEMC annual mean 420 

surface SO2 concentrations from the independent testing dataset are shown in Fig. 4. The ML model estimated the surface 

concentrations more accurately than the GEOS-ChemCTM-based method. The with an improved average spatial correlation 

wasof 0.77, and the ML predictions also matched the 45% decline from 2015 to 2018 observed from the CNEMC network. 

The most significant improvement compared to the GEOS-Chem method is thelower RPE of the ML method is much smaller 

at 33%, and anthe average slope ofis 0.69., These improvements indicate that the ML-based method has better accuracy in the 425 

spatial distributions and magnitudes compared to the CTM-based methodindicating both less discrepancy and underestimation, 

respectively. The ML estimated concentrations also have a 45% decline from 2015-2018, which is the same as the CNEMC in 

situ measurements (Fig. 4). The shapes of the ML-based frequency distributions also agree well with the CNEMC observations 

with peaks at the same concentrations (5-10 ppbv) and similar ranges (Fig. 4). The ML-derived and in situ concentrations were 

also assessed using the seasonal concentrations averaged from 2015-2018. As shown in Fig. S14, the ML-based method was 430 

able to capture the spatial distribution (r = 0.72), seasonality, and magnitudes (slope = 0.64; RPE = 36%) of the seasonal mean 

surface concentrations on the seasonal data more accurately than the GEOS-ChemCTM-based method. Additionally, the 

overall uncertainty of the ML-based method is much lower than the CTM-based method at around ±2 ppbv (Table 2). Since 

the ML predictions have a much larger magnitude, the methodological uncertainty for the ML-based method appears to be 

more reasonable compared to the CTM-based method. 435 
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Figure 4: Spatial distributions of the annual average surface SO2 concentrations from the ML-based method (top row) and CNEMC 

in situ measurements (second row), histograms of the surface concentrations from each dataset with vertical bars representing the 

means (third row), and scatterplots between the two datasets (bottom row). Each column represents a different year in the study 440 
period. Histograms and scatterplots are binned every 1 ppbv. Each scatterplot is colored by the number of stations in each bin and 

includes a linear regression analysis with the best fit line (solid lines), best-fit equation, correlation coefficient, total number of 

stations, 1:1 line (black dashed line), MAE, RMSE, and RPE. 
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Previous studies have shown that ML models can skillfully capture day-to-day variations in surface SO2 445 

concentrations in addition to the annual and seasonal means as summarized in Table 42 (e.g., Zhang et al., 2022; Yang et al., 

2023b). The estimated daily surface concentrations from our independent testing dataset had a slope of 0.67, correlation of 

0.76, and RPE of 58% compared to the in situ measurements, indicating accuracy good performance on short timescales (Fig. 

2; Table 24). The performance of our model was comparable to previous studies but had a slightly larger discrepancy (Table 

42). Our ML model only used five predictors compared to nine in Yang et al. (2023b) and 66 in Zhang et al. (2022), which 450 

may partially account for the increased discrepancy. Additionally, our study did not use any spatial or temporal proxies, which 

could also explain the slight reduction in performance compared to other studies that have used them.  
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Table 42: Comparison of study design (satellite data, machine learning model type and number of predictors, study location and 455 
study period) and performance metrics (mean absolute error, root mean square error, relative percent error, slope, and correlation) 

between our study and previous studies that utilized a ML-based method for daily surface SO2 concentrations. NR indicates that the 

value was not reported. 

Study 
Satellite 

data 

Machine 

learning 

model 

(number 

of 

predictors) 

Study 

location 

(time 

period) 

MAE  

[ppbv] 

RMSE  

[ppbv] 

RPE  

[%] 

Slope 

[-] 

Correlation 

[-] 

ThisOur 

study  

OMI SO2 

PCA 

XGBoost 

(5) 

Eastern 

China 

(2015-

2018) 

3.0 5.2 59 0.67 0.75 

Zhang 

et al. 

(2022) 

OMI SO2 

PCA 

LightGBM 

(66) 

Northern 

China  

(2013-

2019) 

NR 4.0 39 NR 0.94 

Yang et 

al. 

(2023b) 

Landsat-8 

visible and 

infrared 

reflectance 

Deep 

neural 

network 

multi-task 

learning 

(9) 

China 

(2019) 
3.5 5.7 47 0.76 0.85 

 

 460 

We performed a permutation importance analysis to assess how each predictor impacted the model predictions. Figure 

5a indicates that the PBLH boundary layer heights and OMI SO2 VCDs are the two most influential predictors followed by 

emissions and wind speeds. It is also worth noting that all of the predictors contribute toward the estimated surface 

concentrations with all permutation importance scores falling between 0.2 and 0.5 with none being unused. The boundary layer 

heights have a much smaller variation on short timescales compared to the OMI SO2 VCDs. Based on the bootstrapped 465 

uncertainties from Table 2, the relative standard deviations are 20% for boundary layer heights, and 136% for OMI VCDs. As 

a result, the ML model is likely able to learn the relationship between boundary layer height and surface SO2 concentrations 
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more easily than the OMI SO2 VCDs. Scatterplots between each ML predictor variable and the ML estimated surface SO2 

concentrations with Spearman rank coefficients (rs) are shown in Figs. 5b-f. The ML-derived SO2 concentrations increase with 

larger SO2 VCDs and emissions, as well as decrease with increasing PBLH boundary layer heights and wind speeds (Figs. 5b-470 

f). The surface concentrations and boundary layer heights alsoeach have a strong, inverse seasonality, as shown in Fig. S14 

and Fig. S15, respectively, so the strong temporal correlations between them also likely lead to a high permutation importance 

in the model. These trendsThe behavior of the ML predictions is are consistent with the expected physical relationships 

between each variable predictor and the surface SO2 concentrations in the real atmosphere. Large OMI VCDs and emissions 

indicateing areas of high SO2 loading, and elevated large PBLHs boundary layer heights and wind speeds lead to mixing and 475 

the dilution of SO2. The magnitudes of the rs values are small, indicating that the model may be making predictions based on 

the interactions between variables rather than any individual predictor. The small number of predictors used in our model 

allows us to link the ML predictions to known atmospheric processes, adding confidence to the model in its ability to accurately 

estimate the surface concentrations. 

 480 
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Figure 5: Evaluation of the daily ML-predicted surface concentrations using (a) permutation importance analysis, and scatterplots 

showing the ML predictor variables against the ML estimated surface SO2 concentrations for (b) ERA5 PBLH, (c) OMI SO2 VCDs, 

(d) CEDS SO2 emissions, (e) ERA5 U-wWind speedss, and (f) ERA5 V-wWinds speeds. Each scatterplot is colored by the number 485 
of stations in each bin and includes the Spearman rank coefficient (rs). 
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4 Comparing results from the GEOS-Chem and machine learning methodsDirect comparison of the CTM- and ML-

based methods  

The validation results from the GEOS-ChemCTM-based method in Sect. 3.1 were based on the full dataset since the 

methodology produces results thatestimated surface concentrations are independent of the in situ monitoring data;. Hhowever, 490 

the validation results from the ML-based method in Sect. 3.2 were only based on 10% of the data that was not used for training 

and reserved for an independent validation and not used for training. The comparison of these results using different datasets 

is still important but does not provide a direct comparison of their performance. Here, the GEOS-ChemCTM- and ML-based 

methods will be were directly compared using the same truth dataset over the same locations and study period for the first 

time. using tEach method was resampled to match the independent testing dataset (i.e., data retained from ML training) was 495 

used to assessand the relative performance of each method was assessed given identically sampled data. First, each technique 

waswill be validated at the CNEMC measurement sites in Sect. 4.1, similar to the analyses in Sect. 3. Then, both methods will 

be used to create gridded surface SO2 concentrations in Sect. 4.2 to assess how effective both methods are for filling in the 

gaps of the CNEMC monitoring network, one of the main motivations for estimating surface concentrations from satellite 

dataVCDs.  500 

4.1 Performance on independent data 

Scatterplots between the in situ concentrations and estimates of the surface concentrations from both the GEOS-

ChemCTM- and ML-based methods for the identical testing dataset are shown in Fig. 6. The surface concentrations estimated 

by the ML model are much closer to the in situ measurements (i.e., the 1:1 line) than the GEOS-ChemCTM-based method, 

which is consistent with the previous results in Figs. 3-4. For the annual mean concentrations, the ML-based method had an 505 

average slope of 0.69 and correlation of 0.77, compared to values of 0.18 and 0.30, respectively, from the GEOS-ChemCTM-

based method, respectively (Figs. 6a-d). The ML model also outperforms the GEOS-ChemCTM-based method on the seasonal 

data averaged over 2015-2018. The ML-based method had an average slope and correlation of 0.64 and 0.73, compared to 

0.19 and 0.31, respectively, from the CTM-based method (Figs. 6e-h). The GEOS-ChemCTM-based method performed worse 

on this smaller dataset compared to the full dataset in Sect. 3.1 due to less temporal averaging, leading to larger discrepancies 510 

with the in situ measurements. As shown in Fig. S5, Tthere is a smaller decrease in the performance of the ML-based method 

compared to the GEOS-ChemCTM-based method when assessing the performance forof individual seasons rather than the 

2015-2018 average for each season, as shown by Fig. S16. The slope and correlation for the ML-based method each decreased 

by around 0.1 to 0.59 and 0.67, compared to a decrease of 0.05 and 0.1 to 0.15 and 0.22, respectively, for the GEOS-

ChemCTM-based method, respectively (Fig. S516). Despite the smaller amounts of data in the independent dataset and for 515 

individual seasonsOn both annual and seasonal timescales, the ML-based method stillmore accurately captureds the spatial 

distribution and magnitudes of the surface SO2 concentrations, indicating better consistency with the CNEMC measurements 

than the compared to the GEOS-ChemCTM-based method. 
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 520 

Figure 6: Scatterplots showing the estimated surface SO2 concentrations from the GEOS-ChemCTM-based method (light blue 

squares) and ML-based method (dark blue triangles) against the in situ measurements from the independent dataset for (a-d) annual 

mean concentrations for each year in the study period, and (e-h) the 2015-2018 mean concentrations separated by season. Each 

scatterplot includes a linear regression analysis with the best fit line (solid lines), best-fit equation, correlation coefficient, total 

number of stations, 1:1 line (black dashed line), MAE, RMSE, and RPE. 525 

 

Time series of the annual and seasonal mean surface SO2 concentrations from the in situ measurements, and estimated 

concentrations from the GEOS-ChemCTM- and ML-based methods are shown in Figs. 7a-b. The ML estimated concentrations 

were much more accuratecloser to the CNEMC measurements than the GEOS-ChemCTM-based method compared to the 

CNEMC in situ concentrations. The overall mean ML concentrations had an average discrepancy of 5% with the in situ 530 

measurements, compared to a 58% discrepancy of 58% from the GEOS-ChemCTM-based method (Figs. 7a-b). The ML-based 

method also captured the same temporal variations as the in situ measurements each with a 44% decrease in concentrations 

from 2015-2018, and an average seasonal fluctuation by a factor of 1.9 between the winter and summer seasons (Figs. 7a-b). 

The GEOS-ChemCTM-based method also had good agreement in the temporal trends of the in situ measurements, but was 

not as good as the ML-based method with a 36% decrease from 2015-2018 and a seasonal fluctuation by a factor of 2.4 between 535 

the winter and summer, but not as good as the ML method (Figs. 7a-b). Since the CTM-based surface SO2 concentrations were 

underestimated, the magnitude of the temporal trends is much smaller than the observations and ML-based method, but the 

relative change was similar, as shown by Table S1. The decrease in SO2 from 2015-2018 detected by both methodsis is 

consistent with previous studies that showed a due to the regulation of reduction in emissions over China, which has been 

previously reported in previous studies usingshown using satellite VCDs (Li et al., 2017; Wang et al., 2020a), satellite-derived 540 

emissions (Fioletov et al., 2023), and surface concentrations (Wei et al., 2023; Zhang et al., 2021). Despite the similarities in 
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the overall year-to-year and season-to-seasonal variations, the greatest difference between the time series of the two methods 

was the magnitude of the concentrations, as shown in Sect. 3. 

 

 545 

Figure 7: Time series of the surface SO2 concentrations from the GEOS-Chem (CTM-based) method (light blue squares), ML-based 

method (dark blue triangles), and CNEMC in situ measurements (red circles) from the independent dataset as (a) annual and (b) 

seasonal means, as well as the slopes (pink x’s) and correlations (green plus signscrosses) from the (c) annual and (d) seasonal mean 

validations between the GEOS-Chem (CTM-based) method (dashed line) and ML-based method (solid line) with the in situ 

measurements. Error bars on the concentrations represent a 1 standard deviation uncertainty, and error bars on the slopes represent 550 
a 95% confidence interval based on the standard error of the linear regression fit. Data for all panels can be found in Table S1.  

 

To assess how the accuracy of each method changeds over time, time series of the slopes and correlations from the 

individual annual and seasonal comparisons between the estimated and in situ surface concentrations (from Fig. S165 and 

Table S1) are shown in Figs. 7c-d. For the entire study period, the performance of the ML-based method was much more 555 

accurate than the GEOS-ChemCTM-based method as indicated by the higher slopes and correlations (Figs. 7c-d). Additionally, 

the GEOS-ChemCTM-based method suffered from a decrease in accuracy over time alongside declining SO2 concentrations 

while the ML-based method remained stable from year to year (Figs. 7c-d). The accuracy of the CTM-based method is highly 

dependent on noise in the satellite data. Smaller datasets with less temporal averaging tend to have more noise, which leads to 

worse performance. Additionally, as SO2 loading decreaseds over China, it becomesbecame hardermore difficult for OMI to 560 

detect from the satellite, which may have introduceding additional noise into the VCDsover time as SO2 loading drops below 
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the detection limit of OMI. Comparatively, the ML-based method wasis more resistant to noise in the satellite data. As the SO2 

VCDs decreasedd, the ML predictions can becoame more reliant uponutilize other predictors such as meteorologyical and 

emissions predictors to estimate the surface concentrations, limiting the impact of the noisy satellite data (Figs. S176a-d). The 

accuracy of the ML-based method also hads a distinct seasonality with generally better performance in the winter and worse 565 

in the summer (Fig. 7d). The  boundary layer heightsPBLH and OMI SO2 VCDs wereare the dominant predictors in the winter, 

compared towhereas the CEDS emissions and PBLH boundary layer heights were the dominant predictors in the summer 

(Figs. S176e-h). The CEDS emissions are less consistent with the in situ measurements than the OMI VCDs with correlations 

rs values of 0.2215 and 0.289, respectively (Fig. 5), which may account for the increased discrepancy of the ML-derived 

concentrations during the summer.  570 

In summary, both methods the CTM- and ML-based methods captured the same similar temporal variations as the in 

situ measurements, but the ML-based method performed betterwas more accurate and had more stable performance over time 

compared tothan the CTM-based method, which had decreasing performance over time, likely due to increasedmore noise in 

the satellite data from decreasing SO2 loading.  

4.2 Comparison of gridded products 575 

Here, tThe GEOS-ChemCTM- and ML-based methods will bewere used to create high-resolution gridded products 

of surface SO2 concentrations at 0.25° x 0.25° horizontal resolution to assess how effective each technique is for filling in the 

gaps of the CNEMC air quality monitoring network. The gridded annual mean surface SO2 concentrations from the CTM- and 

ML-based and GEOS-Chem methods are shown in Fig. 8 at 0.25° x 0.25° horizontal resolution. Both methods producedhave 

similar spatial distributions to one another over land with the highest concentrations in the North China Plain and lower 580 

concentrations elsewhere. Over land, each method also has a spatial distribution similar to the retrieved SO2 VCDs from OMI 

as shown in Fig. S187a-d, further indicating that both methods effectively utilizing the OMI data. Over the oceans, there is 

disagreement in the spatial distributions with the ML-based method producing high concentrations and the CTM-based method 

producing low concentrations. Since the ML predictions are significantly affected by boundary layer heights (Fig . 5), the model 

is most likely incorrectly associating the low marine boundary layer with areas elevated pollutantsSO2, as suggested by the 585 

seasonally averaged ERA5 boundary layer heights in Fig. S15. typical of low continental boundary layers, as shown in Fig. 8. 

Inaccuracies over the oceans have also been reported in Kang et al. (2021) where ML was used to estimate surface 

concentrations of NO2 and ozone and wasere attributed to a lack of training data for the ML model in these locations. Since 

the ML model was only trained for conditions over land, it learned the relationship between high surface SO2 concentrations 

and low continental boundary layer heights during the winter months, it isbut was not able to makecould not accurately apply 590 

this knowledge predictions over the oceans. or other areas that are different from where the model was trained. As a result, the 

CTM-based method may be more reliable for estimating theproduce more reasonable spatial distributions of surface SO2 

concentrations in locations with a lack of surface observations where a ML model cannot be trained.  
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As shown in Fig. 8, both gridded products captured the decrease in annual mean concentrations from 2015 to 2018 

observed at the CNEMC sites. Both methods were also able to capture the seasonal variations in their gridded products with 595 

the highest concentrations in the winter and lowest concentrations in the summer, as shown in Fig. S198. The seasonal gridded 

surface SO2 concentrations were also still consistent with the OMI SO2 VCDs (Fig. S187e-h). Although it is not possible to 

validate the gridded products, since the ML-based method had more accurate spatial distributions, temporal variations, and 

magnitudes than the CTM-based method when validated at the CNEMC sites, the gridded product is likely to be more accurate 

as well, but only over land. The unexpected area of elevated concentrations over the oceans exposed a major limitation of the 600 

ML-based method and suggests that future work in improving the CTM-based method may be worthwhile, especially for 

estimating surface SO2 concentrations in locations where training data are not available. 

 

 

Figure 8: Maps of the annual mean surface SO2 concentrations in ppbv from the ML-based method (top row) and GEOS-605 
ChemCTM-based method (bottom row) over the study area at 0.25° x 0.25° horizontal resolution. Each column represents a different 

year of the study period (from left to right: 2015, 2016, 2017, and 2018).  

5 Conclusion and discussion 

In this study, Wwe estimated surface SO2 concentrations over eastern China from 2015-2018 using OMI satellite 

dataSO2 VCDs with two different methodologies. :First, we used simulated SVRs from the GEOS-Chem model to convert the 610 

OMI SO2 VCDs into surface concentrations using the CTM-based method. , andThen, we used an XGBoost model to 

statistically relate OMI SO2 VCDsretrievals, ERA5 meteorology, and CEDS SO2 emissions to in situ surface concentrations 

using the ML-based method. The novelty of this study includes a first time investigation of quantifying methodological 
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uncertainties for both the CTM- and ML-based techniques, a validation of seasonal mean surface concentrations from the 

CTM-based method, and a direct comparison between the two methods on the same truth dataset. 615 

We found that the ML-based method had better performancewas more accurate than the GEOS-ChemCTM-based 

method at estimating the surface concentrations when validated against in situ measurements from the CNEMC air quality 

monitoring network. The ML-based method had a discrepancy of ~30% with no significant bias (slope = 0.69), whereas the 

GEOS-ChemCTM-based method had a discrepancy of ~75% with a significant underestimation (slope = 0.24). Despite the 

underestimation, the GEOS-ChemCTM-based method also produced surface SO2 concentrations that had similar spatial 620 

distributions (r = 0.58) and temporal patterns as the CNEMC in situ measurements, similar to previous studies. using the CTM-

based method. To obtain a good estimate of the spatial distribution, tThe CTM-based method requires averaging data over 

seasonal or annualrelatively long timescales to reduce the noise in the satellite retrievals and obtain more accurate estimates 

of the surface concentrations., and  tThe underestimation of this method is likely due to the coarse resolution of GEOS-Chem 

smoothing out the SVR near SO2 hotspotsto a low bias in the simulated SVRs. The CTM-based method also suffered from 625 

decreasing accuracy over time due to decreasing SO2 loading over time since the retrieval that has a low signal-to-noise ratio. 

In addition to lower discrepancies, the ML-based method outperformed the CTM-based method in terms of the spatial 

distribution (r = 0.77) and temporal variations. The accuracysuccess of the ML-based method was especially apparent for 

smaller datasets that have limited temporal averaging and thus higher noise in thenoisier OMI data since the model can rely 

on other predictors, which was also indicated by the stable accuracy over time. Even though our ML model was only based on 630 

five input variables, the results were similar to previous studies that used far more predictors. The small number of predictors 

also allowed us to relate the model predictions and input variables to known physical processes such as pollutant emissions 

and dispersion, thus lending more confidence in our ML model as compared with other “black box” ML models. Finally, both 

methods were used to create high-resolution gridded products to provide estimates of surface SO2 concentrations in locations 

that do not have access to ground-based air quality monitoring measurements. This analysis exposed a major limitation in the 635 

ML-based method where it produced unrealistic spatial distributions of SO2 over the ocean since it was only trained on data 

from over the land. Despite the underestimation of the CTM-based method, there is still value in using it to estimate surface 

SO2 concentrations in locations where there is no training data available for developing ML-based techniques, but future 

additional steps should be taken to decrease the underestimation of this method.  

In addition to using these estimated surface concentrations for filling in the gaps of air quality monitoring networks, 640 

the gridded products can be used to investigate other chemical processes in the atmosphere related to SO2, such as estimating 

sulfuric acid concentrations and parameterizing aerosol nucleation and growth. New particle formation studies in China have 

shown that strong and frequent aerosol nucleation events occur in the presence of SO2 in both heavily polluted urban (Dai et 

al., 2017; Wu et al., 2007) and relatively cleaner rural locations (Dai et al., 2017; Du et al., 2022). Estimating surface SO2 

concentrations using these satellite-based methods may be helpful for predicting the locations and intensities of new particle 645 

formation events or estimating sulfuric acid concentrations, especially for locations without in situ measurements or air quality 

monitoring sites. 

Formatted: Subscript



29 

 

 In the future, these performance of these methods should be applied tomay be improved by higher-resolution satellite 

data, which may help to improve the results. OMI can only detect sources as small as 30 kt yr-1, but newer instruments like the 

Tropospheric Monitoring Instrument (TROPOMI; Veefkind et al., 2012) or can detect sources as small as 8 kt yr -1 (Fioletov 650 

et al., 2023). Newer polar orbiting satellites like TROPOMI andAdditionally, geostationary satellites like Tropospheric 

Emissions: Monitoring of Pollution (TEMPO; Zoogman et al., 2017) may offer future opportunities to estimate surface 

concentrations of air pollutants at even higher spatial and temporal resolution, which may improve the accuracy of both 

methods. This also may improve the accuracy of both methods, especially if higher-resolution CTMs are also utilized. 

Additionally, this study only focused on SO2, but both methods can also be applied to other air pollutants such as NO2, ozone, 655 

and particulate matter to see if the relative performance of each method is similar for other species. Since these two methods 

can utilize space-based measurements to fill in the gaps of ground-based air quality networks, investigating their relative 

performance as improvements are made to the satellite retrievalsdata, CTMs, and ML models is critical for monitoring near-

surface air pollution with high accuracy in locations where traditional observations are not possible.  
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