
Dear Referee, 

 

We would like to express our sincere gratitude to the reviewers for their careful reading of 

our manuscript and for providing valuable and insightful comments. We have carefully 

considered and responded to each point below and revised the manuscript accordingly based 

on these responses. A list of changes made in the manuscript (track-changes file) is 

described in red text. We hope that our explanations and revisions address all the concerns 

raised and meet the reviewers’ expectations. 

 

  



 

Referee 1 

 

Referee major comment 1: 

The "a priori" covariance S_a. It is unclear why the authors use a formulation used in 

previous studies when the DNN model provides the "a priori" estimates. Given that the 

DNN retrievals were developed using simulations, the authors could evaluate retrieval errors 

using an independent simulated dataset (or setting aside a fraction of the existing simulated 

dataset for evaluation) and calculate the associated S_a. This should be discussed in the 

manuscript. 

 

Author response: 

As you rightly pointed out, it is mathematically appropriate to use the estimation error of the 

DNN to construct the a priori error covariance matrix S_a. 

Directly estimating the retrieval error (i.e., the diagonal elements of S_a), however, is 

generally difficult for a typical DNN, and more advanced methods such as Quantile 

Regression Neural Networks (QRNN) (Amell et al., 2022) are required. Estimating the off-

diagonal elements of S_a, which represent the error correlations between different layers, is 

an even more challenging. We consider the estimation of S_a using DNNs to be an 

intriguing topic that could be pursued in future work. 

It might be also possible to construct S_a from the a priori dataset (i.e., the DNN training 

data). We use the cloud-resolving model NICAM as the a priori dataset in this study. That 

being said, since NICAM (or any other numerical model) is a limited representation of 

cloud statistics in the real atmosphere, it is not clear whether we can fully trust the error 

correlations derived from NICAM. For these reasons, we prefer a simple approach of 

treating S_a (specifically, σ_a and L) as a tuning parameter to be determined 

experimentally by varying σ_a in the range of 0.25 to 1 and L in the range of 1 to 10. 

Although the results don’t change significantly, we select the values that yield the best 

retrieval performance (i.e., best agreement with the observations). We incorporated this 

discussion into the manuscript (lines 264-268, 270-271). 

 

Amell, A., Eriksson, P., and Pfreundschuh, S.: Ice water path retrievals from Meteosat-9 

using quantile regression neural networks, Atmos. Meas. Tech., 15, 5701‒5717, 

https://doi.org/10.5194/amt-15-5701-2022, 2022. 

 

Referee major comment 2: 



The interpretation of results via Eq. (14). Specifically, the authors state that matrix S in Eq. 

(14) provides the error of the estimated variables. While this may be considered true at 

some general (and approximate) levels, S is more rigorously the posterior error covariance. 

If the "a priori" error covariance S_a is correctly estimated and the forward modelling errors 

are correctly specified, S is indeed the true error covariance. However, given that both S_a 

and the modeling errors may not be accurately estimated, covariance S given by Eq. (14) 

could be significantly different from the actual error covariance. Moreover, theoretically, the 

inclusion of observations always results in a smaller S, but practically the reduction in S 

depends on how accurate the forward models are. Therefore, the authors should clarify that 

the results shown in Fig. 8 are not errors in the true sense (estimate-true) because the true 

values are unknown. Instead, these results are theoretical estimates derived using Eq. (14), 

and this limitation should be discussed. 

 

Author response: 

As you correctly pointed out, this study does not provide rigorous estimates of the a priori 

error covariance matrix S_a and of the forward modeling error. The retrieval error 

covariance S, derived from Eq. (14), may therefore not accurately represent the true 

retrieval error. Care should be taken when interpreting the results shown in Fig. 8, which are 

based on these theoretically estimated errors. 

Since the true retrieval error is unknown, Fig. 8 is not intended for a quantitative assessment 

of the reduction in error by including brightness temperature observations. Figs. 8 (d), (e), 

(g), and (h) nonetheless meet physical expectations in a qualitative sense in that the 183±3 

GHz brightness temperature reduces estimated errors in upper-level cloud ice, while the 89 

GHz channel reduces errors in lower-level cloud ice. We revised the manuscript (lines 287-

288, 349-353) to incorporate these discussions. 

 

Referee major comment 3: 

The performance of the soft-sphere electromagnetic calculations is somewhat surprising. 

While soft-sphere calculations have been shown to work in some cases, it has also been 

shown that it is generally difficult (or impossible) to find assumptions about the density of 

hydrometeors that work for a wide range of frequencies (Kuo et al., 2016; Olson et al., 

2016). The backscattering properties of snow particles at W-band differ significantly from 

those of soft spheroids except for an equivalent density of 0.3 g/cm^3. Therefore, the fact 

that soft spheroids result in the best agreement should not be construed as a general 

indication that the soft-spheroid approach works in all cases. This is especially true given 

that the largest discrepancies occur at the low end of the brightness temperatures and that 



the radar model does not account for multiple scattering. This limitation needs to be 

acknowledged and discussed. 

 

Author response: 

We agree that “the fact that soft spheroids result in the best agreement should not be 

construed as a general indication that the soft-spheroid approach works in all cases.”. Figure 

11(g) shows that the soft-sphere assumption leads to the best reproducibility of brightness 

temperatures and radar reflectivity for clouds with large IWP, such as deep convective 

clouds. For clouds with moderate or smaller IWP, on the other hand, there is little difference 

in brightness temperature reproducibility among the tested particle models. In other words, 

it remains unclear whether the soft-sphere assumption is optimal for more common thin ice 

clouds. To avoid misunderstanding, we revised the manuscript (lines 21-23, 413, 426-430) 

to clearly state that the soft-sphere assumption is optimal for tropical deep convective clouds 

with large IWP but is not otherwise. 

As you pointed out, the results may be also influenced by several factors not yet considered, 

such as multiple scattering effects on radar reflectivity and the presence of supercooled 

liquid water. When these effects are fully considered, it remains uncertain whether the soft-

sphere assumption would still be the most appropriate even for clouds with large IWP. We 

would like to regard these issues as important topics for future study. 

We also acknowledge the fact that “it is generally difficult (or impossible) to find 

assumptions about the density of hydrometeors that work for a wide range of frequencies 

(Kuo et al., 2016; Olson et al., 2016).” As demonstrated by Liu et al. (2004), the scattering 

properties of various nonspherical particles can be approximated by varying the density of 

spherical particles. However, the best-fit density depends on frequency, making it difficult to 

approximate the scattering properties of nonspherical particles across a wide frequency 

range with a single-density sphere. The following two hypotheses may explain the 

reasonable performance of soft spheres for large IWPs: 

(1) As previously discussed, the soft-sphere assumption may have been appropriate for deep 

tropical convective clouds with very large IWP. This may be because an appreciable amount 

of graupel is formed by riming in deep convection. The scattering properties of graupel are 

likely better approximated by soft spheres than snowflakes and ice crystals. Olson et al. 

(2016) focused on stratiform precipitation, where scattering was likely dominated by 

aggregated snow particles, making the soft-sphere assumption less appropriate. The 

differences in cloud microphysics between convective and stratiform clouds may explain the 

contrasting results between the present and previous studies. We plan to apply our method 

to a wider range of cases in future work to further investigate this topic. 



(2) The validity of soft spheres may vary largely with the particle density model (m-D 

relation) in use. The present work adopts the m‒D relationship from Heymsfield and 

Schmitt (2013), which is different from the soft sphere model used in previous studies. Our 

study (Fig.11 (g)) suggests that this soft sphere model performed better than nonspherical 

particles from Liu (2008). The current finding does not imply that all soft sphere models, if 

any, are superior to non-spherical particle models used in previous studies. It also remains 

possible that other nonspherical particles, such as those used in Kuo et al. (2016) and Olson 

et al. (2016), would yield even better results. We plan to incorporate a range of nonspherical 

particle models, such as aggregated snow particles, in future studies. 

We added the suggested references and reflected these important discussions in the revised 

manuscript (lines 440-466). 

 

Referee minor comment 1: 

Eqs. (1) and (2). Delanoe et al. (2014) use a different formulation in which the shape (mu) 

dependence of the integrated properties is not a important as that of the generalized 

intercept that can be parameterized as a function of temperature.  The normalized PSD 

approach is likely to explain better variability in the PSD with a reduced number of 

parameters. 

Author response: 

Thank you for the valuable information. We would like to try to use the normalized PSD in 

future work. 

 

Referee minor comment 2: 

How is H in Eq. (13) calculated (i.e. finite-difference or automatic differentiation)? 

 

Author response: 

The Jacobian matrix H is calculated using the finite difference method by perturbing the 

IWC and Nt for each layer and performing iterative forward calculations. A supplementary 

explanation will be added to the main text (line 283). 

 

 

  



Referee 2 

 

Referee major comment 1: 

At these higher (89 GHz and higher) frequencies, the attenuation due to water vapor is 

significant.  In the tropical regions, the attenuation due to water vapor is significant (up to 

2-way path attenuation exceeding 8 dB; see Josset et al. 

10.1109/TGRS.2012.2228659).    And for radiative transfer at 89, 166 and the various 183 

GHz water vapor bands, the amount and vertical extent of the water vapor can reduce the 

overall scattering albedo and impact simulation of TB at these channels.   My question 

is:  How “accurate” is the specification of the ancillary data used (ECMWF-AUX)?  In your 

figure 2, these data appear to be used as a one-time “fixed” input, indicating that the water 

vapor profile stays fixed while you vary the ice particles in the forward OEM 

simulations.   Would you expect the water vapor profile to be the “same” across different 

types of ice particle shapes (dendrite, long column, etc.)?   While I am no expert in this 

topic, in nature water vapor and ice particle processes are likely correlated to some extent. 

 

Author response: 

We use the water vapor profile from ECMWF-AUX as a "fixed" input and optimize only the 

ice cloud profile. As shown in Figure 6 (b), the GMI Tb under clear-sky conditions is well 

reproduced by the simulated Tb using ECMWF-AUX, indicating a certain degree of 

confidence in the accuracy of ECMWF-AUX.  

Ideally, the water vapor profile should also be included in the state vector X of Eq. (10) and 

optimized by OEM framework. From a technical perspective, however, optimizing both the 

ice particle and water vapor profiles is computationally demanding, as the amount of 

information provided by satellite observations (i.e., the dimension of the observation vector 

Y in Eq. (10)) is too small relative to the number of unknown parameters to be retrieved 

(i.e., the dimension of the state vector X ). This would cause convergence issues in the 

retrieval. For thick ice clouds such as deep convective clouds, scattering signals from ice 

particles are expected to dominate brightness temperature despite the considerable 

absorption and emission signals from water vapor.  

We also conducted sensitivity tests assuming 100% or supersaturated humidity within the 

cloud, which showed little impact on the retrieval results. This practically justifies the 

simplified approach of optimizing only the cloud ice profile with a given water vapor profile 

in this study. We have added an explanation in the main text (lines 251-259, 311-314). We 

plan to revisit it in future studies using additional satellite observations, such as Doppler 

radar and submillimeter-wave measurements. 



We are aware that ice particle habits correlate with temperature and supersaturation. 

Assuming or mixing different particle shapes depending on the water vapor and temperature 

profiles will also be an important direction for future research. 

 

Referee major comment 2: 

The GMI has dual-polarized (V and H) capabilities at 89 and 166 GHz.  Previous studies 

have indicated polarization difference especially at 166 GHz (Gong et al. 2017, 

https://doi.org/10.5194/acp-17-2741-2017).  In your forward simulation, were polarized 

TB calculations performed?   The extent of V-H polarization difference may provide 

additional independent information to identify and/or constrain the type of ice particles 

appropriate for certain deep convective clouds. 

 

Author response: 

In the forward model used in this study, we assume randomly oriented particle models and 

therefore do not account for the differences between the V- and H-polarized brightness 

temperatures (Tb) caused by ice particle orientation. The use of Tb polarization differences 

is a very interesting topic, and we would like to address it as a subject for future research. 

We added a note in the manuscript (lines 167-169) to clarify that the effects of ice particle 

orientation were not considered in this study. 

 

Referee minor comment: 

Just FYI- The CloudSat-GPM (and CloudSat-TRMM) dataset has recently been updated to 

cover all current Release-5 CloudSat data.  While the data products themselves remained 

unchanged, the data cover up thru mid-2020.  Details are available at NASA’s Precipitation 

Processing System (https://arthurhou.pps.eosdis.nasa.gov) and details at: 

https://arthurhou.pps.eosdis.nasa.gov/Documents/CSAT_TRMM_GPM_COIN_ATBD_V

05.pdf. 

 

Author response: 

We would like to use the updated dataset in future work. 

  



Other minor revisions 

 

Lines 146, 390, 408, 431: Figure numbers were corrected. 

 

Figure 11: Figure title “(g)” was added. 

 

Line 435: “GMI” was corrected to “SSMIS”. 

 

Line 468: Section title was changed. 

 

Lines 562-567, 585-588, 620-623: Reference was corrected and added. 

 

 

Sincerely, 

Keiichi Ohara 

 


