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Abstract. Floods are among the most destructive natural hazards, causing extensive damage to companies through direct 

impacts on assets and prolonged business interruptions. The July 2021 flood in Germany caused unprecedented damages, 

particularly in North Rhine-Westphalia and Rhineland-Palatinate, affecting companies of all sizes. While the drivers of 15 

company damages from riverine flooding are well documented, the drivers of both direct and indirect damages during an 

extreme flash flood event have not yet been examined. To date, no study has examined the factors influencing company 

damages during such an extreme event. This study addresses this gap using survey data from 431 companies affected by the 

July 2021 flood. Results show that 62% of companies incurred direct damages exceeding €100,000. Machine learning models 

and Bayesian network analyses identify water depth and flow velocity as the primary drivers of both direct damage and 20 

business interruption. However, company characteristics (e.g., premises size, number of employees) and preparedness also 

play critical roles. Companies that implemented precautionary measures experienced significantly shorter business interruption 

durations—up to 58% for water depths below 1 m and 44% for depths above 2 m. These findings offer important insights for 

policy development and risk-informed decision-making. Incorporation of behavioralbehavioural indicators into flood risk 

management strategies and improving early warning systems could significantly enhance business preparedness. 25 
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1 Introduction 

Understanding the damage processes of companies during unprecedented floods is essential to increase their resilience and 

avoid catastrophic economic disruption. Unprecedented floods are particularly destructive, as management measures often fail 35 

during events of a magnitude not experienced before by locals (Kreibich et al., 2022). In Europe, unprecedented flash floods 

caused €14.36 billion of damage in Spain in October 2024 (Munich Re, 2025) and about €33 billion of damage in Germany in 

July 2021 (Munich Re, 2022), additionally, such unprecedented floods are expected to become more frequent with increasing 

climate change (Blöschl et al., 2017; Hirabayashi et al., 2013; Merz et al., 2021).  

Damages to companies constitutes a significant portion of the total flood loss (Schoppa et al., 2020). Direct damages arise 40 

from the immediate physical contact of the flood water with assets, such as damage to buildings, equipment, goods, and stock.  

The June 2013 flood in Germany revealed that 32.4% of the total damage in Bavaria and 13.9% of the total damage in Saxony 

were attributed to companies, respectively (Thieken et al., 2016).  On the other hand, indirect damages stem from disruptions 

caused by the flooding, such as business interruptions and restrictions (Jongman et al., 2012).  In surveys conducted after the 

floods, 88% of affected companies reported that they had been significantly affected by business interruptions (Thieken et al., 45 

2016). The severity of indirect damages can be equally significant and, in the case of rare and high-impact flood events, may 

even exceed , often reaching a magnitude comparable to direct damages for low probability events (Koks et al., 2015; 

Pfurtscheller and Vetter, 2015; Sieg et al., 2019). For instance, Pfurtscheller and Vetter (2015) reported that indirect damages 

are often underestimated by companies, despite sometimes exceeding direct damages during rare flood events. Using an Input-

Output (IO) model, Li et al., (2018) showed that business interruptions and operational restrictions in Shanghai’s 50 

manufacturing firms can propagate along interlinked value chains, with indirect damages under extreme storm flood scenarios 

reaching up to employed an Input-Output (IO) model to evaluate indirect economic losses among manufacturing firms in 

Shanghai, capturing how business interruptions and operational restrictions affected upstream and downstream sectors through 

interlinked value chains. Under extreme storm flood scenarios, the estimated indirect damage could reach up to $60 billion. 

Similarly,  Sieg et al., (2019) employed used a supply-side IO model and identified the manufacturing, and financial sectors 55 

as particularly vulnerable to indirect damages. Koks et al., (2015) revealed that for rare, low-probability but high-impact events, 

indirect damages often surpass direct damages.   Altogether, these , these studies underscorestudies underscore that indirect 

damages, especially during low-probability, high-impact flood events, can be substantial and warrant systematic investigation 

to better understand the processese relevance in deciphering the processes contributing to the direct and indirect damages to 

companies.. 60 

The process of understanding flood damage to companies is complex due to their heterogeneous nature and is influenced by 

several factors. Kreibich et al. (2010) examine factors such as water depth, sector, company size, precautionary measures, and 

contamination to assess direct flood damage. While the study provides valuable insights, it acknowledges that the impact of 
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precautionary measures and contamination on flood damages is not fully understood. Seifert et al. (2010) estimated direct 

flood damage at the mesoscale and highlighted the need for a deeper understanding of damage processes in high water depth 65 

scenarios. Nafari et al. (2016), focusing on Australian commercial structures, demonstrated that considering building 

characteristics in addition to water depth led to improved model performance, with lower bias and mean absolute error. 

Schoppa et al. (2020) analyzed comprehensive survey datasets collected after major flood events between 2002 and 2013 in 

the Danube, Elbe, Oder, and Rhine catchments. Their study identified water depth and precautionary measures as primary 

factors for building damage, while damage to equipment, goods, and stock was strongly influenced by company characteristics 70 

such as sector, size, and precautionary measures. Schoppa et al. (2022) developed a socio-hydrological model using water 

depth and precautionary measures for estimating building damage. The study revealed that companies in Dresden, Germany 

reduced vulnerability through the implementation of precautionary measures. Significant progress has been made in identifying 

the variables that have explanatory power in estimating direct damages to companies. While both the 2002 and 2021 floods in 

Germany were considered unprecedented in different ways, the 2021 event stands out due to its exceptional event magnitude, 75 

rapid onset, and high death toll (Rhein and Kreibich, 2025; Thieken et al., 2023a). Given its rare nature and distinct damage 

dynamics, this study focuses specifically on the 2021 flood event to better understand the factors contributing to direct 

damages. 

Deciphering the factors of indirect damages, such as business interruption and business restriction, is also crucial for mitigating 

their contribution to the overall economic consequences. Yang et al. (2016) modeled business interruption losses using water 80 

depth data collected from business surveys conducted after the Tokai Heavy Rain in Japan. The model showed a better fit for 

reported losses at lower inundation levels, but it overestimated losses in areas with deeper inundation. Sultana et al. (2018) 

highlighted that company-specific attributes, such as the number of employees and emergency measures, often play a more 

critical role in estimating business interruption costs than water depth. Endendijk et al. (2024) investigated the relationship 

between flood characteristics and business interruptions using post-disaster survey data from the 2021 flood in the Netherlands. 85 

They identified water depth, delayed compensation, and regional connectivity as critical factors affecting business interruption 

duration, while building-level mitigation measures were found to have limited influence, highlighting an area for further 

exploration. The study by Kabirzad et al. (2024) found that proximity to the river and the profitability of business premises 

were significant factors contributing to indirect flood damages to company buildings in Peninsular Malaysia. Sakai and Yao 

(2023) underscore the vulnerability of small companies, which suffer disproportionately higher damages relative to turnover 90 

compared to larger companies. Business interruption, largely driven by temporary closures and reduced sales, is identified as  

the most significant damage across sectors. Despite these advancements, a significant research gap persists in understanding 

the factors influencing indirect damages during unprecedented flood events.  

Adaptation to flood risk encompasses a range of measures aimed at reducing vulnerability and exposure to flood impacts. 

These can be broadly categorized into short-term emergency responses, such as evacuation or temporary protection, and long-95 

term precautionary strategies, including elevating buildings or relocating critical infrastructure (Neise and Revilla Diez, 2019). 

While emergency measures require a degree of preparedness, they are reactive and distinct from long-term adaptation strategies 
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(Wutzler et al., 2022). Understanding the effectiveness of adaptation behaviors during unprecedented events is crucial in 

determining whether these measures can mitigate damages or fail. Kreibich et al. (2007) noted that the effectiveness of such 

measures depends on factors like prior flood experience, emergency plans, and early warning systems. Jehmlich et al. (2020) 100 

further investigated the drivers behind flood-adaptive behavior and reported that firsthand flood experience increases the 

likelihood of companies adopting precautionary measures. However, the lack of property ownership can hinder property -level 

adaptation, as companies are less inclined to invest in resilience measures for rented properties. In fact, Hudson et al. (2022) 

found only little difference between the adaptation of small and medium companies on the one hand and private households 

on the other hand. Leitold et al. (2021) examined adaptation strategies and found that the manufacturing sector tends to adopt 105 

reactive or temporary measures rather than long-term, proactive strategies. Wutzler et al. (2022) identified perceived low self-

efficacy as a barrier to proactive adaptation. The study also noted that property ownership plays a significant role, with property 

owners more likely to adopt adaptive measures than tenants. Companies with extensive flood experience and low response 

costs are more likely to engage in proactive adaptation. Furthermore, Hudson and Thieken (2022) investigated the potential 

presence of moral hazard, suggesting that increased insurance coverage may discourage precautionary measures. Using 110 

German data between 2002 and 2013, it was found that there’s an indication after 2005 that insurance coverage lowered 

businesses’ intentions to employ more adaptation measures. Despite these findings, the interaction between adaptation 

strategies and flood damage remains unclear during rare unprecedented events. 

This study aims to build on existing advancements to gain a deeper understanding of the processes underlying both direct and 

indirect flood damages, particularly in the context of rare unprecedented events. To achieve this, we analyze data collected in 115 

the aftermath of the 2021 flood in Germany. The objectives of this study are: 

1. To assess the type and extent of flood damage across companies of varying sizes. 

2. To identify the key factors influencing direct damages (to buildings, equipment, and goods & stock) and indirect damages 

(particularly business interruptions and restriction durations) using machine learning techniques (Random Forest, Elastic 

Net, and XGBoost). 120 

3. To develop a multivariate probabilistic model using Bayesian networks to derive predictive density estimates of damages, 

including median values and uncertainty ranges, across a range of hazard and exposure scenarios. 

2 Data and Methods 

2.1 Survey data 

The July 2021 flood event in Germany is widely seen as an unprecedented disasterThe July 2021 flood in Germany has been 125 

widely described as unprecedented in terms of its hydrological magnitude, spatial extent, exceeding the scale and severity of  

previously recorded floods in the affected regions (Mohr et al., 2023; Thieken et al., 2023b; Zander et al., 2023) and: it caused 

an estimated €33.1 billion in direct damages and €7.1 billion in indirect damages (Trenczek et al., 2022). In the affected regions 
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of North Rhine-Westphalia (NRW) and Rhineland-Palatinate (RLP), thousands of companies were severely impacted. 

According to BMI & BMF (2022), approximately 7,000 companies in NRW and 3,000 in RLP were affected by the flood. The 130 

German Insurance Association (GDV, 2023) reported 27,000 insured claims from companies, with claims expenditures 

totaling €2.4 billion in NRW and €0.9 billion in RLP.  

To assess the impacts of the July 2021 flood on companies in NRW and RLP, a telephone survey was conducted between 

November 8, 2022, and January 31, 2023. The goal of the survey was to collect data on damages, influencing factors, the 

reconstruction process, and the preparedness and precautionary measures undertaken by the companies. The survey 135 

questionnaire was adapted from former surveys (Kreibich et al., 2007; Thieken et al., 2017) to ensure consistency in data 

collection. A total of 434 companies participated in the survey, with an average interview duration of 42 minutes. The response 

rate was approximately 14%, with 608 refusals, 76 cancelled or unarranged surveys, and 1,886 companies that could not be 

reached by telephone. Three responses, which were referred to multiple business locations, including educational institutions 

and administrative buildings, were excluded from the analysis, which ultimately included 431 valid responses. Of the 140 

companies surveyed, 258 (60%) were located in NRW and 173 (40%) were based in RLP.  

Table 1: List of factors influencing direct and indirect flood damages to companies. The variable 

type “𝒄” stands for continuous, “𝒐” for ordinal and “𝒏” for nominal. The overview of all the 

variables is provided in Further details for the variables, see Appendix Table A1. 

 Abbreviation Variable Type Range 

H
a

za
rd

 wd Water depth 𝑐: 1 cm to 963 cm above ground 

d Inundation duration 𝑐: 1 to 1200 hours 

v Velocity 𝑜: 1 = low flow to 3 = torrential flow 

con Contamination 𝑜: 0 = none to 4 = heavy contamination 

em
er

g
en

cy
 m

ea
su

re
s 

wt Warning lead time 𝑐: 0 to 336 hours 

ws Early warning source 𝑜: 0 = no warning to 4 = official warning through authorities 

ew Early warning received 𝑛: 0 = no, 1 = yes 

me 
Emergency measures 

undertaken 
𝑛: 0 = no, 1 = yes 

ep Emergency plan 𝑛: 0 = no, 1 = yes 

kh 
Knowledge about 

hazard 
𝑛: 0 = no, 1 = yes 

ms 
Emergency measures 

success 
𝑜: 

0 = no measure undertaken, 1 = completely ineffective to 3 = very 

effective 

p
re

ca
u

ti
o

n
 

fe Flood experience 𝑜: 0 = no experience to 3 = recent flood experience 

pr Precaution 𝑜: 0 = no precaution, 1 = medium precaution, 2 = Good precaution. 

in Insurance 𝑛: 0 = no, 1 = yes 

co
m

p
a

n

y
 

ch
a

ra
ct

e

ri
st

ic
s sp Size premise 𝑐: 100 to 4,400,000 m2 

sec Sector 𝑛: 
1 = Agriculture, 2 = Manufacturing, 3 = Commerce, 4 = Financial, 5 = 

Private and public services 
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ss Spatial situation 𝑜: 
1 = several buildings, 2 = entire building, 3 = one or more floors, 4 = 

less than one floor 

own Ownership 𝑛: 1 = building owned, 2 = rented, 3= partly owned/ partly rented 

emp Number of employees 𝑐: 1 to 920 

d
a

m
a

g
e 

ty
p

e 

bdam 
Relative damage to 

building 
𝑐: degree of damage between 0 and 1 

edam 
Relative damage to 

equipment 
𝑐: degree of damage between 0 and 1 

gsdam 
Relative damage to 

goods & stock 
𝑐: degree of damage between 0 and 1 

bid 
Business interruption 

duration 
𝑐: 

0 to 540 days (cases with 540 days reflect the end of the survey. 

Durations beyond that point are not available as numeric value) 

brd 
Business restriction 

duration 
𝑐: 

0 to 540 days (cases with 540 days reflect the end of the survey. 

Durations beyond that point are not available as numeric value) 

 145 

The surveyed variables were grouped into five categories: hazard, emergency measures, precaution, company characteristics, 

and damage type. The variable types and ranges are outlined in Table 1. Table A1 provides an overview of all variables, 

including survey questions, and response options. All variables were included in the data-driven analysis to identify the most 

influential factors for each damage type. We analyzed the damage types separately for two main reasons. First, this approach 

allowed us to capture asset-specific processes and identify distinct drivers for each category (e.g., buildings, equipment, goods 150 

& stock, business interruption), which can behave very differently during a rare flood event. Second, the dataset had varying  

levels of completeness across damage types: some companies reported only building damages, while others provided data on 

equipment or business interruption. By analyzing them separately, we were able to make use of larger and more reliable 

subsamples, rather than restricting the analysis to the smaller set of companies with complete data across all damage types. 

For each damage type, the percentage of missing values per variable was less than 10%, as some companies did not provide 155 

responses (Fig. S1). To avoid reducing the sample size, we employed the 𝑘-nearest neighbor technique with 𝑘 = 5 (Zhang and 

Tian, 2025) to impute the missing data across the dataset.  We used the Gower distance to calculate similarity between 

observations, which is ideal for a dataset with different types of variables (continuous, nominal, and ordinal) (Kowarik and 

Templ, 2016). We calculated the average Gower distance between each row with missing data and its 5 nearest neighbors. The 

mean of these distances across all rows with missing values was approximately 0.09, indicating that imputation was performed 160 

among observations that were relatively similar in terms of their characteristics. Also, we conducted a sensitivity analysis 

using 𝑘 values of 1, 3, 7, and 9, and the findings were insensitive to the choice of 𝑘. 

2.2 Variable Selection 

Flood damage processes vary by region, flood type, and asset type (Mohor et al., 2020; Sairam et al., 2019; Wagenaar et al., 

2018). Since our analysis focuses on flash floods and covers five different asset types, we use a data-driven approach to identify 165 
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which variables strongly influence these diverse outcomes. We adopt a feature selection approach that is robust to 

multicollinearity and capable of capturing nonlinear relationships and interactions. To this end, we employ three 

complementary machine learning techniques: Elastic Net (EN), Random Forest (RF), and Extreme Gradient Boosting 

(XGBoost). EN efficiently handles multicollinearity and performs variable selection through regularization; RF captures 

nonlinear relationships and complex interactions via ensemble decision trees; and XGBoost, a gradient boosting algorithm, 170 

provides high predictive accuracy and models intricate dependencies. By combining the strengths of these methods, we ensure 

a comprehensive assessment of variable importance. To mitigate potential biases from relying on a single model, we aggregate 

the variable importance scores across all three methods to derive a final ranking.To derive the drivers of flash flood losses, 

this study adopts a data-driven feature selection approach to the empirical data. Feature selection involves identifying variables 

that have the highest influence on the target variable (i.e. relative loss). We train multiple models – nonlinear models: Random 175 

Forest (RF), Extreme Gradient Boosting (XGBoost), and linear model: Elastic Net (EN).  

RF is an ensemble machine learning method primarily used for classification and regression tasks, developed by Breiman, 

(2001). RF generates an ensemble of decision trees, each trained on a random subset of the data using bootstrap sampling. At 

each node within these trees, a random subset of features is considered for splitting. The final prediction for a given input is 

obtained by averaging the predictions from all individual trees. This approach helps RF reduce overfitting and enhances the 180 

model's generalization ability. XGBoost, similarly to RF, is an ensemble learning algorithm that benefits from a decision tree-

based structure. However, the key difference compared to RF is that in XGBoost, each tree corrects the errors from the previous 

ones. The process starts with a simple model and iteratively adds trees that focus on the residuals or errors made by the existing 

ensemble. With its efficient implementation, XGBoost demonstrates superior performance and handles large-scale data more 

effectively than RF (Chen and Guestrin, 2016b). While RF and XGBoost are non-linear models, EN is a regularization 185 

technique used in linear regression, combining both Lasso (L1) and Ridge (L2) regularization penalties. It effectively addresses 

multicollinearity in datasets by shrinking the less influential predictors toward zero (Lasso) while additionally providing some 

degree of regularization to prevent overfitting (Ridge). EN's ability to handle correlated features and select relevant predictors 

makes it a valuable tool in regression tasks (Zou and Hastie, 2005). 

During training, we employed a nested cross-validation framework with 10 splits and 10 repeats, resulting in a total of 100 190 

evaluations. We selected the best set of hyperparameters, which obtained the least mean absolute error, which was then applied 

to the final feature selection. From each resulting final model, we derived the feature importance. Next, we calculated each 

variable's weighted feature importance and overall rank. The final selection of the variables (Fig 1) is elaborated upon in the 

results section.   

 195 

2.1  Formatted: Normal, Space Before:  0 pt, Line spacing: 
single
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2.1.22.2.1 Elastic Net  

Elastic Net (EN) balances variable selection and model fitting, making it suitable for handling multicollinearity (Tay et al., 

2023). It combines the strengths of both Lasso and Ridge regression. Lasso promotes sparsity by driving less important 

coefficients to zero, effectively performing variable selection. Whereas, Ridge shrinks all coefficients to stabilize the model in 200 

the presence of highly correlated variables. The EN objective function is given by (Zou and Hastie, 2005): 

𝑂𝑏𝑗(𝛽) =
1

2𝑛
∑(𝑦𝑖 − 𝑋𝑖𝛽)2

𝑛

𝑖=1

+ 𝛼 (𝜆 ∑|𝛽𝑗|

𝑝

𝑗=1

+
1 − 𝜆

2
∑ 𝛽𝑗

2

𝑝

𝑗=1

) (1) 

Where 𝑛 is the number of samples (excluding one fold for cross-validation), 𝑝 is the number of variables (19 in this case), 𝑦𝑖  

represents the response for 𝑖𝑡ℎ sample, and 𝑋𝑖 is the corresponding variable vector. The coefficient 𝛽𝑗 represents the effect of 

the 𝑗𝑡ℎ  variable. The parameter 𝛼 controls the strength of the regularization, and 𝜆 determines the balance between Ridge 

(𝜆 = 0) and Lasso (𝜆 = 1) regression. Optimal values of 𝛼 and 𝜆 were obtained by minimizing 𝑂𝑏𝑗𝐽(𝛽). We implemented 205 

EN using the ElasticNet package from scikit-learn python library (Pedregosa et al., 2011). The optimal hyperparameters were 

selected based on the lowest mean absolute error (MAE) obtained from the nested cross validation (see Text S1). The use of 

MAE as the objective function treats residuals symmetrically, ensuring that both small and large errors are proportionally 

considered. This metric is robust to outliers and provides an interpretable measure of error in the same units as the response 

variables i.e., relative loss (0–1) and duration (0–540 days). Predictions for the test dataset (𝑋𝑡) were computed as: 210 

𝑦𝑡 = 𝑋𝑡𝛽 (2) 

Where 𝑦𝑡  represents the predicted values. Elastic Net is a powerful linear model that is effective in handling multicollinearity. 

However, in its standard application without explicit transformations, it primarily captures linear associations and cannot 

model complex nonlinear relationships directly. 

2.1.32.2.2 Random Forest  

Random Forest (RF) is an ensemble learning method that improves predictive performance and prevents overfitting by 215 

aggregating multiple decision trees (Breiman, 2001). Individual decision trees tend to have high variance due to their sensitivity 

to data variability. RF addresses this limitation by constructing multiple decision trees, each trained on a bootstrap sample of 

the data (Aria et al., 2021). Additionally, at each root node, RF selects a random subset of variables for splitting, reducing 

correlation among trees and enhancing generalization.  

We implemented RF using the RandomForestRegressor package from scikit-learn python library (Pedregosa et al., 2011). A 220 

randomized search was conducted over predefined hyperparameter ranges, including the number of trees, maximum tree depth, 

and the number of variables per split (see TextS1). Using the optimal hyperparameters, predictions for the test dataset (𝑋𝑡) 

were obtained by averaging predictions from all individual trees: 
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𝑦𝑡 =
1

𝑅
∑ 𝑓𝑟(𝑋𝑡)

𝑅

𝑟=1

 (3) 

Where 𝑓𝑟(𝑋𝑡) is the prediction from tree 𝑟, and 𝑅 is the total number of trees. RF is well-suited for heterogeneous data and 

often outperforms linear model (Schoppa et al., 2020; Sieg et al., 2017). However, it can be computationally expensive for 225 

large datasets with numerous variables and deep trees.  

2.1.42.2.3 XGBoost   

XGBoost (Extreme Gradient Boosting, XGB) is an optimized gradient boosting algorithm designed for speed and efficiency 

(Chen and Guestrin, 2016). XGB also handles missing values, whereas RF requires explicit imputation. The objective function 

for XGB is defined as (Chen and Guestrin, 2016): 230 

𝑂𝑏𝑗𝐵 = ∑ 𝐿(𝑦𝑘 , 𝑦𝑘
𝐵)

𝑢

𝑘=1

+ ∑ Ω(𝑓𝑏)

𝐵

𝑏=1

 (4) 

Where 𝐿(𝑦𝑘 , 𝑦𝑘
𝐵) is the loss function measuring the difference between the actual value 𝑦𝑘 , and the predicted value 𝑦𝑘

𝐵  at 

boosting iteration 𝐵. The updated prediction for the 𝑘𝑡ℎ sample after 𝐵 iterations is: 

𝑦𝑘
𝐵 = 𝑦𝑘

𝐵−1 + 𝑓𝐵(𝑥𝑘) (5) 

Where, 𝑦𝑘
𝐵−1 is the prediction for the 𝑘𝑡ℎ sample after 𝐵 − 1 iterations. 𝑓𝐵(𝑥𝑘) is the prediction made by the model at iteration 

𝐵 for the 𝑘𝑡ℎ sample. Unlike RF, which constructs trees independently and in parallel, XGB builds trees sequentially, where 

each new tree corrects the residual errors of the previous ones (Narin, 2025). Additionally, XGB incorporates both Lasso and 235 

Ridge regularization to control overfitting (Ma et al., 2021). The regularization term Ω(𝑓𝑏) for the 𝑏𝑡ℎ model is defined as:  

Ω(𝑓𝑏) = 𝛾𝑇 +
1

2
Λ ∑ 𝑤𝑚

2

𝑇

𝑚=1

 (6) 

Where 𝑇  is the number of terminal nodes in the tree 𝑓𝑏 . 𝛾 is a regularization parameter that penalizes the number of 

leaves in the tree (encouraging simpler trees with fewer leaves). 𝑤𝑚 represents the weight associated with the 𝑚𝑡ℎ leaf of 

the tree. Λ is a regularization parameter that penalizes the squared weights of the leaves. This term helps prevent overfitting 

by controlling the weights of the leaves. We implemented XGB using the XGBRegressor package from scikit-learn python 240 

library (Pedregosa et al., 2011). Predictions for test dataset (𝑋𝑡) using optimal hyperparameter selection were computed as: 

𝑦𝑡 = ∑ 𝑓𝑏(𝑋𝑡)

𝐵

𝑏=1

 (7) 
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2.1.52.2.4 Variable importance 

To assess the importance of each predictor variable importance across the three models, we used the Permutation Variable 

Importance (PVI) technique. PVI quantifies the contribution of each variable by measuring the change in model performance 

when its values are randomly permuted while keeping all others unchanged (Breiman, 2001) (Breiman, 2001). Variables that 245 

cause a greater increase in error upon shuffling are considered more important (Fisher et al., 2019). This approach is model-

agnostic and provides a consistent framework for comparing variable importance across different predictive models. 

Each model was developed using nested a cross-validation framework (10 splits × 10 repeats = 100 evaluations). For each 

damage type, the median MAE from cross-validation was computed for each model, denoted as 𝑀𝐴𝐸𝐸𝑁 , 𝑀𝐴𝐸𝑅𝐹 , and 

𝑀𝐴𝐸𝑋𝐺𝐵. For each damage type, PVI scores of for all variables in each model were rescaled to a range of 0 to 100 using min-250 

max normalization. To account for differences in model performance, the PVI scores from each model were weighted 

according to the respective model weights as follows: The median MAE from nested cross-validation was obtained for each 

model, denoted as 𝑀𝐴𝐸𝐸𝑁, 𝑀𝐴𝐸𝑅𝐹 , and 𝑀𝐴𝐸𝑋𝐺𝐵. The model weights were computed as follows: 

𝑊𝑒𝑖𝑔ℎ𝑡𝑀𝑜𝑑𝑒𝑙𝐸𝑁 =

1

𝑀𝐴𝐸𝑀𝑜𝑑𝑒𝑙𝐸𝑁

𝑇𝑜𝑡𝑎𝑙
, where 𝑇𝑜𝑡𝑎𝑙 =

1

𝑀𝐴𝐸𝐸𝑁
+

1

𝑀𝐴𝐸𝑅𝐹
+

1

𝑀𝐴𝐸𝑋𝐺𝐵
, 𝑊𝑒𝑖𝑔ℎ𝑡𝑅𝐹 =

1

𝑀𝐴𝐸𝑅𝐹

𝑇𝑜𝑡𝑎𝑙
, 

𝑊𝑒𝑖𝑔ℎ𝑡𝑋𝐺𝐵 =

1

𝑀𝐴𝐸𝑋𝐺𝐵

𝑇𝑜𝑡𝑎𝑙
 

(8) 

Where, 𝑇𝑜𝑡𝑎𝑙 =
1

𝑀𝐴𝐸𝐸𝑁
+

1

𝑀𝐴𝐸𝑅𝐹
+

1

𝑀𝐴𝐸𝑋𝐺𝐵
. The PVI scores from each model are weighted based on the respective model 

weights. The final variable importance is was cthe omputed as the sum of the weighted PVI scores across all three models, 255 

ranging from 0- to 100. If all three models identify tified the same variable as the most important, its score reaches importance 

would be 100. Variables were then ranked according to these combined weighted scores (key variables are shown in Figure 

5).Based on the combined weighted importance scores, variables were ranked accordingly.  

2.22.3 Bayesian Networks for multivariate probabilistic modeling 

Bayesian networks (BNs) are probabilistic graphical models that represent dependencies among multiple variables and enable 260 

multivariate predictive density estimation (Sucar, 2021). In this study, BNs are employed to complement the machine learning 

models by providing a probabilistic framework for analyzing multivariate dependencies and scenario-based inference. Whereas 

EN, RF, and XGBoost primarily emphasize predictive accuracy and variable ranking, BNs explicitly capture conditional 

dependencies among variables. This is particularly valuable in flood damage analysis, where damage outcomes result from 

complex interactions between hazard intensity, company characteristics, and preparedness measures. Moreover, BNs enable 265 

the estimation of posterior probabilities of damages given partial evidence (e.g., observed water depth or company 

preparedness), thereby offering a transparent and interpretable tool for risk assessment under uncertainty. 

A BN is a directed acyclic graph (DAG), 𝐺 = (𝑉, 𝐸), where 𝑉 denotes the set of variables and E represents the directed edges 

encoding conditional dependencies. The dataset comprises both continuous and categorical variables (see Table 1). Continuous 
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variables are discretized using an equal-frequency binning approach, where the number of bins is determined iteratively to 270 

optimize network learning while preserving data characteristics (Kitson et al., 2023). The network structure is learned through 

a data-driven approach based on the Tabu Search algorithm (Glover, 1986; Goudet et al., 2018), which iteratively explores 

possible network configurations by adding, removing, or reversing edges. The optimal structure is selected by maximizing the 

Bayesian Dirichlet Equivalent (BDe) score (Heckerman et al., 1995), which balances model complexity and goodness of fit 

while incorporating prior knowledge.  275 

We developed five separate BNs corresponding to different damage types. During model development, we observed that for 

some damage types, the direct connections to the target variable (i.e., damage) involved up to four variables. To ensure 

consistency across BNs and to maintain model interpretability and parsimony, we selected the top four variables based on the 

combined weighted importance scores. The learned BN enables probabilistic inference, allowing computation of the posterior 

probability of any variable 𝑋𝑖 given observed evidence 𝐸 (Pearl, 1988): 280 

𝑃(𝑋𝑖/𝐸) =
𝑃(𝑋𝑖/𝐸)𝑃(𝑋𝑖)

𝑃(𝐸)
 𝑤𝑖𝑡ℎ 𝑃(𝐸) = ∑ 𝑃(𝐸/𝑋𝑖)𝑃(𝑋𝑖)

𝑋𝑖

 (9) 

 

Where 𝑃(𝐸/𝑋𝑖) is the likelihood of evidence given 𝑋𝑖 , and 𝑃(𝑋𝑖) is the prior probability of 𝑋𝑖 . A detailed step-by-step 

procedure of the BN learning process, Conditional Probability Tables (CPTs), and Bayesian inference is provided in Text S2. 

The posterior probability of flood damage given the observed evidence 𝐸  is discrete in nature. However, this discrete 

representation is limited by the binning of the data and does not allow precise estimates or a meaningful characterization of  285 

predictive uncertainty. To address this, we derived a continuous distribution of direct and indirect damages by fitting a 

probability distribution based on weighted sampling of the empirical damage data, following the approach of Schoppa et al., 

(2020). This allows for a more precise representation of uncertainty and predictions at finer scales beyond the original bins. 

 

Flood damage processes vary by region, flood type, and asset type (Mohor et al., 2020; Sairam et al., 2019; Wagenaar et al., 290 

2018). To derive the drivers of flash flood losses, this study adopts a data-driven feature selection approach to the empirical 

data. Feature selection involves identifying variables that have the highest influence on the target variable (i.e. relative loss). 

We train multiple models – nonlinear models: Random Forest (RF), Extreme Gradient Boosting (XGBoost), and linear model: 

Elastic Net (EN).  

RF is an ensemble machine learning method primarily used for classification and regression tasks, developed by Breiman, 295 

(2001). RF generates an ensemble of decision trees, each trained on a random subset of the data using bootstrap sampling. At 

Formatted: Space Before:  24 pt
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each node within these trees, a random subset of features is considered for splitting. The final prediction for a given input is 

obtained by averaging the predictions from all individual trees. This approach helps RF reduce overfitting and enhances the 

model's generalization ability. XGBoost, similarly to RF, is an ensemble learning algorithm that benefits from a decision tree-

based structure. However, the key difference compared to RF is that in XGBoost, each tree corrects the errors from the previous 300 

ones. The process starts with a simple model and iteratively adds trees that focus on the residuals or errors made by the existing 

ensemble. With its efficient implementation, XGBoost demonstrates superior performance and handles large-scale data more 

effectively than RF (Chen and Guestrin, 2016b). While RF and XGBoost are non-linear models, EN is a regularization 

technique used in linear regression, combining both Lasso (L1) and Ridge (L2) regularization penalties. It effectively addresses 

multicollinearity in datasets by shrinking the less influential predictors toward zero (Lasso) while additionally providing some 305 

degree of regularization to prevent overfitting (Ridge). EN's ability to handle correlated features and select relevant predictors 

makes it a valuable tool in regression tasks (Zou and Hastie, 2005). 

During training, we employed a nested cross-validation framework with 10 splits and 10 repeats, resulting in a total of 100 

evaluations. We selected the best set of hyperparameters, which obtained the least mean absolute error, which was then applied 

to the final feature selection. From each resulting final model, we derived the feature importance. Next, we calculated each 310 

variable's weighted feature importance and overall rank. The final selection of the variables (Fig 1) is elaborated upon in the 

results section.   

73 Results and Discussion  

7.13.1 Overview of affected companies in the 2021 flood event 

This section provides an in-depth analysis of the affected companies, focusing on their demographic profiles, the types of 315 

damage sustained, the extent of business interruptions, and the financial implications across various damage categories. Sales 

figures were requested but often not reported, due to this the number of employees is used as the measure of company size.  

The companies range from micro-companies with up to nine employees to large companies with 250 and more employees, 

according to the European classification (Destatis, 2003). The majority of the companies surveyed are therefore classified as 

micro-companies (1–9 employees) followed by small companies with 10 to 49 employees and medium-sized companies with 320 

50 to 249 employees (Fig. 1). Large companies with 250 and more employees rarely participated.  

Figure 1a illustrates the distribution of companies across sectors, showing a relatively balanced representation except for 

agriculture. Based on the WZ2008 economic classification (Destatis, 2008), all companies surveyed were assigned to one of 

five economic sectors: 1) agriculture (n = 14); 2) manufacturing (n = 81); 3) commercial (n = 126); 4) corporate and financial 

services (further: financial) (n = 81) and 5) public and private services (further: services) including educational, health and 325 

social services (n = 129). Micro and small companies dominate the sample, which aligns with the typical business landscape 

Formatted: English (United Kingdom)
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of many European countries (Eurostat, 2024). Figure 1b indicates a clear relationship between company size and the size 

premise of the companies. Micro-companies predominantly operated from size premise ≤ 5000 m2, whereas medium and large 

companies were more likely to occupy a higher size premise > 5000 m2. Large size premise inherently increased exposure to 

floodwaters, which partly explains the heightened damages among medium and large companies. A significant observation 330 

from Figure 1c is the generally low implementation of precautionary measures, particularly among micro and small companies.  

 

Figure 1: Bar chart showing the percentage of companies with varying numbers of employees by 

(a) sector, (b) size premise, and (c) precaution. 

Floods not only cause damage to tangible assets through hydrodynamic forces and chemical contamination but also lead to 335 

significant disruptions in supply chains and transportation. These Such disruptions can result in partial or complete business 

interruptions, triggering consequences ranging from loss of salesand, in extreme cases,  to bankruptcy (Thieken et al., 2016). 

Figure 2 illustrates the percentage of companies affected by various types of impacts, categorized by company size, while . 

Figure S4 presents the same results by sectors. Since company size emerged as the dominant factor explaining variations in 

damages, our main emphasis in this study is on company size. To maintain focus and clarity, sectoral differences are not 340 

discussed in detailed here. The results reveal clear differences in vulnerability and exposure levels across different company 

sizes.  Damage to buildings emerges as the most frequently reported impact, with nearly 100% of companies across all size 

categories affected. Larger companies report the highest exposure to equipment damage (100%) and loss of goods and stock 

(over 80%), suggesting that companies with larger operational setups have more assets at risk. In contrast, the micro-companies 

report slightly lower, yet still significant, impacts in these categories, with equipment damage close to 90% and goods and 345 

stock losses around 70%.  
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Figure 2:  Spider chart illustrating the percentage of companies experiencing different types of 

flood impacts, categorized by the number of employees. 

Business interruption is another major consequence reported consistently across all company sizes, reaching 100% among 350 

large companies (Fig. 2). This suggests that larger operational scales correlate with increased disruption potential. Business 

restrictions due to regulatory or environmental constraints are reported less frequently but remain relevant, particularly fo r 

medium and large companies, with a frequency exceeding 60%. Interruptions in utility services are a widespread issue, 

affecting 90% to 100% of companies across all size categories. This finding highlights the universal dependency of businesses 

on essential services such as electricity, water, and telecommunications. Loss of customers and employee delays are also 355 

commonly reported impacts. Micro-companies experience customer losses of around 60%, underlining the challenges to 

business continuity and client retention following flood events. In contrast, employee delays affect approximately 80% of 

companies, except micro-companies, reflecting disruptions in workforce mobility. Regarding supply chain disruptions, 
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problems with suppliers affect between 40% and 80% of companies, with the highest impacts reported by larger businesses 

(80%; Fig. 2). This suggests greater vulnerability due to complex supply dependencies. Conversely, delivery problems are 360 

reported less frequently, with medium-sized companies experiencing the lowest impact (40%).  

Bankruptcy risks remain generally low across all company sizes, except for two isolated cases. This indicates that while the 

damages are widespread, most businesses in our sample manage to avoid insolvency. Turnover reduction is moderately 

reported (60%–80%) without a distinct size-based pattern, although micro-companies appear more affected, with rates around 

80%. Damage or inaccessibility of road infrastructure is reported by approximately 80% of companies, underscoring systemic 365 

exposure that affects businesses regardless of size. Car damage is less frequently reported but shows slightly higher percentages 

(above 60%) among medium-sized companies. Sales restrictions exhibit variability, with micro-companies reporting higher 

percentages (over 60%), possibly due to their greater dependence on physical sales venues. Glass damage is moderately 

reported across companies but is notably higher among larger companies (around 80%), likely due to their larger commercial 

structures and exposure. Overall, the results illustrate the complex and diverse impacts of flooding on companies, varying by 370 

size and operational characteristics.  Micro and small companies are more susceptible to supply chain disruptions and sales 

restrictions, while larger companies face higher asset-related risks. Accordingly, They highlight the need for tailored risk 

management and resilience strategies should be tailored to company size. , especially for micro and small companies that are 

more susceptible to supply chain disruptions and sales restrictions, while larger companies face higher asset-related risks.  

July 2021 flood event had long-lasting impacts on businesses, severely disrupting operations for months or even years. Figure 375 

3 presents the distribution of business interruption duration and business restriction duration (both measured in days) across 

companies of varying sizes. The boxplots reveal clear differences in the duration of these impacts based on company size.  For 

business interruption duration, micro-companies (1–9 employees) experienced the longest disruptions overall, with a median 

duration of approximately 40 days. However, the range of reported durations for this group was highly variable, with several 

extreme cases extending beyond 365 days, as reflected by numerous outliers. This finding underscores the particular 380 

vulnerability of micro-enterprises to prolonged operational disruptions following flood events, likely due to their limited 

resources and reduced adaptive capacity. In contrast, small, medium, and large companies reported comparatively shorter 

business interruption durations. The median interruption durations for these groups ranged between 10 and 30 days, with fewer 

extreme cases observed. Notably, medium-sized companies demonstrated shorter interruption periods overall, suggesting 

better resilience or recovery capacity. This may be attributed to diversified operations, greater financial buffers, or the presence 385 

of formal contingency plans that facilitate faster recovery. The number of outliers differs across company sizes because 

thresholds were determined using the standard 1.5 × IQR rule. For business restriction duration, no outliers were detected, a s 

the upper thresholds were consistently high (e.g., >650 days for micro and small companies) and all observations fell within 

these ranges. 

The pattern shifts when examining the duration of business restrictions. Both micro and small companies reported significantly 390 

prolonged periods of business restrictions, with median durations exceeding 100 days. In some cases, restrictions extended up 

to 365 days, again marked by several extreme values. The persistence of these restrictions may reflect regulatory, 



16 

 

environmental, or logistical hurdles encountered during the recovery phase, particularly by smaller companies that often lack 

the influence or flexibility to expedite resolution. Interestingly, medium-sized companies reported relatively shorter business 

restriction durations, with a median significantly lower than that of micro and small companies. Most data points for this group 395 

clustered below 100 days, indicating a more efficient recovery from regulatory or operational constraints. For large companies, 

only a few values were reported, which likely explains the narrower distribution observed. Overall, these results highlight that 

company size is a critical factor influencing the duration of operational disruptions following extreme events. Micro and small 

companies are particularly vulnerable to prolonged indirect impacts, such as extended business restrictions and interruptions.  

In contrast, medium and large companies tend to recover more quickly, likely because they benefiting  from greater resilience, 400 

diversified operations, and access to more substantial resources.  

 

Figure 3: Boxplot of (a) Business interruption duration (days) and (b) Business restriction duration 

(days) for companies categorized by the number of employees. Black circular markers represent 

individual data points, and red crosses indicate outliers. 405 

The survey recorded specific damage amounts across three categories of direct property damage: (1) building, (2) equipment, 

(3) goods & stock, as well as financial losses due to business interruptions. In most cases (approximately 62%), the direct 

damages amounted to more than €100,000 ,100,000 while around 24% of companies reported damages reaching into the 

millions. The average costs (in euros) for each company size are presented in Table 2, alongside medians and the number of 

companies (n) contributing to each calculation. Building damages accounted for the highest average costs across all company 410 

sizes, particularly impacting medium and large companies. Micro companies reported average building damages of €711,459, 
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with a median of €250,000. This wide gap between the mean and median suggests that while many small firms experienced 

moderate losses, a few outliers faced severe damages. For small companies, the average building damage increased to €908,482 

(median €500,000). Medium companies faced substantial building-related losses, averaging €2,838,103 with a median of 

€1,350,000. Large companies, though represented by a very small sample (n = 4), reported the highest average building 415 

damages of €7,350,000, reflecting the scale of structures at risk within large industrial facilities. 

In terms of equipment damages, micro companies incurred an average loss of €297,854, while small companies experienced 

significantly higher average costs of €541,898. Medium companies reported the highest average equipment losses at 

€3,630,652, likely driven by the presence of high-value machinery. Interestingly, large companies recorded a comparatively 

lower average equipment loss of €160,000, though this is based on a very small sample size (n = 3). Lower median values 420 

across groups suggest the presence of extreme cases skewing the mean, particularly among medium-sized companies. Goods 

and stock damages were generally lower across all company sizes (Table 2). Micro companies faced average losses of 

€159,422, while small companies reported similar average damages of €134,470. Medium companies experienced higher 

average losses of €1,503,250, indicating greater inventory exposure. Large companies reported much smaller average losses 

of €55,000. Lower median values that most companies incurred relatively less damages in this category, with a few outliers. 425 

 

Table 2: Average financial costs (in euros) incurred for building, equipment, goods and stock, and 

business interruption categorized by the number of employees (values in brackets represent 

medians, and n denotes the number of companies included in the calculation of the means and 

medians) 430 

Number of employees 

(Company size) 
Building Equipment 

Goods & 

stock 

Business 

interruption 

1-9 (Micro) 

711,459 

(250,000) 

n = 167 

297,854 

(50,000) 

n = 203 

159,422 

(30,000) 

n = 154 

139,931  

(30,000) 

n = 143 

10-49 (Small) 

908,482 

(500,000) 

n = 83 

541,898 

(150,000) 

n = 96 

134,470 

(31,500) 

n = 82 

311,173  

(100,000) 

n = 74 

50-249 (Medium) 

2,838,103 

(1,350,000) 

n = 29 

3,630,652 

(600,000) 

n = 23 

1,503,250 

(150,000) 

n = 20 

703,250  

(200,000) 

n =16 

249-920 (Large) 

7,350,000 

(1,700,000) 

n = 4 

160,000 

(200,000) 

n = 3 

55,000 

(10,000) 

n = 3 

400,000  

(500,000) 

n = 3 

Total 1,080,999 
604,528 

(100,000) 
254,083 215,910 

Formatted Table
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(350,000) 

n = 283 

n = 325 (30,000) 

n = 259 

(50,000) 

n=236 

 

 

Business interruption losses also varied by company size. Micro companies faced average interruption costs of €139,931, while  

small companies reported higher average losses of €311,173. Medium companies were the most affected, with average losses 

of €703,250. Large companies, despite the small sample size (n = 3), recorded an average business interruption cost of 435 

€400,000, with the median even higher at €500,000, reflecting significant operational disruptions.  Overall, the financial costs 

associated with building, equipment, goods & stock, and business interruption showed that larger companies typically incurred 

more significant costs. However, substantial variance within each category highlights the influence of extreme cases.  

Importantly, the limited number of large companies surveyed suggests that these results should be interpreted cautiously, as 

they may not fully representative. However, due to the extremely limited number of large companies surveyed, these results 440 

cannot be generalized and should be interpreted with caution. These values are presented for illustration purposes only and 

cannot be considered representative of large companies in general. 

 

7.33.2 Data-driven analysis of factors influencing direct and indirect flood damages 

Understanding the complex processes driving flood damage is crucial for developing effective risk reduction measures for 445 

companies. To date, most insights into damage mechanisms stem from studies on private households affected by riverine 

floods (Gerl et al., 2016; Thieken et al., 2022). This analysis seeks to close the knowledge gap on the factors driving direct and 

indirect damages to companies during unprecedented flood events. Based on the datadata availability, 19 potentially relevant 

influencing factors were selected, covering hazard characteristics, emergency measures, precautionary actions, and company 

characteristics (Table 1). The dataset exhibited less than 7% missing data for 18 out of 19 variables (Fig. S1), which were 450 

imputed using the 𝑘𝑁𝑁 technique with 𝑘 = 5 neighbors (Askr et al., 2024). The remaining variable, warning lead time (wt), 

had approximately 10% missing data, which was also imputed using the same approach. Figure 4 presents the pairwise 

Spearman rank correlations between influencing factors and the five damage types—relative damage to buildings (bdam), 

equipment (edam), goods & stock (gsdam), business interruption duration (bid), and business restriction duration (brd).  

High positive correlations exist between water depth (wd), flow velocity (v), and various damage types, highlighting the critical 455 

role of flood intensity in driving both direct and indirect damages. Interestingly, factors characterizing emergency response 

and preparedness exhibit negative correlations with business interruption and restriction durations. Specifically, the successful 

implementation of emergency measures (ms), and precaution (pr) are associated with reduced indirect impacts (Fig. 4). 

Additionally, company characteristics such as the size of the premises (sp) and the number of employees (emp) show negative 

correlations with equipment and goods & stock damages, as well as business interruption duration, reflecting the role of 460 
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operational scale and exposure in shaping flood impacts. Furthermore, significant correlations exist between several 

influencing factors, underscoring the importance of a multivariate modelling approach. 
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 465 

Figure 4: Spearman rank correlation coefficients between 19 influencing factors and five damage 

types. Only significant correlations (p-value < 0.05) are displayed, providing insights into key 

factor-damage relationships. See Table 1 for abbreviations. 

To account for these interactions and robustly identify the most influential factors, a data-driven modelling framework was 

implemented. Three machine learning models (Random Forest, Elastic Net, and Extreme Gradient Boosting (XGBoost)) were 470 

trained on the empirical survey data. Ten repetitions of a ten-fold cross-validation based on random partitioning were carried 

out. In each model, the hyperparameter combination model yielding the lowest MAE was used to derive the variable 

importance. The combined variable importance scores from all three models are illustrated in Figure 5. As expected, water 

depth (wd) consistently emerged as the most important driver across all damage types, aligning with previous findings  

(Schoppa et al., 2020; Sieg et al., 2017). Notably, flow velocity (v) ranked as the second or third most influential factor, 475 

particularly for the 2021 flood event. This prominence of velocity reflects the dynamic nature of the flood, contrasting with  

large-scale, slowly rising river floods where factors like contamination typically dominate damage (Kreibich et al., 2007; Sieg 

et al., 2017). In addition, company characteristics such as the size of the premises (sp) and the number of employees (emp) 

also played significant roles (Fig. 5). The success of emergency measures (ms) further influenced damage, ranking fourth or 

fifth in importance for direct damages (Fig. 5a-c). Interestingly, business restriction duration (brd) was primarily influenced 480 
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by preparedness-related variables, i.e., amount of precaution taken (pr), prior knowledge about the hazard (kh), and the 

company’s insurance status (Fig. 5e). This finding underscores the critical role of proactive risk management in minimizing 

operational disruptions, even during unprecedented events like the 2021 flood. 
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 485 

Figure 5: Importance of influencing variables (see Table 1 for abbreviations) for damage types: (a) 

buildings, (b) equipment, (c) goods & stock, d) business interruption duration, and e) business 

restriction duration. The x-axis shows the weighted importance of each variable, as determined by 

the three models (Random Forest, Elastic Net, and XGBoost). 

 490 
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7.43.3 Quantifying direct and indirect flood damages using multivariate probabilistic modelling 

Understanding interdependencies among influencing factors and damage types is crucial for reliable flood damage estimation. 

Figure 6 presents the kernel density estimations of the top four influencing factors considered for multivariate probabilistic 

damage modelling across five different types of damage. The violin plots illustrate the probability density of scaled variables 

(ranging from 0 to 1), with quartile lines indicating central tendencies and variability. The presence of skewed distributions 495 

and multimodal characteristics highlights the complexity of flood damage relationships across different damage types. 

 

 

Figure 6: Kernel density estimations of influencing factors and damage types, with all variables 500 

scaled between 0 and 1. The lines in the violin plots indicate the quartiles. For abbreviations see 

Table 1. 

Bayesian networks (BN) provide a probabilistic framework for understanding the interdependencies between the top four 

influencing factors and damage outcomes. We developed data-driven BN models using a score-based structure learning 

algorithm. The BN structure (Figure 7) provides a probabilistic representation of these relationships, allowing for improved 505 

estimation of both direct and indirect damages under uncertainty. The direction of the arrows represents conditional 
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dependencies between variables but does not imply causalityassociations between variables but does not necessarily imply 

causality (Sairam et al., 2020)(Schröter et al., 2014). Some directions may appear unintuitive because the structure is derived 

from a score-based learning algorithm that optimizes the overall network fit to the data, not necessarily causality. The results 

align with previous studies while also offering new insights into key influencing factors.  510 

Consistent with prior research (Kreibich et al., 2010; Nafari et al., 2016; Schoppa et al., 2020, 2022; Seifert et al., 2010; Sieg 

et al., 2017), our results confirm that water depth (wd) and velocity (v) are the most critical hazard predictors for direct 

damages, particularly for building damage (bdam). The direct link between these variables and bdam (Fig. 7a) underscores the 

predominant role of flood intensity. Furthermore, our study highlights the role of contamination (con) in influencing building 

damage, which is in agreement with Sieg et al. (2017). Intuitively, the perceived success of emergency measures (ms) is linked 515 

to the water depth (Fig. 7a). For equipment damage (edam) and goods & stock damage (gsdam), our results show that  flow 

velocity and company characteristics such as size premises (sp) and number of employees (emp) play significant roles (Figures 

7b and 7c). This supports the findings of Schoppa et al. (2020), who emphasized the importance of company-specific 

characteristics in explaining non-structural damages. Unlike previous studies that primarily focused on hazard intensity 

variables (Nafari et al., 2016; Sieg et al., 2017), our results provide a more nuanced perspective by demonstrating how company 520 

exposure modulate damage susceptibility. 

 

a) Relative damage to building 

(bdam) 

b) Relative damage to 

equipment (edam) 

c) Relative damage to goods & 

stock (gsdam) 

   

d) Business interruption 

duration (bid) 

e) Business restriction duration 

(brd) 

Influencing variables 

wd Water depth 

wd

bdam

v

ms

con

sp

v

edam

emp

wd

sp

v

gsdam

emp

wd
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v Velocity 

con Contamination 

ms Measures success 

kh Knowledge about hazard 

pr Precaution 

in Insurance 

sp Size premise 

emp Number of employees 
 

Figure 7: Bayesian network structure showing interdependencies among factors and damage types, 

derived from a score-based structure learning algorithm. 

BN structure of business interruption duration (bid) (Fig. 7d) indicates that wd, v, and emp are key predictors of bid, which is 525 

in agreement with Sultana et al. (2018), who found that company-specific factors (e.g., number of employees) often outweigh 

hazard characteristics in estimating business interruption costs. Additionally, our results support Endendijk et al. (2024), who 

identified water depth as a primary factor affecting business interruption. Moreover, our findings complement those of Sakai 

and Yao (2023), who highlighted that small companies suffer disproportionately higher business interruption relative to 

turnover. Interestingly, the BN structure of business restriction duration (brd) (Fig. 7e) reveals the impact of precautionary 530 

measures (pr), which is linked to the knowledge about flood hazard (kh). This underscores the role of risk communication in 

shaping proactive behavior. While previous studies have acknowledged the importance of preparedness (Kreibich et al., 2010; 

Schoppa et al., 2022), our BN results explicitly quantify its role in reducing business restriction duration. The direct link 

between pr and brd suggests that proactive measures have a tangible effect on post-flood recovery. 

We used the BNs to estimate the damage under different hazard, exposure, and vulnerability scenarios. Figure 8 shows the 535 

distribution for five types of flood damage, where each damage type is probabilistically modelled using its respective Markov 

blanket. These distributions are derived from Conditional Probability Tables (Fig. S4). In Figure 8, horizontal solid lines 

represent the observed range of damage and business interruption/restriction durations, scaled from 0 to 1. Red dots indicate 

the median (50th  percentile) relative damage, while the dotted vertical lines denote the interquartile range (25 th –-75th 

percentilesth percentiles), providing a measure of uncertainty. The relative damage to buildings is modeled as a function of 540 

water depth and flow velocity (Fig. 8a). As water depth increases, the median damage values generally rise, especially under 

moderate and torrential flow conditions. At low flow velocities, median damage remains relatively low across all depth levels , 

although the uncertainty (as indicated by the interquartile range) increases with depth, suggesting greater variability. Under 

moderate flow conditions, damage estimates increase slightly compared to low flow, with overlapping uncertainty bounds. In 

contrast, torrential flow conditions consistently lead to the highest damage estimates, particularly for water depths exceeding 545 

2 meters, where the 75th  percentile approaches near-total destruction. Notably, the uncertainty in damage estimates increases 
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with both rising water depth and flow velocity, indicating heightened variability in damage outcomes under extreme flood 

conditions. 

The relative damage to equipment (edam) is assessed as a function of flow velocity and company size premises (Fig. 8b). Flow 

velocity categories (Low, Moderate, Torrential) are arranged as columns, while classes of size premises (75–500 m², 501–550 

1500 m², >1500 m²) are organized in rows. At low flow velocities, median damage is relatively high but decreases as the size 

premises increases, particularly for the largest category (>1500 m²). Under moderate and torrential flow conditions, equipment 

damage escalates significantly, with most cases reaching the maximum possible damage (100%) for companies with size 

premises smaller than 500 m². In addition, these companies exhibit a narrower range of damage values, indicating more 

consistent outcomes. In contrast, companies with premises larger than 1500 m² show greater uncertainty, especially under 555 

moderate and torrential flow conditions, where the 75 th  percentile reaches 100% damage in most cases. While low flow 

velocities present a moderate risk, particularly for companies with larger premises, torrential flows lead to severe damage, 

regardless of the size premises.  
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d) 

  

e) 

  

Figure 8: Predictive density plots for damage types considering Markov blankets: Relative damage 560 

to (a) buildings, (b) equipment, and (c) goods and stock, as well as the duration of (d) business 

interruption and (e) business restriction. The horizontal solid line represents the range of 

damage/duration on a scale from zero to one. Circular markers indicate the expected 

damage/duration (median), and vertical dotted lines represent uncertainty (25th  and 75th 

percentiles). 565 

The relative damage to goods & stock is also modeled as a function of flow velocity and size premises (Fig. 8c). In low flow 

scenarios, the median damage estimate ranges from 0.50 for companies with premises >1500 m² to 1.0 for companies with 

smaller premises (<1500 m²). Under moderate and torrential flow conditions, the majority of damage values concentrate around 

1.0, indicating near-total damage to goods and stock under extreme flood conditions, irrespective of company size premises. 

In addition, for smaller premises (75–500 m²) the uncertainty is very less. In contrast, companies with premises exceeding 570 

1500 m² exhibit greater variability, with the 75th percentile reaching 100% damage in most cases. These results underscore 

the importance of considering both company size premises and flow velocity when evaluating potential impacts on equipment 

and goods & stock during floods. 

The duration of business interruption varies with flow conditions and company size. Micro-companies (1–9 employees) show 

a consistent pattern under low and moderate flow conditions, with median interruption durations of around 22 daysvalues of 575 

0.04. However, uUnder torrential flow conditions, the interruption durations rises sharply to increase significantly, with median 

values reaching nearly 60 days0.11. Small companies (10–49 employees) exhibit a similar trend, though their interruption 

duration under torrential flow is slightly lower. Medium and large companies (>49 employees) demonstrate greater resilience, 

with median interruption durations ranging from about 11 to 33 days 0.02 to 0.06 across all flow conditions. Their lower upper 

quartile values suggest more effective adaptation strategies.  The results indicate that small companies, especially micro-580 

companies, are disproportionately affected by the 2021 unprecedented flood eventextreme flood events.  
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The analysis of business restriction duration, based on the Markov blanket, further shows demonstrates that companies without 

precautionary measures experience the longest restrictions. For instance, the median restriction duration for companies without 

precautions increases from roughly 102 days 0.19 when for water depths < less than 1 meter to about 210 days 0.39 for water 

depth depths greater than > 2 meters. Implementing medium precautionary measures (see supplementary information) (see 585 

variable precaution in Table A1) results in a modest slight reduction in restriction duration, particularly for deeper water, where 

the 75th percentile decreases from 368 days 0.68 to 330 0.61.days. A more However, the most substantial significant rreduction 

is observed in companies with strong precautionary measures, where the median restriction durations remain below 150 

days0.28. For shallow water depth The greatest improvements are seen in shallow floods (< 1 meter), where effective 

precautionary measures reduce the 75th percentile to 178 days0.33, compared to 238 days 0.44 in companies without 590 

precautions. These results highlight the effectiveness of precautionary measures in reducing business restriction durations. 

84 Conclusions   

The July 2021 flood in Germany highlighted the significant vulnerability of companies to extreme floods, with both direct and 

indirect damages resulting in substantial financial costs. A central question of this study is whether the influencing factors 

behind flood damage during the extreme July 2021 event differ from those in earlier floods from 2002 to 2016. Our findings 595 

indicate that core hazard related variables, including water depth, flow velocity, and contamination, remain consistent 

predictors of damage across different events. Similarly, company characteristics such as size of the premises and number of 

employees continue to play an important role. What sets the 2021 flood apart is the elevated importance of emergency 

preparedness and behavioural responses, particularly in shaping indirect damages such as business restriction duration. A novel 

insight from this study is the demonstrated link between knowledge about flood hazard and amount of precaution taken, 600 

highlighting its relevance in reducing business restriction durationbusiness disruptions.  Small and micro-companies that 

implemented very good precaution measures experienced notably shorter restriction durations. 

While the study has deciphered the drivers of company damages during the 2021 flood event, it does have some limitations. 

First, the sample size for some company categories, particularly large companies, was small, which limits the generalization 

of findings. Second, survey participation was voluntary, which may have introduced selection bias. Although 431 responses is 605 

a notable sample size given the challenges of post-disaster data collection, future studies should aim for more diverse 

representation across different company sizes and sectors. This would further strengthen the generalizability of the findings. 

Moreover, comparative analyses across multiple extreme flood events in different geographical regions and socio-economic 

contexts, for instance, in Belgium and the Netherlands would allow for broader generalization of findings. Future work should 

also explore sector-specific analysis, given the heterogeneous nature of companiesTo generalize these insights, further 610 

comparative studies using data from previous flood events and diverse regions are needed. Overall, Tthe results underscore 

the critical role of emergency preparedness and risk communication during extreme events, serving as essential complements 

to structural protection measures that may be less effective under unprecedented conditions. 
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Appendix  

Table A111: Overview of the company variables, including survey questions, and response. 615 

Predictors Survey question Response 

𝑤𝑑 Water depth 

At maximum water level, how high 

was the water above the Earth’s 

surface on your company premises in 

cm? 

Continuous variable 

𝑑 
Inundation 

duration 

For how many hours did water remain 

on the company premises? 
Continuous variable 

𝑣 
Velocity 

indicator 

How strong was the water current in 

the immediate vicinity of your 

company? 

• 1 – Calm/slowly flowing 

• 2 

• 3 

• 4 

• 5 

• 6 – Wild/violent current 

Recoded categories (used in the analysis): 

1. Low flow (original categories 1–2) 

2. Moderate flow (original categories 3–4) 

3. Torrential flow (original categories 5–6) 

𝑐𝑜𝑛 Contamination 

Did contamination from the following 

substances entered your company 

during the flood event?  

Response (with multiple options possible): 

• Oil/Gasoline 

• Chemicals 

• Sewage 

• No contamination 

Recoded categories (used in the analysis): 

0. No contamination 

1. Sewage or Chemicals only 

2. Oil/Gasoline only 

3. Oil/Gasoline + Sewage, or Oil/Gasoline + 

Chemicals 

4. Oil/Gasoline + Chemicals + Sewage 

𝑤𝑡 
Warning lead 

time 

How many hours before the arrival of 

the flash flood or heavy rainfall did 

the warning reach your company? 

• Number of hours 

• No warning received 
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𝑤𝑠 
Early warning 

source 

From which source did your company 

receive the flood warning? 

Response (with multiple options possible): 

• Loudspeaker announcements 

• App or SMS 

• Telephone call 

• Radio report 

• TV report 

• Newspaper report 

• Social media 

• Own research 

• Own observation 

• No warning 

Recoded categories (used in the analysis): 

0. No warning 

1. Own research 

2. Contacts (employees, acquaintances, other 

companies, phone calls) 

3. Media (radio, TV, newspaper, online, social 

media) 

4. Official authorities (direct official warning, 

apps/SMS, civil protection, loudspeaker 

announcements, regional services) 

𝑒𝑤 
Early warning 

received 

Did your company receive an early 

warning of the flood event? 

0. No 

1. Yes 

𝑚𝑒 

Emergency 

measures 

undertaken 

Were measures to reduce damage 

undertaken in your company before or 

during the flood event? 

0. No 

1. Yes 

ep Emergency plan 

At the time of the flood event, did 

your company have an emergency or 

flood protection plan? 

0. No 

1. Yes 

𝑘ℎ 
Knowledge 

about hazard 

Had this site already been flooded 

before? 

Were you aware that your company is 

located in a flood-prone area? 

0. No 

1. Yes 
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𝑚𝑠 

Emergency 

measures 

success 

Were measures to reduce damage 

undertaken in your company before or 

during the flood event?  

How effective were these mitigation 

measures? 

• No measure undertaken 

• Not effective at all 

• Only partly effective 

• Mostly effective 

• Completely effective 

Recoded categories (used in the analysis): 

0. No measure undertaken  

1. Completely ineffective,  

2. Partly effective,  

3. Mostly/ completely effective 

𝑓𝑒 Flood experience 

Q1: Had this company site already 

been flooded before the event? If yes, 

how many times? 

 

Number of previous floods:  

0. Never 

1. Once 

2. Twice 

3. ≥ Three times 

Q2: When was the company site last 

affected by a flood prior to the event? 

(Year) 

Time elapsed since the last flood: 

1. > 25 years ago 

2. 11–25 years ago 

3. 2–10 years ago 

Flood experience was calculated from 

the number of previous floods (Q1) 

and the time elapsed since the last 

flood (Q2). 

• If only one value (Q1 or Q2) was available, that 

value was used. 

• If both values were available, the flood 

experience score was calculated as the mean of 

the two. 

𝑝𝑟 
Precaution 

indicator 

Measures included 

V1. Company insured against 

flood damages. 

V2. Heating system adjusted 

(converted or flood-

protected). 

V3. Emergency plan in place. 

V4. Frequency of emergency drills 

conducted before the flood. 

V5. Tanks, silos, or storage 

facilities securely anchored. 

V6. Stationary or mobile water 

barriers installed. 

V7. Sensitive equipment relocated 

to higher floors. 

V8. Water-hazardous substances 

relocated to higher floors. 

Conversion: 

• Each measure was coded as 1 if implemented 

prior to the flood, 0 otherwise. 

• For drills, any positive frequency (≥1 per year) 

was coded as 1, absence as 0. 

Weighting scheme: 

• Low impact / basic preparedness (weight = 1): 

V1 to V4 

• Medium impact / protective but limited scope 

(weight = 5): V5 to V8 

• High impact / comprehensive protection 

(weight = 10): V9 to V11 

Calculation of weighted score (𝑝): 
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V9. Use of flood-prone areas 

adapted to risk. 

V10. Air conditioning/ventilation 

system flood-proofed. 

V11. Building flood safety 

improved (e.g., sealing 

basements, strengthening 

stability). 

𝑝 = 𝑣1 + 𝑣2 + 𝑣3 + 𝑣4 + (5 × (𝑣5 + 𝑣6 + 𝑣7 +

𝑣8)) + (10 × (𝑣9 + 𝑣10 + 𝑣11))  

Precaution Indicator (𝑝𝑟): 

0. No precautionary measures 

1. Medium precaution (𝑝: 1 − 5) 

2. Very good precaution (𝑝 ≥ 6) 

𝑖𝑛 Insurance 
Is the company insured against flood 

damages before the flood event? 

0. No 

1. Yes 

𝑠𝑝 Size premise 
How large is the property on which 

your company is located? 
Continuous variable 

𝑠𝑒𝑐 Sector 
Which sector does your company 

belong to? 

1. Agriculture 

2. Manufacturing  

3. Commerce  

4. Financial 

5. Private and public services 

𝑠𝑠 Spatial situation 

Which description best fits the spatial 

situation of this flood-affected 

company site? 

1. Business premises with several buildings 

belonging to the company 

2. Entire building fully used by the company 

3. One or more floors in a building otherwise used 

for non-business purposes 

4. Less than one floor in a building otherwise used 

for non-business purposes 

𝑜𝑤𝑛 Ownership 
Are the buildings or rooms owned by 

the company or rented? 

1. Owned 

2. Rented 

3. Partly owned / partly rented 

𝑒𝑚𝑝 
Number of 

employees 

How many people were employed in 

the previous month? 
Continuous variable 

Damage type 

Predictand Description Response 

𝑏𝑑𝑎𝑚 
Relative damage 

to building 

Represents the percentage of costs 

incurred repairing or replacing 

elements of the building fabric in 

relation to its new value. 

Degree of damage between 0 and 1 

𝑒𝑑𝑎𝑚 
Relative damage 

to equipment  

Represents the percentage of costs 

incurred repairing or replacing 

Degree of damage between 0 and 1 
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equipment of fixed assets in relation 

to its new value. 

𝑔𝑠𝑑𝑎𝑚 
Relative damage 

to goods & stock 

Represents the percentage of costs 

incurred repairing or replacing goods, 

products, and stock in relation to its 

new values. 

Degree of damage between 0 and 1 

𝑏𝑖𝑑 

Business 

interruption 

duration 

How long, in the aftermath the 

flooding event, were businesses 

operations totally interrupted 

0 to 540 days (A value of 0 indicates no interruption, 

while values up to 540 indicate the reported duration 

of full shutdown. Cases recorded at 540 days reflect 

the survey limit, meaning that the business had not 

yet resumed operations at the time of the survey) 

𝑏𝑟𝑑 

Business 

restriction 

duration 

How long, in the aftermath the 

flooding event, businesses operations 

resumed without any restrictions 

0 to 540 days (The maximum value is 540 days, 

meaning the business still had restrictions when the 

survey ended) 

 

 

Code availability 

Data analysis code is available upon request from the first author (Ravi Kumar Guntu). 
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