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Abstract 13 

Soil organic carbon (SOC) storage in semi-arid grasslands is threatened by both climate change and land degradation, 14 

impacting food production and climate regulation. Improved management has been proposed to increase SOC stocks and 15 

overcome these challenges. However, the benefits of improved management practices in semi-arid regions are in question. 16 

Little is known about the effects of management on the functional components of SOC, particulate (POC) and mineral-17 

associated organic carbon (MAOC), which are expected to respond differently, and about the pathways that mediate these 18 

responses, such as changes in vegetation and soil microbial communities. 19 

This work analyses the effect of rotational grazing, legumes sowing and grazing exclusion on topsoil (0-8 cm) SOC, POC 20 

and MAOC stocks in Mediterranean wooded grasslands compared to continuous conventional grazing. Changes in plant 21 

diversity and morpho-biochemical traits, soil fertility and microbial composition were also evaluated. A total of 188 plots 22 

were sampled in 9 farms across a wide environmental gradient. 23 

More resource-acquisitive, nitrogen-rich and less lignified plant community, higher soil microbial biomass with lower 24 

Gram+/Gram- ratio, and higher soil fertility were associated with higher SOC storage, with similar impacts on POC and 25 

MAOC. Rotational grazing increased POC, MAOC and total SOC stocks by 15%, 15% and 14% respectively, compared 26 

to continuous grazing. This effect was mediated by an increase in soil fertility in the rotationally grazed paddocks. On the 27 

other hand, grazing exclusion reduced POC stocks by 12% compared to continuous grazing. This depletion was mainly 28 

due to a reduction in microbial biomass and litter quality of vegetation in non-grazed paddocks. Both POC and MAOC 29 

stocks were lower at the warmer sites.  30 

We conclude that rotational grazing can enhance long-term SOC storage in semi-arid grasslands, thereby increasing their 31 

resilience and climate mitigation capacity, whereas abandoning grazing could lead to SOC losses. 32 
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 37 

1. Introduction 38 

Grasslands cover 40.5% of the world’s ice-free land area and store one third of the terrestrial carbon (C) stocks, mainly 39 

(over 80%) in the form of soil organic matter (SOM; White, 2000). This C pool in grassland soils surpasses the global 40 

aboveground vegetation C pool (IPCC, 2023a), highlighting the importance of grasslands SOM in global climate 41 

regulation (Bai and Cotrufo, 2022). In addition, SOM is a cornerstone of grassland productivity and functioning (Cotrufo 42 

and Lavallee, 2022; Tiessen et al., 1994). However, C storage in grassland soils is threatened by increasing C outputs (i.e., 43 

soil respiration and erosion) and decreasing C inputs (i.e., primary productivity) due to anthropogenic impacts such as 44 

land degradation and climate change (Crowther et al., 2016; Gang et al., 2014; Godde et al., 2020; Lei et al., 2021). 45 

Improved grassland management offers a key opportunity to counter these threats by increasing soil organic C (SOC) 46 

stocks and supporting both climate change mitigation and adaptation (Bai and Cotrufo, 2022; Conant, 2012; Dondini et 47 

al., 2023; Stanley et al., 2024). This is particularly valuable in the case of semi-arid grasslands, which represent the 48 

majority of the global grassland area (White, 2000) but are also more vulnerable to climate change impacts than wetter 49 

grasslands (Smith et al., 2024). 50 

Practices such as rotational grazing, legumes sowing and grazing exclusion have been proposed to increase and conserve 51 

SOC stocks (Conant et al., 2017; Yu et al., 2021). Rotational grazing encompasses a variety of practices where small 52 

paddocks are grazed at high intensity for short periods of time, allowing for longer pasture rest than continuous grazing 53 

(Teague et al., 2013). This management favors vegetation recovery after defoliation and reduces grazing patchiness and 54 

livestock selectivity (Jacobo et al., 2006; Teague et al., 2013). The effects of rotational grazing on grassland productivity 55 

and animal performance are under debate (Briske et al., 2008; Teague et al., 2013; di Virgilio et al., 2019) but most studies 56 

have found positive effects on SOC stocks associated with this practice (Byrnes et al., 2018; Conant et al., 2017; Phukubye 57 

et al., 2022; Teague et al., 2011). Sowing legumes in natural pastures is practiced worldwide, having clear positive impacts 58 

on SOC stocks (Carranca et al., 2022; Conant et al., 2017; Moreno et al., 2021) and grassland productivity (Bartholomew 59 

and Williams, 2010; Carrascosa et al., 2024; Jaurena et al., 2016; Khatiwada et al., 2020; Rama et al., 2022). Grazing 60 

exclusion is widely advocated as a tool for ecosystem restoration (Cheng et al., 2016; Novelly and Watson, 2007) and is 61 

also a global trend driven by land abandonment, particularly in high-income countries (Li and Li, 2017). The effects of 62 

grazing exclusion on SOC in grasslands are mixed, showing both positive (Cheng et al., 2016; Yu et al., 2021) and negative 63 

outcomes (Wilson et al., 2018). Moreover, the net effect of management practices has been shown to depend on the 64 

environmental context (Maestre et al., 2022; McSherry and Ritchie, 2013; Niu et al., 2025), and global meta-analyses 65 

remain inconclusive. While some global studies have reported greater benefits on SOC stocks from grazing exclusion and 66 

rotational grazing in arid climates (Zhou et al., 2017), others found these management practices to be more beneficial in 67 

wetter climates (Byrnes et al., 2018; Hawkins, 2017; Zhou et al., 2019). To the best of our knowledge, no similar studies 68 

have addressed the interaction between environmental conditions and the effect of legume sowings on SOC stocks. Thus, 69 

some questions remain open and further research is needed to clarify the net effects of improved management practices 70 

on SOC storage under different environmental conditions and particularly in semi-arid grasslands. 71 

To better understand the controls and vulnerability of C in soils, SOM can be conceptualized into particulate organic 72 

matter (POM) and mineral-associated organic matter (MAOM) fractions (Cotrufo and Lavallee, 2022; Lavallee et al., 73 

2020). POM originates from fragmented structural plant inputs and, to a lesser extent, microbial recalcitrant compounds 74 

(Angst et al., 2021; Six et al., 2001). In contrast, MAOM forms through the sorption of microbial necromass and soluble 75 
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plant inputs onto soil mineral surfaces (Angst et al., 2021; Cotrufo et al., 2022). The mineral bonds partially protect 76 

MAOM from decomposition (Baldock and Skjemstad, 2000), while POM is readily accessible to microbial degradation, 77 

although occlusion within soil aggregates can reduce its accessibility (Angst et al., 2017). Hence, POM accumulation is 78 

mainly controlled by environmental constraints on microbial activity, e.g. low temperatures and highly acidic soils 79 

(Hansen et al., 2024; Yu et al., 2022; Zhou et al., 2024). For the same reasons, POM is more vulnerable to climatic 80 

warming (Benbi et al., 2014; Georgiou et al., 2024; Rocci et al., 2021) and the mean residence time of C in POM (years 81 

to decades) is on average shorter than in MAOM (decades to centuries; Zhou et al., 2024). However, MAOM storage in 82 

soil is theoretically limited by the availability of free mineral surface area (i.e. clay and silt content; Six et al., 2002), and 83 

a saturation point can be observed, where no more MAOM accumulate despite increases in total SOM contents (Cotrufo 84 

et al., 2019a; Georgiou et al., 2022). Management changes have been shown to influence SOM fractions in grassland soils 85 

(Khatri-Chhetri et al., 2024; Mosier et al., 2021; Oliveira Filho et al., 2019), and a conceptual framework for relating 86 

grazing management to SOM distribution has recently been proposed (Stanley et al., 2024). Yet, the underlying processes 87 

mediating these effects, such as alterations in vegetation or soil microbial communities (Laliberté and Tylianakis, 2012; 88 

Peco et al., 2017; Wilson et al., 2018), remain poorly understood. 89 

Primary productivity is the point of entry of C into soil, and consequently the amount of plant inputs regulates SOM 90 

accrual (King et al., 2023; Zhou et al., 2024), but microbial processing largely determines the fate of that C (Cotrufo and 91 

Lavallee, 2022; Crowther et al., 2019). In this sense, the chemical composition of plant inputs, and the soil microbiota 92 

carbon use efficiency (CUE), i.e. the amount of C used for microbial growth and products relative to total C uptake, play 93 

a crucial role in the SOM formation process (Cotrufo and Lavallee, 2022; Tao et al., 2023). Recalcitrant plant inputs [i.e., 94 

high carbon-nitrogen ratio (C/N) and lignin content] tend to promote short-term SOM accumulation, primarily as POM, 95 

due to their chemical resistance to decomposition (Cheng et al., 2023; Cotrufo and Lavallee, 2022). However, as outlined 96 

in the Microbial Efficiency-Matrix Stabilization (MEMS) framework (Cotrufo et al., 2013), recalcitrant inputs are less 97 

efficiently decomposed by microbes, leading to greater C losses in the long term, compared to labile (i.e., water-soluble, 98 

low C/N and lignin content) plant inputs (Cotrufo and Lavallee, 2022; Ridgeway et al., 2022). Thus, labile plant inputs 99 

are expected to enhance MAOM formation and SOM stocks in the long term, due to their faster and more efficient 100 

decomposition (Cheng et al., 2023; Haddix et al., 2016). Elias et al. (2024) added complexity to these assumptions, 101 

showing that plant input characteristics may favor certain microbial groups over others, altering the overall CUE of the 102 

microbial community. For example, fungi, which are often assumed to have a higher CUE than bacteria (Kallenbach et 103 

al., 2016; Strickland and Rousk, 2010), are favored by the addition of recalcitrant inputs (Bai et al., 2024; Strickland and 104 

Rousk, 2010). Substrate preferences have been also identify for Gram-positive (Gram+) and Gram-negative (Gram-) 105 

bacteria (Fanin et al., 2019; Kramer and Gleixner, 2008), with consequences for SOC accrual (Klumpp et al., 2009). 106 

Importantly, much of the research on the influence of plant input characteristics and microbial communities on SOM 107 

formation dynamics has relied on incubation experiments (Cheng et al., 2023; Haddix et al., 2016; Ridgeway et al., 2022) 108 

and there is limited information on how these findings translate to natural field conditions. Other vegetation characteristics 109 

such as species richness has been shown to positively influence SOC stocks  (Lange et al., 2015; Steinbeiss et al., 2008), 110 

but its effects on SOC fractions have been poorly evaluated, with inconclusive results in grasslands (Mortensen et al., 111 

2025). In addition, the relationships between SOM stocks and fractions and plant functional traits have rarely been studied 112 

(Manning et al., 2015; Mortensen et al., 2025; Xu et al., 2021) despite the latter being widely used to predict ecosystem 113 

functioning and responses (Funk et al., 2017). Plant functional traits are highly correlated with processes such as litter 114 

decomposition (Cornwell et al., 2008; Fortunel et al., 2009; Kazakou et al., 2009) or root exudates production (Guyonnet 115 

et al., 2018) and may therefore be a promising tool to study the relationships between vegetation, soil microbiota and 116 

SOM formation dynamics (Faucon et al., 2017).  117 
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The aim of this work is to evaluate the impact of rotational grazing, legume sowing, and grazing exclusion on topsoil (0-118 

8 cm) SOC stocks, and their distribution between POM and MAOM fractions, in semi-arid grasslands, compared to 119 

conventional continuous grazing. We also evaluate changes in vegetation characteristics (identity and diversity of 120 

biochemical and morphological traits), soil nutrients, and soil microbial communities as possible pathways through which 121 

management might indirectly affect SOC stocks and fractions. This study focuses on the Iberian dehesas Mediterranean 122 

woody grassland, the main example of semi-arid grasslands in Europe (Porqueddu et al., 2016). The most widespread 123 

livestock management in this ecosystem is continuous grazing, but in recent decades rotational grazing and legume sowing 124 

have gained importance (Frongia et al., 2023; Pulina et al., 2023). At the same time, the amount of ungrazed pastures has 125 

increased due to land abandonment (Palomo-Campesino et al., 2018). Iberian dehesas occupy 3.1 million hectares, 126 

spanning a wide environmental gradient, and have been subject to extensive grazing for centuries (Moreno and Pulido, 127 

2009), making them an ideal model system for assessing the effects of improved management on SOC stocks in semi-128 

arid grasslands. In particular, we designed our study to answer the following questions: 1) What are the effects of the 129 

different management practices on bulk SOC and fractions stocks? 2) Are these effects mediated by changes in vegetation 130 

or soil microbial communities? 3) Is SOC storage in these grasslands, and its enhancement, modulated or limited by 131 

environmental factors such as climate or soil properties? And 4) are these mechanisms and controls the same or different 132 

for C in POM or MAOM? Understanding the potential and limitations of improved management on SOC storage in POM 133 

and MAOM in semi-arid grasslands can guide policymakers in enhancing the climate change adaptation and mitigation 134 

capacity of these ecosystems, while supporting productivity and soil fertility. 135 

 136 

2. Methods  137 

2.1. Study area and experimental design 138 

The study was carried out at nine commercial dehesa farms located along a north-south gradient in the western part of 139 

the Iberian Peninsula (Fig. 1a). The region has a continental Mediterranean climate, but on a local scale, in relative terms, 140 

farms can be grouped into three main climatic regions (Fig. 1b, c) according to the average climate for the period 1980–141 

2018 (García Bravo et al., 2023). A cold-dry region [12.9 ºC mean annual temperature (MAT) and 445 mm mean annual 142 

precipitation (MAP)] in the north; a warm-wet region (17.3 ºC MAT and 603 mm MAP) in the middle of the latitudinal 143 

gradient; and a warm-dry region (17.0 ºC MAT and 510 mm MAP) in the south. The soils of the farms share a common 144 

development from granites, shales and sandy tertiary sediments, are acidic and poor in organic matter, but cover a wide 145 

texture gradient (Fig. 1d). In these farms, native pastures are often combined with scattered trees, as is common in 146 

Mediterranean and semi-arid rangelands (den Herder et al., 2017; Soliveres et al., 2014). The tree layer is dominated by 147 

holm oaks (Quercus ilex L.) with scattered cork oaks (Quercus suber L.) or gall oaks (Quercus faginea Lam.). The 148 

herbaceous layer is composed of species typical of Mediterranean pastures and presents a high diversity and proportion 149 

of annual C3 plants (Table S1). The growing season of the pasture is very limited by the Mediterranean summer drought 150 

with the annual species germinating in autumn (early-to mid-October), reaching their peak productivity in mid-spring 151 

(late April of the following year) and senescing in June.  152 

Dehesa farms are typically managed by extensive continuous grazing, where livestock (mainly cattle) graze freely on 153 

large areas following a loosely defined grazing plan. This management has been traditionally practiced in all the farms 154 

studied, until, in recent decades, some paddocks were converted to other management practices. As a result, on each farm 155 

we selected five paddocks, each with one of the following management regimes: 156 

- Abandoned (Ab): Paddocks devoid of grazing for at least the last 10-20 years. 157 
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- Continuous grazing (Ct): Paddocks where livestock stand most of the year, fed by grazing and supplemented. This is the 158 

control treatment in our study as it is the most widespread management in Iberian dehesas. 159 

- Rotational grazing (Ro): Paddocks intensively grazed in short periods and with resting periods (i.e. without livestock) 160 

lasting for more than six months. Rotational grazing has been applied in these paddocks for the last 10-15 years. 161 

- Recent legume sowing (Lr): Paddocks where pastures have recently (≤5 years) been sown with legume mixtures. In 162 

dehesa farms, legume sowing consists of sowing a mixture of seeds (at a rate of 20 kg ha-1) from various species of annual 163 

legumes (pre-inoculated with Rhizobium) such as Trifolium subterraneum L., T. incarnatum L., T. michelianum Savi., T. 164 

resupinatum L., T. mutabile Port. and Ornithopus sativus Brot., along with some highly productive annual grass species 165 

such as Lolium multiflorum Lam. and Lolium rigidum Gaud. (Teixeira et al., 2015). These sowings are preceded by surface 166 

tillage and phosphorus application to meet the needs of the legumes and stimulate N-fixation (Jongen et al., 2019). 167 

Farmers saw legumes mixture only once, because its effect persists over the years thanks to the natural seeds production 168 

and the resulting soil seed bank of the sown species. None of the sown plots studied was resown. 169 

- Old legume sowing (Lo): Paddocks sown with legume mixtures more than 10 years ago. 170 

The distinction between recent and old legumes sown paddocks allows us to compare short and long-term effects after 171 

sowing. In two out of the nine farms, we added an additional control (continuous grazing) paddock close to the legume 172 

sowing paddocks because they were at a considerable distance from the other control paddock, limiting their 173 

comparability. Additional information on paddocks characteristics is provided in Table S2. 174 

In each paddock, we installed four permanent monitoring plots, in open grassland and away from the direct influence of 175 

the trees (at least 10 m away from the trees). This setup allowed us to have a total of 188 sampling plots where we 176 

measured soil properties, SOC fractions, and soil microbial communities in 2021 and vegetation traits for 3 years (2021 177 

to 2023). 178 

 179 
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 180 

Figure 1. Iberian “dehesa” cover according to the CORINE 2018 land cover survey and geographical location of the studied 181 
farms (a). Mean annual temperature (b) and precipitation (c) during the period 1980-2018 in the study area. Soil texture in all 182 
sampled plots (d). 183 

 184 

2.3. Vegetation sampling 185 

We assessed above-ground (ABG) pasture productivity over three growing periods at all plots using 50 x 50 x 50 cm 186 

grazing exclusion cages. In the 2020-2021 period (hereafter referred to as 2021) we installed one cage on each monitoring 187 

plot at the beginning of spring (late March 2021). In the 2021-2022 and 2022-2023 periods (hereafter referred to as 2022 188 

and 2023), we installed the cages at the beginning of the green-up in early November. Standing biomass at the time of 189 

cage establishment (t0) was determined by hand clipping within two 25 x 25 cm squares, randomly placed in the proximity 190 

of the cage. In the three years we harvested ABG biomass inside the cages at the beginning of summer in early June (t1), 191 

when most of the vegetation was already senescent. Biomass collected both in t0 and t1 was oven-dried at 60°C for 48h 192 

and weighed. We calculated ABG productivity as the difference between t0 and t1 biomass. Therefore, only spring 193 

productivity was measured in 2021, which represents the largest proportion of annual productivity in this system, while 194 

a closer estimate of annual productivity was measured in 2022 and 2023.  195 

Plant traits were collected in early May 2021, at the peak of the growing season. We considered a circular area of three 196 

meters in diameter around each exclusion cage and within this area, we identified the species present at 25 regularly 197 

spaced points using the line intercept method (Godínez-Alvarez et al., 2009), with three concentric circular transects going 198 

around the cage. After completing the species inventory for all the sampling plots in a paddock, we collected at least three 199 

to ten full individuals, in that same paddock, of each of the identified species, as proposed in the abundance-weighted 200 

trait sampling scheme (Carmona et al., 2015). Thus, at least ten individuals of the most abundant species were collected 201 

in the same paddock, five individuals for the medium abundant species and three individuals for the rare species. The leaf 202 

area (LA),specific leaf area (SLA), specific root length (SLR), leaf dry matter content (LDMC), root dry matter content 203 

(RDMC), leaf nitrogen content (LNC) and plant maximum height (see Fig. 2 for more detail) of all the collected 204 

individuals was measured following the standard protocols (Pérez-Harguindeguy et al., 2016). In total, more than 10000 205 
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individuals were measured across all the plots. This extensive sampling allowed us to account not only for interspecific 206 

differences in trait values, but also for intraspecific variability in trait values across managements, farms and regions. 207 

Intraspecific variability has proven to be very important for accurately defining the functional composition of plant 208 

communities and their relationship to ecosystem processes (Siefert et al., 2015; Westerband et al., 2021). We also 209 

conducted species inventories in the spring of 2022 and 2023, but on these later samplings we only collected and measured 210 

the traits of individuals from the species not found in 2021. We used the trait values measured in 2021 for each species in 211 

each paddock to impute trait values in 2022 and 2023. The proportion of legumes in each plot was quantified from the 212 

species inventories as a measure of the number of plants with N fixation capacity in the communities. 213 

Pasture chemical composition was assessed in the three years, after the species inventories and traits samplings. We 214 

collected standing biomass by hand-clipping in three 25 x 25 cm quadrats randomly placed in the monitoring plot, outside 215 

the exclusion cages. These samples were dried at 60°C for 48h, then grounded and analyzed with Dumas method in 216 

DUMATHERM® N Pro analyzer (C. Gerhardt GmbH & Co. Germany) to obtain the nitrogen content of each sample. 217 

Acid detergent lignin (ADL) and fiber (ADF) and neutral detergent fiber (NDF) content were also measured. NDF, ADF 218 

and ADL were determined using a fiber analyzer (ANKOM A2000, ANKOM Technology, USA), following the official 219 

procedures (Latimer, 2023). 220 
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 221 

Figure 2. Graphical representation and description of plant functional traits measured. References embedded in the figure are 222 
provided below: 1Gaudet and Keddy (1988), 2Thomson et al. (2011), 3Díaz et al. (2016), 4Poorter et al. (2009), 5Kazakou et al. 223 
(2009), 6Wilson et al. (1999), 7Freschet et al. (2012), 8Wright et al. (2004), 9Guyonnet et al. (2018), 10Roumet et al. (2016), 224 
11Bergmann et al. (2020), 12Kramer-Walter et al. (2016). 225 

 226 

2.4. Soil sampling and soil characteristics measurement 227 

In spring 2021, four soil cores were collected with a push sampler (5 cm diameter) at a depth of 8 cm around each 228 

exclusion cage, after removal of above-ground vegetation and litter from the sampled surfaces. The four soil cores were 229 

combined to obtain a composite sample from each plot, and an aliquot of 40 g of this sample were sieved (<2 mm), 230 

reserved and stored at 4°C for microbial community analysis in the following days. The remainder of the composite soil 231 

samples were air-dried and sieved (<2 mm). Coarse mineral material greater than 2 mm (hereinafter referred to as gravel) 232 

was weighed and used for bulk density correction (Eq.1).  233 
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Soil texture (sand, clay and silt content) was determined using a laser diffraction particle size analyzer (Mastersizer 2000, 234 

Malvern Instruments Ltd. UK) after dispersion with sodium hexametaphosphate. Soil pH was measured with a glass 235 

electrode (soil:water 1:2.5) pH meter (CRISON Basic20, Alella, Spain). Soils were extracted with 1M KCL and 236 

determined colorimetrically in a Bran+Luebbe Autoanalyzer 3 (Norderstedt, Germany), following the manufacturer's 237 

protocol, to measure nitrate (NO3
-) and ammonium (NH4

+) concentrations. Available P (Olsen P) was determined 238 

colorimetrically in an Agilent Cary 60 UV-Vis spectrophotometer (Agilent Technologies, USA), after extraction with 0.5 239 

M NaHCO3 at pH 8.5. Available K, Ca and Mg were determined by ICP-OES (Varian Mod. 720, Palo Alto, California, 240 

USA), after extraction with 1M ammonium acetate (pH 7).  241 

 242 

2.5. Soil organic matter fractionation 243 

Representative subsamples of each 2mm sieved air-dry composite soil sample were used to measure both bulk SOC and 244 

total nitrogen (TN) as well as their distribution across distinct physical fractions. First, 10 g aliquots of all samples were 245 

ground in a ball mill and the Bernard’s calcimeter method (Sherrod et al., 2002) was used to test for the presence of 246 

inorganic C. Only four samples (0.02 % of the database) contained traces of carbonates, with CaCO₃ contents between 247 

0.2 % and 0.8 %. These samples were excluded from subsequent analyses. For bulk soil analyses, aliquots of 10g of soil 248 

were ground in a ball mill and then analyzed in the DUMATHERM® N Pro analyzer (C. Gerhardt GmbH & Co. Germany) 249 

to determine %C (SOC) and %N (TN). For soil fractionation, we followed a combined size and density procedure as 250 

described in Leuthold et al. (2024). Briefly, an aliquot of 6 g of soil was mixed with sodium polytungstate (1.85 g cm-3) 251 

and shaken reciprocally for 18 h to disperse the aggregates. After dispersion samples were centrifuged for density 252 

fractionation and the light particulate organic matter “POM” (<1.85 g cm−3) was aspirated from the rest of the soil. We 253 

then thoroughly rinsed the residual heavy fraction and separated it by wet sieving into coarse heavy mineral-associated 254 

organic matter “chaOM” (>53 μm) and fine mineral-associated organic matter “MAOM” (<53 μm). All fractions were 255 

analyzed for %C and %N on an elemental analyzer as described above. Fractionation was accepted when mass recovery 256 

was within ±5%, and C recovery was within ±15%. For samples that did not satisfy one of these conditions, fractionation 257 

was repeated. 258 

Since the chaOM and the MAOM shared similar C/N ratios, which were lower than POM C/N ratios (Fig. 3a), we merged 259 

these two mineral associated OM fractions and present them together as MAOM (Santos et al., 2024; Zhang et al., 2021). 260 

Thus, in this work, POM and MAOM represented the light (<1.85 g cm⁻³) and heavy (>1.85 g cm⁻³) fractions respectively. 261 

This contrasts with other studies based on size fractionation, in which light POM and chaOM are pooled together (Cotrufo 262 

et al., 2019b; Dai et al., 2025; Díaz-Martínez et al., 2024). However, our decision is supported by recent findings of  263 

Leuthold et al. (2024) who observed greater chemical similarity between chaOM and MAOM than between chaOM and 264 

POM. The pooling of the two mineral associated OM fractions is not expected to modify the results or interpretation of 265 

this work, as the C content of chaOM only accounts for an average of 8% of the total SOC, and its relative importance is 266 

similar across all managements (Fig. S1). Carbon data are presented as SOC, POC and MAOC stocks (Mg ha-1), calculated 267 

following Poeplau et al. (2017):  268 

 OCstock =  OCcontent × 
massfine soil (<2mm)

Volumesample
 × depthsample                                                                                                             (1) 269 

where OCcontent is the organic C content (as a proportion) of the soil fraction, massfine soil(<2mm) is the dry weight of the soil 270 

excluding gravel and large roots, and considering the dry mass of the aliquot reserved for microbial community analysis. 271 

Volumesample and depthsample are respectively the volume and depth of the soil sampled with the core. 272 
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Additionally, we calculated the proportion of MAOC in total SOC (MAOC/SOC) following Cotrufo et al. (2019). 273 

 274 

Figure 3. Violin plot and boxplot (with median and quartiles) and mean values (expressed with labels and red dots) for the ratio 275 
of carbon to nitrogen content (C/N ratio) in the soil organic matter fractions (a), and relation between carbon content in the 276 
soil organic matter fractions (in g of C per kg of soil) and the total soil organic carbon (SOC) content (b). “chaOM” refers to 277 
the coarse heavy mineral-associated organic matter, “lPOM” to the light particulate organic matter and “MAOM” to the fine 278 
mineral-associated organic matter. In panel “b”, a linear regression line depicts the relationship between IPOM and total SOC, 279 
while logistic curves illustrate the relationships of chaOM and MAOM with total SOC. 280 

 281 

2.6. Soil microbial communities:  282 

Soil microbial communities were characterized by phospholipid fatty acids analysis (PLFA; Willers et al., 2015). A two 283 

g fine soil aliquot of lyophilized soil was used for lipid extraction with a one-phase chloroform–methanol-phosphate 284 

buffer solvent. Phospholipids were separated from non-polar lipids and converted to fatty acid methyl esters (FAMEs), 285 

which were then separated by gas chromatography as described in details in Moreno et al. (2021). The sum of all 286 

individual PLFAs was used as a proxy for microbial biomass (in nmol PLFAs g-1of soil). Further, we estimated microbial 287 

biomass stocks (in mol ha-1) by substituting the OCcontent by the total PLFAs concentration in equation 1. Specific PLFAs 288 

were used as biomarkers to estimate the relative abundance of broad taxonomic microbial groups, according to their 289 

characteristic fatty acids: eukaryote, Gram- and Gram+ bacteria, saprophytic fungi and arbuscular mycorrhizal fungi 290 

(Frostegård and Bååth, 1996). The ratios among Gram+ and Gram- bacteria (Gram+/Gram-) and fungi and bacteria 291 

(Fungi/Bacteria) were also calculated to describe the composition of the microbial community.  292 

 293 

2.7. Mineral-associated carbon capacity and saturation: 294 

To evaluate the degree of MAOC saturation, we used the boundary line approach reported by Georgiou et al. (2022) 295 

adjusted with global soil samples as a reference of the maximum observed mineralogical capacity (sensu Georgiou et al., 296 

2025) of our samples (Fig. 4). Therefore, the saturation deficit in each sample was calculated as one minus the ratio of 297 

the current C content and the observed maximum C content according to the mineralogical capacity (% clay + silt). 298 

 299 



 

11 
 

2.6. Data analysis:  300 

All analyses were carried out in R 4.3.3 (R Core Team, 2024). Species abundance data and species trait values were used 301 

to compute, for each year and plot, the community weighted means (CWM) of all traits as well as the RaoQ multi-trait 302 

functional diversity index (Ricotta and Moretti, 2011). In addition, we calculated the species richness as a measure of the 303 

taxonomic diversity in each plot. These analyses were performed using the package “FD” (Laliberté and Legendre, 2010). 304 

Regarding pasture chemical composition, the hemicellulose content was calculated as NDF minus ADF and the cellulose 305 

content as ADF minus ADL, with ADL being considered a good proxy for the lignin content (Van Soest et al., 1991). 306 

For the vegetation analysis, measurements from the three years were combined to obtain mean estimates of each 307 

vegetation attribute. For each year, the ABG production and chemical attributes values, as well as the CWM of all the 308 

functional traits, were centered and scaled between -1 and 1, so that values closer to -1 represent plots with traits values 309 

lower than the mean, while values closer to 1 represent plots above the mean. The three years centered and scaled values 310 

were then averaged to obtain estimates of each vegetation characteristic across the study period, as shown in this equation 311 

2:  312 

Vegetation attribute
𝐦𝐞𝐚𝐧

= 
∑ Vegetation attribute (centered and scaled)೤೐ೌೝ ೔ మబమయ

೤೐ೌೝ ೔సమబమభ

ଷ
                                                                             (2) 313 

All mean values of vegetation characteristics obtained with equation 2 were used to build a Principal Component Analysis 314 

(PCA). From this PCA, we extracted 4 main axes of variation of the vegetation characteristics with eigenvalues greater 315 

than one (Fig .4).  316 
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 317 

Figure 4. Representation of the 4 main axis of variation in the principal component analysis (PCA) summarizing the vegetation 318 
characteristics variables. Panels a, b, c and d show the correlation between the different variables included in the PCA and the 319 
new axis. Panels e, f, g and h represent the plant communities characteristics at the extreme of each axis. Representative species 320 
of each axis are represented in Fig. S2. 321 

Nutrients stocks in the soil samples were calculated by substituting the OCcontent, in equation 1, for the concentration of 322 

each nutrient. PCA was used to summarize these nutrient stocks into a single composite index, as all nutrients were 323 

positively correlated. The first component of this PCA, which absorbed 46.9% of the variance, was extracted as a new 324 

variable, henceforth called “soil fertility” (Fig. S3). This soil fertility index increases as ammonium, nitrate, P, Ca, Mg, 325 

and K stocks in soil increase.  326 
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To analyze the direct and indirect effects of management, vegetation characteristics, microbial communities and 327 

environmental variables on POC, MAOC and SOC stocks and MAOC/SOC ratio we built a structural equation model 328 

(SEM) using the “piecewiseSEM” package (Lefcheck, 2016). These models assess the extent to which a defined structure 329 

of causal relationships fits the actual correlations between the data. We started from the assumption that management, 330 

climate and soil properties could affect SOC, POC and MAOC stocks and the MAOC/SOC directly or indirectly, by 331 

modifying microbial composition and vegetation characteristics. This provided us with a theoretical basis for the 332 

construction of the SEMs. The linear sub-models within these SEMs were fitted with the “lme4” package (Bates et al., 333 

2015) using the farms as random factors to avoid spatial pseudo-replication. Model fitting was performed according to 334 

Zuur et al. (2009) selecting the model with the lowest corrected Akaike Information Criterion (AICc) value after adjusting 335 

for random and fixed factors. All predictor variables used in the model selection are summarised in Table 1. While gravel 336 

content is correlated to BD, its inclusion as predictor in the models helped to control for inter-site variability in gravel 337 

content. Interactions between management and climate or soil texture were also included during model selection. All 338 

model assumptions were checked and satisfactorily met. Predictor variables were scaled and centered prior to inclusion 339 

in the models.  340 

To calculate the total effect of each explanatory factor (i.e. the sum of direct and indirect effects) on SOC, POC and 341 

MAOC stocks, and MAOC/SOC ratio in the SEMs, we used the “semEff” package (Murphy, 2022). This package 342 

generates estimates and confidence intervals of the total effects of the explanatory factors across multiple permutations 343 

of the data (9999 bootstraps in our case). 344 

Given that average bulk density values partly differed among managements (Figure S4), and that this variation may affect 345 

carbon stocks, the same analysis procedure used for POC, MAOC and SOC stocks was used to analyze the change in 346 

POC, MAOC and SOC contents. 347 

Table 1. List of the variables and their units, which were included as fixed factors during the structural equation model 348 
(SEM) sub-models selection. 349 

Variables Units 

Management Categorical (5 levels) 

Sand content % 

Gravel content % 

Soil fertility unitless 

Mean annual precipitation (MAP) mm 

Mean annal temperature (MAT) ºC 

Vegetation PCA- Axis 1 (N-C axis) unitless 

Vegetation PCA- Axis 2 (PES axis) unitless 

Vegetation PCA- Axis 3 (P-L axis) unitless 

Vegetation PCA- Axis 4 (Size axis) unitless 

Functional diversity (Rao multi-trait index) unitless 

Taxonomic diversity (species richness) count 

Microbial biomass (bulk) nmol ha-1 

Gram+/Gram- ratio 

Fungi/Bacteria ratio 

 350 
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3. Results: 351 

The mean values of POC, MAOC and SOC stocks were 9.8 ± 4.3, 7.1 ± 3.1 and 16.5 ± 6.3 Mg C ha-1 respectively. On 352 

average, MAOC represented 44% of the total SOC. The MAOC content of all the soils analyzed was well below the 353 

theoretical saturation level established by Georgiou et al. (2022) in relation to the clay + silt content (Fig. 5). Mean MAOC 354 

saturation deficit was 80%. Soil organic carbon fractions and stocks were affected directly and indirectly by mean plant 355 

traits, microbial communities, soil properties and management, and indirectly by climatic conditions (Fig. 6). Plant 356 

diversity indices and interactions between management and climate or soil texture were not retained in the model selection 357 

due to lack of significance. 358 

 359 

Figure 5. Relation between the mineral-associated organic carbon (MAOC) and the percent Clay+Silt (CS) in the soil samples 360 
and the boundary line (in blue) with confidence intervals adjusted by Georgiou et al. (2022) for high-activity mineral soils, 361 
indicating the maximum observed mineralogical capacity for each CS content. The equation for the boundary line is provided 362 
in the panel. Points are colored based on their MAOC deficit (1- MAOC content / MAOC maximum observed capacity). 363 

 364 

Total microbial biomass, estimated as total PLFA stocks, averaged 66.3 ± 25.9 mol ha-1, with mean values for 365 

Fungi/Bacteria and Gram+/Gram ratios of 0.08 ± 0.03 and 1.1 ± 0.2, respectively, although there were some differences 366 

between treatments (Fig. S5). Microbial biomass was positively correlated with POC, MAOC and SOC stocks (Fig. 6f; 367 

Fig. 7a, b & c). The Fungi/Bacteria ratio was negatively correlated with MAOC stocks (Fig. 6f; Fig. 7b) meaning that 368 

these stocks were higher in soils with a greater bacterial predominance. The Gram+/Gram- ratio had a significant direct 369 

negative effect on SOC, MAOC and PC stocks (Fig. 6f; Fig. 7a, b & c). 370 

The first axis of the PCA of the vegetation characteristics, which reflects the N-C stoichiometry of the vegetation, had a 371 

negative direct effect on POC, MAOC and SOC stocks (Fig. 6h; Fig. 7a, b & c). The second axis, related to the plant 372 

economic spectrum (PES), had a positive direct effect on SOC stocks (Fig. 6h; Fig. 7c). In addition, the PES axis was 373 

positively correlated with the microbial biomass, thus having a positive indirect effect, and a significant total effect on 374 

POC, MAOC and SOC stocks (Fig. 6e; Fig. 7a, b & c). The third axis of the PCA (P-L axis), positively correlated with 375 

the lignin content and negatively related to vegetation productivity, was negatively correlated with the POC, MAOC and 376 

SOC stocks and the microbial biomass (Fig. 6e & h; Fig. 7a, b & c). The fourth axis, reporting the plant size, was positively 377 

correlated with the MAOC stocks, the MAOC/SOC ratio and the Fungi/Bacteria ratio (Fig. 6e & h; Fig. 7a & d). No index 378 
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of plant functional and taxonomic diversity was retained during model selection. On the other hand, soil fertility had a 379 

direct and indirect positive effect on POC, MAOC and SOC stocks (Fig. 6g). Soil fertility was negatively correlated with 380 

the Gram+/Gram- ratio, the P-L axis and the N-C axis, and positively correlated with the PES axis of the vegetation PCA 381 

(Fig. 6i & j).  382 

Plot under continuous grazing had a mean POC, MAOC and SOC stocks of 9.1, 6.8 and 16.2 Mg C ha-1 respectively, and 383 

a MAOC/SOC ratio of 0.44 (Fig. 8). Rotational grazing significantly increased soil fertility compared to continuous 384 

grazing (Fig. 6k). This led to a significant indirect effect of rotational grazing on POC, MAOC and SOC stocks (Fig. 7b 385 

& c). POC, MAOC and SOC stocks under rotational grazing had a mean value of 10.5, 7.8 and 18.5 Mg C/ha, respectively, 386 

which were 15% (in the case of POC and MAOC) and 14% higher (for SOC stocks) than mean values in continuous 387 

grazing (Fig. 8b & c). Recent legume sowing had a negative direct effect on POC, MAOC and SOC (Fig. 6b). However, 388 

Lr also increased significantly the plant size axis, the microbial biomass and the soil fertility and decreased the plant N-389 

C axis compared to Ct (Fig. 6a, c & k). These changes resulted in a positive indirect effect of Lr over POC, MAOC and 390 

SOC stocks and a null total effect (Fig. 7a, b, c & d). Grazing abandonment increased the vegetation N-C axis and reduced 391 

the microbial biomass compared to Ct (Fig. 6a & c), resulting in a negative indirect effect on POC, MAOC and SOC 392 

stocks and a significant negative total effect on POC stocks (Fig. 7a, b & c). Thus, the mean POC stock on abandoned 393 

plots was 8.1 Mg C/ha, 11% lower than in continuous grazing plots (Fig. 8a).  394 

Sand content in soil was negatively correlated with MAOC stocks and MAOC/SOC ratio (Fig. 6j). Sand content was also 395 

negatively correlated with soil fertility and the PES axis and positively correlated with the P-L and N-C axis (Fig. 6i), 396 

thus having a negative indirect effect on POC, MAOC and SOC stocks (Fig. 7a, b & c). As expected, due to its negative 397 

correlation with BD, gravel content was also negatively correlated with microbial biomass (Fig. 6j), leading to a 398 

significant negative indirect effect on POC, MAOC and SOC stocks (Fig. 7a, b & c). MAT was positively correlated with 399 

the N-C axis and negatively correlated with the soil fertility index (Fig. 6d & l). This implied a negative indirect effect of 400 

MAT over POC, MAOC and SOC stocks (Fig. 7a, b & c). On the other hand, MAP was negatively correlated with the N-401 

C and the size axis (Fig. 6d). Thus, MAP had a positive indirect effect on POC, MAOC and SOC stocks (Fig. 7a, b, c & 402 

e). 403 

 404 
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 405 

Figure 6. Structural equation model representation. Factors included in the model are grouped by factor type (management, 406 
climate, vegetation traits, soil properties, microbial communities). Arrows between groups of factors indicate significant 407 
relationships between any of the factors included in both groups. The width of these arrows is proportional to the mean absolute 408 
size of the estimates between the factors in the groups. The plots embedded into these arrows show the standardized estimates 409 
of the significant relationships between the factors connected by the arrow. Negative standardized estimates are represented in 410 
red, and positive ones in blue. The size of the estimate circles represents the absolute value of the standardized estimate. Causal 411 
relationships between factors in the same group are represented by individual arrows.  412 

 413 

 414 
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 415 

Figure 7. Direct, indirect and total standardized effects of all studied variables included in the structural equation model 416 
(Figure6) over the (a) particulate organic carbon (POC), (b) mineral-associated organic carbon (MAOC), and (c) soil organic 417 
carbon (SOC) stocks and (d) the relative MAOC abundance (MAOC/SOC). Bars indicate direct (dark colors) and indirect 418 
(light colors) effects, and the black points-ranges indicate the total (i.e. direct + indirect) effect (with its 95% confidence 419 
interval). Stars over the total effect values indicate significant effects at a level of 0.05. 420 
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 421 

Figure 8. Violin plot and boxplot (with median and quartiles) for the (a) particulate organic carbon (POC), (b) mineral-422 
associated organic carbon (MAOC), and (c) soil organic carbon (SOC) stocks and (d) the relative MAOC abundance 423 
(MAOC/SOC) in each management (Ct = Continuous grazing; Ab = grazing abandonment; Lr = Recent legume sowing; Lo = 424 
old legume sowing; Ro = Rotational grazing). The red point and the label indicate mean values predicted by the structure 425 
equation model (Fig.6). Lower case letters indicate significant differences (p < 0.05) between managements. 426 

 427 

4. Discussion  428 

Our results highlight the potential of management to control carbon storage in semi-arid grasslands. In this sense, 429 

rotational grazing arises as a promising tool for enhancing long-term carbon storage in the topsoil. We also identified 430 

several pathways by which management influences SOC, POC and MAOC stocks, showing the importance of changes in 431 

vegetation and microbial composition. Furthermore, management effects were consistent across the wide soil-climate 432 

gradient examined, enabling generalization of our results to a broad set of semi-arid grasslands in various environmental 433 

contexts. It should be noted that the predicted capacity of POC, MAOC and SOC stocks models was high (62%, 69% 434 

73% of the variance explained by the fixed factors, respectively), indicating the robustness of the results presented and 435 

their importance for expanding the understanding of soil carbon dynamics in grasslands. Our results are limited to the 436 

upper topsoil (the first 8 cm), and it would be necessary to analyze deeper layers to fully understand the processes of SOC 437 

formation and stabilization and the effects of management changes. However this top layer is the most important for 438 

mediterranean grassland functioning as it contains the majority of roots and therefore most of the microbial, nutrients and 439 

water dynamics (Acosta-Gallo et al., 2011; Moreno et al., 2005). Furthermore, changes in management primarily affect 440 

the SOC of the topsoil layer, especially in the short term (Ward et al., 2016). 441 

 442 

4.1. Soil organic carbon fractions, stocks, and saturation levels 443 

SOC stocks and contents (Fig.8 & S4) in the paddocks studied (16.5 Mg C ha-1 and 19.5 g C kg-1 on average, respectively) 444 

were consistent with values found in the first 7-10 cm of soil in other grasslands under similar climatic conditions (Díaz-445 
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Martínez et al., 2024; Oggioni et al., 2020; Parras-Alcántara et al., 2014). On the other hand, the MAOC/SOC ratio of our 446 

soils (0.44 on average) was lower than the values generally reported in both global and semi-arid grasslands (Hansen et 447 

al., 2024; Rocci et al., 2022; Shi et al., 2024), which are around 0.6-0.7. The shallow sampling depth in this work (8 cm) 448 

may influence the observed MAOC/SOC ratios, as POM decrease more sharply than MAOM with soil depth (Galluzzi et 449 

al., 2025; Sanderman et al., 2021; Tang et al., 2024). For instance, Plaza et al. (2022) reported MAOC/SOC ratios between 450 

0.3 and 0.4 in the first 10 cm of soil, while Cappai et al. (2017) found MAOC/SOC ratios around 0.7 in the first 20 cm, 451 

both in Mediterranean grasslands. 452 

Carbon concentrations in the fine soil fraction (clay + silt) were well below the saturation point observed in previous 453 

studies (Cotrufo et al., 2019a; Georgiou et al., 2022). However, we observed a certain limit to MAOC accumulation in 454 

our system, as its content remained stable above SOC contents of 30 g/kg-1 and stayed below 20 g kg-1 even when SOC 455 

reached values above 60 g kg-1, following a saturation curve (Fig. 3b). These results support the observations that MAOC 456 

accrual is more limited by the amount of C inputs rather than the mineralogical capacity of the soil (Poeplau et al., 2024). 457 

In this sense, the maximum C in the clay+silt fraction observed in this work (around 19 g C/kg clay+silt) would represent 458 

the maximum capacity of the ecosystem to stabilise C at current levels of productivity. Therefore, MAOC saturation 459 

should be a minor concern when planning management strategies to improve C storage in Mediterranean grasslands. 460 

 461 

4.2. Soil microbial communities regulate SOC storage 462 

Total microbial biomass had a similar and substantial positive effect on POC, MAOC and total SOC stocks, such that the 463 

MAOC/SOC ratio was unaffected. Typically, microbial biomass C only represents about 2% of SOC (Xu et al., 2013; Yao 464 

et al., 2000), but it is closely correlated with the accumulation of microbial necromass C (Hou et al., 2024). The latter can 465 

account for more than 50% of SOC (Liang et al., 2019), with a similar contribution to the POC and MAOC fractions 466 

(Zhang et al., 2024). The positive effect of microbial biomass on both POC and MAOC, as well as the relatively low C:N 467 

ratio of these fractions found in this study (Fig. 3a) compared to other works (Chang et al., 2024; Yu et al., 2022), indicate 468 

a prominent role of microbial transformation of plant inputs in SOC formation in semi-arid grasslands, which would also 469 

explain the relatively low SOC stocks of these ecosystems. 470 

Fungi/bacteria ratio was negatively correlated with MAOC fraction, as fungi residues tend to contribute more to POC 471 

(Griepentrog et al., 2014; Lavallee et al., 2020; Tang et al., 2023), but no significant effect of fungi/bacteria ratio over 472 

POC stocks or MAOC/SOC ratio was observed. Gram+/Gram- ratio was negatively correlated with POC, MAOC and 473 

SOC stock, as observed in previous studies (Khatri-Chhetri et al., 2024). Gram- bacteria are more dependent on plant C 474 

inputs, whereas Gram+ bacteria tend to use more of the organic C already present in the soil (Fanin et al., 2019; Kramer 475 

and Gleixner, 2008; Waldrop and Firestone, 2004). Thus, the proliferation of Gram+ bacteria may promote the 476 

decomposition of pre-existing SOM (Klumpp et al., 2009). 477 

 478 

4.3. Plant-soil interactions and their effect on soil carbon stocks 479 

The analysis of vegetation functional traits and chemical composition revealed four main axes of variation. Two of these 480 

axes (axes 1 and 4) correspond to the spectrum of plant form and function, found in several global vegetation analyses 481 

(Díaz et al., 2016; Weigelt et al., 2021). This two-dimensional spectrum is defined by the leaf and root economic gradient 482 

(Kramer-Walter et al., 2016; Wright et al., 2004), that moves from slow-growing and resource-conserving to fast-growing 483 

and resource-acquisitive species (Wright et al., 2004), and the size gradient, which increases with increasing plant height 484 
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and leaf area and reflects the competitive ability of plants for the light (Díaz et al., 2016).The other two axes (axes 2 and 485 

3) are more related to the aboveground chemical composition of the vegetation. Axis 1 reflects the N-C stoichiometry of 486 

plant tissues, driven mainly by the ABG C/N ratio, both of which are obviously negatively correlated with certain traits 487 

such as LNC and the proportion of legumes. The N-fixing capacity of legumes has a fertilising effect on companion 488 

plants, increasing its tissues nitrogen content (Pino et al., 2016). In addition, legumes themselves tend to have a high 489 

concentration of nitrogen in leaves and stems (Carranca et al., 2015). Axis 3 is positively related to the lignin content of 490 

the vegetation. This independence between lignin and nitrogen content in plant litter has already been observed (Cornwell 491 

et al., 2008). ABG productivity of vegetation was correlated with most of these axes, especially with axis 3, being higher 492 

in more acquisitive, less lignified and bigger vegetation, as found in other works (Laliberté and Tylianakis, 2012; Zhang 493 

et al., 2017). 494 

POC, MAOC and SOC stocks were higher in communities dominated by resource-acquisitive, highly productive plants 495 

with low lignin content and low C/N ratio. These communities are expected to provide a higher level of plant inputs, 496 

thereby increasing the incorporation of organic matter into the soil (King et al., 2023; Mortensen et al., 2025; Zhou et al., 497 

2024). Increased inputs may come from higher plant litter production but also from increased root exudates, which tend 498 

to be higher in acquisitive plants (Guyonnet et al., 2018). Part of the effects of plant traits in SOC was mediated by 499 

increases in microbial biomass, which would also benefit from higher levels of plant inputs and increased root exudation 500 

(Eisenhauer et al., 2017). In addition, inputs with low lignin and C/N ratios are degraded more efficiently, reducing C 501 

losses and promoting long-term SOC storage (Cotrufo and Lavallee, 2022; Ridgeway et al., 2022). However, based on 502 

previous work, we would have expected a direct contribution of plant structural input to POC (Cotrufo et al., 2022), and 503 

thus a higher proportion of POC in communities that produce more recalcitrant litter (Cheng et al., 2023; Haddix et al., 504 

2016; Mortensen et al., 2025). This was not the case in this work, where the MAOC/SOC ratio remained unaffected by 505 

the chemical composition of the ABG vegetation tissues. This unexpected result could be explained by the fact that in 506 

these systems, POC also appears to be the product of microbial transformation of plant inputs, as suggested by its positive 507 

relationship with microbial biomass and its relatively low C/N ratio. In addition, photodegradation, an important driver 508 

of litter degradation in semi-arid ecosystems (Austin and Vivanco, 2006), can promote litter lignin biodegradability and 509 

the production of litter soluble compounds that are readily accessible to soil microbes (Wang et al., 2015), thus reducing 510 

the influence of vegetation chemical properties on POC and MAOC formation. Grazing also decouples the quality of 511 

plant tissues and the final quality of inputs to the soil, as livestock excreta have a lower C/N ratio than the plant material 512 

consumed (Soussana and Lemaire, 2014). We also observed that taller and larger plants (high values on the size axis) 513 

were associated with higher MAOC stocks and MAOC/SOC ratios, although the mechanism driving this correlation was 514 

unclear. Generally, plant height is positively correlated with shoot:root ratio (Li et al., 2008), and several studies have 515 

found a higher contribution of shoots, rather than roots, to the MAOC fraction due to the higher recalcitrance of root 516 

tissues (Huang et al., 2021; Lavallee et al., 2018; Ridgeway et al., 2022). However, rhizodeposition, which is closely 517 

linked to root biomass, has been shown to promote MAOC formation over POC (Berenstecher et al., 2023; Villarino et 518 

al., 2021). On the other hand, a greater accumulation of standing litter, rather than surface litter, might be expected in 519 

communities with bigger plants, and some studies in semi-arid grasslands have observed higher rates of microbial 520 

degradation and release of soluble compounds (thus contributing more to MAOC) in standing litter, compared to surface 521 

litter, due to greater retention of night-time moisture in the former (Gliksman et al., 2018; Wang et al., 2017) .In any case, 522 

our results and their interpretation are limited by the correlation in our vegetation data between input quantity (ABG 523 

productivity) and input quality, which could mask the effect of the latter on SOC formation.  524 

No significant effects of taxonomic or functional diversity on POC, MAOC or SOC stocks were found, which could be 525 

explained by the negative correlation of these biodiversity indicators with the ABG productivity and soil fertility in our 526 
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plots (Fig. S7). This negative correlation has been observed in other natural grassland research and may be due to the 527 

dominance of some highly productive species in nutrient-rich environments (Feßel et al., 2016; Helsen et al., 2014; Luo 528 

et al., 2019; Rolo et al., 2016). In this sense, our results would be consistent with previous research that has found a greater 529 

importance of functional identity (i.e. mean traits values) relative to functional diversity in predicting ecosystem processes 530 

(Mokany et al., 2008; Zhang et al., 2017). 531 

Soil fertility plays a central role in our models, increasing POC, MAOC and SOC stocks. Previous studies in grasslands 532 

have already observed a positive correlation between POC and MAOC and soil nutrients content (Wang et al., 2025). 533 

Global N addition experiments have also showed to increase topsoil C storage in grasslands (Hu et al., 2024; Liu et al., 534 

2023). In this work, we observe a direct effect of soil fertility on C storage, but we also identify some indirect effects 535 

mediated by changes in vegetation and microbial communities. More resource-acquisitive and productive plant 536 

communities, with lignin content and lower C/N ratio, were found at higher soil fertility. Resource-acquisitive plants are 537 

expected to be more competitive in nutrient-rich environments (Daou et al., 2021; Ordoñez et al., 2009). The absence of 538 

nutrient limitation also promotes plant productivity (Fay et al., 2015). In addition, soil fertility was negatively correlated 539 

with the Gram+/Gram- ratio. Gram- bacteria have a more copiotroph strategy than Gram+ bacteria and therefore benefit 540 

more from nutrient-rich environments (De Deyn et al., 2010; Luo et al., 2020; Zhong et al., 2010). The direct positive 541 

effect of soil fertility on C storage in soils may be explained by changes in other factors that we did not measure. For 542 

instance, nutrient addition have been shown to promote below-ground productivity in mediterranean woody pastures (Nair 543 

et al., 2019) and in global grasslands (Liu et al., 2023; Lu et al., 2011). Moreover, nutrient availability in soils tends to 544 

increase CUE (Poeplau et al., 2019; Spohn et al., 2016) and to alleviate the need for microbial N-mining, reducing C 545 

losses and old SOM decomposition (Blagodatskaya and Kuzyakov, 2008). 546 

 547 

4.5. Management effects 548 

Rotational grazing increased both POC, MAOC and SOC stocks by 15%, 15% and 14%, respectively, compared to 549 

conventional continuous grazing. Previous studies found the same positive effect of rotational grazing on MAOC (Khatri-550 

Chhetri et al., 2024; Mosier et al., 2021; Stanley et al., 2025) and total SOC content (Byrnes et al., 2018; Conant et al., 551 

2017; Liu et al., 2024; Phukubye et al., 2022; Teague et al., 2011). According to our results, this effect is mainly explained 552 

by the higher soil fertility observed in rotational grazing plots, cascading in the above explained effects on plant traits and 553 

microbial transformation leading to higher POC, MAOC and SOC stocks. Soil fertility may be higher under rotational 554 

grazing than under continuous grazing because fecal and urine excretions tend to be less spatially clustered in rotationally 555 

grazed paddocks, resulting in more homogeneous fertilization of the entire paddock (Augustine et al., 2023; Dubeux Jr. 556 

et al., 2014). In contrast, in continuous grazing, excreta tend to accumulate in areas of highest animal use, such as near 557 

feeders or water points (Tate et al., 2003), which are areas that have been avoided in our sampling. In turn, the 558 

homogeneous grazing and fertilization maintains a greater amount of ground covered by vegetation (Stanley et al., 2025; 559 

Teague et al., 2004), which limits topsoil losses through erosion (Sanjari et al., 2009).  560 

Surprisingly legume sowings had a negative direct effect on soil C stocks, but a positive indirect effect, resulting in a non-561 

significant total effect. The negative impact was more evident in recent sowings, especially on the MAOC fraction, and 562 

could be attributed to the impact of the pre-sowing tillage. Previous works have observed a reduction in SOC stocks after 563 

tilling in mediterranean grasslands (Parras-Alcántara et al., 2015; Uribe et al., 2015). This would explain why the direct 564 

effect of legume sowing in C storage is more negative in recent compared to old-sowed paddocks. The effect of tillage 565 

on SOC stocks may arise from changes in soil bulk density rather than C content, resulting in misleading conclusions (Du 566 

et al., 2017; Rovira et al., 2022). However, in this work the analysis of POC, MAOC and SOC contents (in g/kg bulk soil; 567 
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Fig. S6 & S8) shows similar effects of legume sowing as those observed for C stocks (Fig. 7a, b & c). In the recently 568 

sown plots, the negative impact in C stocks was countered by an increase in soil fertility, plant productivity and plant 569 

nitrogen content, possibly due to increased legume cover (Gómez-Rey et al., 2012; Gou et al., 2023; Hernández-Esteban 570 

et al., 2019). In addition, recent legume sowing also implied an increase in microbial biomass and a decrease in the 571 

Gram+/Gram- ratio, as observed in previous studies (Moreno et al., 2021).  572 

Grazing abandonment led to a 12% reduction in the POC stocks, compared to continuous grazing. This result contradicts 573 

the observations of previous studies in grasslands, which reported positive effects of grazing exclusion on SOC storage, 574 

both globally (Eze et al., 2018) and particularly in semi-arid climates (Cheng et al., 2016; Gao et al., 2025; Yu et al., 575 

2021). However McSherry and Ritchie (2013) meta-analysis found that light grazing could promote SOC stocks in C3 576 

dominated grasslands (such as our study grassland). Other global and regional studies also observed null or even positive 577 

effects of light grazing, compared to grazing exclusion, in SOC stocks in grasslands (Liu et al., 2024; Zhou et al., 2017). 578 

Our results would are in line with previous studies in mediterranean woody pastures that found a decrease in SOC storage 579 

with grazing abandonment (Oggioni et al., 2020; Peco et al., 2017). The fact that grazing abandonment particularly 580 

affected the POC fraction is surprising, since in abandoned paddocks there were a greater accumulation of plant structural 581 

biomass, that should promote POC accrual (Cotrufo et al., 2022). According to our results, the negative effect of grazing 582 

exclusion on POC stocks was mainly mediated by a reduction in microbial biomass, and a proliferation of plants with 583 

higher C/N ratios. Once again pointing to the microbially transformed nature of POC in these soils. Grazing has been 584 

proven to increase microbial activity and biomass (Bardgett et al., 2001; Zhou et al., 2017), in part by increasing root 585 

exudation (Hamilton et al., 2008; Wilson et al., 2018). Previous studies have also observed an increase in vegetation C/N 586 

ratio with cessation of grazing (He et al., 2020; Wang et al., 2016), which could be explained by the accumulation of older 587 

plant tissues and senescent standing biomass, with higher C/N than green biomass and new leaves (Sanaullah et al., 2010). 588 

Importantly, we observed no interactions between management effects and climate or soil texture variables, showing that 589 

the observed management effects were consistent across the entire environmental gradient. Although such interactions 590 

have been observed for wider climatic gradients (Byrnes et al., 2018; Phukubye et al., 2022), our results show that 591 

management practices such as rotational grazing can have net positive impacts on SOC storage in grasslands with varying 592 

conditions within semi-arid regions. 593 

 594 

Climate effects and implications for global warming 595 

Even within the small climatic gradient covered in this study, we found lower stocks of POC, MAOC and SOC in the 596 

warmer areas, as observed in previous research (Díaz-Martínez et al., 2024; Georgiou et al., 2024; Hansen et al., 2024; 597 

Shi et al., 2024). According to our results, these negative effects were entirely mediated by a decrease in soil fertility and 598 

vegetation input quality (increased N-C axis) with increasing temperature. Increased aridity has been shown to be 599 

associated with the alteration of several ecosystem processes that regulate nutrient cycling and availability (Berdugo et 600 

al., 2020; Moreno-Jiménez et al., 2019). Increased fiber for tissue protection, typical from plants growing at higher 601 

temperatures, may explain the increase in vegetation C/N ratios (Arroyo et al., 2024). On the other hand, annual 602 

precipitation exerted a small positive effect on POC and SOC stocks, mediated by the reduction of C/N ratios in vegetation 603 

in wetter farms. Based on future projections of increasing temperatures and decreasing annual precipitation in our study 604 

area (IPCC, 2023b) we could expect significant reductions in SOC stocks in Mediterranean grasslands in the next decades, 605 

affecting both the POC and MAOC fractions. 606 

 607 
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5. Conclusions: 608 

Implementing rotational grazing can improve both POC and MAOC stocks in Mediterranean grasslands. On the other 609 

hand, the abandonment of grazing, far from functioning as a tool for ecological restoration, can lead to a loss of soil 610 

carbon storage capacity in these ecosystems.  611 

Changes in microbial communities and vegetation attributes were the main drivers of changes in SOC stocks and fractions. 612 

In this sense, this work has proven the usefulness of plant functional traits as tools for the study of plant-soil interactions 613 

and SOC formation dynamics. 614 

We can expect a loss of soil carbon in the studied grasslands over the next few decades due to grazing abandonment and 615 

climate warming, so selecting management approaches that mitigate or counteract these losses is vital to maintaining the 616 

fertility, productivity and functioning of semi-arid grasslands. 617 

 618 
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