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Response to Referee #1 
We would like to begin by expressing our appreciation to the Editor for their attention to our manuscript. We also extend our 

sincere thanks to Referee 1 for their review and comments. However, we would like to emphasize that the referee's remarks 

focused solely on typographical errors in the appendices, without addressing the validity of the comments concerning the 

original publication, as outlined in the main text of our comment. 5 

Our response, on the comments of the Referee #1,  is as follow: 

 

 Comment 1 

Eq. (A1) is written for the Fourier components but contains the factor 𝑒𝑥𝑝(−𝑖𝜔𝑡 + 𝑖𝑘𝑧) which should not be there. 

Response 1 10 
We employed a direct calculation of the perturbed distribution function from the Vlasov equation and not the Fourier 

transform approach. The distribution function is assumed to consist of a bi-Maxwellian equilibrium component and a 

perturbation induced by the Weibel mode, characterized by frequency 𝜔 and wave number 𝑘: 𝛿𝑓(𝑡, 𝑧, 𝑣⃗). This perturbation 

is assumed to follow the spatio-temporal variation of the Weibel mode fields, in accordance with linear theory: 

 𝛿𝑓(𝑡, 𝑧, 𝑣⃗) = 𝛿𝑓𝜔,𝑘(𝑣⃗)𝑒𝑥𝑝(𝑖𝑘𝑧 − 𝑖𝜔𝑡). 15 

Substituting this form into the Vlasov equation reveals that 𝛿𝑓𝜔,𝑘(𝑣⃗) exhibits angular dependence of the form exp⁡(∓𝑖𝛼) . 

Consequently, 𝛿𝑓𝜔,𝑘(𝑣⃗)  can be expressed as: 𝛿𝑓𝜔,𝑘(𝑣⃗) = 𝛿𝑓∓(𝑣∥, 𝑣⊥)exp⁡(∓𝑖𝛼).  
 

 Comment 2 

Eq. (A3) contains 𝛿 in the right-hand side. What is this 𝛿? 20 

 

Response 2 

The symbol 𝛿 is not interpreted in isolation, it is read together with 𝑓𝜔,𝑘 as 𝛿𝑓𝜔,𝑘. 

 

 Comment 3 25 
Upon substitution of (A7) into (B3), the factor 1/2 is lost. 

 

 Response 3 

This was merely a typographical error, where 𝜋 was mistakenly replaced with ½ in Eq. (B3). This error has no impact on the 

other equations or on the final results. 30 

 Comment 4 
Substitution of (C14) into (C5) does not seem to be correct: 

Response 4 

Equation C14 was correctly substituted into Equation C5. The issue in Equation C15 was purely typographical, where the 

expression was mistakenly written as 
𝑇∥

𝑇⊥
(
𝑇∥

𝑇⊥
− 1) instead of the correct form (

𝑇∥

𝑇⊥
− 1). This typographical error has no 35 

impact on the other equations or the final results, as the correct expression was used in all calculations. This can be easily 

verified.  

 

Dear Referee1, 

I respectfully disagree with the emphasis placed on typographical errors, in appendices,  that neither affect the results nor 40 

undermine the main purpose of this publication. Since our comments manuscript requieres only minor corrections in the 

appendices, I kindly ask you to reconsider your opinion.  Please find the corrected version attached. 
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Abstract. In the reference (Ann. Geophysicae, 30, 1051–1054, (2012)), the dispersion relation of Weibel modes is explicitly 50 

calculated in magnetized plasma. The parameters of Weibel instability which are the Weibel mode frequency, 𝑅𝑒(𝜔), and 

the growth rate of the Weibel instability, 𝐼𝑚(𝜔)  are deduced from the obtained dispersion relation under justified 

approximations. 

 Several errors, which affect the results,  are identified in this reference (Ann. Geophysicae, 30, 1051–1054, (2012)). We are 

interested in the present work to correct these errors. 55 

It has been shown that 𝐼𝑚(𝜔)  remains the same that in the case of zero external magnetic field. However, 𝑅𝑒(𝜔),  is 

proportional to the electron cyclotron frequency, ~∓ 𝜔𝑐  , and to the temperature anisotropy, ~ 
∆𝑇

𝑇∥
=

𝑇⊥−𝑇∥

𝑇∥
= (

𝑇⊥

𝑇∥
− 1), 

where 𝑇⊥and 𝑇∥ are respectively the perpendicular and the parallel temperature. 

 

Keywords: Weibel instability, Magnetized plasma, bi-Maxwellian distribution 60 

1 Introduction 

Erich S. Weibel (Weibel, 1959) was the first to demonstrate that temperature anisotropy generates electromagnetic instable 

modes in plasma. Since the appearance of the original Weibel paper ((Weibel, 1959), several studies have been carried out 

on Weibel instability. 

In their paper (Ann. Geophysicae, 30, 1051–1054, (2012)), Pokhotelov and Balikhin investigate Weibel instability (Weibel, 65 

1959) in magnetized plasma, assuming a standard bi-Maxwellian distribution function. The dispersion relation is derived in 

the noncollisionnel regime  from the perturbed Vlasov equation combined with the Maxwell’s equation. By using the quasi-

static Weibel modes approximation, which permits to neglect the displacement current in Ampère’s law and the higher-order 

terms, relative to the scale parameter = |
𝜔±𝜔𝑐

𝑣𝑇∥𝑘
| , the authors are explicitly calculated the growth rate of Weibel mode and the 

Weibel mode frequency.  70 

Upon reviewing this work and performing the necessary calculations, we have identified several errors in the derived 

formulas. These inaccuracies affect the final results, particularly the growth rate of the Weibel instability in relation to the 

mailto:abdelaziz.sid@univ-batna.dz
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real and imaginary parts of the Weibel mode frequency. This comment aims to present these corrections in the order they 

appear in the original paper. To ensure clarity and reproducibility, detailed calculations are provided in three appendices. 

 75 

2 Perturbed distribution function 

The perturbed distribution function 𝛿𝑓∓, derived from the Vlasov equation (Eq. (02) in the original manuscript), is given by 

𝛿𝑓∓ = 𝑖
𝑒𝑏𝑣⊥

𝑚𝑘
[

𝜕𝐹

𝑣⊥𝜕𝑣⊥
−

𝜕𝐹

𝑣∥𝜕𝑣∥
+

[𝜔
𝜕𝐹

𝑣∥𝜕𝑣∥
±𝜔𝑐(

𝜕𝐹

𝑣∥𝜕𝑣∥
−

𝜕𝐹

𝑣⊥𝜕𝑣⊥
)]

𝜔±𝜔𝑐−𝑘𝑣∥
]. 

This expression differs from Eq. (03) in the original paper. (See Appendix A for derivation details) 

3 Current density 80 

The current density 𝑗𝑥 is found to be 

 𝑗𝑥 = −𝑖
𝑒2𝑏𝜋

𝑚𝑘
∫ 𝑣⊥

3𝑑𝑣⊥𝑑𝑣∥ [
𝜕𝐹

𝑣⊥𝜕𝑣⊥
−

𝜕𝐹

𝑣∥𝜕𝑣∥
+

[𝜔
𝜕𝐹

𝑣∥𝜕𝑣∥
±𝜔𝑐(

𝜕𝐹

𝑣∥𝜕𝑣∥
−

𝜕𝐹

𝑣⊥𝜕𝑣⊥
)]

𝜔±𝜔𝑐−𝑘𝑣∥
]. 

This differs from Eq. (04) in the original paper in two ways: 

1. A factor of ½ is missing. 

2. The term ±𝜔𝑐 (
𝜕𝐹

𝑣∥𝜕𝑣∥
−

𝜕𝐹

𝑣⊥𝜕𝑣⊥
) has inverted signs 85 

(See Appendix B for derivation details.) 

 

4 Weibel instability analysis 

Assuming 
⌊𝜔±𝜔𝑐⌋

𝑘𝑣∥
≪ 1, the imaginary part of the Weibel mode frequency Im(𝜔), is derived from the dispersion relation to be 

𝐼𝑚(𝜔) =
𝑘𝑣𝑇∥

√𝜋

𝑇∥

𝑇⊥
(−

𝑘2𝑐2

𝜔𝑝
2 − 1 +

𝑇⊥

𝑇∥
). 90 

This differs from Eq.  (9) in the original paper, where k (a real positive wavenumber 𝑘 =
2𝜋

𝜆
)  replaces |𝑘|. 

The real part of 𝜔 is given by 

𝑅𝑒(𝜔) = ±𝜔𝑐
𝑇∥

𝑇⊥
(− (

𝑇⊥

𝑇∥
− 1) (1 +

2

𝜋

𝑇∥

𝑇⊥
) +

2

𝜋

𝑇∥

𝑇⊥

𝑘2𝑐2

𝜔𝑝
2 ). 

This expression differs from Eq. (11) in the original manuscript. (See Appendix C for derivation details). 

From these corrected equations, we can derive the maximum wavenumber 𝑘𝑚𝑎𝑥  and the corresponding real frequency 95 

𝑅𝑒(𝜔)𝑚𝑎𝑥: 

𝑘𝑚𝑎𝑥 =
𝜔𝑝

√3𝑐
√(

𝑇⊥
𝑇∥

− 1) 

𝑅𝑒(𝜔)𝑚𝑎𝑥 = ∓𝜔𝑐 (1 +
4

3𝜋

𝑇∥

𝑇⊥
) (1 −

𝑇∥

𝑇⊥
). 

For small temperature anisotropy, (1 −
𝑇∥

𝑇⊥
) ≪ 1, 𝑅𝑒(𝜔)𝑚𝑎𝑥 ≪ 𝜔𝑐. 
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While this expression for 𝑅𝑒(𝜔)𝑚𝑎𝑥  differs from Eq. (15) in the original paper, the conclusion remains unchanged: the 

Weibel mode remains a low-frequency instability even in the presence of nonzero external magnetic field. 100 

 

5 Conclusion 

In conclusion,  an  investigation of Weibel instability in magnetized plasma,  is presented by Pokhotelov and Balikhin (Ann. 

Geophysicae, 30, 1051–1054, (2012)). In this reference, the parameters of Weibel instability are explicitly calculated under 

some justified approximations: i) The quasi-static modes approximation, ii) The linear approximation iii) The non-collisional 105 

approximation. 

Upon reviewing this work and performing the necessary calculations, several errors in the derived formulas, especially in 

that of the Weibel mode frequency, 𝑅𝑒(𝜔), are identified and corrected. With this correction the growth rate remains 

coincide with the classical expression. It contains a term in 𝑘, proportional to the 
∆𝑇

𝑇∥
  corresponds  to the Weibel instability 

source and another term in 𝑘3 due to the non-collisional absorption by Landau effect.  110 

𝑅𝑒(𝜔) is proportional to the cyclotron frequency,  𝜔𝑐, and to 
∆𝑇

𝑇∥
: 𝑅𝑒(𝜔)~ ∓ 𝜔𝑐 (

𝑇⊥

𝑇∥
− 1) = ∓𝜔𝑐

𝑇⊥−𝑇∥

𝑇∥
== ∓𝜔𝑐

∆𝑇

𝑇∥
.  

For the low  magnetized plasma, the Weibel mode is purely growing electromagnetic mode , 𝑅𝑒(𝜔) ≈ 0 , however for high  

magnetized plasma like that of magneto-inertial fusion the Weibel mode is convective. 
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Appendix A 

The perturbed distribution function is calculated from the perturbed Vlasov equation (Eq. 1): 

−𝑖(𝜔 − 𝑘𝑣∥)𝛿𝑓𝜔,𝑘+𝜔𝑐
𝜕(𝛿𝑓𝜔,𝑘)

𝜕𝛼
=

𝑒𝑏𝑣⊥

𝑚𝑘
[(𝜔 − 𝑘𝑣∥)

𝜕𝐹

𝑣⊥𝜕𝑣⊥
+ 𝑘

𝜕𝐹

𝜕𝑣∥
] exp(−iωt + ikz)exp(∓𝑖𝛼)                                           (A1) 

This equation has a solution of the form: 

𝛿𝑓𝜔,𝑘 = 𝛿𝑓∓ exp(−iωt + ikz)exp(∓𝑖𝛼).                                                                                                                              (A2) 135 
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This implied that: 

𝜕(𝛿𝑓𝜔,𝑘)

𝜕𝛼
= ∓𝑖𝛿𝑓𝜔,𝑘 .                                                                                                                                                                (A3) 

by substitution of Eq. (A2) in Eq. (A3), we obtain: 

−𝑖(𝜔±𝜔𝑐 − 𝑘𝑣∥)𝛿𝑓
∓ exp(−iωt + ikz)exp(∓𝑖𝛼) =

𝑒𝑏𝑣⊥

𝑚𝑘
[(𝜔 − 𝑘𝑣∥)

𝜕𝐹

𝑣⊥𝜕𝑣⊥
+ 𝑘

𝜕𝐹

𝜕𝑣∥
] exp(−iωt + ikz)exp(∓𝑖𝛼). (A4) 

By dividing (A4) by 
exp(−iωt+ikz)exp(∓𝑖𝛼)

−𝑖(𝜔±𝜔𝑐−𝑘𝑣∥)
 , we obtain the expression of 𝛿𝑓∓ as follow : 140 

𝛿𝑓∓ =
𝑒𝑏𝑣⊥

𝑚𝑘

[(𝜔−𝑘𝑣∥)
𝜕𝐹

𝑣⊥𝜕𝑣⊥
+𝑘

𝜕𝐹

𝜕𝑣∥
]

−𝑖𝜔∓𝑖𝜔𝑐+𝑖𝑘𝑣∥
  .                                                                                                                                             (A5) 

This Eq. (A5) can be rewritten as: 

𝛿𝑓∓ = 𝑖
𝑒𝑏𝑣⊥

𝑚𝑘

[(𝜔−𝑘𝑣∥±𝜔𝑐)
𝜕𝐹

𝑣⊥𝜕𝑣⊥
∓𝜔𝑐

𝜕𝐹

𝑣⊥𝜕𝑣⊥
−(𝜔±𝜔𝑐−𝑘𝑣∥)

𝜕𝐹

𝑣∥𝜕𝑣∥
+(𝜔±𝜔𝑐)

𝜕𝐹

𝑣∥𝜕𝑣∥
]

𝜔±𝜔𝑐−𝑘𝑣∥
                                                                                    (A6) 

or again as: 

𝛿𝑓∓ = 𝑖
𝑒𝑏𝑣⊥

𝑚𝑘
[

𝜕𝐹

𝑣⊥𝜕𝑣⊥
−

𝜕𝐹

𝑣∥𝜕𝑣∥
+

[𝜔
𝜕𝐹

𝑣∥𝜕𝑣∥
±𝜔𝑐(

𝜕𝐹

𝑣∥𝜕𝑣∥
−

𝜕𝐹

𝑣⊥𝜕𝑣⊥
)]

𝜔±𝜔𝑐−𝑘𝑣∥
]   .                                                                                                     (A7) 145 

This expression of 𝛿𝑓∓is different from the expression of 𝛿𝑓∓ given in the paper (Eq. 3). 

 

Appendix B 

The current density is given by: 

𝑗𝑥 = −𝑒 ∫ 𝑣𝑥𝛿𝑓𝜔,𝑘𝑑
3𝑣⃗ ,                                                                                                                                                           (B1) 150 

where 𝛿𝑓𝜔,𝑘 is given by Eq. (A2), 𝑣𝑥 = 𝑣⊥cos⁡(𝛼) and 𝑑3𝑣⃗ = 𝑣⊥𝑑𝑣⊥𝑑𝑣∥𝑑𝛼. Then: 

𝑗𝑥 = −𝑒 ∫ 𝑣⊥
2𝑑𝑣⊥𝑑𝑣∥𝑑𝛼𝛿𝑓

∓cos⁡(𝛼)(cos(𝛼) ∓ 𝑖𝑠𝑖𝑛(𝛼)) .                                                                                                    (B2) 

By integrating this equation on 𝛼, where ∫ 𝑐𝑜𝑠2(𝛼) = 𝜋
2𝜋

0
 and ∫ 𝑐𝑜𝑠(𝛼)𝑠𝑖𝑛(𝛼) = 0

2𝜋

0
, we otain: 

𝑗𝑥 = −𝜋𝑒 ∫ 𝑣⊥
2𝑑𝑣⊥𝑑𝑣∥𝛿𝑓

∓                                                                                                                                                    (B3) 

By replacing Eq. (A7) in Eq. (B3), the current density is found  as: 155 
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𝑗𝑥 = −𝑖
𝑒2𝑏𝜋

𝑚𝑘
∫ 𝑣⊥

3𝑑𝑣⊥𝑑𝑣∥ [
𝜕𝐹

𝑣⊥𝜕𝑣⊥
−

𝜕𝐹

𝑣∥𝜕𝑣∥
+

[𝜔
𝜕𝐹

𝑣∥𝜕𝑣∥
±𝜔𝑐(

𝜕𝐹

𝑣∥𝜕𝑣∥
−

𝜕𝐹

𝑣⊥𝜕𝑣⊥
)]

𝜔±𝜔𝑐−𝑘𝑣∥
]  .                                                                                 (B4) 

(Note here that we have ignored the multiplication by phase factor,  exp(−iωt + ikz), which is the same in the all perturbed 

quantities. 

This equation (B4)  differs from Eq.  (4) of the paper. 

 160 

Appendix C 

The dispersion relation is obtained from the Ampere’s law, by ignoring the displacement current: 

𝑖𝑘⃗⃗ × 𝛿𝐵⃗⃗⃗⃗⃗⃗ =𝜇0𝑗  .                                                                                                                                                                         (C1) 

The y component of this equation is: 

𝑖𝑘𝑏 = 𝜇0𝑗𝑥 .                                                                                                                                                                              C2) 165 

By substitution  by Eq. (B4) in this equation, we obtain: 

𝑘 = 𝜇0
𝑒2𝜋

𝑚𝑘
∫ 𝑣⊥

3𝑑𝑣⊥𝑑𝑣∥ [
𝜕𝐹

𝑣⊥𝜕𝑣⊥
−

𝜕𝐹

𝑣∥𝜕𝑣∥
+

[𝜔
𝜕𝐹

𝑣∥𝜕𝑣∥
±𝜔𝑐(

𝜕𝐹

𝑣∥𝜕𝑣∥
−

𝜕𝐹

𝑣⊥𝜕𝑣⊥
)]

𝜔±𝜔𝑐−𝑘𝑣∥
].                                                                                      (C3) 

By regrouping the terms in (C3) and use the expressions of 𝜇0 =
1

𝑐2𝜀0
 and 𝜔𝑝

2 =
𝑛𝑒2

𝑚𝜀0
, Eq. (C3)  can be represented as: 

𝑘2𝑐2

𝜔𝑝
2 −

𝜋

𝑛
∫ 𝑣⊥

3𝑑𝑣⊥𝑑𝑣∥ [
𝜕𝐹

𝑣⊥𝜕𝑣⊥
−

𝜕𝐹

𝑣∥𝜕𝑣∥
+

[𝜔
𝜕𝐹

𝑣∥𝜕𝑣∥
±𝜔𝑐(

𝜕𝐹

𝑣∥𝜕𝑣∥
−

𝜕𝐹

𝑣⊥𝜕𝑣⊥
)]

𝜔±𝜔𝑐−𝑘𝑣∥
] = 0.                                                                                   C4) 

It differs from Eq. (5) of the paper by inversing the order of  
𝜕𝐹

𝑣∥𝜕𝑣∥
 and 

𝜕𝐹

𝑣⊥𝜕𝑣⊥
 in the term ±𝜔𝑐 (

𝜕𝐹

𝑣∥𝜕𝑣∥
−

𝜕𝐹

𝑣⊥𝜕𝑣⊥
). 170 

By separation of terms in integral, Eq. (C4) can be rewrite as: 

−
𝑘2𝑐2

𝜔𝑝
2 +

𝜋

𝑛
∫ 𝑣⊥

3𝑑𝑣⊥𝑑𝑣∥
𝜕𝐹

𝑣⊥𝜕𝑣⊥
−

𝜋

𝑛
∫ 𝑣⊥

3𝑑𝑣⊥𝑑𝑣∥
𝜕𝐹

𝑣∥𝜕𝑣∥
+

𝜋

𝑛
∫ 𝑣⊥

3𝑑𝑣⊥𝑑𝑣∥ [
[𝜔

𝜕𝐹

𝑣∥𝜕𝑣∥
±𝜔𝑐(

𝜕𝐹

𝑣∥𝜕𝑣∥
−

𝜕𝐹

𝑣⊥𝜕𝑣⊥
)]

𝜔±𝜔𝑐−𝑘𝑣∥
] = 0.                             (C5) 

The integrals can be evaluated, by considering the bi-Maxwellain distribution (Eq. 8 of the paper),where: 
𝜕𝐹

𝑣∥𝜕𝑣∥
= −

2

𝑣𝑇∥
2 𝐹 and 

𝜕𝐹

𝑣⊥𝜕𝑣⊥
= −

2

𝑣𝑇⊥
2 𝐹 . 

 First integral: 175 
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 𝐼1 = ∫𝑣⊥
3 𝑑𝑣⊥𝑑𝑣∥

𝜕𝐹

𝑣⊥𝜕𝑣⊥
= −

2

𝑣𝑇⊥
2 ∫ 𝑑𝑣∥ ∫ 𝑣⊥

3𝑑𝑣⊥𝐹
∞

0

+∞

−∞
= −

𝑛

𝜋
 .                                                                                             (C6) 

 Second integral: 

𝐼2 = ∫𝑣⊥
3𝑑𝑣⊥𝑑𝑣∥

𝜕𝐹

𝑣∥𝜕𝑣∥
= −

2

𝑣𝑇∥
2 ∫𝑣⊥

3𝑑𝑣⊥𝑑𝑣∥𝐹 = +
𝑛

𝜋

𝑣𝑇⊥
2

𝑣𝑇∥
2 =

𝑛

𝜋

𝑇⊥

𝑇∥
 .                                                                                      (C7) 

 Third integral: 

𝐼3 = ∫ 𝑣⊥
3𝑑𝑣⊥𝑑𝑣∥ [

[𝜔
𝜕𝐹

𝑣∥𝜕𝑣∥
±𝜔𝑐(

𝜕𝐹

𝑣∥𝜕𝑣∥
−

𝜕𝐹

𝑣⊥𝜕𝑣⊥
)]

𝜔±𝜔𝑐−𝑘𝑣∥
]  .                                                                                                                      (C8) 180 

By using the expressions of 𝐹 (Eq. 8), 
𝜕𝐹

𝑣∥𝜕𝑣∥
, and 

𝜕𝐹

𝑣⊥𝜕𝑣⊥
, the variables in the integral 𝐼3 can be separated as follows: 

𝐼3 =
2𝑁𝜋

𝑛𝑣𝑇⊥
2 [−𝜔

𝑣𝑇⊥
2

𝑣𝑇∥
2 ± 𝜔𝑐 (1 −

𝑣𝑇⊥
2

𝑣𝑇∥
2 )] ∫ 𝑣⊥

3𝑑𝑣⊥exp⁡(−
𝑣⊥
2

𝑣𝑇⊥
2 )

𝑣⊥=∞

𝑣⊥=0
∫ 𝑑𝑣∥
𝑣∥=+∞

𝑣∥=−∞
[
exp⁡(−

𝑣∥
2

𝑣𝑇∥
2 )

𝜔±𝜔𝑐−𝑘𝑣∥
] .                                                      (C9) 

where 𝑁 =
𝑛

𝜋3/2𝑣𝑇⊥
2 𝑣𝑇∥

 . 

The integration on 𝑣⊥ can be evaluated directely, so : 

𝐼3⊥ = ∫ 𝑣⊥
3𝑑𝑣⊥exp⁡(−

𝑣⊥
2

𝑣𝑇⊥
2 )

𝑣⊥=∞

𝑣⊥=0
=

𝑣𝑇⊥
4

2
 .                                                                                                                              (C10) 185 

The integration on 𝑣∥ is evaluated as follow : 

𝐼3∥ = ∫ 𝑑𝑣∥
𝑣∥=+∞

𝑣∥=−∞
[
exp⁡(−

𝑣∥
2

𝑣𝑇∥
2 )

𝜔±𝜔𝑐−𝑘𝑣∥
] .                                                                                                                                              (C11) 

By using the variable changement: 𝑦 =
𝑣∥

𝑣𝑇∥
 , 𝐼3∥ can be presented as : 

𝐼3∥ = −
1

𝑘
∫𝑑𝑦 [

exp(−𝑦2)

𝑦−
𝜔±𝜔𝑐
𝑘𝑣𝑇∥

] .                                                                                                                                                     (C12) 

This corresponds to the plasma dispersion function, 𝑍(𝜁): 190 

𝐼3∥ = −
1

𝑘
√𝜋𝑍(𝜁) ,                                                                                                                                                                (C13) 

with 𝜁 =
𝜔±𝜔𝑐

𝑘𝑣𝑇∥
. 
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Then, the third integral, 𝐼3, is presented as: 

𝐼3 = −
1

𝑘𝑣𝑇∥

𝑇⊥

𝑇∥
[−𝜔

𝑣⊥
2

𝑣∥
2 ± 𝜔𝑐 (1 −

𝑣⊥
2

𝑣∥
2)] 𝑍(𝜁).                                                                                                                         (C14) 

 195 

By substitution of equations (C6), (C7) and (C14) in Eq. (C5), the dispersion relation is obtained as:: 

−
𝑘2𝑐2

𝜔𝑝
2 − 1 +

𝑇⊥

𝑇∥
+

1

𝑘𝑣𝑇∥

𝑇⊥

𝑇∥
[𝜔 ∓ 𝜔𝑐 (

𝑇∥

𝑇⊥
− 1)] 𝑍(𝜁) = 0.                                                                                                      (C15) 

By mean that  𝑍(𝜁) ≈ 𝑖√𝜋 − 2𝜁, Eq. (C15) rewrite as; 

−
𝑘2𝑐2

𝜔𝑝
2 − 1 +

𝑇⊥

𝑇∥
+

𝑇⊥

𝑇∥
[
𝜔±𝜔𝑐

𝑣𝑇∥𝑘
∓

𝜔𝑐

𝑣𝑇∥𝑘

𝑇∥

𝑇⊥
] (𝑖√𝜋 − 2

𝜔±𝜔𝑐

𝑘𝑣𝑇∥
) = 0,                                                                                                C16) 

where 𝜔 = 𝑅𝑒(𝜔) + 𝑖𝐼𝑚(𝜔). 200 

To compute 𝐼m(𝜔) and 𝑅𝑒(𝜔), we separate the real and the imaginary part in Eq. (C16). The system of two coupled 

equations is then obtained:                                 

−√𝜋
𝑇⊥

𝑇∥

𝐼𝑚(𝜔)

𝑣𝑇∥𝑘
±

2𝜔𝑐

𝑘𝑣𝑇∥

𝑅𝑒(𝜔)

𝑘𝑣𝑇∥
=

𝑘2𝑐2

𝜔𝑝
2 + 1 −

𝑇⊥

𝑇∥
−

2𝜔𝑐
2

(𝑘𝑣𝑇∥)
2.                                                                                                          (C17) 

±2
𝜔𝑐

𝑘𝑣𝑇∥

𝑇∥

𝑇⊥

𝐼𝑚(𝜔)

𝑘𝑣𝑇∥
+ √𝜋

𝑅𝑒(𝜔)

𝑣𝑇∥𝑘
= ±√𝜋

𝜔𝑐

𝑣𝑇∥𝑘
(
𝑇∥

𝑇⊥
− 1).                                                                                                              (C18) 

This system can be presented as follow: 205 

(
−√𝜋

𝑇⊥

𝑇∥
±

2𝜔𝑐

𝑘𝑣𝑇∥

±2
𝜔𝑐

𝑘𝑣𝑇∥

𝑇∥

𝑇⊥
√𝜋

)(

𝐼𝑚(𝜔)

𝑣𝑇∥𝑘

𝑅𝑒(𝜔)

𝑣𝑇∥𝑘

) = (

𝑘2𝑐2

𝜔𝑝
2 + 1 −

𝑇⊥

𝑇∥
−

2𝜔𝑐
2

(𝑘𝑣𝑇∥)
2

±√𝜋
𝜔𝑐

𝑣𝑇∥𝑘
(
𝑇∥

𝑇⊥
− 1)

) .                                                                                           (C19) 

This system has as a solution: 

𝐼𝑚(𝜔) =
𝑘𝑣𝑇∥

√𝜋

𝑇∥

𝑇⊥
(−

𝑘2𝑐2

𝜔𝑝
2 − 1 +

𝑇⊥

𝑇∥
) .                                                                                                                                    (C20) 

𝑅𝑒(𝜔) = ±𝜔𝑐
𝑇∥

𝑇⊥
((1 −

𝑇⊥

𝑇∥
) (1 +

2

𝜋

𝑇∥

𝑇⊥
) +

2

𝜋

𝑇∥

𝑇⊥

𝑘2𝑐2

𝜔𝑝
2 ).                                                                                                          (C21) 

Note that the approximation |
𝜔±𝜔𝑐

𝑣𝑇∥𝑘
| ≪ 1 is used. 210 

The 𝑘𝑚𝑎𝑥 is calculated from (C20) as: 

𝑘𝑚𝑎𝑥 =
𝜔𝑝

√3𝑐
√(

𝑇⊥

𝑇∥
− 1)  .                                                                                                                                                       (C22) 
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and the 𝑅𝑒(𝜔)𝑚𝑎𝑥 is calculated by substitution (C22) in (C21), so: 

𝑅𝑒(𝜔)𝑚𝑎𝑥 = ∓𝜔𝑐 (1 +
4

3𝜋

𝑇∥

𝑇⊥
) (1 −

𝑇∥

𝑇⊥
)~ (1 −

𝑇∥

𝑇⊥
) ≪ 1 .                                                                                                  (C23) 

It differs from the expression of 𝑅𝑒(𝜔)𝑚𝑎𝑥 found in the paper (Eq. 15) but the Weibel mode remains low frequency even in 215 

the presence of nonzero external magnetic field as he concluded in the paper. 

 

 


